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Monitoring of biological populations is well known for being a complex task that involves high operational costs,
unknown reproductive intervals of the studied species, and difficult visualization of isolated individuals (due to
theirmimetic and cryptic capabilities). Therefore, the development of newmethodologies able tomeasure quan-
tities of individuals in specific biological populationswithout direct contact is desired. Species and individual rec-
ognition, based on acoustic analysis of their calls (Bioacoustics), is possible formany animals and has proven to be
a useful tool in the study and monitoring of animal species. In this paper, an unsupervised methodology for an-
uran automatic identification is proposed; it is based on the use of a fuzzy classifier and Mel Frequency Cepstral
Coefficients. This methodology is able to detect species not presented in the training stage, although they belong
to different populations. Additionally, correlations among species of the same genus can be determined through
the similarities of their calls. For testing the proposedmethod, two different datasetswith species from the north-
eastern Colombia (Chocó and Antioquia departments with 103 and 813 mating calls respectively) were used. In
validation tests performed, accuracies between99.38% and 100%were achieved in all species by applying thepro-
posed methodology to both datasets. Thirteen different species of anurans in both datasets were correctly
identified.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Amphibians—especially anurans—have been suffering reductions in
their distribution (Whittaker et al., 2013). Recent studies about the ori-
gins of this reduction in specific locations revealed that regional
warming, UV radiation increase, and epidemic diseases could be partial-
ly induced by the growth of human impact in climatic and ecological
systems (McCallum, 2007). Unfortunately, nowadays a detailed analysis
to determine the source of the global anuran population decrease is al-
most non-existent (La Marca et al., 2005). These declines cannot be
disentangled from natural temporal fluctuations, and merely a long
termdatasetwould provide the necessary statistical significance to con-
clude whether a population is stable in a particular time epoch (La
Marca et al., 2005). This evidences the necessity of going beyond the
established archetypes of biological population surveys, by developing
newmethodologieswith the purpose of comprehending and suggesting
solutions for the phenomenon of amphibian declines.

Identification of animals based on acoustic parameters is known for
being a noninvasive methodology for recognizing individuals of the
same species. It has considerable advantages (less time consuming,
less cost, and harmless to habitat) over typical marking procedures as
toe clipping, attached devices, passive transponders, or chemical-like
branding (Beausoleil et al., 2004). Manual analysis of the acoustic data
).
by experienced surveyors can produce accurate results; however, the
time and effort required to process even small volumes of data can
makemanual analysis prohibitive (Wimmer et al., 2013). Therefore, au-
tomatic methodologies able to perform detection and identification of
species in recordings are required.

An effective acoustic recognition technique must extract discrimi-
nating features whichmaximize between-group (inter-specie) dissimi-
larity and minimize within-group (intra-specie) dissimilarity, and then
use them as input to a classifier (Cheng et al., 2010). A good classifier
should determine when a feature vector does not belong to any of the
known groups. Conventionally, statistical multivariate methods are
used for this task; however, most of them are limited to linear models
and have low flexibility interpreting ecological data (Park and Chon,
2007). Nowadays, the use of artificial intelligence methodologies in ap-
plications related with biology and medicine is increasing (Hassanien
et al., 2013). Their capability of reducing the human interaction mini-
mizes the time consumption in data analysis, allows researchers to
work with large amounts of data, and increases the probabilities of
reaching the expected results. Therefore, techniques able to use any
type of information extracted directly from the data are very valuable.

In recent years, the popularity of unsupervised learning has been in-
creasing as a consequence of its capability for extracting relevant infor-
mation. In this learning approach, an adaptive process leads to solutions
that reach maximum similarity among data belonging to the same
group (Längkvist et al., 2014). Among the unsupervised techniques,
the Self-Organizing Map (SOM) has been widely used for extracting
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information from ecological data (Park and Chon, 2007). SOMs approx-
imate the probability density function of the input data to show the
datasets in a more comprehensive lower dimension (Kohonen, 2007).
This method has become popular for classification of ecological data in
community grouping (Giraudel and Lek, 2001; Park et al., 2003), animal
behaviors (Chon et al., 2004), and prediction of population and commu-
nities (Obach et al., 2001). However, a SOM yields concrete classifica-
tions and only allows single-valued results to discriminate among
data. Along with the development of the SOM, other techniques in bio-
logically inspired machine learning have been popularized in data anal-
ysis in ecology. Methods based on many-valued logic, specifically fuzzy
set theory, have been efficiently used for extracting information from
data. Among the existent classification techniques, those that include
fuzzy logic have the advantage of expressing the membership degree
of each datum to several clusters (Futschik and Kasabov, 2002). They
also provide easily interpretable results and are known for their ability
to model knowledge, uncertainty, and imprecision (Gentil, 2007). In
2006, Adriaenssens et al. (2006) used fuzzy knowledge-based models
for prediction of macro-invertebrates in watercourses; while Chen and
Hare (2006) used neural networks and fuzzy logic models for analysis
of the pacific halibut recruitment. These were fuzzy rule-based models
created to capture the previously collected knowledge about the ecolog-
ical issue, in order to deal with the uncertainty and imprecision of the
data. Within the best of our knowledge, research on methods capable
of identifying species not included in the training data based on fuzzy
analysis of animal calls have not been reported in the literature. Addi-
tionally, none of these methodologies is able to automatically generate
clusters based on non-identified species detection.

Fuzzy clustering allows associating animal species by estimating call
similarities through acoustic features extracted from the mating calls.
The Learning Algorithm for Multivariate Data Analysis (LAMDA)
(Aguilar-Martin and López de Mantarás, 1982) is a fuzzy methodology
based on conceptual clustering (Biswas et al., 1998). It has been typical-
ly used in monitoring task applications (Bedoya et al., 2012; Lamrini
et al., 2011; Olivier-Maget et al., 2009), and in recent years, it has been
used as a useful tool in medical and biological applications (Hedjazi
et al., 2013; Uribe et al., 2011). LAMDA is an unsupervised training algo-
rithm, which does not require defining the number of clusters as an
input parameter, such as other unsupervised fuzzy clustering algo-
rithms. Additionally, it allows the addition of new clusters to detect
non-established patterns in training, without repeating the learning
phase. LAMDA creates new clusters when the input data cannot be
assigned to one of the clusters generated in the training stage. The
new clusters are initialized with the parameters of these unrecognized
data and modified according to the new entries during the remaining
classification process.

