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Decano Julio César Saldarriaga Molina.

Coordinadora de Posgrados: Natalia Gaviria Gómez.
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Resumen

Colombia ha experimentado el conflicto armado más prolongado en América Latina,

resultando en numerosas v́ıctimas. Los esfuerzos para desescalar este conflicto, incluyen-

do los acuerdos de paz con los paramilitares en 2002 y con las guerrillas de las FARC

en 2016, han tenido resultados mixtos debido a los prejuicios persistentes entre los an-

tiguos actores. Esta tesis se centra en caracterizar estos prejuicios para diseñar mejores

intervenciones psicosociales para la reconciliación. El estudio caracteriza los patrones elec-

trofisiológicos asociados a una prueba psicológica que evalúa el prejuicio entre los antiguos

actores del conflicto. Involucra tres etapas: análisis de señales electrofisiológicas en el do-

minio del tiempo, análisis en el dominio de la frecuencia utilizando teoŕıa de grafos, e

integración de caracteŕısticas electrofisiológicas con otros datos para entrenar un modelo

de aprendizaje automático interpretable. En la primera etapa, se desarrolló una nueva me-

todoloǵıa de análisis EEG-ERP utilizando inferencia bayesiana para evaluar el prejuicio a

través de una tarea IAT. Los hallazgos indicaron mayor actividad cerebral en los partici-

pantes con prejuicio contra las v́ıctimas en comparación con aquellos sin prejuicio o con

prejuicio contra excombatientes. La segunda etapa introdujo un nuevo método de análi-

sis de conectividad funcional basado en EEG, revelando diferencias en las configuraciones

de redes cerebrales entre los antiguos actores del conflicto. Los resultados mostraron que

las v́ıctimas y los exparamilitares teńıan más prejuicio contra las v́ıctimas, mientras que

los civiles y los exguerrilleros teńıan más prejuicio contra los combatientes. Además, las

v́ıctimas y los exguerrilleros regulaban más eficazmente el prejuicio contra las v́ıctimas, y

los exparamilitares haćıan lo mismo con los combatientes. En la etapa final, un modelo

de aprendizaje automático interpretable identificó caracteŕısticas clave para caracterizar y

reclasificar sujetos, utilizando datos demográficos, conductuales y electrofisiológicos. Cin-

co caracteŕısticas clave fueron suficientes para discriminar entre grupos y determinar las

necesidades de reclasificación. Esta investigación proporciona una comprensión integral de

los prejuicios persistentes entre los antiguos actores del conflicto en Colombia, ayudando a

los psicólogos a diseñar estrategias de intervención espećıficas para la reconciliación.

Abstract

Colombia has had the most prolonged armed conflict, with the highest number of

victims in Latin America. Since the beginning of the century, multiple efforts have been

made to de-escalate it, such as the peace agreements with the paramilitaries in 2002 and the



FARC guerrillas in 2016. However, efforts to de-escalate the conflict have had mixed results

due to persistent prejudices among former actors. Therefore, it is necessary to characteri-

ze this prejudice to design more effective psychosocial intervention strategies to promote

reconciliation. In this thesis, we present the characterization of electrophysiological pat-

terns associated with a psychological test that assesses prejudice among former actors in

the Colombian armed conflict. This characterization was done in three stages: Analyzing

electrophysiological signals in the time domain, analyzing them in the frequency domain

using graph theory, and merging electrophysiological features with other domain features

to train an interpretable machine learning model. In the first stage, we developed a novel

methodology for EEG-ERP analysis based on massive univariate statistical methods and

Bayesian inference hypothesis testing. This methodology was used to analyze ERP related

to an IAT task designed to assess prejudice, and we found that participants with prejudice

toward one (victims) group exhibited higher activity than participants without prejudice

or with prejudice toward the other group (ex-combatants). In the second stage, we develo-

ped a novel methodology for EEG-based functional connectivity analyses that adopted the

techniques currently at the forefront of engineering and incorporated Bayesian inference

hypothesis testing. This methodology was used to detect and measure differences among

the configuration of the brain networks of former conflict actors; as a result, we found

that victims and ex-paramilitaries generate more prejudice against victims, and civilians

and ex-guerrillas generate more prejudice against combatants. However, victims and ex-

guerrillas regulate more the prejudice against victims, and ex-paramilitaries regulate more

the prejudice against combatants. All of these results are consistent with the results of the

IAT task. In the third stage, we developed a novel methodology based on global and local

analysis of interpretable machine learning models to identify the most important features

in the characterization of groups and to evaluate the convenience of reclassifying subjects

individually. We used demographic, behavioral, and electrophysiological features to cha-

racterize the groups of the former actors. As a result, we found that five characteristics

of the 128 evaluated are sufficient to discriminate between groups of actors in armed con-

flict and to determine whether or not a participant should be reclassified. This research

has allowed us to comprehensively characterize the phenomenon of prejudice that persists

among former actors of the Colombian armed conflict, which will allow psychologists to

design more specific intervention strategies to promote reconciliation among them.

Keywords. ERP, Functional connectivity, iML, Bayesian inference, Prejudice, Co-

lombian armed conflict, IAT, Social cognition



1 Introduction

Colombia has been confronted with the most prolonged armed conflict in Latin

America, leading to the highest victim count (Comisión de la Verdad, 2022). Numerous

efforts have been made since the beginning of the century to mitigate the intensity of the

conflict, including the establishment of peace agreements with paramilitary groups in 2002

(de Colombia., 2005) and with FARC guerrillas in 2016 (para la Paz, 2016). Within the

framework of these agreements, several organizations have worked to promote reconciliation

among the parties involved in the conflict and undertake the task of reconstructing social

structures.

The results of these institutionséfforts have been mixed for several reasons. One is

that prejudices, which are negative evaluations of a particular social group and tend to

generalize to its members (Amodio and Cikara, 2021), are relatively stable over a person’s

lifetime, particularly for people who have experienced traumatic situations, such as those

involved in armed conflicts, as highlighted by (Bar-Siman-Tov, 2004).

From an evolutionary perspective, the origins of prejudice can be understood as

adaptive mechanisms that our ancestors developed to navigate their complex social en-

vironments (Dunbar, 1992). Until recently in human history, social groups lived in small

units that were genetically and culturally homogeneous. These living conditions supported

specific adaptations still a part of our nature today. We show strong tendencies to coope-

rate with people whom we perceive to be “like us,” and we are suspicious of strangers

judging and discriminating against those who are “not like us” (Liberman et al., 2017).

Evolutionarily, quickly categorizing other individuals into groups could be crucial for sur-

vival, facilitating swift decisions about who might be an ally or a threat (Dovidio et al.,

2010). Several authors have extensively researched these mechanisms from a neuroscientific

standpoint, exploring how brain structures such as the amygdala and the prefrontal cor-

tex are involved in the formation of prejudices and in regulating responses to social stimuli

(Rösler and Amodio, 2022; Saarinen et al., 2021).

Accordingly, it is necessary to characterize this prejudice to design more effective

psychosocial intervention strategies to promote reconciliation (Ugarriza et al., 2019). Mea-

suring and characterizing prejudice is challenging because people often try to hide it due

to self-image and socially desirable responses (Teige-Mocigemba et al., 2010). Thus, using

tools based on direct measures and explicit questions is not a successful approach to assess

it (Teige-Mocigemba et al., 2010). Instead, many authors prefer a methodology proposed



by Greenwald et al. (1998) to assess implicit psychological processes, known as the Implicit

Association Test (IAT), in which these cognitive operations are less prone to distortions.

In the framework of this thesis, IAT has been complemented with electroencephalo-

graphy (EEG) to try to find phenotypes of prejudice. Phenotypes are physiological patterns

consistent with the behavior of a subject within a homogeneous group that can be used to

characterize a population in experimental conditions (Johnstone et al., 2005).

In recent studies, behavioral measures and electroencephalography (EEG) have pro-

vided valuable insights into how these brain processes manifest. Although different techni-

ques have been used to find electrophysiological phenotypes of prejudice, such as frequency

or time-frequency analysis (Kato et al., 2018), and reconstruction of cortical sources (Healy

et al., 2015; Schindler et al., 2015), the event-related potentials (ERP) (Barnes-Holmes

et al., 2004) technique is by far the most widely used and has provided the most infor-

mation about the cognitive processing of prejudice. The use of ERP still predominates

due to its high temporal resolution, noninvasiveness, low cost, and simplicity (Luck, 2014).

Furthermore, ERP studies have pinpointed the exact moments when the brain reacts to

prejudice-related stimuli, highlighting components such as N2 (Chen et al., 2018; Healy

et al., 2015), P3a (Healy et al., 2015; Portengen et al., 2022), P3b (Chen et al., 2018),

N400 (Healy et al., 2015; Williams and Themanson, 2011), and LPP (Forbes et al., 2012),

which are associated with processes of social categorization detection, goal-directed at-

tention to category, category conflict and response selection, categorization decision, and

evaluation of categorization decision (Amodio and Cikara, 2021). These investigations not

only demonstrate the complexity of the cognitive processes behind prejudice and social

categorization but also open the door to more informed interventions to combat prejudice

in modern society.

ERP analysis involves acquiring, preprocessing, and averaging EEG signals associa-

ted with a particular stimulus. The amplitude and latency of specific segments of ERP,

namely ERP components, are quantified, and the data is further analyzed using null hy-

pothesis significance testing (NHST) to determine if there are statistically significant diffe-

rences between the experimental conditions (Luck, 2014). This method exhibits two main

issues. First, the use of NHST has been criticized in psychology and neuroscience becau-

se it produces reproducibility problems (Open Science Colaboration, 2015), and in ERP

analyses because it could make it challenging to detect spurious effects (Luck and Gaspelin,

2017). Secondly, determining the precise location, latency, and duration of ERP compo-

nents is a complex task in practical applications due to the influence of various factors,



such as the characteristics of the stimulus and the demographic makeup of the sample

being studied (Fields and Kuperberg, 2020).

An alternative approach involves massive univariate statistical methods (Maris and

Oostenveld, 2007) to perform data-driven analyses. This method does not require pre-

selecting which regions of interest (ROI) or time windows are to be analyzed, as this is

done automatically (Groppe et al., 2011). Although these methods can be more effective in

reducing Type I errors (Fields and Kuperberg, 2020), they are not reliable in detecting and

quantifying effects (Sassenhagen and Draschkow, 2019), nor in eliminating the possibility

of Type II errors (Luck and Gaspelin, 2017; Groppe et al., 2011).

In light of the limitations associated with traditional methodologies and the cha-

llenges posed by massive univariate statistical methods, our first objective in this thesis

was to develop an alternative methodology that addresses these issues while characterizing

an IAT task to measure prejudice among former actors in the Colombian armed conflict.

In the context of understanding cognitive processes related to prejudice, in addi-

tion to ERPs, it is essential to consider the synchronized participation of multiple brain

regions. Previous research has established that the brain has distinct regions dedicated to

carrying out certain cognitive functions (Fornito et al., 2016; Yuste, 2015). However, cog-

nitive processing requires a concurrent interaction between several regions (Friston, 1994).

In particular, according to Amodio and Cikara (2021), prejudice involves several cognitive

processes in which many regions of the brain participate, such as the medial temporal lo-

be, anterior temporal lobe, medial prefrontal cortex, dorsal anterior cingulate cortex, and

rostral anterior cingulate cortex.

Given this complex interplay of brain regions in cognitive processes and their rele-

vance in understanding prejudice, we chose to use a different technique to ERP to analyze

the brain networks involved in prejudice, which is EEG-based Functional Connectivity. The

functional connectivity technique finds the predominant relationships among brain areas

(Friston, 2011) and expresses these relationships in a connectivity matrix (Sporns, 2011).

The resultant connectivity matrix can be characterized using theoretical graph analysis

(Stam et al., 2007). Previous studies have used EEG-based functional connectivity, sug-

gesting that training in social cognition can improve emotional recognition and modify

brain connectivity (Quintero-Zea et al., 2019; Valencia et al., 2020; Trujillo et al., 2017).

