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a b s t r a c t

Let X1, X2 and X3 be independent random variables, X1 and X2 having a confluent
hypergeometric function kind 1 distributionwith probability density function proportional
to xνi−1

i 1F1(αi; βi; −xi), i = 1, 2, and X3 having a standard gamma distribution with shape
parameter ν3. Define (Y1, Y2) = (X1/X3, X2/X3) and (Z1, Z2) = (X1, X2)/(X1 + X2 + X3). In
this article, we derive probability density functions of (Y1, Y2) and (Z1, Z2), and study their
properties. We use the second hypergeometric function of Appell to express these density
functions.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The random variable X is said to have a beta distribution, denoted by X ∼ B1(a, b), if its probability density function
(p.d.f.) is given by

{B(a, b)}−1xa−1(1 − x)b−1, 0 < x < 1, (1)

where a > 0, b > 0, and B(a, b) is the beta function defined by

B(a, b) =
Γ (a)Γ (b)
Γ (a + b)

. (2)

The random variable Y with the p.d.f.

B2(y; a, b) = {B(a, b)}−1ya−1(1 + y)−(a+b), y > 0, (3)

where a > 0 and b > 0, is said to have a beta type 2 distribution with parameters (a, b). Since (3) can be obtained from
(1) by the transformation Y = X/(1 − X) some authors call the distribution of Y an inverted beta distribution. The inverted
beta distribution arises from a linear transformation of the F distribution. The beta type 1 and beta type 2 are very flexible
distributions for positive random variables and have wide applications in statistical analysis, e.g., see Johnson et al. [1].
Systematic treatment of matrix variate generalizations of the beta type 1 and the beta type 2 distributions is given in Gupta
and Nagar [2].

✩ The paper has been evaluated according to old Aims and Scope of the journal.
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It is well known that if U1 and U2 are independent random variables each having a standard gamma distribution with
respective shape parameters a1 and a2, then U1/(U1 + U2) ∼ B1(a1, a2) and U1/U2 ∼ B2(a1, a2).

Let X1, X2, X3 be independent random variables and define

Z1 =
X1

X1 + X2 + X3
, Z2 =

X2

X1 + X2 + X3
(4)

and

Y1 =
X1

X3
, Y2 =

X2

X3
. (5)

If Xi follows a standard gamma distribution with shape parameter ai, i = 1, 2, 3, then Z1 and Z2 each has a beta type 1
distribution, Z1 ∼ B1(a1, a2 + a3) and Z2 ∼ B1(a2, a1 + a3). However, they are correlated so that (Z1, Z2) has a bivariate
beta type 1 distribution. It is well known that (Z1, Z2) follows a Dirichlet type 1 distribution with the p.d.f.

D1(z1, z2; a1, a2, a3) =
za1−1
1 za2−1

2 (1 − z1 − z2)a3−1

B(a1, a2, a3)
, z1 > 0, z2 > 0, z1 + z2 < 1, (6)

where

B(a, b, c) =
Γ (a)Γ (b)Γ (c)
Γ (a + b + c)

.

Similarly, Y1 and Y2 each has a beta type 2 distribution, Y1 ∼ B2(a1, a3) and Y2 ∼ B2(a2, a3). However, they are correlated
so that (Y1, Y2) has a bivariate beta type 2 distribution. It is well known that (Y1, Y2) follows a Dirichlet type 2 distribution
with the p.d.f.

D2(y1, y2; a1, a2, a3) =
ya1−1
1 ya2−1

2 (1 + y1 + y2)−(a1+a2+a3)

B(a1, a2, a3)
, y1 > 0, y2 > 0. (7)

The distributions defined by the densities (6) and (7) and their matrix variate generalizations have been studied extensively.
For example see Kotz et al. [3] and Gupta and Nagar [2].

There are several other bivariate beta distributions that are available in the literature. For example, see, Bekker et al. [4,5],
Cardeño et al. [6], Connor and Mosimann [7], Lee [8], Mihram and Hultquist [9], Nadarajah and Kotz [10,11], Nadarajah
[12,13], and Olkin and Liu [14].

Bivariate beta distributions are tractable lifetime models in many areas, including life testing and telecommunications.
These distributions have attracted useful applications in the modeling of the proportion of substances in a mixture, brand
shares, proportion of electorate voting for the candidate in a two candidate election and the dependence between two soil
strength parameters.

For results on bivariate distributions the reader is referred to Mardia [15], Arnold et al. [16], Balakrishnan and Lai [17],
Kotz et al. [3], Hutchinson and Lai [18], Gupta and Wong [19].

The objective of this work is to give generalizations of the bivariate beta distributions defined by the densities (6) and
(7) by taking X1 and X2 as confluent hypergeometric function kind 1 and X3 as standard gamma variable in (4) and (5).

The random variable X is said to have a confluent hypergeometric function kind 1 distribution, denoted by
X ∼ CH(ν, α, β, kind 1), if its p.d.f. is given by (Gupta and Nagar [2], Nagar and Sepúlveda-Murillo [20]),

Γ (α)Γ (β − ν)

Γ (ν)Γ (β)Γ (α − ν)
xν−1

1F1 (α; β; −x) , x > 0, (8)

where β ≥ α > ν > 0, and 1F1 is the confluent hypergeometric function kind 1 (see Luke [21]). Mathai and Saxena [22]
have shown that the above density can be obtained as a limiting case of a generalized hypergeometric density involving
the Gauss hypergeometric function. The confluent hypergeometric function kind 1 distribution occurs as the distribution
of the ratio of independent gamma and beta variables. For α = β , the density (8) reduces to a standard gamma density
with shape parameter ν and in this case we write X ∼ Ga(ν). The gamma distribution has been used to model amounts of
daily rainfall [23]. In neuroscience, the gamma distribution is often used to describe the distribution of inter-spike intervals
[24]. The gamma distribution is widely used as a conjugate prior in Bayesian statistics. It is the conjugate prior for the
precision (i.e. inverse of the variance) of a normal distribution. It is also the conjugate prior for the exponential distribution.
It is, therefore, reasonable to say that the confluent hypergeometric function kind 1 distribution, which is a generalization
of the gamma distribution, can be used as an alternative to gamma quite effectively in analyzing many lifetime data.
Therefor, to explore the variables-in-common (or trivariate reduction) technique for introducing and investigating new
bivariate distributions using independent gammaand confluent hypergeometric function kind 1 distributions, develop some
seemingly useful properties of these bivariate beta distributions suggested herein will further enrich existing literature on
bivariate distributions.