Recent studies have implemented pattern recognition techniques in
order to detect animal calls (also known as advertisement calls, or
chants): Cheng et al. (2010) proposed a call-independent automatic
acoustic system for individual recognition of animals using Mel Fre-
quency Cepstral Coefficients (MFCCs) (Mermelstein, 1976) as acoustic
features, and Gaussian Mixture Models (GMM) as classification tech-
nique. They achieved accuracies between 89.1% and 92.5% applying
their methodology to the avian sound identification, but it was sensitive
to noise. Similarly, Acevedo et al. (2009) used statistical features (min-
imum frequency, maximum frequency, maximum power and call dura-
tion) to compare the effect of three different classification techniques—
Linear Discriminant Analysis (LDA), Decision Trees (DT), and Support
Vector Machines (SVM)—on the identification of amphibian and avian
sounds. Accuracies achieved fluctuated between 72.45% and 94.95%
and were highly dependent of the selected classification technique
(relatively low and high accuracies for LDA and SVM, respectively).
In the same way, Chang-Hsing et al. (2006) used LDA but with non-
statistical features (MFFCs) for amphibian identification (30 frog
species), showing an improvement in the accuracies to 96.8%
and 97.4%.
Among the wide variety of animal species, and given their cryptic
behavior in many species, anurans become an excellent model for pop-
ulation monitoring through bioacoustics. Currently, there is an interest
for identifying anuran species from their advertisement calls; nonethe-
less, existent methods do not allow the classifier to identify species that
were not presented in the training stage.Whether to identify additional
species (found after learning) is required, the training stage must be re-
peated (increasing the computational cost). In this paper, a new ap-
proach for an automatic and unsupervised call recognizer of anuran
species using fuzzy clustering andMFCCs is introduced. It is able to iden-
tify unknown species that were not present in the training stage, and to
establish relations among species of the same genus through their
membership degrees.

This paper is presented as follows: Section 2 explains the theory re-
lated with the presented methodology and used materials; in Section 3
results are presented anddiscussed. Finally, in Section 4 conclusions and
future work are expressed.

2. Materials and methods

2.1. Materials

Two datasets constituted by 916 calls of 13 anuran species provided
by the Smithsonian Tropical Research Institute (STRI) (Ibañez et al.,
1999) and the Grupo Herpetológico de Antioquia (GHA) were
selected for this study. From the STRI dataset (103 of the 916 calls;
SR = 44100 Hz), only those species located in Colombia (Chocó
department) with a significant number of calls were selected: Bufo
typhonius (Rhinella margaritifer) (BF) (Le = 0.75s; Fo = 1625.6 Hz,
where Le and Fo are the mean length and mean dominant frequency
of the calls, respectively), Eleutherodactylus diastema (Diasporus diaste-
ma) (ED) (Le = 0.20 s; Fo = 3045.7 Hz), Hyla boans (Hypsiboas
boans) (HB) (Le = 0.81 s; Fo = 506.2 Hz), Leptodactylus fuscus
(LF) (Le = 0.32 s; Fo = 2240.9 Hz), Leptodactylus pentadactylus
(Leptodactylus savagei) (LP) (Le = 0.34 s; Fo= 500.4 Hz), Scinax ruber
(SR) (Le = 1.92 s ; Fo = 835.1 Hz) and Dendrobates auratus (DA)
(Le= 4.70 s; Fo= 1575.8 Hz).

A new dataset (Antioquia; freely available by contacting the corre-
sponding author) with 813 calls of six anuran species, obtained in the
eastern Antioquia by the GHA, was also used. All data were recorded
with a Sennheiser ME66 directional microphone, SR = 44100 Hz
(see Fig. 1). It consisted of 153 calls of Diasporus anthrax (DAN)
(Le = 0.04 s; Fo = 4101.4 Hz), 67 calls of Dendrobates truncatus
(DT) (Le = 0.61 s; Fo =2939 Hz), 76 calls of Diasporus gularis (DG)
(Le = 0.14 s; Fo = 2870.6 Hz), 344 calls of Engystomops pustulosus
(EP) (Le = 0.15 s; Fo = 1516.0 Hz), 92 calls of Colostethus aff.
fraterdanieli (CF) (Le = 0.12 s; Fo = 4593.4 Hz), and 81 calls of a
Pristimantis sp. nov. (PS) (Le = 0.03 s; Fo = 3064.4 Hz).

In both datasets a directionalmicrophonewas used for recording the
advertisement calls, in order to avoid the segmentation of non-desired
sounds from the rest of the community. This facilitates the recognition
process—in comparison with omnidirectional microphones—and en-
sures that the feature extraction and the classification were performed
only on anuran calls. However, the recordings are far from being totally
noiseless (see Fig. 1) and a noise reduction stage had to be added with
the purpose of enhancing the segmentation procedure.

Chocó-Darién and Antioquia datasets were segmented, noise-
reduced, and classified using the methodology presented below. All al-
gorithms were programmed in Matlab 2013b.

2.2. Study area

Calls from the Chocó-Darién region were recorded at Monumento
Nacional Barro Colorado, Panama (9°09′N, 79°51′W). This site is a
lowland tropical rainforest with a diverse amphibian community.
Data from Antioquia were recorded in the Andes on the eastern



Fig. 1. Time–frequency representation (spectrogram) of several recordingswith the species from theAntioquia region (black frames indicate call examples). Diasporus gularis, Engystomops
pustulosus, Colostethus aff. fraterdanieli and Dendrobates truncatus recordings showed more acoustic interference produced by the community.
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flank of the northern Cordillera Central in Antioquia, Colombia
(6°33′N, 64°56′W; 6°22′N, 75°08′W; 6°11′N, 74°59′W). The area is
found in low andmid elevations (700 to 1200masl) with moderately
disturbed forests.
2.3. Case studies

Two case studies for testing the proposed methodology were de-
signed. In the first case study (Chocó-Darién region), the dataset
was divided in two subsets of proportions 70% (71 calls) and 30%
(31 calls) for training and recognition respectively. Additionally,
one Dendrobates auratus (DA) call was used together with two DA
calls of the Encyclopedia of Life (Encyclopedia of Life, 2014) to
show the relation between the advertisement calls among the spe-
cies of the same genus.