However, these investigations left the question of whether tasks focusing on more complex

social processes, such as those associated with prejudice, could be affected. The second



objective of this thesis was to apply this technique to EEG data from former Colombian

armed conflict actors during the IAT test, shedding light on the reorganization of brain net-

works in prejudice events and providing information for targeted psychosocial intervention

strategies.

In the third stage of our investigation, our objective was to characterize a group

of former actors for whom we had collected behavioral test results, EEG records, and de-

mographic data. In such a characterization, we did not perform typical analyses such as

ANOVA, chi-square tests, MANOVA, and MANCOVA because they are only adequate

when the relationships between variables are linear or when there are few variables to

analyze Fokkema et al. (2022). Instead, we employed machine learning algorithms to unco-

ver complex patterns and relationships within the collected data. These methods allowed

us to identify subtle nuances and interactions between variables that traditional analyses

may have overlooked, providing a more comprehensive understanding of the former actors

under investigation (Dehghan et al., 2022).

ML models are known for their high predictive capacity. However, they are also

opaque, making it difficult to infer how they make their predictions or what features are

more critical to their predictions (Yarkoni and Westfall, 2017). The complexity of models

often makes it challenging to balance their performance and interpretability. Fortunately,

data analysis techniques have emerged that make opaque machine learning models inter-

pretable and allow models with high predictive capacity and interpretability to be obtained

simultaneously (Molnar, 2022). These techniques, known as interpretable machine learning

methods, aim to provide insights into the decision-making process of complex models. They

often involve feature importance analysis, rule extraction, or model-agnostic explanations.

Using these techniques, researchers and practitioners can better understand how the mo-

dels arrive at their predictions and identify the key factors driving them. These techniques

enhance interpretability and enable trust and accountability when using ML models in

various domains.

Therefore, the third objective of the thesis was to create an interpretable ML model

that would use demographic, behavioral, and electrophysiological data to describe the

people involved in the armed conflict in Colombia. These analyses are essential for us

because they can determine whether these subjects should be reclassified, considering that

according to their group, they will receive personalized social-cognitive training designed

to mitigate prejudice among Colombian armed conflict actors.



The fulfillment of these objectives has allowed us to obtain a comprehensive charac-

terization of the prejudice phenomenon that persists among former actors of the Colombian

armed conflict, which will allow specialists to design more specific intervention strategies

to promote reconciliation between them.

1.1 Objectives

Formulate a methodology to identify electrophysiological phenotypes of prejudice

among individuals exposed to the Colombian armed conflict.

1. Characterize an existing prejudice task synchronized with EEG data applied to a

sample of people who have been exposed to the Colombian armed conflict and perform

exploratory statistical analyses using EEG-ERP signal analysis techniques to obtain

a baseline for comparison.

2. Propose and validate a functional connectivity model to determine levels of prejudice

among individuals exposed to the Colombian armed conflict, based on EEG signal

analysis techniques and statistical analyses.

3. Formulate and validate a computational-intelligence-based methodology to correlate

the obtained EEG-based phenotypes of prejudice with the results of behavioral tests

applied to the target population.

1.2 Outline

The chapters of this thesis are organized as follows.

Chapter 2 expounds on the materials and methods shared throughout several subse-

quent chapters. The present study characterizes a cohort of individuals previously involved

in armed conflicts. These individuals were subjected to a series of behavioral assessments

and electroencephalographic recordings. Subsequently, an overview is provided on the beha-

vioral tasks undertaken by the participants, elaborating on the characteristics of the Impli-

cit Association Test (IAT), a test specifically devised to assess prejudice exhibited toward

distinct groups of individuals. Following this, the methodology used to preprocess EEG

data and extract ERPs is outlined, which serves as the basis for all subsequent studies.



Subsequently, we elucidate the methodology employed to acquire the network metrics re-

quired to perform the EEG-based functional connectivity analyses expounded in Chapter

4, which constitute integral components of the attributes employed in the machine lear-

ning models expounded in Chapter 5. The following section explains the Bayesian inference

hypothesis testing approach employed in Chapters 3 and 4. Finally, we briefly described

the machine learning models tested to achieve the third specific objective and the feature

selection and interpretability strategies employed in chapter 5.

Chapter 3 presents the methodology and results of ERP analyses to characterize

the sample of participants classified by levels of prejudice according to the result obtained

in the IAT test. For this analysis, we developed a new methodology based on massive

univariate statistical methods and hypothesis testing using Bayesian inference that solves

most of the problems of sensitivity, reliability, and reproducibility of traditional methods.

The results obtained with this methodology were compared with those obtained using the

traditional method of prior selection of ERP components and the method based on massive

univariate analyses.

Chapter 4 presents the methodology and results of the EEG-based functional con-

nectivity analysis to characterize participants separated by conflict actor groups. To our

knowledge, this is the first time this technique has been used in studying social biases.

From the results obtained, we discuss the relationships found between some measures of

global connectivity and the IAT score, which could be indicators of electrophysiological

correlates of prejudice.

Chapter 5 presents the interpretable machine learning model developed to charac-

terize the groups of actors in the Colombian armed conflict based on their demographic,

behavioral, and electrophysiological characteristics. Global interpretability analyses resul-

ted in only five features sufficient to accurately classify former armed conflict actors. Also,

for the first time in social psychology studies, local interpretability analyses were performed

to identify features that may cause a subject to be reclassified and, consequently, to receive

sociocognitive training to mitigate prejudice different from the one he/she would receive if

he/she were not reclassified.

Finally, general conclusions, main contributions derived from this study, and future

work are presented in Chapter 6.



2 Materials and Methods

This chapter describes the materials and methods used in this thesis. In the Mate-

rials section 2.1, we describe the participants and the behavioral tasks they performed. In

the methods section, we explain how acquired and preprocessed the EEG signals, the tra-

ditional methodologies to analyze ERP, the hypothesis testing Bayesian inference method

– a cornerstone of the methodologies proposed –, the methods necessary to obtain EEG

measures with EEG-base functional connectivity, and described briefly the ML models

used, the techniques to do feature selection and interpretability de ML models.

2.1 Materials

2.1.1 Participants

In this study, we recruited 92 healthy Colombian volunteers, 56 of whom were men,

between 18 and 70 years old (M = 36.90, SD = 10.72) and with an average education

of 10.12 years (SD = 3.50), classified into four groups: exguerrillas (22 participants),

exparamilitaries (31 participants), victims (23 participants), and civilians nonex-

combatants and nonvictims (16 participants). The sample was not based on an esti-

mate but on convenience, by direct invitation to ex-combatants of illegal armed groups

(e.g., guerrillas, ex-paramilitaries) through the Colombian Agency for Reintegration, to

people officially declared as victims by the government through key actors in municipali-

ties with a high number of armed conflict events, and to civilians (not directly involved in

the conflict) with similar demographic characteristics to the ex-combatants and victims.

Before registration, participants were asked about their medical and psychiatric histories.

The exclusion criteria included a history of severe mental disorders such as schizophrenia,

epilepsy, or severe head trauma. All psychological evaluations and EEG recordings were

performed in classrooms of educational institutions in Antioquia, Colombia, and not in a

laboratory under controlled conditions.

The participants were informed about the purpose of the study, the confidentiality

of the information collected, and the procedures for psychological tests and electroencepha-

lographic recordings. Evaluations began once the participants signed the consent form. The

research procedures were approved by the Research Ethics Committee of the Universidad

del Rosario (Minute DVO005-063-CS048, 8 February 2018). The informed consent docu-



ment signed by the participants contains the following points: a general description of the

research project for which they are asked to participate, the objective of the study, the

reason why they were selected, the risks and benefits of participating in the study; the

description of the procedures they will perform; and, the guarantee of confidentiality of the

information and anonymity of participation.

2.1.2 Behavioral Tasks

All participants underwent a series of behavioral tests thoroughly described below.

Implicit Association Test – IAT

The IAT is an experimental behavioral task developed by Greenwald et al. (1998)

to measure implicit bias based on the principle that if a congruent association between

two concepts (e.g., target and stereotypical attribute) is readily accepted as accurate by a

decision maker (e.g., victim → negative), then the reaction time (RT) to categorize such

associations as equivalent is shorter. On the contrary, if an incongruent association bet-

ween two concepts (e.g., target and counter-stereotypical attribute) is not readily accepted

as accurate (e.g., victim → positive), then the RT is comparatively longer due to inhibi-

tory processes required to override an automatic tendency to associate congruent concepts

(Healy et al., 2015). The IAT effect, which can also be considered a measure of implicit

bias, is calculated using the standardized difference (D) between the mean reaction time

and the congruent and incongruent pairings. If an individual has a positive D score, it

implies that the person is slower to respond to incongruent pairings, faster to respond to

congruent pairings, or both (Forbes et al., 2012).

Given the low level of study of the participants, we used a modified version of the

original IAT design introducing auditory stimuli. The task comprises seven blocks, each

with a fixed number of trials, as shown in Table 1. In each block, trial images are the

same and appear in the same positions, and the stimuli are randomly selected from a set

of pre-established audios. The task design - including the decision to use auditory stimuli

and the selection of the screens and words - was made for the team of psychologists of the

research and could be seen in detail in Baez et al. (2020).

The test screens presented to the participants are shown in Figure 1. In our expe-

riment, the image on the left of Figure 1 (A) represents the concept of “ex-combatant.”

The image on the right represents the concept of “victim.” The happy and sad face icons



Tabla 1

IAT task structure.

Block Trials Function

1 6 Concept practice

2 20 Valence practice

3 20 Congruent trials - Practice

4 40 Congruent trials - Test

5 6 Concept practice

6 20 Incongruent trials - Practice

7 40 Incongruent trials - Test

in Figure 1 (B) represent positive and negative valence, respectively. The audio “Ganar”

(“Win” in Spanish) is the stimulus, which must be associated with the happy face (good

valence), for which the participant has up to three seconds to press the shift key on the

left side of the keyboard. The screen shown in Figure 1 (C) corresponds to the congruent

trials, and the screen shown in Figure 1 (E) corresponds to the incongruent trials. The

IAT effect occurs when the average time to associate the stimulus with the corresponding

valence in one of the configurations (congruent or incongruent trials) is shorter than in the

other.

Participants are expected to associate the words with the corresponding valence

image (pleasant words with smiley faces and unpleasant words with sad faces) within a

300 ms to 3000 ms time window following the auditory stimulus presentation. The test

provides three types of responses: correct, incorrect, and non-response. Only trials with

correct answers are recorded as valid. The test continues until it reaches the number of

trials specified in the protocol for each block.

The Interpersonal Reactivity Index – IRI

The IRI is a self-report measure widely used to assess empathy. It has been applied

in several studies to assess gender differences and prosocial behavior in adolescents and

assess the inhibitory role of empathy in aggressive behavior (Davis, 1980). The IRI inclu-

des cognitive and emotional factors and comprises 28 items. All items have five response

categories (1 = describes me not well, 2 = describes me a bit, 3 = describes me quite well,

4 = describes me well, and 5 = describes me very well) distributed in four subscales mea-

suring four dimensions of the global concept of empathy, namely Perspective Taking (PT),



Figura 1

Implicit Association Test (IAT) sample screens and stimuli: (A) block 1, (B) block 2, (C)

blocks 3 and 4, (D) block 5, and (6) blocks 6 and 7. A speaker and a word represent

stimuli, but they are sounds. Ten words were spoken for each kind of stimulus.

Fantasy (FS), Empathic Concern (EC) and Personal Upset (PD); each of them comprising

seven items. Validation was carried out for the Colombian context by Garcia-Barrera et al.

(2017), in which 18 items were selected, and the four subscales were maintained.