The trivariate reduction technique using confluent hypergeometric function variables enables us to generate two new
bivariate distributions which are more general than Dirichlet distributions. These bivariate distributions are more flexible
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due to increased number of parameters thereby giving a wide variety of forms of their densities and extending the spectrum
of applications. Further, because of mathematical tractability of the confluent hypergeometric function and Appell’s
functions, the bivariate beta distributions considered in this article will advance the literature on bivariate distributions
and may serve as an alternative to many existing distributions.

In this article, we derive the densities of (Y1, Y2) and (Z1, Z2) when Xi ∼ CH(νi, αi, βi, kind 1), i = 1, 2 and X3 ∼ Ga(ν3)
and study their properties. The densities of (Z1, Z2) and (Y1, Y2) and their properties are studied in Sections 3 and 4,
respectively.

2. Some definitions and preliminary results

In this section, we give some definitions and preliminary results which are used in subsequent sections. Throughout
this work we will use the Pochhammer symbol (a)n defined by (a)n = a(a + 1) . . . (a + n − 1) = (a)n−1(a + n − 1) for
n = 1, 2, . . . , and (a)0 = 1. The generalized hypergeometric function of scalar argument is defined by

pFq

a1, . . . , ap; b1, . . . , bq; z


=

∞
k=0

(a1)k · · ·

ap

k

(b1)k · · ·

bq

k

zk

k!
, (9)

where ai, i = 1, . . . , p; bj, j = 1, . . . , q are complex numbers with suitable restrictions and z is a complex variable.
Conditions for the convergence of the series in (9) are available in the literature, see Luke [21].

From (9) it is easy to see that

1F1(a; c; z) =

∞
k=0

(a)k
(c)k

zk

k!
, (10)

and

2F1(a, b; c; z) =

∞
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1. (11)

Also, under suitable conditions, 1

0
zα−1(1 − z)β−1

pFq(a1, . . . , ap; b1, . . . , bq; zy) dz

=
Γ (α)Γ (β)

Γ (α + β)
p+1Fq+1(a1, . . . , ap, α; b1, . . . , bq, α + β; y). (12)

The integral representations of the confluent hypergeometric function and the Gauss hypergeometric function are given
as

1F1(a; c; z) =
Γ (c)

Γ (a)Γ (c − a)

 1

0
ta−1(1 − t)c−a−1 exp(zt) dt, (13)

and

2F1(a, b; c; z) =
Γ (c)

Γ (a)Γ (c − a)

 1

0
ta−1(1 − t)c−a−1(1 − zt)−b dt, | arg(1 − z)| < π, (14)

respectively, where Re(a) > 0 and Re(c − a) > 0. Note that, the series expansions for 1F1 and 2F1 given in (10) and (11) can
be obtained by expanding exp(zt) and (1− zt)−b, |zt| < 1, in (13) and (14) and integrating t . Substituting z = 1 in (14) and
integrating, we obtain

2F1(a, b; c; 1) =
Γ (c)Γ (c − a − b)
Γ (c − a)Γ (c − b)

, Re(c − a − b) > 0. (15)

The hypergeometric functions 1F1(a; c; z) and 2F1(a, b; c; z) satisfy Kummer’s and Euler’s relations

1F1(a; c; −z) = exp(−z)1F1(c − a; c; z) (16)

and

2F1(a, b; c; z) = (1 − z)−a
2F1


a, c − b; c;

z
z − 1


= (1 − z)−b

2F1


c − a, b; c;

z
z − 1


= (1 − z)c−a−b

2F1(c − a, c − b; c; z). (17)
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Appell’s second hypergeometric function F2 is defined by Prudnikov et al. [25, Eq. 7.2.4(44)],

F2(a, b, b′
; c, c ′

; w, z) =
Γ (c)Γ (c ′)

Γ (b)Γ (b′)Γ (c − b)Γ (c ′ − b′)

 1

0

 1

0

ub−1vb′
−1(1 − u)c−b−1(1 − v)c

′
−b′

−1 du dv
(1 − wu − zv)a

,

where Re(b) > 0, Re(b′) > 0, Re(c − b) > 0 and Re(c ′
− b′) > 0. Replacing (1 − wu − zv)−a by its equivalent integral,

namely,

(1 − wu − zv)−a
=

1
Γ (a)


∞

0
exp[−(1 − wu − zv)t]ta−1 dt, Re(a) > 0,

and integrating u and v using (13), the above expression is re-written as

F2(a, b, b′
; c, c ′

; w, z) =
1

Γ (a)


∞

0
exp(−t)ta−1

1F1(b; c; wt)1F1(b′
; c ′

; zt) dt. (18)

Further, expanding 1F1(b; c; wt) and 1F1(b′
; c ′

; zt) in series form and integrating t , the series expansion of F2 is obtained as

F2(a, b, b′
; c, c ′

; w, z) =

∞
r,s=0

(a)r+s(b)r(b′)s

(c)r(c ′)s

wrzs

r! s!

=

∞
r=0

(a)r(b)r
(c)r

wr

r! 2F1(a + r, b′
; c ′

; z)

=

∞
s=0

(a)s(b′)s

(c ′)s

zs

s! 2
F1(a + s, b; c; w), (19)

where |w| + |z| < 1. Further, for c = c ′
= a, F2 reduces to a Gauss hypergeometric function. That is

F2(a, b, b′
; a, a; w, z) = (1 − w)−b(1 − z)−b′

2F1


b, b′

; a;
wz

(1 − w)(1 − z)


. (20)

From the definition, it is easy to see that

F2(a, b, b′
; c, c ′

; w, z) = 2F1(a, b′
; c ′

; z), if b = 0,

= 2F1(a, b; c; w), if b′
= 0. (21)

In continuation we present a few special cases of Appell’s second hypergeometric function F2 given in [26]:

F2(a + 1, 1, 1; 2, 2; w, z) =
1

a(a − 1)wz
[1 − (1 − w)1−a

− (1 − z)1−a
+ (1 − w − z)1−a

], (22)

F2(1, 1, 1; 2, 2; w, z) =
1

wz
[(1 − w − z) ln(1 − w − z) − (1 − w) ln(1 − w) − (1 − z) ln(1 − z)], (23)

and

F2


1,

1
2
, 1; 1, 2; w, z


=

2
z
ln


1 +

√
1 − w

√
1 − z +

√
1 − w − z


. (24)

Note that the special cases of F2 given above are expressed in terms of elementary functions. Recently, Murley and
Saad [27] have listed more than 400 special cases of F2.