In the second case study (Antioquia region) a larger dataset recorded
in field with 813 calls of six different anuran species was used to chal-
lenge the methodology, as the Chocó-Darién dataset only counts with
113 calls (a relatively small amount).
2.4. Methodology

The proposed methodology analyzes recordings where existence of
anuran calls is plausible. It consists of four main stages (see Fig. 2):
The first stage reduces the background noise (e.g., rain, wind, creeks)
in order to benefit the result of the segmentation of the advertisement
calls (second stage). The third stage performs the extraction of acoustic
features (i.e., acoustic properties of the calls with high variability inter-
species and low variability intra-species), with the purpose of maximiz-
ing differences among anuran species. Finally, in the fourth stage a clas-
sifier analyzes the previously extracted features for each call, in order to
determine whether the selected call corresponds or not to a pre-
established cluster (species).
2.4.1. Noise reduction
This noise reduction stage uses the spectral noise gatingmethodolo-

gy (Chen et al., 2009) for estimation and suppression of undesired com-
ponents in the selected frequency band spectrum of the signal
(recordings where anuran calls possibly exist). It consists of two



Fig. 2. Call recognition system. Each recording of the anuran species is noise-reduced and segmented to obtain each advertisement call individually separated. Then theMFCCs of each call
are extracted to be classified by means of LAMDA classification methodology. Finally, each call is assigned to one of the clusters and related with one of the expected anuran species.
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principal stages (Fig. 3): threshold estimation and noise removal. The
threshold estimation is performed over a pure-noise section of the sig-
nal, i.e., a segment of the recording without the waveform of interest
(advertisement calls). The noisy section—in this case the first 0.5 s of
the recording—was intentionally captured during the database acquisi-
tion process with the purpose of transforming the threshold estimation
step in an automatic procedure. This procedure consists on applying the
fast Fourier transform (FFT) in wp ∈ ℝlw, p = 1, …, P finite intervals
(windows) of the noisy section of the recorded waveform, where lw is
the length of the window. Then, the maximum amplitude level per fre-
quency band of all wp windows is stored in a dictionary and used as
threshold in amplitude for the whole recording.

During the noise removal stage, the gain control for each frequency
band is established in such a way that if the recording has exceeded
the threshold, the gain is set to 0 dB (same input andoutput amplitude);
otherwise the gain is set to a lower value (−22 dB) in order to suppress
the noise (i.e. those band frequencies without significant activity are
neglected but not turned to zero because the elimination of spectral
content is not desired when a mating call and background noise are
contained in the same window). Gain controls are applied to the com-
plex FFT of the signal, and then the inverse FFT followed by a Hamming
window is applied (Mottaghi-Kashtiban and Shayesteh, 2011). After-
wards, the output signal x ∈ ℝa, where a is the length of the recording,
is reconstructed by overlapping (one half) the hamming windows. A
Hamming window is a finite time interval whose shape is optimized
to reduce the spectral leakage (undesired frequencies as consequence
of the windowing).

After performing the noise reduction stage, the signals are segment-
ed in order to separate each individual call of the residual noise. Natural
noises that can be correctly characterized and are not present in the
range of frequencies of the studied anuran species (e.g., human voice)
were filtered.
2.4.2. Segmentation
The syllable is themost appropriate hierarchical division of the orig-

inal advertisement call that could be used for species recognition
(Cheng et al., 2010). Syllable segmentation consists on isolating the pre-
viously noise-reduced signal x into b=1,…, B small segments: sb∈ℝls,
product of independent vocalizations (syllables) for an easier analysis
or processing in the following stages, where ls represents the length of
the syllable in samples (ls is variable as consequence of its dependence
on the length of the call). This technique compares the energy of the sig-
nal with a threshold value. It identifies the start of the call as the point at
which the energy first exceeds the threshold and the end as the point at
which the energy drops below the threshold (Cheng et al., 2010). Each
datum of the energy E is calculated using a sliding window of size w:

Ev ¼
Xw
i¼1

xij j2 ð1Þ

where Ev is the v-th datum of E, and xi is the i-th datum of the window
(i.e., a sample of the noise-reduced waveform). The signals were cen-
tralized (mean value equal zero) before computing the energy in
order to suppress the influence of the baseline (caused by background
noise), and to emphasize the effect of energy calculations in signal am-
plitude changes. The Root Mean Square (RMS) value of the energy R
(see Eq. (2)) was used as threshold:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
le
�
Xle
v¼1

Ev
2

vuut ð2Þ

where v = 1, …, le, and le is the length of the energy signal E.

2.4.3. Feature extraction
In most cases the clustering algorithm does not yield good classifica-

tion results when pure signals taken from the recordings are directly
used in it (Candolfi et al., 1999). Therefore, a pre-processing stage is
needed in order to obtain a pattern space able to distinguish among
species.

Human auditory perception does not follow a linear scale; the per-
ception of some frequencies is highly influenced by energy in the critical
band of frequencies around them (Cheng et al., 2010). Similarly occurs
in anurans (Chung et al., 1978; Pettigrew et al., 1978); therefore, their
perception of auditory stimuli cannot be assumed as a linear and equi-
table distribution of the band spectrum. Mel Frequency Cepstral Coeffi-
cients (MFCCs) emerged as a solution for this issue. They redistribute
the frequencies across the spectrum in order to benefit specific bands
before the filtering application.

MFCC features are widely used in automatic human speech and
speaker recognition. Also, their application to species identification
has given promising results across a variety of animals including frogs,
crickets, and birds (Chang-Hsing et al., 2006; Cheng et al., 2010; Fox
et al., 2006). They provide several advantages over the commonly
used time-frequency features (mean fundamental frequency, maxi-
mum frequency,minimum frequency, syllable energy, syllable duration,
zero-crossing rate, and similar ones). The advantages of usingMFCCs in-
clude, inter alia, small variation over time, high accuracy, and recogni-
tion regardless of the call type (Fox, 2008).

image of Fig.�2


Fig. 3. Noise reduction stage. (A) Section of a recording with three calls of Diasporus an-
thrax; black frame indicates one of the wp windows in which the noise is estimated.
(B) Power spectral density of a noisy section (black frame in A); the maximum values of
each frequency band are stored in a dictionary in order to establish a threshold. (C) The
threshold is applied to the original recording with the purpose of obtaining the noise-
reduced signal. The noise of the recordings was almost entirely suppressed after using
this noise reduction method.
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The MFCC feature extraction process is explained as follows
(Mermelstein, 1976):

(i) The b-th syllable of sb is sliced in c = 1, … , C shorter excerpts
called frames: fc ∈ ℝlf, of length lf. Typically, the spectral content
is not present in the complete segment, but only during a certain
timewindow. Thus, inaccuracies in the original segmentation are
corrected. The length of the frame lf is a fixed parameter, but the
number of frames depends on the length of the syllable ls.

(ii) The Fourier transform, for d pre-defined frequencies, is taken for
each of these excerpts in order to calculate the power spectrum.
Consequently, the frequency bands of interest in the frame are
identified.