The Motives for Aggression Inventory – IMA

The IMA is a tool to assess motivations for aggressive behavior. It is a self-report

scale comprising 26 items rated on a 3-point Likert scale (1 = never/rarely, 2 = someti-

mes, and 3 = frequently), indicating the frequency of each motive leading to aggressive

behaviors. Empirical solid support underpins the definitions and hypotheses on which this

questionnaire is based, which attribute the fundamental motivation for aggressive beha-

vior to particular causes, such as the reinforcement that the individual receives, the need

to defend or promote his or her social identity, the presence of various events can cause

discomfort, among others (Juárez Acosta and Montejo Hernández, 2008).

The Reactive-Proactive Aggression Questionnaire – RPQ



The RPQ is a self-report instrument created by Raine et al. (2006) and validated in

a population exposed to armed conflict by Gómez et al. (2022). It comprises 23 elements

based on the proactive motivational dimension (instrumental) vs. reactive (hostile). The

subject scores the items on a frequency scale (0 = never, 1 = sometimes, and 2 = often).

Proactive aggression has been characterized as instrumental, organized, and cold-blooded,

with little evidence of autonomous arousal. Reactive aggression refers to acts that seek

compensation for the damage caused to us. For this reason, proactive but not reactive ag-

gression has been associated with higher levels of psychopathic personality, blunted affect,

and stimulation-seeking tendencies.

The Scale for Mood States Assessment – EVEA

The EVEA assesses four clinically significant mood states: depression, anxiety, hosti-

lity, and joy. Its objective is to assess the current state of mind at the time of the assessment

or at a specific time. It has been applied and validated in clinical and general populations

(Sanz Fernández, 2001). The scale consists of sixteen items, all formulated in the same

direction. It is quick to apply, and its response form is a Likert type of 11 points (from 0

to 10). The 16 sentences that make up the items have the same structure, starting with

the words I feel, followed by an adjective that names a mood state, for example, I feel sad

or happy. Each mood is represented by four items with different adjectives that define a

subscale. The four subscales are joy (AL), sadness-depression (TD), anger-hostility (IH),

and anxiety (AN).

The Extreme Experience Scale for Armed Conflict Contexts – EX2

The EX2 was adapted and validated for the Colombian setup by Giraldo et al.

(2020), based on the Extreme Experience Scale (EACA) (Perez-Sales et al., 2013). An

extreme experience is defined as an event charged with emotions and experienced indivi-

dually, and in this context, it must be a direct consequence of the armed conflict. The EX2

consists of 18 items divided into two dimensions: direct extreme experiences (dEX2) with

twelve items and indirect extreme experiences (iEX2) with six items. The first dimension

identifies personal physical situations such as death or illness. The second seeks to capture

situations in which the person could have witnessed extreme events to close friends, family,

or people with whom they have an emotional bond. This approach allows for a more pre-

cise understanding of the mental conditions associated with armed conflict. The scale has

a dichotomous response (yes or no); each affirmation adds a unit to the score, and a score

greater than 2,5 indicates a high level of exposition.



2.2 Methods

2.2.1 EEG Acquisition and Preprocessing

The IAT task was synchronized with EEG recordings acquired with a 64-channel

Biosemi ActiveTwo with a sampling frequency of 2048Hz. Electrodes were placed according

to the international 10–20 system using quick caps, and the impedances were kept below

10 kW. The EEG device and laptops worked with batteries while recording to avoid major

electrical problems.

EEG recordings were preprocessed using MNE for Python (Gramfort, 2013). The

original signals were high-pass filtered at 1Hz with a zero-phase shift FIR filter. Continuous

EEG data was partitioned into epochs ranging from 200ms before stimulus onset to 800ms

after it. Epochs were baseline corrected using the=200 to 800ms window, downsampled to

256Hz, and offline re-referenced using the Electrode Standardization Technique (REST)

(Yao, 2001). Bad channels were automatically detected and interpolated by the pyprep

library (Bigdely-Shamlo et al., 2015). An Independent Component Analysis (ICA) was

performed to remove electrooculography (EOG). Bad trials were automatically corrected

by the Autoreject library (Jas et al., 2017). For ERP analyses, EEG recordings were

low-pass filtered at 30Hz with a zero-phase shift FIR filter, and for EEG-based functional

connectivity analyses, they were low-pass filtered with a cutoff frequency of 40Hz. After

that, epochs were separated according to experimental tasks (Congruent or Incongruent

Blocks).

2.2.2 Event-Related Potential Analyses – ERP

An ERP is a measured brain response, recorded by EEG, resulting from presenting

a specific stimulus or event that occurs in the external world or within the brain itself

(Picton et al., 1995). These potentials provide a noninvasive means to evaluate the activity

of the human brain as it perceives stimuli, makes decisions, and controls behaviors.

ERP waveforms are composed of positive and negative deflections, known as com-

ponents, with characteristic peaks and latencies that reflect neural activity associated with

cognitive processes such as perception, attention, memory, and decision-making (Luck,

2014). Usually, components are labeled with “P” or “N” to indicate positive and negative

peaks, respectively, and a number that indicates the position of a component within the



waveform. Alternatively, the number may indicate the component’s latency in milliseconds,

e.g., N170 for a negative peak around 170ms.

There are two standard procedures for identifying ERP components. The first con-

sists of a priori selecting the electrodes and time windows to be analyzed (based on some

hypothesis), which is acceptable for confirmatory analyses. However, to ensure the relia-

bility of the results, the guidelines of the Society for Psychophysiological Research (Keil

et al., 2014) should be followed, and the research should be preregistered, as described in

(Paul et al., 2021). The second procedure is to select components from visual inspection of

the evoked grand averages, but this procedure inflates Type I errors (Luck and Gaspelin,

2017).

An alternative approach involves performing data-driven studies using a massive

univariate or similar analysis. In this type of analysis, a vast number of univariate tests

(e.g., t–test or ANOVA) are performed at all available time instants and electrodes (in

our case, 256-time instants and 64 electrodes), which reduces the possibility of false disco-

veries, something inherent in performing many hypothesis tests. The general pipeline for

conducting many univariate tests is shown in Algorithm 1.

Data: Pre-processed EEG

Result: Statistics

Assemble the trials of the two (or more) experimental conditions into a single set;

for i← 0 to 1000 do
Random partitioning: randomly extract as many trials from this combined

data set as in condition one and place those trials in subset 1. Place the

remaining trials in subset 2;

Compute the test statistics in this random partition;

end

Construct a histogram of the test statistics;

From the results observed in line 1, find the proportion of random partitions that

resulted in a test statistic larger than the observed one. This proportion

corresponds to the p–value ;

Algorithm 1: General pipeline for univariate tests (Maris and Oostenveld, 2007)

If the p–value obtained with Algorithm 1 is less than the critical alpha level (usually

,05), conclude that the data in the two experimental conditions are significantly different.

As the neighboring electrodes and time instants should exhibit a similar behavior, Groppe

et al. (2011) proposed a modification of Algorithm 1, known as cluster-based permutation,



as in Algorithm 2.

Data: Pre-processed EEG

Result: Statistics

t–scores (or other test statistics) are computed for each time point and sensor of

interest;

All t–scores that do not exceed some threshold (e.g., the t–score corresponding to

an uncorrected p–value of 5%) are ignored;

The remaining t–scores are grouped into clusters by grouping t–scores at adjacent

time points and sensors;

The t–scores in each cluster are summed to produce a cluster-level t–score. This

score is taken as the “mass” of the cluster ;

The most extreme cluster-level t–score across permutations of the data is used to

derive a null hypothesis distribution ;

The p–value of each cluster is derived from its ranking in the null hypothesis

distribution ;

The p–value of the entire cluster is assigned to each cluster member and reflects an

adjustment for multiple comparisons. The adjusted p–value for multiple

comparisons of tests not assigned to a cluster is one ;

Algorithm 2: Cluster-based permutation (Groppe et al., 2011)

The cluster-based permutation method has two arbitrary parameters: the neighbor

definition and the t–score threshold, which determine the size and number of clusters

(Groppe et al., 2011). Smith and Nichols (2009) developed a method known as TFCE

(Threshold-Free Cluster Enhancement) in which the threshold value does not have to be

predetermined but is calculated using a ROC-based optimization technique. This method is

implemented in MNE and was used for this analysis. The definition of neighboring electrodes

is done using an adjacency matrix.

Massive univariate analyses (Maris and Oostenveld, 2007) are popular because they

allow data-driven exploratory analyses with high statistical power and low Type I errors

and can even be used in confirmatory and multifactorial studies (Fields and Kuperberg,

2020). However, similar to classical statistical approaches, it is crucial to use caution when

interpreting the outcomes, specifically about the precise location or duration of the iden-

tified effects. (Sassenhagen and Draschkow, 2019).



2.2.3 Bayesian Inference Methods

Bayesian inference methods are a viable alternative to classical null hypothesis sig-

nificance testing (NHST) approaches to address concerns around their reliability and repro-

ducibility (Keysers et al., 2020; Wagenmakers et al., 2016). Bayesian inference can be used

to determine whether an effect exists and its size (van Doorn et al., 2021). As a result, the

Bayes Factor serves to quantify the comparative predictive efficacy of the null and alter-

native hypotheses. According to Eq. (1), it indicates the extent to which confidence in the

relative plausibility of the hypotheses must be reevaluated in light of the data. The Bayes

Factor is a statistical measure used in Bayesian hypothesis testing to assess the strength

of evidence for one hypothesis over another. It quantifies the ratio of the likelihood of the

data under one hypothesis compared to the likelihood under another. In the context of

Bayes factors, the hypotheses are typically the null hypothesis (H0) and the alternative

hypothesis (H1).

BF10 =
p (D | H1)

p (D | H0)
, (1)

where p(D | H1) can be interpreted as evidence in favor of the alternative hypothesis, and

p(D | H0) as evidence in favor of the null hypothesis (Etz and Vandekerckhove, 2018).

The subscript in the Bayes factor notation indicates which hypothesis the data support.

BF10 indicates the Bayes factor in favor of H1 over H0. A Bayes Factor greater than 1

suggests evidence in favor of the alternative hypothesis, while a Bayes Factor less than 1

suggests evidence in favor of the null hypothesis. In contrast, BF01 = 1/BF10 indicates

the Bayes Factor in favor of H0 over H1. The larger the Bayes Factor, the stronger the

evidence in favor of the selected hypothesis (van Doorn et al., 2021). This approach allows

researchers to update their beliefs about hypotheses as new data become available, making

it a valuable tool for model comparison and hypothesis testing in Bayesian statistics.

In the Bayesian framework, variance analyses involve comparing linear regression

models. These models consist of predictors representing factors and interactions between

components and are contrasted against a null hypothesis model. The null hypothesis model

lacks predictors but includes the intercept term (Wetzels et al., 2012). An improvement to

the standard Bayesian model for ANOVA is to parameterize the model in terms of effect

size, which makes priors independent of the units of measurement of the predictor variables,

shrinks them, reduces the model error, and simplifies the specification of informative priors

(Rouder et al., 2017).



The Bayes factors derived from comparing each potential model with the null model

will provide insight into the model that most effectively explains the observed data. Exa-

mining each element allows one to determine its inclusion within the model (Wagenmakers

et al., 2018). Post hoc analyses are conducted if the factor is deemed suitable for inclusion

in the model. These analyses aim to identify significant differences among levels while ac-

counting for multiple comparisons, adjusting the priors using the methodology outlined by

Jeffreys (1938) or Westfall et al. (1997).

When the primary objective of the analysis is to determine the size of the effect,

it is essential to visually represent the posterior distribution and compute the x% Credi-

ble Interval (CrI) (van Doorn et al., 2021). According to Bayes’Theorem, the posterior

distribution reflects the likelihood of the parameter values after the a priori knowledge is

updated with the data. The x%CrI contains the x% percentage of the mass of the pos-

terior distribution. Two popular ways of creating a x%CrI are the highest density CrI,

which is the narrowest interval containing the specified mass, and the central CrI, which is

created by cutting off 100−x
2

from each of the tails of the posterior distribution (van Doorn

et al., 2021).