For properties and further results on these functions the reader is referred to Luke [21], Bailey [28], and Srivastava and
Karlsson [29].

3. Generalized Dirichlet type 1 distribution

In statistical distribution theory it is well known that if X1, X2 and X3 are independent, Xi ∼ Ga(νi), i = 1, 2, 3, then
(X1, X2)/X3 ∼ D2(ν1, ν2; ν3), (X1, X2)/(X1 + X2 + X3) ∼ D1(ν1, ν2; ν3) and X1 + X2 + X3 ∼ Ga(ν1 + ν2 + ν3). In this section
and subsequent sectionwe derive similar results when X1 and X2 are independent confluent hypergeometric function kind 1
variables and X3 is a gamma variable. Note that if X ∼ CH(ν, α, β, kind 1), then using (16), the p.d.f. of X can also be
expressed as

Γ (α)Γ (β − ν)

Γ (ν)Γ (β)Γ (α − ν)
xν−1 exp(−x)1F1 (β − α; β; x) , x > 0. (25)
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Theorem 3.1. Let X1, X2 and X3 be independent, Xi ∼ CH(νi, αi, βi, kind 1), i = 1, 2 and X3 ∼ Ga(ν3). Then, the p.d.f. of
(Z1, Z2) = (X1, X2)/(X1 + X2 + X3) is given by

K
zν1−1
1 zν2−1

2 (1 − z1 − z2)ν3−1

B(ν1, ν2, ν3)
F2 (ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2; z1, z2) ,

z1 > 0, z2 > 0, z1 + z2 < 1, (26)

and the p.d.f. of S = X1 + X2 + X3 is given by

K
sν1+ν2+ν3−1 exp(−s)

Γ (ν1 + ν2 + ν3)

∞
r=0

(β2 − α2)r(ν2)r sr

(β2)r(ν1 + ν2 + ν3)r r!
2F2 (ν1, β1 − α1; ν1 + ν2 + ν3 + r, β1; s) , s > 0,

where

K =
Γ (α1)Γ (α2)Γ (β1 − ν1)Γ (β2 − ν2)

Γ (β1)Γ (β2)Γ (α1 − ν1)Γ (α2 − ν2)
.

Proof. Using independence, the joint p.d.f. of X1, X2 and X3 is given by

K1x
ν1−1
1 xν2−1

2 xν3−1
3 exp[−(x1 + x2 + x3)]1F1 (β1 − α1; β1; x1) 1F1 (β2 − α2; β2; x2) (27)

where x1 > 0, x2 > 0, x3 > 0 and

K1 =
Γ (α1)Γ (α2)Γ (β1 − ν1)Γ (β2 − ν2)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (β1)Γ (β2)Γ (α1 − ν1)Γ (α2 − ν2)
. (28)

Making the transformation Z1 = X1/(X1 + X2 + X3), Z2 = X2/(X1 + X2 + X3) and S = X1 + X2 + X3 with the Jacobian
J(x1, x2, x3 → z1, z2, s) = s2 in (27), we obtain the joint p.d.f. of Z1, Z2 and S as

K1z
ν1−1
1 zν2−1

2 (1 − z1 − z2)ν3−1sν1+ν2+ν3−1 exp(−s)1F1 (β1 − α1; β1; z1s) 1F1 (β2 − α2; β2; z2s) , (29)

where z1 > 0, z2 > 0, z1 + z2 < 1 and s > 0. Now, integration of s by using (18) yields the density of (Z1, Z2). The marginal
density of S is obtained by integrating z1 and z2 in (29). �

For βi = αi, i = 1, 2, the density (26) slides to a Dirichlet density with parameters ν1, ν2 and ν3. In Bayesian analysis, the
Dirichlet distribution is used as a conjugate prior distribution for the parameters of a multinomial distribution. However,
the Dirichlet family is not sufficiently rich in scope to represent many important distributional assumptions, because the
Dirichlet distribution has few number of parameters. We, in Theorem 3.1, have provided a generalization of the Dirichlet
distribution with added number of parameters.

Several special cases of the density (26) can be obtained for special values of parameters by simplifying F2 using (22)–(24).
For ν1 = ν2 = 1/2, α1 = α2 = 1 and β1 = β2 = 2, the density in (26) simplifies to

(1 − z1 − z2)ν3−1

4π(ν3 − 1)z3/21 z3/22

[1 − (1 − z1)1−ν3 − (1 − z2)1−ν3 + (1 − z1 − z2)1−ν3 ].

For ν1 = ν2 = ν3 = 1/3, α1 = α2 = 1 and β1 = β2 = 2, the density (26) slides to

4
9Γ 3(1/3)

(1 − z1 − z2)−2/3(z1z2)−5/3
[(1 − z1 − z2) ln(1 − z1 − z2) − (1 − z1) ln(1 − z1) − (1 − z2) ln(1 − z2)].

For ν1 = ν2 = ν3 = 1/3, α1 = 1/2, α2 = 1 and β1 = 1 and β2 = 2, the density (26) reduces to

2
√

πΓ (5/3)
Γ (1/3)3Γ (1/6)

z−2/3
1 z−5/3

2 (1 − z1 − z2)−2/3 ln


1 +
√
1 − z1

√
1 − z2 +

√
1 − z1 − z2


.