(iii) The power spectrum is mapped to the Mel-frequency scale
(Eq. (3)). In the Mel-scale the frequency bands are not equally
spaced, which is more approximated to the response of the ani-
mal auditory system (e.g., some individuals are unable to discern
the difference between two closely spaced frequencies).

vmel ¼
1000
log 2ð Þ � log 1þ vfreq

1000

� �
ð3Þ
where vmel ∈ℝd is a vector of the original frequencies vfreq ∈ℝd

mapped to a Mel frequency scale.
(iv) AMel-spaced filter-bank of z filters (algorithm parameter) is ap-

plied along themodified power spectrum in order to identify the
existing energy in each frequency region. For the methodology
proposed in this paper, selected filters are triangular, half over-
lapping, with center frequencies uniformly distributed along
the Mel frequency scale.

(v) The log of the energy of each filter is obtained. The sound inten-
sity is not perceived in a linear scale by the auditory systemof the
studied species, then, it should be taken into account.

(vi) The discrete cosine transform (DCT) of each log of energy is
taken. Filter-bank energies are quite correlated with each other
because the filters of the filter-bank are all overlapping. The
DCT is responsible to decorrelate the energies.

(vii) Only the lower 12 DCT values are kept. This because increasing
the accuracy of the parametric representation by adding
parameters (12 or more) leads to an increment of complexity
and eventually does not lead to better results due to stability
issues. The larger the number of parameters in a model, the
larger the training sequence (Mermelstein, 1976).

(viii) The resultant n features (in this case 12 scalar numbers) are
called Mel Frequency Cepstral Coefficients m ∈ ℝn, with
n=12, and they are calculated for every c-th frame excerpted
from the b-th syllable of sb. MFCCs can be understood as a modi-
fication of the conventional cepstrum in order to adapt the signal
processing to the vocal specificities of the studied species
(anurans). It emphasizes the frequency bands where their vocal
apparatus works. The feature extraction is illustrated in Fig. 4.

(ix) Finally, themean value of theMFCCs of all C frames is calculated,
obtaining a vector m∈ℝn per syllable. Then it is normalized
(Eq. (4)) and used as input for the classification stage.

m̂j ¼
mj−mmin

mmax−mmin
ð4Þ

wheremmin andmmax are the minimum and maximum values of
m respectively, m̂ ∈ℝn is the vectorm normalized, and m̂j is the
datum belonging to the j-th MFCC in m̂.

Due to the high accuracy results obtained, only 12MFCCswere used.
Delta and Double-Delta (parameters commonly used in Automatic
Speech Recognition) were not employed because they improved nei-
ther the classification results nor the processing time.

2.4.4. Classification
The classifier is responsible for identifying clusters related to the

anuran species that produced the call. Classifiers are often developed
in two stages: training, where examples are used to generate each
cluster (related to species) and classification, where new calls are
identified in order to associate them with an existent cluster.

For the classification task, LAMDA—Learning Algorithm forMultivar-
iate Data Analysis (Aguilar-Martin and López de Mantarás, 1982)—was
used. It is based on finding the global adequacy degree of an element
to an existing cluster (in this case species) considering all the contribu-
tions of each of its attributes (the 12 identified MFCCs). As a conse-
quence of being fuzzy based, LAMDA obtains all necessary information
from the data and not from the rules, which govern the behavior of
the system. Furthermore, LAMDA is not a distance basedmethod; it per-
forms a similitude analysis amongdata to establish the relation between
every particular datum with its respective cluster. It can handle infor-
mationwith uncertainty and vagueness, evenwhen the expert is unable
to define all the rules. It does not require the number of clusters (i.e., the
number of anuran species) as input parameter asmost of the fuzzy clus-
tering algorithms (e.g., Fuzzy C-Means or GK-Means). Furthermore,

image of Fig.�3


Fig. 4. Feature extraction—MFCC estimation. Each frame of the syllable is frequency-transformed, processed through aMel-spaced filter bank and then decorrelated using a discrete cosine
transform in order to obtain the Mel Frequency Cepstral Coefficients.
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LAMDA estimates themembership degree of a call (datum) to a species
(cluster) in a non-iterative process (results are obtained solely with
one data reading), reducing computational cost and avoiding time
consumption.

This algorithm is based on the use of adequacy degrees in order to
establish a data representation in clusters. The contribution of each
feature (MFCC in this case) is called the marginal adequacy degree
(MAD). The MAD Mlj of each j-th descriptor m̂j to each l-th cluster
is estimated using Eq. (5):

Mlj ¼ ρl j
m̂ j 1−ρl j

� �1−m̂ j ð5Þ

where m̂ j is the datum belonging to the j-th MFCC inm̂, ρ∈ ℝh × n is a
matrix with the mean values for each j-th MFCC in each l-th cluster
(species) respectively, ρlj is the element belonging to the l species
and to the j-th MFCC in the ρ matrix, h is the number of clusters,
and n is the number of features.

Marginal adequacy degrees (MADs) from all clusters constitute the
matrix M ∈ ℝh × n. It is combined using fuzzy logic connectives (max,
Fig. 5. LAMDA Scheme. The algorithm uses the acoustics features found in the feature extractio
tives with the purpose of obtaining the membership degrees (GADs). As a result, the call is ass
min) as aggregation operators in order to obtain the Global Adequacy
Degree GAD (Piera-Carrete et al., 1990) of an element (advertisement
call) to a cluster (species), taking into account the contribution of all de-
scriptors (see Fig. 5). This value corresponds to themembership degree
of a call to a cluster. After calculating theMADs, theGADs g∈ℝh are cal-
culated using aggregation rules established by logical connectors:

gl ¼ αð ÞT Ml1;…;Mlj; …;Mln

� �
þ 1−αð ÞS Ml1;…;Mlj; …;Mln

� �
ð6Þ

where gl is the GAD associated to the species l in g, T(Ml1,…,Mlj,…,Mln)
is the T-norm (min (Ml1, …, Mln)), S(Ml1, …, Mlj, …, Mln) is the S-norm
(max (Ml1, …, Mln)), 0 b α b1 is an exigency index (factor responsible
to adjust the influence of the T-norm and S-norm in the aggregation),
and l is the current cluster (anuran species). An advertisement call is
assigned to the species that exhibits the maximum GAD.

Internally, the procedure for using LAMDA is divided in two steps:
training and classification.