Testing and estimation are not mutually exclusive and can be used in sequence. For

example, one can first use a Bayes factor hypothesis test to determine the effect and then

estimate the effect size by calculating 95%CrI. In our analyses, we use Bayesian inference

to determine the existence or not of an effect and determine the size of the effect, if it

exists (van Doorn et al., 2021).

2.2.4 EEG-based Functional Connectivity Analyses

Functional connectivity refers to a collection of methodologies rooted in graph theory

to quantify the degree of synchronization among multiple brain regions and offer valuable

insights into how these regions interact. This approach works under the assumption that

the synchronization of several regions of the brain, rather than isolated regions acting alone,

is necessary to perform various cognitive activities (Poli et al., 2015). Functional connecti-

vity analyses can be performed using data acquired from various neuroimaging techniques

such as EEG, magnetoencephalography, or functional magnetic resonance imaging (fMRI).

However, in this section, our focus is on functional connectivity strategies using EEG sig-

nals. EEG-based functional connectivity analyses can be approached through two distinct

methodologies: one at the level of sensors, which typically involves electrodes placed on the



scalp to measure electrical activity directly, and the other at the level of sources, where

the aim is to infer the neural sources responsible for the recorded electrical activity.

The statistical correlations between signals captured on different sensors are asses-

sed at the sensor level. This approach’s spatial resolution is constrained due to the deep

brain sources from which the recorded signals originate and their mixing on the scalp. Con-

sequently, it becomes challenging to readily discern the precise neural sources responsible

for the recorded signals. The abovementioned methodology is frequently employed to exa-

mine the interconnections between brain areas concerning collective electrical functioning.

The source-level approach involves using sensors to capture data that allow the estimation

of neural activity in distinct brain areas, sometimes referred to as “sources”. Inverse mo-

deling strategies infer the neural sources responsible for the signals detected on the scalp’s

surface. Functional connectivity examines statistical associations among estimated brain

activities from different sources in this scenario. Connectivity analysis conducted at the

source level provides a superior spatial resolution to the sensor level. This methodology

enables the identification of distinct brain regions that contribute to the detected signals,

thus improving the comprehension of the findings. Examining source-level functional con-

nectivity provides helpful information on communication patterns in various brain regions

for neuronal activity. Due to the absence of a head model, our investigation primarily

focused on assessing functional connectivity at the sensor level.

In addition to the distinction between sensor and source-level analysis, functional

connectivity methods also vary depending on the direction of interaction. They can be

categorized as directed or non-directed, including model-free and model-based approa-

ches (Bastos and Schoffelen, 2016). One of the key differences lies in whether the metrics

measure the direction of interaction. Non-directed functional connectivity captures the in-

terdependence between signals without considering the direction of influence. In contrast,

directed measures aim to establish statistical causation based on the principle that causes

precede their effects. Directed and non-directed connectivity measures can be classified into

model-free and model-based approaches.

EEG-based functional connectivity analysis could be performed in both time and

frequency domains, but preferred the second option due to its ability to capture dyna-

mic changes in brain activity (Fornito et al., 2016). In this thesis, we used non-directed

measures to study the frequency domain. This choice was motivated by the need to gain

insight into the synchronization patterns of multiple brain regions at different frequencies.

Furthermore, we considered the limitations of low spatial resolution at the sensor level,



which would invalidate the causal relationships identified by directed estimations. Hence,

the following section will outline the necessary techniques for conducting an EEG-based

functional connectivity study using non-directed measurements in the frequency domain.

Spectrum Estimation

The representation of a signal conveyed across a set of observations and frequency

bands in the frequency domain approximates the amplitude and phase of oscillations.

Identifying rhythmic components and phase differences is typical of the results obtained

by transforming signals into the frequency domain through Fourier decomposition, wave-

let analysis, or Hilbert transformation. In conventional approaches, where single window

functions such as rectangular or Gaussian tapers are applied to preprocess the data before

the Fourier transform, issues such as spectral leakage and reduced frequency resolution

often arise, especially when analyzing short or non-stationary data segments(Thomson,

1982). These limitations underscore the importance of using the multitaper method, which

addresses these inconveniences, providing more accurate and robust spectral estimates,

particularly in analyzing complex and dynamic signals.

The multitaper method, first described by Thomson (1982) and often used in neu-

rophysiology (Mitra and Pesaran, 1999), is a spectral analysis technique used in analyzing

time series data. It estimates the power spectral density (PSD) and assesses the signal’s

frequency content. The key idea behind the multitaper method is to reduce bias and va-

riance in the spectral estimation compared to traditional single-taper methods, such as the

periodogram. These benefits are achieved using multiple orthogonal or nearly orthogonal

taper functions, also known as Slepian taper functions (Slepian, 1978), to compute the

spectral estimate. Each taper is essentially a weighted version of the data, and they are

designed to minimize spectral leakage and maximize energy concentration within a speci-

fied bandwidth. Time series data are multiplied, or tapered, by these tapering functions,

resulting in multiple tapered data sets. A Fourier transform is further applied separately

to each of these tapered data sets, yielding multiple spectral estimates. Finally, the power

spectral densities obtained from each tapered data set are averaged or combined to create

a final estimate of the PSD. This averaging helps reduce the variance and improve the

accuracy of the spectral estimate (Thomson, 1982).

According to Babadi and Brown (2014), the multitaper approach has numerous

noteworthy benefits. First, it improves the frequency resolution by allowing each taper

to collect distinct signal frequency components, thus facilitating a more comprehensive



examination of the spectrum content. Furthermore, the technique enhances the reliability

and robustness of the results by mitigating variation by implementing several orthogonal

tapers and the subsequent averaging of spectral estimations. Furthermore, this methodo-

logy reduces spectral leakage, leading to a more precise detection of spectral maxima. One

additional advantage is the adjustable bandwidth, which allows for customization of the

number of tapers used to suit the specific attributes of the data and the desired trade-off

between frequency precision and reduction of variation. Using more tapers results in en-

hanced resolution but at the expense of heightened volatility. On the contrary, using fewer

tapers decreases variance but simultaneously restricts resolution.

Finally, the multitaper approach is beneficial for performing statistical hypothesis

testing. It facilitates evaluating the extent to which a particular frequency component

deviates considerably from the prevailing background noise.

Sinchronization Measurement

In frequency-based brain connectivity, many metrics can be used to obtain par-

ticular views on the interaction and synchronization of brain areas. Frequency domain

connectivity checks how well phase differences between oscillating elements fit together,

which could mean that different groups of neurons work together in a functionally signi-

ficant way (Bastos and Schoffelen, 2016). These metrics can provide valuable information

on the brain’s functional organization and help identify communication patterns between

different regions. Researchers can better understand how different brain areas work to-

gether to perform various cognitive tasks or processes by analyzing the coherence of phase

disparities.

Phase-based synchrony measures aim to capture particular characteristics of the pro-

bability distribution of cross-spectral densities for a single observation. The cross-spectral

density can be obtained by taking the complex conjugate of the spectral representation

of one signal and multiplying it by the spectral representation of the other signal. This

cross-spectral density is equivalent to the frequency domain representation of the cross-

covariance function. In other words, it measures the uniformity of the phase-difference

distribution. The fundamental concept is that the weighted sum of the frequency contents

will not be zero if observations of the phase difference between two oscillatory signals are

consistent. On the contrary, it will approach zero when the phase differences among indivi-

dual observations are uniformly distributed across 0 to 360 degrees. (Bastos and Schoffelen,

2016).



Connectivity estimates in neuroscience involve using phase-based metrics, which

consist of many useful tools such as coherence, phase locking value, and phase lag index.

These metrics provide distinct perspectives on brain communication and coordination.

Coherence is a widely used metric that measures the consistency and strength of phase

relationships between neural oscillations at specific frequencies, reflecting the degree of

synchronization between brain regions (Bastos and Schoffelen, 2016). The coherence coef-

ficient between the estimated spectrum of two signals Z1 and Z2 is a normalized value

between 0 and 1 and can be calculated as follows (Vinck et al., 2011):

C ≡ E{X}√
E {M2

1}E {M2
2}

, (2)

Where E{X} denotes the expected value of X, X ≡ Z1Z
∗
2 , being Z∗

2 the complex

conjugate of Z2, M1 ≡ |Z1| and M2 ≡ |Z2|.

Higher coherence suggests stronger synchronization and more consistent phase

coupling, indicating robust functional connectivity. In contrast, lower coherence values

may imply weaker or more variable phase relationships, potentially indicating less effective

neural communication or less coherent functional networks.

Coherence only indicates a linear correlation between the signals, which mixes the

phase and amplitude correlations. In other words, coherence measures the degree to which

two signals are synchronized or share similar patterns. It does not provide information

about the signals’specific phase or amplitude relationships. Therefore, while coherence

provides valuable information on the overall synchronization between signals, more is nee-

ded to characterize the underlying relationships fully. To solve this issue, Lachaux et al.

(1999) proposed measuring phase synchronization using only the relative phase between

the signals. In pursuit of this objective, the researchers implemented the phase locking

value (PLV) index, which the following Eq gives. (3), and it is defined as the resultant

circular length of the relative phases.

P ≡ |E{exp(iΘ)}| (3)

When considering PLV, it is important to address various potential challenges. Pro-

blems to be addressed cover noise sources, the influence of volume conduction on source

activity, the presence of a common reference, and potential biases associated with sample



size (Vinck et al., 2011). In response to the need for more robust and reliable phase syn-

chronization indices, Nolte et al. (2004) proposed using imaginary coherence (ImC), which

is a conservative approach to assess phase synchronization and is defined as follows:

ImC ≡ E{Im{C}} (4)

ImC captures meaningful phase relationships while mitigating some of the limita-

tions of PLV. However, Stam et al. (2007) pointed out a drawback about the effectiveness

of ImC in detecting synchronization if two sources are in-phase or in-phase opposition. To

overcome this limitation, they proposed a new measure called the phase lag index (PLI),

defined as:

Ψ ≡ |E{sgn(J{X})}| (5)

The phase lag index (PLI) quantifies the degree to which the phase differences

between signals from two sensors are not equally likely at a specific frequency, regardless

of the size of these phase differences. However, the sensitivity of the PLI to noise and

volume conduction could be impeded because of the discontinuity present in this index.

This discontinuity arises when minor disturbances cause phase lags to transition into phase

leads and vice versa (Vinck et al., 2011). Addressing these issues, Vinck et al. (2011)

introduced the weighted phase lag index (WPLI), which offers improved capacity to detect

true changes in phase synchronization while mitigating the influence of common noise

sources and changes in phase coherency. WPLI is calculated as follows:

Φ ≡ |E{I{X}}|
E{|I{X}|}

=
|E{|I{X}| sgn(I{X})}|

E{|I{X}|}
. (6)

The WPLI extends the PLI by weighting the contribution of the observed phase

leads and lags by the magnitude of the imaginary component of the cross-spectrum. In

this way, it alleviates the discontinuity mentioned above. The WPLI exhibits two primary

benefits compared to the PLI: increased susceptibility to additional uncorrelated noise

sources and enhanced ability to identify real changes in phase synchronization (Vinck

et al., 2011; Bastos and Schoffelen, 2016).

Connectivity Matrix Pruning



In functional connectivity analysis, the first stage is constructing a connection ma-

trix by computing one of the connectivity metrics mentioned above for every pair of electro-

des. Subsequently, these computed values are arranged in a matrix format, whereby each

element denotes the magnitude or extent of the connection between two particular elec-

trodes. To remove spurious or noisy links and highlight the essential topological properties

of the network, it is common practice to prune the resulting weighted graph by removing

some edges while maintaining a high level of connectivity.

This pruning process is typically based on specific threshold criteria, such as selec-

ting only the strongest connections above a particular threshold value. Various thresholding

methods have been proposed in the literature, including hard thresholding (Poli et al.,

2015), density-based or proportional thresholding (van den Heuvel et al., 2017), shuffle

methods (Kamiński et al., 2001), double thresholding (Boschi et al., 2021), adaptive th-

resholding (Wang et al., 2019), and deep learning-based methods (Fakhari et al., 2023).