Corollary 3.1.1. Let X1, X2 and X3 be independent random variables, Xi ∼ CH(νi, αi, ν1 + ν2 + ν3, kind 1), i = 1, 2, and
X3 ∼ Ga(ν3). Then, the p.d.f. of (Z1, Z2) is given by

Γ (α1)Γ (α2)Γ (ν2 + ν3)Γ (ν1 + ν3)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (ν1 + ν2 + ν3)Γ (α1 − ν1)Γ (α2 − ν2)

zν1−1
1 zν2−1

2 (1 − z1 − z2)α1+α2−ν1−ν2−1

(1 − z1)α2(1 − z2)α1

× 2F1


α1, α2; ν1 + ν2 + ν3;

z1z2
(1 − z1)(1 − z2)


, z1 > 0, z2 > 0, z1 + z2 < 1.
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Proof. Substituting β1 = β2 = ν1 + ν2 + ν3 in (26) and applying the results given in (20) and (17), we obtain the desired
results. �

Corollary 3.1.2. Let X1, X2 and X3 be independent random variables, X1 ∼ CH(ν1, α1, β1, kind 1), and Xi ∼ Ga(νi), i = 2, 3.
Then, the p.d.f. of (Z1, Z2) is given by

Γ (α1)Γ (β1 − ν1)Γ (ν1 + ν2 + ν3)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (β1)Γ (α1 − ν1)
zν1−1
1 zν2−1

2 (1 − z1 − z2)ν3−1
2F1 (ν1 + ν2 + ν3, β1 − α1; β1; z1) ,

where z1 > 0, z2 > 0 and z1 + z2 < 1.

Proof. Substituting β2 = α2 in (26) and using the result given in (21), we obtain the required result. �

If we take β1 = ν1 + ν2 + ν3 in the above corollary, then the p.d.f. of (Z1, Z2) is given by

Γ (α1)Γ (ν2 + ν3)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (α1 − ν1)
zν1−1
1 zν2−1

2 (1 − z1)α1−ν1−ν2−ν3(1 − z1 − z2)ν3−1, z1 > 0, z2 > 0, z1 + z2 < 1.

The above bivariate distribution was first derived by Connor and Mosimann [7].

Theorem 3.2. If the p.d.f. of (Z1, Z2) is given by (26), then the marginal density of Z1 is obtained as

K
zν1−1
1 (1 − z1)ν2+ν3−1

B(ν1, ν2 + ν3)

∞
r=0

(ν1 + ν2 + ν3)r(β1 − α1)r

(β1)r r!
zr1

× 3F2 (ν1 + ν2 + ν3 + r, ν2, β2 − α2; β2, ν2 + ν3; 1 − z1) , 0 < z1 < 1.

Proof. The marginal density of Z1 is derived as

K
B(ν1, ν2, ν3)

zν1−1
1

 1−z1

0
zν2−1
2 (1 − z1 − z2)ν3−1F2 (ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2; z1, z2) dz2. (30)

Substituting x = z2/(1 − z1), expanding F2 in series form and integrating x, the above integral is evaluated as

Γ (ν2)Γ (ν3)

Γ (ν2 + ν3)
(1 − z1)ν2+ν3−1

∞
r=0

(ν1 + ν2 + ν3)r(β1 − α1)r

(β1)r r!
zr1

× 3F2 (ν1 + ν2 + ν3 + r, ν2, β2 − α2; β2, ν2 + ν3; 1 − z1) . (31)

Finally, substituting (31) in (30) and simplifying, we get the desired result. �

Theorem 3.3. If the p.d.f. of (Z1, Z2) is given by (26), then the density of Z = Z1 + Z2 is given by

K
zν1+ν2−1(1 − z)ν3−1

B(ν1 + ν2, ν3)

∞
r=0

(ν1 + ν2 + ν3)r(β1 − α1)r(ν1)r

(β1)r(ν1 + ν2)r r!
zr

× 3F2 (ν1 + ν2 + ν3 + r, ν2, β2 − α2; β2, ν1 + ν2 + r; z) , 0 < z < 1.

Proof. By using the convolution formula, the density of Z is given by

K
(1 − z)ν3−1

B(ν1, ν2, ν3)

 z

0
zν1−1
1 (z − z1)ν2−1F2 (ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2; z1, z − z1) dz1

= K
zν1+ν2−1(1 − z)ν3−1

B(ν1, ν2, ν3)

 1

0
vν1−1(1 − v)ν2−1F2 (ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2; zv, z(1 − v)) dv. (32)

Now, expanding F2 in series form and integrating v, the above integral is evaluated as

Γ (ν1)Γ (ν2)

Γ (ν1 + ν2)

∞
r=0

(ν1 + ν2 + ν3)r(β1 − α1)r(ν1)r

(β1)r(ν1 + ν2)r r!
zr 3F2 (ν1 + ν2 + ν3 + r, β2 − α2, ν2; β2, ν1 + ν2 + r; z) . (33)

Finally, substituting (33) in (32) and simplifying, we get the desired result. �
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If the p.d.f. of (Z1, Z2) is given by (26), then the (h, t)-th joint moment of (Z1, Z2) is derived as

E(Zh
1Z

t
2) =

K
B(ν1, ν2, ν3)

 1

0

 1−z1

0
zν1+h−1
1 zν2+t−1

2 (1 − z1 − z2)ν3−1

× F2 (ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2; z1, z2) dz2 dz1

=
K

B(ν1, ν2, ν3)

∞
r=0

(ν1 + ν2 + ν3)r(β2 − α2)r

(β2)r r!
Γ (ν2 + t + r)Γ (ν3)Γ (ν1 + h)
Γ (ν1 + ν2 + ν3 + h + t + r)

× 3F2(ν1 + ν2 + ν3 + r, β1 − α1, ν1 + h; β1, ν1 + ν2 + ν3 + h + t + r; 1),

where β1 ≥ α1 > ν1 > 0, β2 ≥ α2 > ν2 > 0 and ν3 > 0. The final result has been obtained by expanding F2 in series form,
substituting v = z2/(1 − z1) and integrating with respect to z1 and v by applying (12).

Substituting appropriately for h and t in E(Zh
1Z

t
2), we obtain expressions for E(Z1Z2), E(Z1), E(Z2), E(Z2

1 ) and E(Z2
2 ) as

E(Z1Z2) = K
∞
r=0

(ν1 + ν2 + ν3)r(β2 − α2)r

(β2)r r!
B(ν1 + 1, ν2 + r + 1, ν3)

B(ν1, ν2, ν3)

× 3F2(ν1 + ν2 + ν3 + r, β1 − α1, ν1 + 1; β1, ν1 + ν2 + ν3 + r + 2; 1), (34)

E(Z1) = K
∞
r=0

(ν1 + ν2 + ν3)r(β2 − α2)r

(β2)r r!
B(ν1 + 1, ν2 + r, ν3)

B(ν1, ν2, ν3)

× 3F2(ν1 + ν2 + ν3 + r, β1 − α1, ν1 + 1; β1, ν1 + ν2 + ν3 + r + 1; 1), (35)