− Training:
The algorithm is initialized with only one predefined cluster
n stage as input. Then, theMADs are computed and aggregated bymeans of fuzzy connec-
igned to the cluster with the maximum GAD value.

image of Fig.�4
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Table 1
Training and recognition results. 100% of accuracy in training and recognition with the
Chocó-Darién dataset was achieved. None datum (anuran call) was inappropriately classi-
fied in a different species.Dendrobates truncatus andDendrobates auratus (clusters 7th and
8th)were created as consequence of not fulfilling the requirements for belonging to any of
the pre-existent species (as it was expected).

Cluster Species Training Recognition

1 Rhinella margaritifer(BF) 100% 100%
2 Diasporus diastema(ED) 100% 100%
3 Hypsiboas boans(HB) 100% 100%
4 Leptodactylus fuscus(LF) 100% 100%
5 Leptodactylus savagei(LP) 100% 100%
6 Scinax ruber(SR) 100% 100%
7 Dendrobates truncatus(DT) N/A 100%
8 Dendrobates auratus(DA) N/A 100%
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commonly known as the Non-Information cluster (NIC), cluster 0 in
this case, with ρ0j=0.5 ∀ j=1,…, n. The first element (anuran call)
is classified in the NIC because it is considered unrecognized. Then,
a new cluster (l = 1) is created using Eq. (7), and the mean values
ρlj [k] of the first step k = 1 are initialized with the NIC parameters
(ρlj[k − 1] = 0.5 ∀ j = 1, …, n) and nl[k − 1] = 1. Subsequently, a
new call is entered at updated step k, and the GADs are calculated
with the values (m̂ j k½ �) of the new call. Whether the call is assigned
to the NIC (i.e., maximum GAD corresponds to the NIC cluster), a
new cluster is created and initialized with the NIC parameters mod-
ified by the data values as additional information. Otherwise, the
mean values of the previously created cluster (ρlj[k − 1] ∀ j =
1,…, n) are updated with the values of that element in order to con-
tain the new entry value (in this case nl[k− 1] is the number of calls
previously classified in this cluster).

ρl j k½ � ¼ ρl j k−1½ � þ m̂ j k½ �−ρl j k−1½ �
nl k−1½ � þ 1

� �
ð7Þ

Where ρlj[k] is the updated mean value for the j-th MFCC in the l-th
species respectively, ρlj[k − 1] is the preceding ρlj value (the same
used for calculating MADs in Eq. (5)), and nl[k − 1] is the number
of elements previously classified in cluster l.
This process continues until all training calls have been analyzed.

− Classification:
Once the classifier is trained a new entry (call) is analyzed (using
Eqs. (5) and (6)) and its adequacy degrees to all species are estimat-
ed (GADs). The call is assigned to the species that exhibits the max-
imum GAD.
If the cluster with the maximum membership degree (GAD) is the
NIC, a new cluster is created as a non-identified species. For this rea-
son, the methodology is able to find unknown species that were not
included in the training stage.

2.4.5. Algorithm setup
Methodology parameters were selected based on the combina-

tion that presents the highest accuracy. In the noise reduction
stage, parameter lw (length of the window) was chosen equal to
10 ms. For segmentation w = 10 samples were selected. 12 MFCCs
per frame fc of each syllable sb were extracted (Lee et al., 2006).
Each frame had a lf= 20 ms and lf= 10 ms length for Chocó-Darién
and Antioquia respectively with 10 ms of overlapping for both
datasets; z parameter was selected as 40. The exigency index α de-
pends on the used dataset (1 and 0.5 for Chocó-Darién and Antioquia
respectively).

3. Results and discussion

In Chocó-Darién the methodology was trained in order to find the
most appropriated clusters to assign each of the analyzed calls, and
then new data (calls) were used to test the effectiveness of the found
clusters. As a final step, calls from species—not included in the training
data—were aggregated to test the class generation feature of the meth-
odology. In Antioquia, a different (larger) dataset was used with the
purpose of detecting, without any training, all the advertisement calls
of the different species.

3.1. Chocó-Darién Region

I. Training stage: Acoustic features (n=12MFCCs) per each of the
71 training recordings (70% of total data) were extracted. Subse-
quently, a classifier (LAMDA, α = 1 in Eq. (6)) to distinguish
among feature vectors was trained. 100% of accuracy in all indi-
viduals (calls) of all clusters (species) was attained. Table 1
shows the training and recognition results of the proposed
methodology.
II. Recognition stage: After training, the data reserved for testing
the methodology (30% of total data) were used; obtaining
100% of accuracy for all individuals. Table 1 shows that all
calls from both subsets (recognition and training) were correctly
classified in their correspondent species. This result exhibits that
the proposed methodology is useful as discriminator among
anuran species.

III. Validation: Finally, the classifier was used to identify new re-
cordings. The addition of new clusters is possible as conse-
quence of the non-required retraining characteristic of the
methodology. In this stage, new data with additional species
not presented in the training stage was added. Three calls be-
longing to D. auratus (DA) species were used, one taken from
the Chocó-Darién dataset and two provided by an external
dataset (Encyclopedia of Life, 2014). The data were recognized
as belonging to a new species (a new cluster) by the classifier.
Additionally, 9 data (calls) provided by the GHA of the
D. truncatus (DT) species were used. With these data 100% ac-
curacy was achieved. Advertisement calls of species not presented
in training were correctly recognized as non-identified species
(Table 1). D. truncatus calls were recorded with different
microphones in different areas. However, even under
these different conditions the methodology presented an
exceptional performance.

Considering the application accounted in this study, in several cases
it is better not to fix the number of clusters in the classification algo-
rithm. Although the expert (biologist) searches some specific clusters
(species), it should be better to apply an unsupervised learning since
other unexpected species could be detected. The proposed methodolo-
gy is able to include new clusters without repeating a learning phase.
This attribute is used to find unexpected species of anurans in the re-
cordings: if a call cannot be classified among the found species in train-
ing, a new cluster is created as a non-identified species. In this case the
methodology found theDAandDT species, but it could also be related to
a previously non-reported species.

DA and DT data were selected because these two species belong to
the same genus (Dendrobates) and their advertisement calls are similar.
Sister species can retain call features as sexual selection in conspecifics
is not operating in these geographically separated (allopatric) species.
For example,we observed infieldworks thatD. truncatusmales respond
to D. auratus calls, indicating that these individuals are unable to differ-
entiate conspecifics from heterospecifics. Nonetheless, the proposed
methodology was able to differentiate between the two matting calls.