However, there currently needs to be a consensus on the optimal thresholding method

(Zakharov et al., 2021). One notable concern is that the results could vary significantly

depending on the specific thresholding technique and threshold used, as shown by previous

studies conducted by Garrison et al. (2015) and Zakharov et al. (2021).

In recent years, the Minimum Spanning Tree (MST) has emerged as a popular

alternative to thresholding approaches. An MST is a fundamental concept in graph theory

and network analysis. It is a tree structure that spans all nodes in a connected, undirected

graph while minimizing the sum of edge weights. In other words, an MST is a subnetwork

that connects all nodes without forming cycles and has the smallest possible total edge

weight (Kruskal, 1956; Prim, 1957). The MST analysis assumes that all nodes are connected

in the original network, and each connection has a unique weight, usually representing the

strength of connectivity (Tewarie et al., 2015). These assumptions allow for creating a

meaningful and interpretable hierarchy within the network.

There are two ways to find the MST of a weighted graph (Kruskal, 1956; Prim,

1957). Kruskal’s algorithm focuses on edge sorting and component connectivity, and Prim’s

algorithm emphasizes node proximity and the growth of the MST from an initial seed.

Kruskal’s method sorts edges by weight, starting with the smallest. The algorithm iterates

through edges, adding them to the MST if they do not create cycles. Kruskal’s algorithm

continues until all nodes are connected in the MST, producing the minimum total edge

weight (Stam et al., 2014).



The output of constructing an MST from a connected weighted graph with distinct

weights is unique. The importance of this uniqueness lies in the fact that it eliminates the

necessity of choosing an arbitrary threshold to establish the graph’s structure (Tewarie

et al., 2015). As its topology is not dependent on the absolute values or distribution of

the weights in the original network but instead on their ordering, the MST is immune to

scaling effects (Jackson and Read, 2010). Furthermore, the MST remains unaffected by

any weight transformation that maintains weight order (Dobrin and Duxbury, 2001).

MST is advantageous, compared to the analysis of the entire weighted graph, as it

focuses on the most critical subgraph and avoids biases arising due to weight differences

between different graphs (van Dellen et al., 2018). Furthermore, the MST method has bet-

ter sensitivity to slight differences in the brain network, providing a new tool for research

on complex brain networks (van Diessen et al., 2016). When building the MST from the

weights in Gw, the resulting MST is binary, with the edges existing or not existing and

having no weights (Stam et al., 2014). Analysis of binary connectivity matrices is mainly

concerned with understanding the topological patterns of connections between nodes, re-

gardless of variations in their weight (Fornito et al., 2016). By focusing on the connections

present and where they are placed, scientists can gain insight into the organization of

the brain network and how different regions communicate with each other (Rubinov and

Sporns, 2010).

Network Topology Measures

The MST building process is then followed by a topological study, which involves

the identification of network topologies that effectively represent the underlying phenome-

non. Topology measures are network-invariant functions that measure relevant topological

features such as connectivity and sparsity. Such measures can be taken at the local or

global level. Local measures of individual network elements, such as nodes or links, typi-

cally quantify connectivity profiles associated with these elements and reflect how these

elements are embedded in the network. Global measures, on the other hand, provide a

holistic view of the entire network by summarizing its overall connectivity and structure.

These measures allow comparing networks or tracking network topology changes over time

Rubinov and Sporns (2010).

Topological measures in brain connectivity networks play a crucial role in assessing

the balance between segregation and integration of information processing within the com-

plex web of neural connections. Functional segregation refers to the ability of the brain



to process information in densely interconnected specialized groups of brain regions. In

functional networks, clusters indicate an organization of statistical dependencies indicative

of segregated neural processing. This concept is essential to understanding how the brain

processes information and how different brain areas work together to perform complex

tasks (Rubinov and Sporns, 2010).

In contrast, functional integration is how quickly it combines specialized information

from distributed brain regions. Integration measures estimate the ease with which different

regions of the brain communicate. These measures are based on the concept of a path,

a sequence of nodes, and links between different regions that represent potential routes

of information flow. In functional networks, integration represents statistical associations,

which makes interpretation more complex (Rubinov and Sporns, 2010).

Regarding the MST topology, there are two extreme shapes: paths and stars (Stam

et al., 2014). In the first one, all nodes are connected to two other nodes, except those at

either end, with one single link. Nodes with only one link in a tree are called leaf nodes,

and the number of such nodes in a tree is known as the leaf number. Thus, a path has a

leaf number of two. In the latter scenario, only one central node exists as the connection

point for every other node, thus having a leaf number of N . It is possible to characterize

the MST topology according to the leaf number, as suggested by Boersma et al. (2013). A

more regular network with higher clustering and longer path lengths corresponds to more

line-like MSTs with longer diameters and smaller leaf numbers. Instead, more random

networks show low clustering, short path lengths, and the corresponding MSTs’shorter

diameters and higher leaf numbers.

In this thesis, interpreting topological measures in the context of brain functional

connectivity is essential to understanding the organization of neural networks and their

relevance to cognitive processes, such as characterizing Colombian armed conflict actors.

Thus, we calculate the following topological measures from the MST matrix.

Leaf fraction: The proportion of leaf nodes in the tree to the total number of nodes. A

lower value of the leaf fraction indicates a less centralized network topology, and a

high leaf fraction means that communication is strongly dependent on the nodes of

the hub (Blomsma et al., 2022). The minimum value of this measure is 2/M , where

M is the number of links, and the maximum is 1. Tewarie et al. (2015) found that

the MST leaf fraction shows a strong negative linear relationship with the clustering

coefficient, meaning it could be considered a segregation measure. These nodes may



represent regions responsible for specialized or distinct functions within the brain

(Bullmore and Sporns, 2009).

Diameter: The longest of the shortest path lengths between any pair of nodes in the

network. This measure is usually normalized by dividing it by the number of links.

An increase in diameter means a decrease in global efficiency, while a low diameter

indicates a more efficient information flow between brain regions (Blomsma et al.,

2022). Tewarie et al. (2015) found that the MST diameter was linearly scaled with the

length of the path network and that the two are positively correlated, which means

that the diameter could be considered an integration measure. In cognitive processes,

this could characterize the need for information integration in various brain regions

(Bullmore and Sporns, 2009).

Mean eccentricity: The eccentricity of a node is the longest optimal path from this node

to any other node (Stam et al., 2014). The mean eccentricity represents the average

value of the eccentricity of all nodes (Cao et al., 2020). A high mean eccentricity

indicates a centralized network in which most nodes are relatively close to each other

(Blomsma et al., 2022). In brain networks, centralization can reflect efficient informa-

tion flow and rapid integration of various cognitive functions (Bullmore and Sporns,

2009).

Maximum degree: The maximum degree is the highest number of connections to a single

node, highlighting the network’s hubs. The nodes with the maximum degree represent

highly connected hubs that play a crucial role in facilitating communication between

brain regions (Cao et al., 2020). The presence of hubs in a functional network may

correspond to regions responsible for key cognitive functions (Bullmore and Sporns,

2009).

Maximum betweenness centrality: Betweenness centrality measures the shortest paths

that pass through a node, revealing the critical nodes for the information flow (Forni-

to et al., 2016). Nodes with higher values act as bridges connecting disparate regions

of the network. These nodes are essential for integrating information and facilitating

communication between specialized brain areas.

Tree hierarchy: This measure quantifies the trade-off between large-scale integration in

the MST and the overload of central nodes (Cao et al., 2020). It characterizes a hy-

pothetical, optimal topology of an efficient organization while preventing information

overload of central nodes (van Dellen et al., 2018). A well-organized hierarchy suggests



a structured information flow and clear cognitive processing hierarchies. Anomalies

in the hierarchy could mean cognitive process changes or brain function alterations

(Bullmore and Sporns, 2009).

2.2.5 Interpretable Machine Learning Models

This section will concisely overview this thesis’s machine learning models employed

in Chapter 5. In addition, a concise description of SHAP, the method used to convert

opaque ML models into interpretable ones, will be provided.

ML Classification Models. In this section, we discuss machine learning classification

models. Since characterizing groups of people is a supervised classification problem, we will

provide a brief overview of the models tested in this thesis.

Logistic Regression

Logistic Regression is a linear model initially developed for binary classification, yet

it can also be modified to deal with multiclass problems. It models the relationship between

the input features and the log-odds of the binary outcome using a linear equation to predict

the likelihood of an event occurring. The strength of logistic regression lies in its simplicity

and interpretability. However, one significant drawback of the logistic regression model is

the assumption of linearity between features and the log-odds of the output, which limits

its ability to handle interactions between features effectively and can lead to suboptimal

or inaccurate predictions (Hastie et al., 2017). In this thesis, we tuned the regularization

type, L1 or L2, and the regularization strength to regulate the size of the coefficients.

Support Vector Machines (SVM)

The SVM model aims to find the optimal hyperplane that maximally separates the

data classes, chosen based on the data points closest to this hyperplane, known as the

support vectors. The distance between the support vectors and the hyperplane is called

the margin, and the objective of SVM is to maximize it. In cases where data are not

linearly separable, the SVM uses a kernel function to project data into higher-dimensional

spaces where they could become linearly separable (James et al., 2021). For this model,

we opt for tuning the regularization parameter to gain control over the balance between

margin separation and misclassifications. In addition, we perform an iterative process for



evaluating different kernels and their corresponding hyperparameters.

k-Nearest Neighbors (kNN)

kNN is a non-parametric algorithm that classifies an instance based on the majority

class of its k nearest neighbors in the feature space. Given a new observation, kNN goes

through the data set to find the k training examples that are closest to the point and

returns the output value that has the majority among those k neighbors. The algorithm is

non-parametric, so it made no assumptions about data distribution. It is also lazy learning,

as no explicit training phase is required. However, kNN can be computationally intensive

during the prediction time, especially with large data sets (Lindholm et al., 2022). The

selection of the number of neighbors, the distance metric, and the weight function used in

the prediction were made as part of the tuning process.

Random Forests

Random Forest is an ensemble of decision trees in which each tree is trained on a

subset of the data and features, and the final classification is done by majority vote. A

single decision tree is sensitive to noise in its training data and can easily overfit. Random

forests mitigate this by training multiple trees by bootstrapping samples and aggregating

results in a process known as Bagging. Furthermore, random forests add another layer of

randomness by limiting the number of features considered to split at each node, further

increasing the diversity of individual trees and reducing overfitting (Hastie et al., 2017). For

the tuning process, we selected the number of trees in the forest and the cost-complexity

pruning (CCP) alpha, a complexity parameter that controls the trade-off between the

number of nodes of each tree and its predictive accuracy.

Gradient Boosting

Gradient Boosting is an ensemble ML technique that sequentially builds predic-

tive models by combining multiple weak learners. It emphasizes correcting errors made

by previous models, gradually improving the predictive accuracy. Furthermore, Gradient

Boosting also aims to reduce bias, making it a powerful tool for many predictive tasks.

However, it can be more prone to overfitting if not carefully tuned (Hastie et al., 2017). In

our case, we opt to tune the same hyperparameters, namely the number of estimators and

CCP alpha, in the random forest.

Extreme Gradient Boosting (XGBoost). XGBoost is an optimized Gradient Boosting



algorithm with enhancements for performance and speed. One of the main reasons for its

effectiveness is its ability to calculate the second-order gradient of the loss function, that is,

the Hessian, leading to more accurate step sizes in the boosting process (Chen and Guestrin,

2016).XGBoost exhibits several advantages that separate it from other Gradient Boosting

algorithms. It consistently delivers enhanced model accuracy with minimal tuning, operates

efficiently due to its well-optimized implementation, and remains robust against overfitting

through features like regularization, cross-validation, and tree pruning. In this thesis, we

focus on tuning key hyperparameters of this ML model. These included the number of boost

rounds, the step size shrinkage to prevent overfitting, the maximum depth of decision trees,

the fraction of features used per tree, and the fraction of samples used per tree.