E(Z2) = K
∞
r=0

(ν1 + ν2 + ν3)r(β2 − α2)r

(β2)r r!
B(ν1, ν2 + r + 1, ν3)

B(ν1, ν2, ν3)

× 3F2(ν1 + ν2 + ν3 + r, β1 − α1, ν1; β1, ν1 + ν2 + ν3 + r + 1; 1), (36)

E(Z2
1 ) = K

∞
r=0

(ν1 + ν2 + ν3)r(β2 − α2)r

(β2)r r!
B(ν1 + 2, ν2 + r, ν3)

B(ν1, ν2, ν3)

× 3F2(ν1 + ν2 + ν3 + r, β1 − α1, ν1 + 2; β1, ν1 + ν2 + ν3 + r + 2; 1) (37)

and

E(Z2
2 ) = K

∞
r=0

(ν1 + ν2 + ν3)r(β2 − α2)r

(β2)r r!
B(ν1, ν2 + r + 2, ν3)

B(ν1, ν2, ν3)

× 3F2(ν1 + ν2 + ν3 + r, β1 − α1, ν1; β1, ν1 + ν2 + ν3 + r + 2; 1). (38)

Further, the correlation between Z1 and Z2 is defined as

ρZ1,Z2 =
Cov(Z1, Z2)

√
Var(Z1)Var(Z2)

, (39)

where Cov(Z1, Z2) = E(Z1Z2) − E(Z1)E(Z2), Var(Zi) = E(Z2
i ) − E(Zi)2, i = 1, 2, and E(Z1Z2), E(Z1), E(Z2), E(Z2

1 ) and E(Z2
2 )

are given by (34)–(38), respectively.
Note that the expressions for E(Z1Z2), E(Z1), E(Z2), E(Z2

1 ) and E(Z2
2 ) contain the generalized hypergeometric function

3F2(a, b, c; a1, b1; 1), which can be calculated using MATHEMATICA. The software Mathematica includes this function in
the form HypergeometricPFQ [{a, b, c}, {a1, b1}, 1]. Table 1 gives the correlations between Z1 and Z2 for different values of
α1, α2, β1, β2, ν1, ν2 and ν3. For α2 = β2, the density of (Z1, Z2) is given in Corollary 3.1.2 and in this case the correlation
coefficients for different values of α1, β1, ν1, ν2 and ν3 are given by rows in bold. Since the bivariate beta distribution
proposed by Connor andMosimann [7] is a special case of Corollary 3.1.2whenβ1 = ν1+ν2+ν3, the correlation coefficients
in this case are given in boxes among rows in bold. It can be observed that the correlation between Z1 and Z2 is always
negative due to the condition z1 + z2 < 1. Further, for selected values of the parameters, it is possible to find correlations
close to 0 or −1. For example, for α1 = α2 = β2 = 1.5, β1 = 2, ν1 = ν2 = 1 and ν3 = 0.01 the correlation is −0.994,
whereas for α1 = β2 = 3, α2 = 2.5, β1 = 3.5, ν1 = ν2 = 0.5 and ν3 = 10 the correlation is −0.079. Note that when ν3 is
big the correlation between variables is close to zero.

Fig. 1 gives graphs of the correlation coefficient ρZ1,Z2 as a function of α2 for α1 = 2.5, 3, 3.5, 4 and β1 = ν1 + ν2 + ν3 =

4, β2 = 3, ν1 = 2, ν2 = 1, ν3 = 1. For α2 = 3 we get correlation coefficient for Connor and Mosimann [7] case for
α1 = 2.5, α1 = 3, α1 = 3.5, and α1 = 4.

Fig. 2 gives graphs of the correlation coefficient ρZ1,Z2 for the Connor and Mosimann [7] case as a function of α1 for (i)
β1 = 5, ν1 = 0.5, ν2 = 0.5, ν3 = 4, (ii) β1 = 2.5, ν1 = 0.5, ν2 = 1, ν3 = 1, (iii) β1 = 4, ν1 = 1, ν2 = 1, ν3 = 2, (iv)
β1 = 4, ν1 = 1, ν2 = 2, ν3 = 1, (v) β1 = 3, ν1 = 1, ν2 = 1, ν3 = 1, (vi) β1 = 5, and ν1 = 1, ν2 = 1, ν3 = 3.

So far we have studied the exact distribution of (Z1, Z2) and several of its properties. In the following theorem, we derive
limiting density of ν3(Z1, Z2), when ν3 tends to infinity, following the procedure similar to that of Tiao and Guttman [30].
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Table 1
Correlations for different values of the parameters.

α1 α2 β1 β2 ν1 ν2 ν3

0.01 0.1 0.5 1 2 3 4 5 10

2 2 2 2 1 1 −0.99 −0.909 −0.667 −0.5 −0.333 −0.25 −0.2 −0.167 −0.091
1 1 2 1 0.5 0.5 −0.988 −0.897 −0.67 −0.542 −0.429 −0.374 −0.341 −0.318 −0.26
1.5 1.5 2 1.5 1 1 −0.994 −0.948 −0.802 −0.692 −0.574 −0.509 −0.467 −0.437 −0.36
1.5 1.5 2.5 1.5 1 1 −0.995 −0.956 −0.83 −0.735 −0.628 −0.568 −0.529 −0.5 −0.422
1.5 1.5 2 2.5 1 1 −0.892 −0.879 −0.826 −0.771 −0.688 −0.626 −0.577 −0.538 −0.415
3 2.5 3.5 3 0.5 0.5 −0.984 −0.858 −0.557 −0.397 −0.259 −0.197 −0.16 −0.135 −0.079
3 2.5 3.5 3 1 1 −0.993 −0.936 −0.754 −0.615 −0.46 −0.373 −0.317 −0.277 −0.176
3 2.5 4 2.5 1 1 −0.992 −0.929 −0.73 −0.583 −0.426 −0.342 −0.289 −0.251 −0.159
4 3.5 5 4.5 0.5 0.5 −0.984 −0.863 −0.569 −0.408 −0.269 −0.204 −0.166 −0.141 −0.081
4 3.5 5 4.5 1.5 1.5 −0.996 −0.966 −0.854 −0.751 −0.611 −0.52 −0.455 −0.405 −0.269
4 4.5 5 4.5 0.5 0.5 −0.982 −0.847 −0.532 −0.368 −0.232 −0.172 −0.137 −0.114 −0.064