An additional advantage of the proposed methodology is its ca-
pability of finding similarities among individuals of different clus-
ters. Table 2 shows the GADs (or membership degrees) of 12
selected data (calls) to each cluster (species). The higher the mem-
bership degree (compared among themselves), the closer the rela-
tionship between the advertisement call and the species. The
highest GADs of the last three rows (10th–12th) coincided with the



Table 2
Global adequacy degrees for recognition. The red frame shows the relation through the
membership degrees between Dendrobates auratus and Dendrobates truncatus. The cluster
with the second highest membership degree to DA is the DT species.

GAD (×10-5)

CALL BF ED HB LF LP SR DT DA

1 (DT) 0.03 2.69 0.01 0.01 0.01 0.24 7.82 0.71

2 (DT) 0.04 2.82 0.01 0.01 0.01 0.26 9.05 0.78

3 (DT) 0.03 4.67 0.02 0.02 0.02 0.27 12.28 0.77

4 (DT) 0.02 5.96 0.01 0.01 0.01 0.22 17.17 0.59

5 (DT) 0.03 2.40 0.02 0.03 0.02 0.19 7.70 0.44

6 (DT) 0.06 2.11 0.00 0.01 0.00 0.24 9.69 0.95

7 (DT) 0.06 2.03 0.01 0.02 0.00 0.27 8.77 0.92

8 (DT) 0.05 2.26 0.01 0.02 0.00 0.26 10.08 0.94

9 (DT) 0.04 2.48 0.01 0.01 0.00 0.23 10.31 0.70

10 (DA) 0.12 0.88 0.13 0.01 0.00 0.22 1.56 33.99

11 (DA) 0.13 0.88 0.10 0.00 0.00 0.23 1.32 79.31

12 (DA) 0.16 0.25 0.06 0.02 0.03 0.70 2.78 11.43

Table 4
Classification results with the Antioquia dataset (best parameters: α = 0.5, lf = 10ms).
813 calls of six anuran species were used to test robustness in the proposedmethodology;
only 10 data were incorrectly classified (sensitivity of 98.30%). Clusters 6 and 7 showed a
specificity of 100%, indicating that there were not false negatives associated to these clus-
ters. The general accuracy of the methodology applied to the Antioquia dataset was
99.61%.

Cluster Species # Calls Sensitivity Specificity Accuracy

1 Diasporus anthrax(DAN) 153 99.35% 99.55% 99.51%
2 Dendrobates truncatus(DT) 67 100.00% 99.87% 99.88%
3 Diasporus gularis(DG) 76 98.68% 99.59% 99.51%
4 Engystomops pustulosus(EP) 344 99.71% 99.57% 99.63%
5 Colostethus aff.

fraterdanieli(CF)
92 94.57% 100.00% 99.38%

6 Pristimantis sp. nov.(PS) 81 97.53% 100.00% 99.75%
Average performance 813 98.30% 99.76% 99.61%
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individual of the species that produced the call (i.e., DA) with values of
33.99 × 10−5, 79.31× 10−5, and 11.43× 10−5 corresponding to 92.09%,
93.75%, and 74.08% of membership to its own cluster. Also, the second
highest GADs (1.56 × 10−5, 1.32 × 10−5, and 2.78 × 10−5 correspond-
ing to 4.23%, 1.61%, and 18.02% of membership) is related to the most
similar species (DT). This implies that the presented methodology is
able to detect correlations among species of the same genus by means
of their advertisement calls, as long as they have similar articulation
and phonetic capabilities. This is a useful feature for identifying species,
especially when they are unknown.

These remarkable results (100% of accuracy) must be carefully ob-
served. They suggest that the proposedmethodology is highly accurate,
but this achievement would be due to several particular characteristics
of the dataset (non-interference, low noise, easily differentiable spe-
cies). In order to provide a wider validation of this methodology, in
the following section a new dataset acquired under different conditions
is tested.

3.2. Antioquia Region

For challenging the methodology, a different dataset (Antioquia)
with 813 calls of six anuran species was used. An initial test performed
with the algorithmparameters of Chocó-Darién (α=1)achieved a total
accuracy of 95.20% in all species (see Table 3A). It implies a low depen-
dence between the used dataset and the parameters of this methodolo-
gy. Nevertheless, when the methodology was retrained with
parameters more accurate to the dataset specificities (α = 0.5,
lf = 10ms) the accuracy reached a value of 99.61% (Tables 3B and 4).
The results of the methodology reached high values of accuracy
(99.61% in average performance; see Table 4) and only few data were
misclassified. Table 3B shows the confusion matrix for the Antioquia
dataset; in this matrix, it is possible to observe that only one datum of
DAN, one datum of DG, one datum of EP, two data of PS, and five data
of CF were erroneously classified in other species. The advertisement
calls of CF andDAN had almost the samedominant frequency; addition-
ally, the calls of CF, DAN, DG, and PS had similar time length and spec-
trum distributions (i.e., most of their harmonics were overlapped).
This, in accumulation with the intra-specific frequency variations of
the individuals, induces some false positives and false negatives in the
results of the methodology. In addition, the misclassified calls in EP
and DT were mostly consequence of a high level of background noise
that could not be entirely reduced.

Sensitivity (Sen), specificity (Spe), and accuracy (Acc) were used to
test the performance of themethodology (see Table 4); they are defined
by:

Sen ¼ TP
TP þ FN

; Spe ¼ TN
FP þ TN

; Acc ¼ TN þ TP
TN þ TP þ FN þ FP

ð8Þ

where TP is the number of true positives, TN is the number of true neg-
atives, FP is the number of false positives, and FN is the number of false
negatives.

Tables 1 and 4 evidence a high accuracy in the classification results
for Antioquia and Chocó-Darien databases. In both cases a directional
microphone, together with a noise reduction algorithm, instead of an
omnidirectional microphone, was used. This avoided the segmentation
of non-desired sounds from the rest of the community, facilitating the
recognition process and ensuring that the feature extraction and classi-
ficationwere performed only on anuran calls. Due to this, the clustering
algorithm only focused on vocalization recognition and not in vocaliza-
tion recognition, bad segment identification, and noise discarding. The
unsupervised multi-cluster recognition and after-training cluster addi-
tion of this methodology were possible, in certain part, to the well ac-
quired database and the good performance of the noise reduction and
segmentation stages.