Feature Selection Feature selection is an essential step in ML to improve model perfor-

mance by eliminating irrelevant or redundant features, reducing overfitting, and enhancing

generalization. By performing such a process, one can often build more straightforward,

faster, and more interpretable models that perform as well or even better than models built

using all the features (Duboue, 2020).

In this work, we used various feature selection methods to extract the most infor-

mative attributes for our analysis. First, for the Logistic Regression with both L1 and

L2 regularization, we process retained features with coefficients exceeding a designated

threshold parameter, which we set at 1.5 times the mean of all feature coefficients. Addi-

tionally, for the SVM and Random Forest models, we preserve features whose score ranks

surpassed a threshold set at 1.5 times the mean of all score ranks. Further refinement was

achieved through filtering techniques, which involved selecting features based on p-values

derived from an ANOVA test with the labels of the factor. We adhered to the conventio-

nal threshold for statistical significance, keeping features with p-values below 0.05. Lastly,

we consider mutual information (MI) by selecting features greater than 0.1 when assessed

against the label. MI quantifies the extent to which one random variable provides informa-

tion about another, allowing us to retain features that offer valuable information for our

analysis (Chandrashekar and Sahin, 2014).

SHAP for Interpretability of Opaque ML Models One of the main benefits of using

ML models is that they have a high predictive capacity, meaning they can make accurate

predictions about new data based on what they have learned from previous data. However,

they are opaque, making it challenging to understand the process behind their predictions



or identify the relative importance of different features in influencing these predictions.

The attributes above tend to increase along with the complexity of the models, resulting

in a trade-off between performance and interpretability (Yarkoni and Westfall, 2017).

In recent years, there has been an increase in data analysis methods aimed at enhan-

cing the interpretability of complex machine learning models such as permutation feature

importance (Ribeiro et al., 2016), local interpretable model-agnostic explanations (LIME)

(Fisher et al., 2019), and SHapley Additive exPlanations (SHAP) (Lundberg and Lee,

2017). Consequently, obtaining models with high predictive capacity and interpretability

is now feasible. SHAP has become a popular choice for model interpretation due to its

ability to provide consistent and meaningful feature attributions for a wide range of ML

models. It enhances model transparency and helps to understand the driving factors behind

predictions, facilitating trust and accountability in AI and ML applications.

SHAP is an advanced technique that explains the output of complex machi-

ne learning models, such as ensemble methods, neural networks, and gradient boosting

methods. Its functioning principle is rooted in game theory and the concept of Shapley

values(Shapley, 1953). The key idea behind SHAP is to attribute the contribution of each

feature to the prediction for a specific instance. The interpretability ability is achieved

through the following:

Cooperative game theory: SHAP borrows the concept of cooperative game theory,

where ”players”(features) cooperate to produce a ”payoff”(the model’s prediction)

in different combinations.

All possible combinations of features: SHAP considers all possible combinations of

features, from no features to all features. Each combination represents a ”game”where

features cooperate to predict an outcome.

Shapley values: For each feature, SHAP computes its Shapley value, which quantifies

the average contribution of that feature to all possible combinations. Calculate how

much adding the feature to a set contributes to the prediction, considering all possible

orders in which the features could join.

Consistency and Fairness: SHAP ensures that Shapley values satisfy properties like

consistency and fairness, making them a stable and reliable way to attribute feature

contributions. The Shapley values provide an accurate decomposition of the model’s



prediction for each instance, enabling an understanding of which features are driving

the prediction and to what extent.

Local Interpretability: SHAP values can explain model predictions per-instance basis,

offering insights into how specific features influenced a particular prediction.

Global Interpretability: By examining Shapley values in multiple instances, you can

understand feature importance at a global level, identifying which features are gene-

rally more influential.

The advantages of SHAP include its solid theoretical foundation from game theory,

allowing it to explain predictions for any ML model. Shapley values for a single instance

can explain a prediction and be assembled into global explanations for a complete data set.

Additionally, SHAP has a fast implementation, making it easy to get Shapley values for glo-

bal explanations such as feature contributions, dependence, and dependence plots. SHAP

values also fulfill desirable properties such as local accuracy, missingness, and consistency

(Lundberg et al., 2020). Their disadvantages include the potential for misinterpretation

of Shapley values for new data if other explanations are used. Moreover, all global expla-

nations in SHAP require computing Shapley values for a large sample (Guidotti et al.,

2018).

2.3 Summary

In this chapter, we presented the materials and methods common to several of the

following chapters. We described the sample of former armed conflict actors who underwent

behavioral tests and electroencephalographic recordings. Next, we gave a brief description

of the behavioral tasks performed by the participants, expanding on the description of the

IAT, which is designed to measure prejudice between groups of actors. Subsequently, we

presented the procedure used to preprocess the EEG and obtain the ERPs, which are the

basis of all the analyses performed. After that, the Bayesian inference hypothesis testing

method used in Chapters 3 and 4 is explained. Finally, we described the procedure used

to obtain the network measures needed to perform the EEG-based functional connectivity

analyses presented in Chapter 4, which are part of the features used in the ML models

presented in Chapter 5. Finally, the ML models tested in Chapter 5 to characterize the

group of participants are briefly described, and the technique used to make these models

interpretable is also explained.



3 A Bayesian Approach to Event-Related Potentials

This chapter introduces a new methodology for analyzing Event-Related Potentials

(ERPs) by combining Bayesian inference models and massive univariate methods. We

demonstrated that our approach is more sensitive and reliable than conventional methods

using null hypothesis significance testing or massive univariate methods.

3.1 Literature Review

As previously indicated in Chapter 1, two methodologies exist to analyze ERP.

In the first methodology, the ERP components to be analyzed are previously selec-

ted, a measurement is taken of this component - the most common being mean amplitude,

peak amplitude, and latency (time instant where the peak amplitude is located) - and

finally, NHST is made to these measurements to test whether there are statistically sig-

nificant differences between experimental conditions or groups of participants. There are

several issues with this approach: i) ERP components vary in space and time (Fields and

Kuperberg, 2020), and by doing so, they may neglect effects that have not been previously

reported (Luck, 2014). ii) Choosing electrodes and time windows a priori is subjective

(Keil et al., 2014). In addition, volume conduction, that is, how electromagnetic signals

propagate through the brain, introduces variability by allowing multiple components to

reach all sensors simultaneously, leading to misinterpretations (Nunez et al., 2006). iii) It

inflates Type I errors and can undermine the validity and reliability of the findings (Luck

and Gaspelin, 2017).

In addition to issues with conventional ERP analysis approaches, there is growing

criticism of the suitability and reliability of NHST and the validity of the effects found using

it (Keil et al., 2014; Luck and Gaspelin, 2017). In this regard, Cumming (2014) illustrates

that when replicating an experiment with a different random sample, the p–values and con-

fidence intervals are not identical and often contradictory, so they directly recommend not

using these tests, an opinion shared by other authors (Nuzzo, 2014). Furthermore, a group

of more than 200 researchers conducted a meta-study in which the results showed that

psychological studies are prone to reproducibility problems (Open Science Colaboration,

2015).

The second methodology consists of performing massive univariate statistical analy-



ses on the EEG signals, as indicated in Algorithm 1, and from these analyses, finding the

existing clusters, which are groups of neighboring electrodes where significant differences

are observed in consecutive samples (Groppe et al., 2011). These methods do not require

one to pre-select which groups of electrodes or time windows are to be analyzed, as this is

done automatically. However, they do not give statistical inference about the location and

extent of the effects (Sassenhagen and Draschkow, 2019), so it should be complemented

with some statistical inference method.

So far, only ERP-IAT studies using the first methodology have been conducted,

which have found effects on components N2 (Chen et al., 2018; Healy et al., 2015), P3a

(Healy et al., 2015; Portengen et al., 2022), P3b (Chen et al., 2018), N400 (Healy et al., 2015;

Williams and Themanson, 2011), and LPP (Forbes et al., 2012). Nevertheless, the results

obtained are only sometimes consistent. For example, at N2, Chen et al. (2018) found effects

by block type in the occipital region, Healy et al. (2015) found effects in the interaction

block type × level of the IAT effect in the occipital region, and a negative correlation

between the IAT score and the mean amplitude of this component, while Williams and

Themanson (2011) did not find effects. Similarly, at N400, Healy et al. (2015) found effects

on the interaction block type × level of the IAT effect in the central and parietal regions,

Williams and Themanson (2011) found effects on the interaction block type × level of the

IAT effect in the frontal region, but Chen et al. (2018) did not find effects.

Furthermore, no effects have been found for other components such as N1 (Williams

and Themanson, 2011), P1 (Chen et al., 2018), and P2 (Healy et al., 2015; Williams and

Themanson, 2011). However, the literature in social cognition indicates that these compo-

nents are modulated by social categorization processes, which is a precursor of prejudice

and what the IAT task measures (Amodio and Cikara, 2021)

Beyond the general issues inherent in traditional ERP analysis methodologies, these

inconsistencies in the ERP-IAT analysis results could have two additional causes: EEG

preprocessing variations (Healy et al., 2015; Endendijk et al., 2019), and the IAT stimulus

dependency (Nosek et al., 2007; Tosi et al., 2018). In the preprocessing stage, for example,

while some authors do baseline correction (Chen et al., 2018; Williams and Themanson,

2011), others do not and instead apply a bandpass filter between 4 and 30Hz (Healy et al.,

2015; Endendijk et al., 2019), which fixes the issue of pre-stimulus activity extending into

early periods of the ERP waveform, overlapping notably with the P1, issue that not correct

well the baselining process, and allows to analyze early ERP stimulus-locked components

effectively, but in return strongly attenuates the late ERP components (N400 and LPP). It



is also clear that the type of stimulus conditions the signals; thus, for example, Portengen

et al. (2022) works with two types of stimuli (text and images) and defines different time

windows for each.

3.2 Methodology

Based on the mentioned limitations, it is crucial to consider alternative approaches

that can provide information about the spatial and temporal characteristics of the effects.

Following this line, we proposed a novel methodology in which we first discover potential

ERP components using massive univariate methods and then measure effect sizes using

Bayesian inference.

One distinction between the initial phase of the proposed methodology and conven-

tional massive univariate analysis methods is the retention of samples with a p-value below

.5, as opposed to .05. By employing this threshold, we would retain samples in which the

probability of discovering an effect is equal to that of the probability of its absence. Mo-

reover, this threshold will be used in the second stage to construct the a priori distribution

of the Bayesian inference model.

Once we identified the clusters of interest, we calculated the mean amplitude of the

signals for the congruent and incongruent blocks and their difference. Next, the following

statistical analyses were performed for each discovered cluster:

• Mixed ANOVA by Bayesian inference taking the type of block (congruent or in-

congruent) as the within-subjects factor and the IAT effect group (negative, neutral,

positive) as a between-subjects factor. The prior of Cohen’s d effect size is uniform, with

a scale factor of 0,2, corresponding to an informative prior assuming a small effect size.

The prior is consistent with the p–value used in the first part of the methodology as

a threshold for cluster discovery. Furthermore, this analysis was also performed with a

prior of 0,5, equivalent to a medium effect size, and with a prior of 0,8, equivalent to a

large effect size, to evaluate how sensitive the model is to priors.

• One-way ANOVA takes the difference between congruent and incongruent blocks as a

dependent variable, depending on where the cluster to be analyzed came from, and the

IAT effect group as the factor. The prior of Cohen’s d effect size is uniform, with a scale

factor of 0,2, corresponding to an informative prior assuming a small effect size.



• t–test for post hoc analysis for those factors or interactions considered relevant in

the models, adjusting the priors according to the procedure proposed by Westfall et al.

(1997) to correct for multiple comparisons. With this, a prior with a scaling factor of 0.2

for a 2 × 3 repeated measures ANOVA results in a prior with a scaling factor of 0,710

to be used in the post hoc analyses. Sensitivity analyses are also performed, which allow

us to determine how robust the Bayes factors are to different parameterizations of the

prior distribution.