4 4.5 5 4.5 1.5 1.5 −0.995 −0.951 −0.800 −0.672 −0.515 −0.423 −0.361 −0.316 −0.201

4 4.5 8 4.5 1.5 1.5 −0.996 −0.965 −0.854 −0.755 −0.626 −0.544 −0.485 −0.441 −0.314

Theorem 3.4. If the p.d.f. of (Z1, Z2) is given by (26), then when ν3 tends to infinity, the limiting joint density of the random
variables Ti = ν3Zi, i = 1, 2, is such that

lim
ν3→∞

f (t1, t2) =
Γ (α1)Γ (α2)Γ (β1 − ν1)Γ (β2 − ν2)

Γ (ν1)Γ (ν2)Γ (β1)Γ (β2)Γ (α1 − ν1)Γ (α2 − ν2)
tν1−1
1 tν2−1

2 exp(−t1 − t2)

× 1F1(β1 − α1; β1; t1)1F1(β2 − α2; β2; t2), (40)

where f is the joint density function of the random variables Ti = ν3Zi, i = 1, 2, t1 > 0 and t2 > 0.
Proof. Transforming T1 = ν3Z1 and T2 = ν3Z2 with the Jacobian J(z1, z2 → t1, t2) = 1/ν2

3 in (26), and expanding F2 in
series form, we obtain the joint p.d.f. of T1 and T2 as

f (t1, t2) =
K

Γ (ν1)Γ (ν2)

∞
r,s=0

(β1 − α1)r(β2 − α2)s

(β1)r(β2)sr!s!
t1ν1+r−1t2ν2+s−1

×
Γ (ν1 + ν2 + ν3 + r + s)

Γ (ν3)ν
ν1+ν2+r+s
3


1 −

t1 + t2
ν3

ν3−1

. (41)

Now, taking ν3 → ∞ in (41) and using the results

lim
ν3→∞

Γ (ν1 + ν2 + ν3 + r + s)

Γ (ν3)ν
ν1+ν2+r+s
3

= 1

and

lim
ν3→∞


1 −

t1 + t2
ν3

ν3−1

= exp(−t1 − t2)

the limiting p.d.f. is obtained as

lim
ν3→∞

f (t1, t2) =
Γ (α1)Γ (α2)Γ (β1 − ν1)Γ (β2 − ν2)

Γ (ν1)Γ (ν2)Γ (β1)Γ (β2)Γ (α1 − ν1)Γ (α2 − ν2)
exp(−t1 − t2)

× t1ν1−1t2ν2−1
1F1(β1 − ν1; β1; t1)1F1(β2 − ν2; β2; t2).

The above expression is called the joint limiting p.d.f. of (T1, T2). �

Note that in the above theorem the limiting density of (T1, T2), when ν3 tends to infinity, is the product of the densities
of two independent random variables, each of them has confluent hypergeometric function type 1 distribution.

4. Generalized Dirichlet type 2 distribution
Theorem 4.1. Let X1, X2 and X3 be independent, Xi ∼ CH(νi, αi, βi, kind 1), i = 1, 2 and X3 ∼ Ga(ν3). Then, the p.d.f. of
(Y1, Y2) = (X1/X3, X2/X3) is given by

K
yν1−1
1 yν2−1

2 (1 + y1 + y2)−(ν1+ν2+ν3)

B(ν1, ν2, ν3)
F2


ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2;

y1
1 + y1 + y2

,
y2

1 + y1 + y2


, (42)

where y1 > 0 and y2 > 0.
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Fig. 1. Plots of the correlation coefficient ρZ1,Z2 as a function of α2 for α1 = 2.5, 3, 3.5, 4 and β1 = 4, β2 = 3, ν1 = 2, ν2 = 1, ν3 = 1. The four curves
are: the curve of dots and dashes α1 = 2.5, the curve of dashes α1 = 3, the curve of dots α1 = 3.5, the solid curve α1 = 4.

Fig. 2. Plots of the correlation coefficient ρZ1,Z2 as a function of α1 . The six graphs are (i) β1 = 5, α2 = β2, ν1 = 0.5, ν2 = 0.5, ν3 = 4, (ii)
β1 = 2.5, α2 = β2, ν1 = 0.5, ν2 = 1, ν3 = 1, (iii) β1 = 4, α2 = β2, ν1 = 1, ν2 = 1, ν3 = 2, (iv) β1 = 4, α2 = β2, ν1 = 1, ν2 = 2, ν3 = 1, (v)
β1 = 3, α2 = β2, ν1 = 1, ν2 = 1, ν3 = 1, (vi) β1 = 5, α2 = β2, ν1 = 1, ν2 = 1, ν3 = 3.
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Proof. Transforming Y1 = X1/X3, Y2 = X2/X3, X3 = X3 with the Jacobian J(x1, x2, x3 → y1, y2, x3) = x23 in (27), we obtain
the joint p.d.f. of Y1, Y2 and X3 as

K1y
ν1−1
1 yν2−1

2 xν1+ν2+ν3−1
3 exp[−(1 + y1 + y2)x3]1F1 (β1 − α1; β1; y1x3)

× 1F1 (β2 − α2; β2; y2x3) , y1 > 0, y2 > 0, x3 > 0, (43)

where K1 is defined in (28). To find the marginal p.d.f. of (Y1, Y2), we integrate (43) with respect to x3 to get

K1y
ν1−1
1 yν2−1

2


∞

0
xν1+ν2+ν3−1
3 exp[−(1 + y1 + y2)x3]1F1 (β1 − α1; β1; y1x3) 1F1 (β2 − α2; β2; y2x3) dx3. (44)

Now, applying (18) and substituting for K1, we obtain the desired result. �

For ν1 = ν2 = 1/2, α1 = α2 = 1 and β1 = β2 = 2, the density in (42) reduces to

(y1y2)−3/2

4π(ν3 − 1)
[1 + (1 + y1 + y2)1−ν3 − (1 + y1)1−ν3 − (1 + y2)1−ν3 ].

If ν1 = ν2 = ν3 = 1/3, α1 = α2 = 1 and β1 = β2 = 2, then the density in (42) simplifies to

4
9Γ 3(1/3)

(y1y2)−5/3
[(1 + y1 + y2) ln(1 + y1 + y2) − (1 + y1) ln(1 + y1) − (1 + y2) ln(1 + y2)]

and finally for ν1 = ν2 = ν3 = 1/3, α1 = 1/2, α2 = 1 and β1 = 1 and β2 = 2, it reduces to

4
√

πΓ (2/3)
3Γ 3(1/3)Γ (1/6)

y−2/3
1 y−5/3

2 ln
√

1 + y1 + y2 +
√
1 + y2

1 +
√
1 + y1


.