4. Conclusions and future work

In this study, a new methodology for detecting and identifying dif-
ferent anuran species using MFCCs and fuzzy clustering was presented.
This methodology allows training with data recorded in different envi-
ronments and recorders. Nonetheless, complex amphibian communi-
ties (i.e., tropical assemblages)—where call interference and similarity
among advertisement calls of species couldmakemore difficult the spe-
cies recognition—will challenge themethodology in its goal of detecting
the different species. On the other hand, the parameters do not need to
be adjustedwhen the amphibian species composition change along lat-
itudinal and habitat gradients, even if the advertisement call within a

Unlabelled image


Table 3
Confusion matrices for the Antioquia dataset. (A) α = 1, lf = 20ms, (B) α = 0.5, lf = 10ms. In (B) Dendrobates truncatus (DT) does not present false positives (100% sensitivity), while
Colostethus aff. fraterdanieli (CF) and Pristimantis sp. nov. (PS) do not present false negatives (100% specificity).

Predicted Predicted

DAN DT DG EP CF PS DAN DT DG EP CF PS

Actual DAN 150 0 0 0 0 3 Actual DAN 152 0 0 1 0 0
DT 0 66 0 0 1 0 DT 0 67 0 0 0 0
DG 0 4 71 0 0 1 DG 0 1 75 0 0 0
EP 5 0 0 330 9 0 EP 1 0 0 343 0 0
CF 3 0 0 0 85 4 CF 2 0 1 2 87 0
PS 0 0 10 0 0 71 PS 0 0 2 0 0 79

(A) (B)
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species change across its entire distribution. This methodology does not
only identify the advertisement calls, but also accepts the addition of
new clusters associated to species not included in the training stage. It
does not require all data to perform its analysis; giving it a high capabil-
ity for working with large amounts of data and single-datum analysis
(other methods cannot achieve it without repeating a learning stage).
This is a novel way to identify new species of anurans, by creating a
new cluster (species) if a call cannot be related with the ones presented
in the training phase. Due to this feature, two additional species not in-
cluded in the training data (D. auratus—DA—andD. truncatus—DT)were
identified. Additionally, through the presented case with DA and DT, it
was demonstrated that this methodology is also able to determine
correlations among species of the same genus with similar articula-
tion and phonetic capabilities, by means of their calls. An interesting
feature when the recognized species is unknown.

Regarding the results of the developed methodology, accuracies be-
tween 99.38% and 100% per species were achieved; furthermore, it has
shown high noise immunity and excellent potential of recognition
among individuals of the same species. Additionally, the parameters of
the methodology are continuously adapted by incorporating additional
information related with different anuran species. Automatic species
recognition will impact not only amphibian bioacoustics research, as it
ideally can be extended to more complex animal sounds such as vocal-
izations of mammals or birds. In addition, ecological questions
(e.g., competition, reproduction, natural selection) beyond monitoring
programs could be addressed at the community or population level. In
future works, this methodology will be implemented with other animal
species (it does not analyze specific characteristics of anura order;
therefore, it could be easily applied to other animals) focusing on find-
ing non-frequency based acoustic features that may improve the
recognition.

Acknowledgments

This project was financed by "Fondo de Sostenibilidad Universidad
de Antioquia -CODI-", project: “Detección Automática de Cantos de
Ranas a partir de sus Llamados de Advertencia”, code: PRG13-2-02,
and "Estrategia de sostenibilidad 2014-2015, Universidad de Antioquia".
Field work in Antioquia is being funded by ISAGEN S.A. and Universidad
de Antioquia under the inter-institutional project 47/146.

References

Acevedo, M., Corrada-Bravo, C., Corrada-Bravo, H., Villanueva-Rivera, L., Mitchell, A., 2009.
Automated classification of bird and amphibian calls using machine learning: A com-
parison of methods. Ecol. Inf. 4, 206–214.

Adriaenssens, V., Goethals, P.L.M., De Pauw, N., 2006. Fuzzy knowledge-based models for
prediction of Asellus and Gammarus in watercourses in Flanders (Belgium). Ecol.
Model. 195, 3–10.

Aguilar-Martin, J., López de Mantarás, R., 1982. The process of classification and learning
themeaning of linguistic descriptors or concepts. Approximate Reasoning in Decision
Analysis. ,pp. 165–175.

Beausoleil, N.,Mellor, D., Stafford, K., 2004.Methods formarkingNewZealandwildlife: am-
phibians, reptiles and marine mammals”. Department of Conservation, Wellington,
pp. 41–67.
Bedoya, C., Uribe, C., Isaza, C., 2012. Unsupervised Feature Selection Based on Fuzzy Clus-
tering for Fault Detection of the Tennessee Eastman Process. Proceedings of the 13th
Ibero-American Conference on Artificial Intelligence (IBERAMIA), Cartagena de
Indias, Colombia, pp. 350–360.

Biswas, G., Weinberg, J.B., Fisher, D.C., 1998. Iterate: A conceptual clustering algorithm for
data mining. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28, 100–111.

Candolfi, A., DeMaesschalck, R., Jouan-Rimbaud, D., Hailey, P., Massart, D., 1999. The influ-
ence of data pre-processing in the pattern recognition of excipients near-infrared
spectra. J. Pharm. Biomed. Anal. 21 (1), 115–132.

Chang-Hsing, L., Chih-Hsun, C., Chin-Chuan, H., Ren-Zhuang, H., 2006. Automatic recogni-
tion of animal vocalizations using averaged MFCC and linear discriminant analysis.
Pattern Recogn. Lett. 27, 93–101.

Chen, D., Hare, S.R., 2006. Neural network and fuzzy logic models for pacific halibut re-
cruitment analysis. Ecol. Model. 195, 11–19.

Chen, J., Cohen, I., Huang, Y., 2009. Noise Reduction in Speech Processing. Springer, Berlin.
Cheng, J., Sun, Y., Ji, L., 2010. A call-independent and automatic acoustic system for the in-

dividual recognition of animals: A novel model using four passerines. Pattern Recogn.
Lett. 43, 3846–3852.

Chon, T.-S., Park, Y.-S., Park, K.Y., Choi, S.-Y., Kim, K.T., Cho, E.C., 2004. Implementation of
computational methods to pattern recognition of movement behavior of the German
cockroach, Blattella germanica, treated with Ca2+ signal inducing chemicals. Appl.
Entomol. Zool. 39, 79–96.

Chung, S., Pettigrew, A., Anson, M., 1978. Dynamics of the amphibian middle ear. Nature
272, 142–147.

Encyclopedia of Life, 2014. Dendrobates auratus, Available from http://www.eol.org,
(Accessed 29 Jan 2014).

Fox, E., 2008. A new perspective on acoustic individual recognition in animals with limit-
ed call sharing or changing repertoires. Anim. Behav. vol. 75, 1187–1194.