For statistical analysis, we grouped the participants into negative, neutral, and

positive levels of the IAT effect, replicating the work of Healy et al. (2015), which is

somewhat suggested by the results of Williams and Themanson (2011). The reasoning

for this grouping is that we expect ex-combatants to have a positive score, victims a

negative score, and civilians a neutral one. We hypothesize that such a distribution among

actors (ex-combatants, unaffected civilians, and victims) will contribute to explaining the

electrophysiological drivers of prejudice in communities against ex-combatants.

We used the K-means algorithm for such a grouping with the initialization method

K-means++ and Euclidean distance. This unsupervised learning algorithm partitions a da-

ta set into groups by finding centroids that minimize the sum of squared distances between

the data points and their respective centroids. K-means++ is an improvement over the

traditional K-means algorithm, designed for more accurate and stable cluster assignments.

It ensures that the initial selection of cluster centroids is spread out, reducing the chances

of converging to suboptimal solutions. This approach leads to faster convergence and better

clustering than the standard K-means algorithm (Arthur and Vassilvitskii, 2007).

The following limits were obtained for each group: negative IAT effect: [−0,7057,−0,2114],
neutral: [−0,2114, 0,1849], positive: [0,1849, 0,8680]. Nineteen subjects comprised the ne-

gative IAT effect group, 37 in the neutral group, and 29 in the positive group. Figure 2

shows the densities of these three groups.

3.3 Results with Traditional Analyses

3.3.1 NHST Analyses

The preliminary selection of electrodes and time intervals, following established

protocols or testable hypotheses, constitutes the conventional approach to ERP analysis.



Figura 2

IAT score densities, grouped by IAT effect

In this regard, we selected three electrodes from the central frontal region (FC1, FC2,

and FZ), where previous studies had found effects (Forbes et al., 2012; Healy et al., 2015;

Hurtado et al., 2009) to illustrate the conventional analysis using NHST.

We identified four intervals of interest shown in Figure 3. Their respective descriptive

statistics are summarized in Table 3.

Statistical analyses in every time window show the following results.

Time window 1 (140 to 250ms): There are significant effects on the interaction block ty-

pe × IAT effect group (F (2, 82) = 4,604, p = ,013, η2 = ,030) and on the difference between

congruent and incongruent blocks by the IAT effect group (F (2, 82) = 4,604, p = ,013, η2 =

,101); posthoc analyses resulted in the mean amplitudes of the incongruent block of sub-

jects in the positive IAT effect group being more positive than the mean amplitudes of the

congruent block of subjects in this same group (t = −3,563, ptukey = ,008, d = −0,703, CI =

[−1,126,−0,092]), and than the mean amplitudes of incongruent block of subjects in the

neutral IAT effect group (t = −3,079, ptukey = ,030, d = −0,764, CI = [−1,304,−0,020]),
and that the differences in the mean amplitudes of congruent and incongruent blocks are

more negative for subjects in the positive IAT effect group than the differences for the nega-

tive IAT effect subjects (t = 2,435, ptukey = ,045, d = 0,719, CI = [0,013, 1,311]), and than

the differences of the neutral IAT effect subjects (t = 2,744, ptukey = ,020, d = 0,681, CI =
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Figura 3

Time windows selected by visual inspection to make NHST of the difference between

combined ERP of blocks (obtained by subtracting the incongruent block from the congruent

block). We selected the time intervals where one signal was appreciably different from the

others.



Tabla 3

Descriptive statistics of the mean amplitudes of each time window found by block type and

IAT effect group, shown as M(SD).

Time

window
Block type

IAT effect group

negative neutral positive

1

Differences 0,053(0,93) 0,017(0,748) −0,609(1,099)

Congruents 0,497(0,759) 0,306(0,917) 0,341(0,759)

Incongruents 0,445(0,934) 0,289(0,751) 0,951(1,043)

2

Differences 0,268(1,075) −0,027(0,767) −0,54(1,328)

Congruents 0,51(0,811) 0,309(0,944) 0,298(0,886)

Incongruents 0,242(1,017) 0,335(0,845) 0,838(1,205)

3

Differences 0,049(0,712) −0,095(0,923) −0,58(1,768)

Congruents −0,288(0,865) −0,355(1,189) −0,48(1,138)

Incongruents −0,337(0,79) −0,26(1,074) 0,1(1,412)

4

Differences 0,144(0,677) −0,061(0,92) −0,907(1,329)

Congruents 0,058(1,229) 0,059(1,3) −0,226(0,94)

Incongruents −0,086(1,07) 0,12(1,241) 0,681(1,181)



[0,082, 1,172]).

Time window 2 (290 to 370ms): There is a significant effect on the interaction block

type × IAT effect group (F (2, 82) = 3,722, p = ,028, η2 = ,026); no significant effects were

found in the posthoc analyses.

Time window 3 (460 to 520ms): There are no effects in the block type factor

(F (1, 82) = 2,214, p = ,141, η2 = ,008), in the group factor (F (1, 82) = 0,154, p = ,858, η2 =

,003), or in the block type × IAT effect group interaction (F (2, 82) = 1,840, p = ,165, η2 =

,013). There are no effects in the difference between congruent and incongruent blocks

(F (2, 82) = 1,840, p = ,165, η2 = ,043).

Time window 4 (540 to 800ms): There are significant effects on the factor block type

(F (1, 82) = 5,520, p = 0,021, η2 = 0,012), on the interaction block type × IAT effect group

(F (2, 82) = 7,690, p < 0,001, η2 = 0,034), and on the difference between congruent and

incongruent blocks by the IAT effect group (F (2, 49,770) = 6,514, p = 0,003, η2 = 0,158);

posthoc analyses resulted in the mean amplitudes of incongruent block of subjects in the

positive IAT effect group being more positive than the mean amplitudes of congruent

block of subjects in this same group (t = −4,708, ptukey < 0,001, d = −0,769, CI =

[−1,489,−0,324]), and that the differences in the mean amplitudes of congruent and in-

congruent blocks are more negative for subjects in the positive IAT effect group than

the differences for the negative IAT effect subjects (t = 3,433, ptukey = ,003, d =

1,013, CI = [0,320, 1,782]), and than the differences of the neutral IAT effect subjects

(t = 3,290, ptukey = ,004, d = 0,816, CI = [0,232, 1,460]).

In summary, we found effects in time windows 1 and 4, whereas no effects were found

in windows 2 and 3. In the time window 1, which corresponds to early ERP components

of positive polarity, the ERPs of the incongruent block of the subjects in the positive IAT

effect group are larger (more positive) than the incongruent block of the other groups and

than the congruent block of this same group. We also found that while the mean amplitudes

of the incongruent block in the subjects in the positive group are larger than the mean

amplitudes of the congruent block, the mean amplitudes of the congruent block are larger

than the mean amplitudes of the incongruent block in the other groups. In the time window

4, which corresponds to late ERP components of positive polarity, something similar to

that described for time window 1 was found.



3.3.2 Massive Univariate Analyses

Since the MNE algorithm considers the cluster as a set of two or more adjacent points

in time or space, and a significant effect should have a longer duration and extent (Luck,

2014), a sieve was made to retain only those clusters of duration equal to or greater than 40

ms, and with an extent of two or more electrodes, following the usual practice found in the

literature review regarding the minimum size of regions of interest (i.e., (Healy et al., 2015;

Portengen et al., 2022; Chen et al., 2018)). Finally, we found two clusters by applying this

methodology (see Figure 4), based on the suppose that a real effect should have a minimum

extension, if not it is noise.

Figura 4

Clusters found by massive univariate analysis, setting the decision threshold at a p-value

of ,05. Figure (a) shows the raster plot, highlighting by rectangles the electrodes (F1, FCZ,

CZ, and C1) and time window (from 578 to 800 ms) that make up cluster 2. Figure (b)

shows the signals resulting from averaging the difference between the ERPs of the

congruent and incongruent blocks for each group, including the confidence intervals.

Figure (c) shows the location of the electrodes that make up the cluster.

Table 4 presents the description of the clusters found and the descriptive statistics

of the mean amplitudes of each block type by the IAT effect group of subjects.



Tabla 4

Descriptive statistics of the mean amplitudes of each cluster found by block type and IAT

effect group - M(SD).

Cluster

id.
block type

IAT effect group

Negative Neutral Positive

1

Differences 0,025(1,116) 0,384(1,097) −0,152(1,357)

Congruents 0,023(0,862) −0,304(0,823) 0,199(0,983)

Incongruents −0,002(0,697) −0,688(0,943) 0,351(1,067)

2

Differences 0,225(0,832) 0,013(0,823) −1,047(1,282)

Congruents 0,042(1,215) 0,051(1,376) −0,364(0,939)

Incongruents −0,183(1,099) 0,038(1,194) 0,683(1,17)

Once the clusters were identified, we performed NHST analyses on them. Detailed

results of these analyses are presented as follows:

Cluster 1 (electrodes: C3, CP1; time window: 343.75 to 386.72ms): We found

significant effects on IAT effect (F (2, 82) = 10,488, p < ,0001, η2 = ,126); posthoc analyses

revealed that the mean amplitudes of blocks of subjects in the neutral IAT effect group are

more negative than the mean amplitudes of blocks of subjects in the positive IAT effect

group (t = −4,485, ptukey < ,001, d = −0,842, CI = [−1,191,−0,351]), and that the mean

amplitudes of blocks of subjects in the negative IAT effect group (t = −2,589, ptukey =

,030, d = −0,533, CI = [−0,985,−0,028]).

Cluster 2 (electrodes: F1, FCZ, CZ, C1; time window: 578.12 to 792.97ms): We

found significant effects on the factor block type (F (1, 82) = 5,668, p = ,020, η2 = ,012),

on the interaction block type × IAT effect (F (2, 82) = 12,398, p < ,001, η2 = ,051),

and on the difference between congruent and incongruent blocks by the IAT effect group

(F (2, 45,160) = 9,560, p < ,001, η2 = ,232); posthoc analyses resulted in the mean am-

plitudes of incongruent block of subjects in the positive IAT effect group being more

positive than the mean amplitudes of congruent block of subjects in this same group

(t = −5,609, ptukey < ,001, d = −0,883, CI = [−1,612,−0,483]), and that the differences in

the mean amplitudes of congruent and incongruent blocks are more negative for subjects

in the positive IAT effect group than the differences for the negative IAT effect subjects

(t = 4,287, ptukey < ,001, d = 1,265, CI = [0,564, 1,980]), and than the differences of the



neutral IAT effect subjects (t = 4,254, ptukey < ,001, d = 1,055, CI = [0,465, 1,656]).

In summary, we found effects in the left central parietal region in a late time window

where ERPs have negative polarity. In this region, the ERPs of subjects in the neutral IAT

effect group are larger (more negative) than those in the other two groups. We also found

effects in the left central frontal region in a late time window where ERPs have positive

polarity. In this region, the mean amplitudes of the incongruent block of the subjects in

the positive IAT effect group are larger (more positive) than the mean amplitudes of the

incongruent block of the other groups and the congruent block of this same group. Finally,

while the mean amplitudes of the incongruent block in the subjects in the positive group

are larger than the mean amplitudes in the congruent block, in the other groups, mean

amplitudes of the congruent block are larger than the mean amplitudes of the incongruent

block.

3.4 Results with Proposed Methodology

3.4.1 Discovering of Clusters

We applied the proposed approach to compare between the IAT effect groups the

mean amplitudes of the congruent block, the mean amplitudes of the incongruent block,

and the differences between the mean amplitudes of the congruent and incongruent blocks

(see Figure 5).

As in the conventional method, only clusters with a duration greater than 40 ms

and an extension of two or more electrodes were selected, resulting in the 9 clusters shown

in Table 5. The grand averages of these clusters are shown in Figure 6.



