

Nanobioconjugates for targeted delivery of antigenic and therapeutic peptides at colorectal cancer

Cristian Urrea^{1*}, Susana Mejía¹, Jahir Orozco^{1*}

¹Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia. Complejo Rutaⁿ, Calle 67 N° 52 – 20, Medellín, Colombia

*stalyn.urrea@udea.edu.co, grupotandem.nanobioe@udea.edu.co

. Abstract

Colorectal cancer (CRC) presents challenges due to the limited effectiveness and side effects of conventional treatments like chemotherapy and surgery. Nanobioconjugates, such as poly(lactic-co-glycolic acid) (PLGA) nanoparticles

(NPs), offer improved drug delivery alternatives. Peptides bonded to CRC receptors show potential as therapies and vaccines. This study encapsulates the P1 peptide in PLGA-PEG-Mal NPs, functionalized with the G3 peptide for targeted CRC cell delivery to inhibit cell proliferation^{1,2}, and encapsulates the P2 peptide in PLGA-COOH polymer to inhibit tumor growth via CD8+ T-cell activation, using D-mannosamine for targeting antigen-presenting cells^{3,4}. By studying the physicochemical properties of PLGA and peptides, the research aims to enhance stability and controlled release while minimizing side effects and improving CRC therapy from nanobioconjugates and peptide synergies.

Parameter	A1	A2	A3
Size (nm)	71 ± 1	72 ± 1	85 ± 1
Pdl	0.13 ± 0.02	0.15 ± 0.01	0.17 ± 0.02
Ρζ (mV)	-20.2 ± 0.2	-19.4 ± 1.3	-19.5 ± 0.1

Parameter	Empty NPs	P2-loaded NPs
Size (nm)	226 ± 3	256 ± 4
PdI	0.14 ± 0.02	0.21 ± 0.01
Ρζ (mV)	-42.8 ± 0.5	-37.8 ± 0.5

Fig 1. Calibration curve in DMSO for P2 quantification in PLGA NPs.

R-NH₂ Fluorescamine Fluorophore 0.05· Surface modification of PLGA NPs Slope 0,001 and D-manNH2 quantification 0_04 | Intercept -0.002 0.990 **0_03 | LOD (μg/mL)** 3.645 H_2SO_4 , an **LOQ (μg/mL)** 11.047 96% 은 0.02 0.01 5-hydroxymethylfurfural D-mannose $D-manNH_2$ (%) = 0.4 0.00 10 15 20 25 30 35 40 [D-man] (µg/mL) Chromophore (490 nm) Phenol **Fig 2.** Calibration curve in H₂O for DmanNH₂ quantification on PLGA NPs. PLGA-CONH-D-PLGA-COOH NPs Successful PLGA-CONH-R Man NPs - PLGA-CONH-Man 20 surface **D-manNH** modification! Size (nm): 226 ± 3 Size (nm): 226 ± PdI: 0.14 ± 0.02 PLGA-Pζ (mV): -42.8 ± 0.5 sity **COOH NPs** Size (nm): 269 ± 8 nten Pdl: 0.22 ± 0.01 TPGS Pζ (mV): -9.0 ± 0.3 Size (nm): 292 ± 4 Pdl: 0.24 ± 0.03 **PLGA**

Fig 3. Particle size data of PLGA NPs before (-), in the middle of (-), and after functionalization (-) with D-manNH₂.

Pζ (mV): -8.2 ± 0.2

500 1000 1500 2000 2500 3000 3500 4000 Wavenumber (cm⁻¹)

Fig 4. FT-IR spectra for PLGA (-), TPGS (-), PLGA-COOH NPs (-), D-ManNH₂ (-), and PLGA-CONH-D-Man NPs (-).

4. Conclusions

The interplay between the physicochemical properties of PLGA and P2 is evident in the particle size, reflecting a balanced influence of molecular weight and the lactic acid:glycolic acid ratio. Changes in ζ -potential values and specific signals from FT-IR confirmed the successful surface modification of PLGA NPs.