Fox, E., Roberts, J., Bennamoun, M., 2006. Text-independent speaker identification in
birds. Proceedings of the Interspeech 2006 and Ninth International Conference on
Spoken Language Processing. vol.1–5, pp. 2122–2125.

Futschik, M.E., Kasabov, N.K., 2002. Fuzzy clustering of gene expression data. Proceedings
of the IEEE International Conference on Fuzzy Systems FUZZ-IEEE'02, pp. 414–419.

Gentil, S., 2007. Supervision des procédés complexes; Traité IC2, série Systèmes
automatisés. Hermes Science Publications. Lavoisier, Paris.

Giraudel, J.L., Lek, S., 2001. A comparison of self-organizing map algorithm and some con-
ventional statistical methods for ecological community ordination. Ecol. Model. 146,
329–339.

Hassanien, A., Al-Shammari, E., Ghali, N., 2013. Computational intelligence techniques in
bioinformatics. Comput. Biol. Chem. 47, 37–47.

Hedjazi, L., Le Lann, M., Kempowsky, T., Dalenc, F., Aguilar-Martin, J., Favre, G., 2013. Sym-
bolic Data Analysis to Defy Low Signal-to-Noise Ratio in Microarray Data for Breast
Cancer Prognosis. J. Comput. Biol. 20, 610–620.

Ibañez, R., Stanley, A., Ryan, M., Jaramillo, C., 1999. Vocalizaciones de ranas y sapos del
Monumento Natural Barro Colorado, Parque Nacional Soberanía y áreas adyacentes.
Sony Music Entertaiment (Central America) S.A.

Kohonen, T., 2007. Self-Organizing Maps. Springer, Berlin.
La Marca, E., Lips, K., Lotters, S., et al., 2005. Catastrophic Population Declines and Ex-

tinctions in Neotropical Harlequin Frogs (Bufonidae: Atelopus). Biotropica 47,
190–201.

Lamrini, B., Lakhal, E., Le Lann, M., Wehenkel, L., 2011. Data validation and missing data
reconstruction using self-organizing map for water treatment. Neural Comput. &
Applic. 20, 575–588.

Längkvist, M., Karlsson, L., Loutfi, A., 2014. A Review of Unsupervised Feature Learning
and Deep Learning for Time-Series Modeling. Pattern Recogn. Lett. 42, 11–24.

Lee, C., Chou, C., Han, C., Huang, R., 2006. Automatic recognition of animal vocalizations
using averaged MFCC and linear discriminant analysis. Pattern Recogn. Lett. 27,
93–101.

McCallum, M.L., 2007. Amphibian Decline or Extinction? Current Declines Dwarf Back-
ground Extinction Rate. J. Herpetol. 41, 483–491.

Mermelstein, P., 1976. Distance measures for speech recognition, psychological and in-
strumental. Pattern Recognit. Artif. Intell. 374–388.

Mottaghi-Kashtiban, M., Shayesteh, M.G., 2011. New efficient window function, replace-
ment for the hamming window. Sig. Process. IET 5 (5), 499–505.

Obach, M.,Wagner, R., Werner, H., Schmidt, H.H., 2001.Modelling population dynamics of
aquatic insects with artificial neural networks. Ecol. Model. 146, 207–217.

Olivier-Maget, N., Hétreux, G., Le Lann, J.M., Le Lann, M.V., 2009. Model-based fault diag-
nosis for hybrid systems: Application on chemical processes. Comput. Chem. Eng. 33,
1617–1630.

http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0005
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0005
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0015
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0015
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0015
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0175
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0175
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0175
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0180
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0180
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0180
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0185
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0185
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0185
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0185
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0190
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0190
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0030
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0030
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0030
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0035
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0035
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0035
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0040
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0040
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0045
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0050
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0050
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0050
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0055
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0055
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0055
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0055
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0055
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0060
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0060
http://www.eol.org
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0200
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0200
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0205
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0205
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0205
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0075
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0075
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0210
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0210
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0215
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0215
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0215
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0085
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0085
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0090
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0090
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0090
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0220
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0220
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0220
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0100
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0105
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0105
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0105
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0110
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0110
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0110
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0225
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0225
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0120
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0120
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0120
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0125
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0125
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0130
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0130
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0230
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0230
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0140
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0140
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0145
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0145
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0145


209C. Bedoya et al. / Ecological Informatics 24 (2014) 200–209
Park, Y.-S., Chon, T.-S., 2007. Biologically-inspired machine learning implemented in eco-
logical informatics. Ecol. Model. 203 (1–2), 1–7.

Park, Y.-S., Cereghino, R., Compin, A., Lek, S., 2003. Applications of artificial neural net-
works for patterning and predicting aquatic insect species richness in runningwaters.
Ecol. Model. 160, 165–280.

Pettigrew, A., Chung, S., Anson, M., 1978. Neurophysiological basis of directional hearing
in amphibian. Nature 272, 138–142.

Piera-Carrete, N., Desroches, P., Aguilar-Martin, J., 1990. Variation Points in Pattern Recog-
nition. Pattern Recogn. Lett. 11, 519–524.
Uribe, C., Isaza, C., Florez-Arango, J., 2011. Qualitative-Fuzzy Decision Support System for
Monitoring Patients with Cardiovascular Risk. IEEE- Proceedings of the Eighth Inter-
national Conference on Fuzzy Systems and Knowledge Discovery, pp. 1621–1625.

Whittaker, K., Koo,M.,Wake, D., Vredenburg, V., 2013. Global Declines of Amphibians, En-
cyclopedia of BiodiversitySecond edition. Elsevier, pp. 691–699.

Wimmer, J., Towsey, M., Roe, P.,Williamson, I., 2013. Sampling environmental acoustic re-
cordings to determine bird species richness. Ecol. Appl. 23, 1419–1428.

http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0235
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0235
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0150
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0150
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0150
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0160
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0160
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0165
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0165
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0240
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0240
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0240
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0245
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0245
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0170
http://refhub.elsevier.com/S1574-9541(14)00119-8/rf0170

	Automatic recognition of anuran species based on syllable identification
	1. Introduction
	2. Materials and methods
	2.1. Materials
	2.2. Study area
	2.3. Case studies
	2.4. Methodology
	2.4.1. Noise reduction
	2.4.2. Segmentation
	2.4.3. Feature extraction
	2.4.4. Classification
	2.4.5. Algorithm setup


	3. Results and discussion
	3.1. Chocó-Darién Region
	3.2. Antioquia Region

	4. Conclusions and future work
	Acknowledgments
	References