Corollary 4.1.1. Let X1, X2 and X3 be independent, Xi ∼ CH(νi, αi, ν1 + ν2 + ν3, kind 1), i = 1, 2 and X3 ∼ Ga(ν3). Then, the
p.d.f. of (Y1, Y2) = (X1/X3, X2/X3) is given by

Γ (α1)Γ (α2)Γ (ν2 + ν3)Γ (ν1 + ν3)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (ν1 + ν2 + ν3)Γ (α1 − ν1)Γ (α2 − ν2)

yν1−1
1 yν2−1

2

(1 + y1)α1(1 + y2)α2

× 2F1


α1, α2; ν1 + ν2 + ν3;

y1y2
(1 + y1)(1 + y2)


, y1 > 0, y2 > 0.

Proof. In (42), substitute β1 = β2 = ν1 + ν2 + ν3 and simplify the resulting expression using (20) and (17). �

Corollary 4.1.2. Let X1, X2 and X3 be independent, X1 ∼ CH(ν1, α1, β1, kind 1), and Xi ∼ Ga(νi), i = 2, 3. Then, the p.d.f. of
(Y1, Y2) = (X1/X3, X2/X3) is given by

Γ (α1)Γ (β1 − ν1)Γ (ν1 + ν2 + ν3)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (β1)Γ (α1 − ν1)

yν1−1
1 yν2−1

2

(1 + y1 + y2)ν1+ν2+ν3

× 2F1


ν1 + ν2 + ν3, β1 − α1; β1;

y1
1 + y1 + y2


, y1 > 0, y2 > 0.

Further, if β1 = ν1 + ν2 + ν3, then the p.d.f. of (Y1, Y2) = (X1/X3, X2/X3) simplifies to

Γ (α1)Γ (ν2 + ν3)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (α1 − ν1)

yν1−1
1 yν2−1

2 (1 + y2)α1−(ν1+ν2+ν3)

(1 + y1 + y2)α1
, y1 > 0, y2 > 0. (45)

It may be remarked here that the special case of the generalized Dirichlet type 2 density (42) given in the above corollary
coincides with the bivariate case of the generalized Dirichlet type 2 density given in Thomas and Jacob [31, Eq. 2]. The
bivariate density of Thomas and Jacob [31] has the form

Γ (a1 + a2 + a3 + b1 + b2)Γ (a2 + a3 + b2)
Γ (a1)Γ (a2)Γ (a2 + a3 + b1 + b2)Γ (a3 + b2)

v
a1−1
1 v

a2−1
2 (1 + v2)

b1

(1 + v1 + v2)a1+a2+a3+b1+b2
, (46)

where v1 > 0 and v2 > 0. By comparing, one can easily observe that the densities in (45) and (46) are identical for
ν1 = a1, ν2 = a2, ν3 = a3 + b2 and α1 = a1 + a2 + a3 + b1 + b2.



J.M. Orozco-Castañeda et al. / Computers and Mathematics with Applications 64 (2012) 2507–2519 2517

Theorem 4.2. If the p.d.f. of (Y1, Y2) is given by (42), then the marginal density of Y1 is given by

Γ (α1)Γ (β1 − ν1)Γ (ν1 + ν3)

Γ (ν1)Γ (ν3)Γ (β1)Γ (α1 − ν1)

yν1−1
1

(1 + y1)ν1+ν3
2F1


β1 − α1, ν1 + ν3; β1;

y1
1 + y1


, y1 > 0.

Proof. The marginal density of Y1 is given by

K
B(ν1, ν2, ν3)

yν1−1
1


∞

0

yν2−1
2

(1 + y1 + y2)ν1+ν2+ν3

× F2


ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2;

y1
1 + y1 + y2

,
y2

1 + y1 + y2


dy2. (47)

Substituting x = y2/(1 + y1), expanding F2 in series form and integrating x, the above integral is evaluated as

Γ (ν2)Γ (ν1 + ν3)

Γ (ν1 + ν2 + ν3)
(1 + y1)−(ν1+ν3)

2F1 (β2 − α2, ν2; β2; 1) 2F1


β1 − α1, ν1 + ν3; β1;

y1
1 + y1


=

Γ (ν2)Γ (ν1 + ν3)Γ (β2)Γ (α2 − ν2)

Γ (ν1 + ν2 + ν3)Γ (α2)Γ (β2 − ν2)
(1 + y1)−(ν1+ν3)

2F1


β1 − α1, ν1 + ν3; β1;

y1
1 + y1


, (48)

where the last line has been obtained by using (15). Finally, substituting (48) in (47) and simplifying, we get the desired
result. �

Theorem 4.3. If the p.d.f. of (Y1, Y2) is given by (42), then the density of S = Y1 + Y2 is given by

K
B(ν1 + ν2, ν3)

sν1+ν2−1

(1 + s)ν1+ν2+ν3

∞
r=0

(ν1 + ν2 + ν3)r(β1 − α1)r(ν1)r

(β1)r(ν1 + ν2)r r!
sr

(1 + s)r

× 3F2


ν1 + ν2 + ν3 + r, ν2, β2 − α2; β2, ν1 + ν2 + r;

s
1 + s


, s > 0. (49)

Proof. By using the convolution formula, the density of S is given by

K
B(ν1, ν2, ν3)

 s

0

yν1−1
1 (s − y1)ν2−1

(1 + s)ν1+ν2+ν3
F2


ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2;

y1
1 + s

,
s − y1
1 + s


dy1

=
K

B(ν1, ν2, ν3)

sν1+ν2−1

(1 + s)ν1+ν2+ν3

×

 1

0
zν1−1(1 − z)ν2−1F2


ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2;

sz
1 + s

,
s(1 − z)
1 + s


dz. (50)

Now, expanding F2 in series form and integrating z, the above integral is evaluated as 1

0
zν1−1(1 − z)ν2−1F2


ν1 + ν2 + ν3, β1 − α1, β2 − α2; β1, β2;

sz
1 + s

,
s(1 − z)
1 + s


dz

=
Γ (ν1)Γ (ν2)

Γ (ν1 + ν2)

∞
r=0

(ν1 + ν2 + ν3)r(β1 − α1)r(ν1)r

(β1)r(ν1 + ν2)r r!
sr

(1 + s)r

× 3F2


ν1 + ν2 + ν3 + r, ν2, β2 − α2; β2, ν1 + ν2 + r;

s
1 + s


. (51)

Finally, substituting (51) in (50) and simplifying, we get the desired result. �

Further, using the synthetic representation (Y1, Y2) = (X1/X3, X2/X3), where X1, X2 and X3 are independent,
Xi ∼ CH(νi, αi, βi, kind 1), i = 1, 2 and X3 ∼ Ga(ν3), we derive

E(Y h
1 Y

t
2) = E(Xh

1 )E(X t
2)E(X−(h+t)

3 ).

Now, evaluating E(Xh
1 ), E(X t

2) and E(X−(h+t)
3 ), one obtains

E(Y h
1 Y

t
2) =

Γ (β1 − ν1)Γ (β2 − ν2)

Γ (ν1)Γ (ν2)Γ (ν3)Γ (α1 − ν1)Γ (α2 − ν2)

×
Γ (ν1 + h)Γ (ν2 + t)Γ (ν3 − h − t)Γ (α1 − ν1 − h)Γ (α2 − ν2 − t)

Γ (β1 − ν1 − h)Γ (β2 − ν2 − t)
,

where β1 ≥ α1, β2 ≥ α2, −ν1 < Re(h) < min{α1 −ν1, β1 −ν1}, −ν2 < Re(t) < min{α2 −ν2, β2 −ν2} and Re(h+ t) < ν3.
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Table 2
Correlations between Y1 and Y2 .

α1 α2 β1 β2 ν1 ν2 ν3

2.5 3 5 10 15 20 30 50 100

3.5 3.5 4.5 4.5 1 1 0.204 0.161 0.088 0.041 0.027 0.02 0.013 0.008 0.004
4 4 5 5 1.5 1.5 0.25 0.2 0.111 0.053 0.034 0.026 0.017 0.010 0.005
7 8 9 10 3 4 0.548 0.477 0.313 0.169 0.115 0.088 0.059 0.036 0.018
7 8 9 10 4 5 0.443 0.374 0.230 0.117 0.079 0.059 0.04 0.024 0.012
15 10 20 10 5 5 0.747 0.688 0.525 0.33 0.240 0.189 0.133 0.083 0.043
15 10 30 10 5 5 0.731 0.671 0.505 0.313 0.227 0.178 0.124 0.078 0.04
10 20 15 20 5 5 0.686 0.622 0.455 0.273 0.195 0.152 0.105 0.065 0.034
10 20 25 20 5 5 0.659 0.593 0.426 0.252 0.179 0.139 0.096 0.059 0.030
20 30 30 30 5 5 0.753 0.695 0.533 0.337 0.246 0.194 0.136 0.085 0.044
20 22 22 24 5 5 0.760 0.704 0.543 0.346 0.254 0.200 0.141 0.088 0.046
20 22 22 24 15 15 0.814 0.767 0.623 0.425 0.322 0.26 0.187 0.120 0.063
30 25 40 25 5 5 0.763 0.707 0.546 0.349 0.256 0.202 0.142 0.09 0.046

Substituting appropriately for h and t in E(Y h
1 Y

t
2), we obtain expressions for E(Y1Y2), E(Y1), E(Y2), E(Y 2

1 ) and E(Y 2
2 ) as

E(Y1Y2) =
ν1ν2(β1 − ν1 − 1)(β2 − ν2 − 1)

(ν3 − 1)(ν3 − 2)(α1 − ν1 − 1)(α2 − ν2 − 1)
, (52)

E(Yi) =
νi(βi − νi − 1)

(ν3 − 1)(αi − νi − 1)
, i = 1, 2, (53)

E(Y 2
i ) =

νi(νi + 1)(βi − νi − 1)(βi − νi − 2)
(ν3 − 1)(ν3 − 2)(αi − νi − 1)(αi − νi − 2)

, i = 1, 2. (54)

Further, the correlation between Y1 and Y2 is defined as

ρY1,Y2 =
Cov(Y1, Y2)

√
Var(Y1)Var(Y2)

,

where Cov(Y1, Y2) = E(Y1Y2) − E(Y1)E(Y2),Var(Yi) = E(Y 2
i ) − E(Yi)

2, i = 1, 2, and E(Y1Y2), E(Yi), and E(Y 2
i ) are given in

(52)–(54), respectively.
Table 2 gives the correlation coefficients between Y1 and Y2 for different values of α1, α2, β1, β2, ν1, ν2 and ν3. For

α2 = β2, the density of (Y1, Y2) is given in Corollary 4.1.2 and in this case the correlation coefficients for different values
of α1, β1, ν1, ν2 and ν3 are given by rows in bold. Further, for the bivariate beta distribution given by the density (45), the
correlation coefficients are given in boxes among rows in bold. Note that, the bivariate density considered by Thomas and
Jacob [31] is identical to the density (45) after re-parametrization. One can observe that for selected values of the parameters
it is possible to find correlations close to 0 or 1. Note that when ν3 is big the correlation between variables is small.

Finally, in the next result we give the limiting form of the joint density of V1 = ν3Y1 and V2 = ν3Y2 when ν3 tends to
infinity.

Theorem 4.4. If the density of (Y1, Y2) is given by (42), then the joint density in limit of the variables Vi = ν3Yi, i = 1, 2, when
ν3 tends to infinite, is given by

lim
ν3→∞

g(v1, v2) =
Γ (α1)Γ (α2)Γ (β1 − ν1)Γ (β2 − ν2)

Γ (ν1)Γ (ν2)Γ (β1)Γ (β2)Γ (α1 − ν1)Γ (α2 − ν2)
exp(−v1 − v2)

× v
ν1−1
1 v

ν2−1
2 1F1(β1 − α1; β1; v1)1F1(β2 − α2; β2; v2), v1 > 0, v2 > 0,

where g is the joint density of the variables V1 = ν3Y1 and V2 = ν3Y2.

Proof. Similar to the proof of Theorem 3.4. �

Note that the density in limit of (V1, V2), when ν3 tends to infinity, is the product of the densities of two independent
random variables each distributed as confluent hypergeometric function type 1.
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