Figura 5

Raster plots of clusters found by massive univariate analysis, setting the decision

threshold at a p-value of ,5. Figure (a) shows the raster plot, highlighting by rectangles the

electrodes (F1, FZ, FCZ, FC2, CZ, and C2) and time window (from 558 to 800 ms) that

make up cluster 9. Figure (b) shows the signals resulting from averaging the difference

between the ERPs of the congruent and incongruent blocks for each group, including the

confidence intervals. Figure (c) shows the location of the electrodes that make up the

cluster.



(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Cluster 8 (i) Cluster 9

Figura 6

Grand averages of clusters found in the first stage of the proposed methodology. The shaded area indicates the cluster time

window. Conventions: Solid blue line: congruent block - negative IAT score group. Solid yellow line: congruent block -

negative IAT score group. Green dash-dot line: congruent block - neutral IAT score group. Red dash-dot line: incongruent

block - neutral IAT score group. Purple dashdot line: congruent block - positive IAT score group. Brown dashed line:

incongruent block - positive IAT score group.



Tabla 5

Clusters found in the first step of the proposed methodology.

Cluster

id.

Electrodes Time window (ms) Effects detected in

blocks:

1 P9, PO7 132,812− 226,562 Differences

2 AF4, F2, F4, FC4 136,719− 253,906 Differences

3 FC1, FCZ, FC2, FC4,

F2, F4

179,688− 242,188 Differences

4 AF4, AFZ, FPZ 281,25− 339,844 Differences

5 FC2, FC4, F2, F4, FZ 281,25− 460,938 Differences

6 FC2, FC4, FCZ 378,906− 425,781 Differences

7 CZ, C2, C1, CP1 382,812− 429,688 Differences

8 CPZ, CP1, CP2 457,031− 539,062 Differences

9 FC2, FCZ, CZ, C2, FZ,

F1

558,594− 796,875 Differences

3.4.2 Extended Analyses of One Cluster

Given the extent of the analyses performed for each cluster, we only present the

complete results for cluster 9. A summary of the results for all clusters and the statistical

analyses that support these results are presented in Section 3.4.3.

For cluster 9, composed of electrodes FC2, FCZ, CZ, C2, FZ, and F1, in the time

window between 559 and 797ms, the comparison of repeated measures ANOVA model

provided strong evidence that the model that best predicts the data is the complete model

with the two factors and the interaction between factors (see Table 6).

Furthermore, the effects analysis (see Table 7) gives strong evidence in favor of

including the two factors and the interaction. These results are similar with different priors,

indicating that it is a robust model. With these results, we can proceed to post-hoc analyses.

In this table, BFinc shows the evidence favoring including the respective predictor.

The analysis of the posterior distributions of the parameters, as well as the interac-

tion plot depicted in Figure 7, and the credibility intervals for each group shown in Table 8,



Tabla 6

Comparisons of models for cluster 9 with Bayesian Repeated Measures ANOVA.

Models
BFm prior

r scale = 0,2 r scale = 0,5 r scale = 0,8

block type + IAT effect + block

type * IAT effect

264,542 205,903 114,967

block type 0,034 0,052 0,092

block type + IAT effect 0,016 0,013 0,034

Null model (incl. subject and ran-

dom slopes)

0,007 0,009 0,009

IAT effect 0,003 0,002 0,003

Note. BFm shows how much the data have changed the prior model odds. All models

include subject and random slopes for all factors of repeated measures.

Tabla 7

Analysis of effects for cluster 9 with Bayesian Repeated Measures ANOVA.

Effects
BFinc prior

r scale = 0,2 r scale = 0,5 r scale = 0,8

block type 259,286 171,542 73,099

IAT effect 64,616 40,606 21,025

block type * IAT effect 264,542 205,903 114,967

Note. BFinc shows the evidence favoring including the respective predictor.



(a) (b)

Figura 7

Plots of (a) posterior distributions of the groups formed by the block type × IAT effect

interaction, and (b) block type × IAT effect group interaction plots including 95%

credible intervals. Note that the incongruent block measures of the positive IAT effect

subjects are significantly more positive than those of the other groups.

indicate that the mean amplitudes of the incongruent block for subjects in the positive IAT

effect group are significantly more positive both the congruent block within the same group

and the incongruent block within the neutral and negative groups.

The results of the posthoc analyses (see Table 9) indicate that there is decisive

evidence supporting the hypothesis that the mean amplitudes of incongruent block of

subjects in the positive group are more positive than those of congruent block of subjects in

the same group. There is also moderate evidence supporting the hypothesis that the mean

amplitudes of the incongruent block of subjects in the positive group are more positive

than those of the incongruent block of subjects in the negative and neutral groups.

The sensitivity analysis of Figure 8 indicates that the model is not robust when it

compares the incongruent-positive and incongruent-neutral groups. The inference made is

weak because it depends on the prior selection.

On the other hand, the Bayesian one-way ANOVA performed on the difference

between congruent and incongruent blocks showed that the model that includes the IAT

effect factor as a predictor explains the data better than the null model, which, in other

words, means that there is decisive evidence in favor of the alternative hypothesis and that

the model is robust concerning the selection of priors (view Table 10).



Tabla 8

Descriptives of posterior distributions, Bayesian Repeated Measures ANOVA for cluster 9.

block

type

IAT effect

level
M SD N

95% Credible Interval

Lower Upper

congruents

negative 0,053 1,176 19 −0,514 0,620

neutral 0,058 1,314 37 −0,380 0,496

positive −0,340 0,948 29 −0,700 0,021

incongruents

negative −0,074 1,006 19 −0,559 0,411

neutral 0,057 1,212 37 −0,347 0,460

positive 0,683 1,152 29 0,245 1,121

Tabla 9

Bayes Factors of post hoc comparisons in cluster 9.

Bayesian Test Measure 1 Measure 2 BF−0 error%

Paired Samples

T-Test

Congruent

positive

Incongruent

positive

282,879 2.570Ö 10=5

Independent Samples

T-Test

Incongruent

neutral

Incongruent

positive

3,274 4.882Ö 10=5

Independent Samples

T-Test

Incongruent

negative

Incongruent

positive

4,932 7.133Ö 10=5

Note. BF−0 is the Bayes factor of the alternative hypothesis versus the null hypothe-

sis, the alternative hypothesis being that measure 1 is smaller than measure 2. The

percentage error indicates how much the results can fluctuate since these analyses

are based on a numerical algorithm such as Markov chain Monte Carlo (MCMC).

Tabla 10

Model comparisons for cluster 9 with Bayesian one-way ANOVA.

Models
BFM prior

r scale = 0,2 r scale = 0,5 r scale = 0,8

IAT effect 257,781 399,925 369,558

Null model 0,004 0,003 0,003



(a) (b)

(c)

Figura 8

Sensitivity analyses of post-hoc comparisons repeated measures ANOVA cluster 9 for (a)

Incongruent block, Positive vs. Neutral, (b) Incongruent block, Positive vs. Negative, and

(c) Congruent vs. Incongruent block, Positive. In all figures, max BF−0 is the maximum

Bayes factor that can be obtained with prior distribution whose parameter is the indicated

value of r, user prior indicates the Bayes factor obtained with the prior distribution

used, wide prior indicates the Bayes factor that would be obtained with an

uninformative prior distribution, and ultrawide prior indicates the Bayes factor that

would be obtained with a non-informative prior distribution.



Tabla 11

Descriptives of posterior distributions, Bayesian one-way ANOVA.

95% Credible Interval

IAT effect

level

M SD N Lower Upper

negative 0,127 0,707 19 −0,213 0,468

neutral 0,001 0,861 37 −0,286 0,288

positive −1,022 1,286 29 −1,511 −0,533

Post hoc comparisons show that the measure in the positive group is more negative

than in the neutral and negative groups. The sensitivity analysis shows this result is robust

(Figure 9). Observation of the credibility intervals of the groups corroborates this statement

(Table 11).

(a) (b)

Figura 9

Sensitivity analyses of post hoc comparisons one-way ANOVA, cluster 9 for (a) Positive

vs. Neutral IAT score groups and (b) Positive vs. Negative IAT score groups. The same

conventions in Fig. 8 stand.

The above results show that for this cluster, in subjects of the positive IAT effect

group, the average amplitudes of the incongruent block are significantly more positive than

those of the congruent block. In the other groups, the mean amplitudes in the two types of

blocks tend to be similar. In the incongruent block, the average amplitudes of the positive

group are more positive than those of the other groups.



3.4.3 Cluster Analysis Summary

In summary, we found the following:

1. In the left parietal region between 132 and 227ms, the mean amplitudes of the

incongruent block of the positive IAT score group are more negative than those

of the congruent block of this same group and those of the incongruent blocks of

the other two groups. In Figure 10, it can be seen that the topographic map of

the incongruent block of the positive score group at 190ms (Subfigure 10d) is a

darker blue in this region, concerning the topographic maps of the other mentioned

block×group interactions, which denotes its greater negativity.

2. In the right frontal region between 137 and 254ms, the mean amplitudes of the

incongruent block of the positive IAT score group are more positive than those of

the congruent block of this same group and those of the incongruent blocks of the

other two groups. On the other hand, in the midline frontal region between 180 and

242ms, the mean amplitudes of the incongruent block of the positive IAT score group

are more positive than those of the congruent block of this same group and those

of the incongruent blocks of the other two groups. In Figure 10, it can be seen that

the topographic map of the incongruent block of the positive score group at 190ms

(Subfigure 10d) is a darker reed in these regions, concerning the topographic maps of

the other mentioned block*group interactions, which denotes its greater positivity.

3. In the right prefrontal and frontal regions between 281 and 340ms, the mean am-

plitudes of the incongruent block of the positive IAT score group are more positive

than those of the congruent block of this same group and those of the incongruent

blocks of the other two groups. In Figure 10, it can be seen that the topographic map

of the incongruent block of the positive score group at 290ms (Subfigure 10d) is a

darker reed in these regions, concerning the topographic maps of the other mentioned

block×group interactions, which denotes its greater positivity.

4. In the right fronto-central region between 340 and 461ms, the mean amplitudes of

the incongruent block of the positive IAT score group are more positive than those

of the congruent block of this same group and those of the incongruent blocks of

the other two groups. In Figure 10, it can be seen that the topographic map of the

incongruent block of the positive score group at 400ms (Subfigure 10d) is a darker red

in this region, concerning the topographic maps of the other mentioned block×group
interactions, which denotes its greater positivity.



5. In the left central parietal region between 383 and 430ms, the mean amplitudes of

the incongruent block of the neutral IAT score group are more negative than those

of the congruent block of this same group and those of the incongruent blocks of

the other two groups. In Figure 10, it can be seen that the topographic map of the

incongruent block of the neutral score group at 400ms (Subfigure 10e) is a darker blue

in this region, concerning the topographic maps of the other mentioned block×group
interactions, which denotes its greater negativity.

6. In the central parietal region between 457 and 539ms, the mean amplitudes of the

incongruent block of the neutral IAT score group are more negative than those of

the congruent block of this same group. In contrast, the mean amplitudes of the

incongruent block of the positive IAT score group are more positive than those of the

congruent block of this same group. This effect can be seen in Figure 10 by comparing

the topographic maps of these groups at 500ms (Subfigure 10e versus Subfigure 10b,

and Subfigure 10d versus Subfigure 10a).

7. In the fronto-central region between 559 and 797ms, the mean amplitudes of the

incongruent block of the positive IAT score group are more positive than those of

the congruent block of this same group and those of the incongruent blocks of the

other two groups. In Figure 10, it can be seen that the topographic map of the

incongruent block of the positive score group at 680ms (Subfigure 10d) is a darker red

in this region, concerning the topographic maps of the other mentioned block×group
interactions, which denotes its greater positivity.

The statistical analyses that support these statements are presented below.

Cluster 1: There is decisive evidence (BF = 132,827) that the mean amplitudes of the

incongruent block of the positive IAT effect group (CrI = [−1,543,−0,387]) are more

negative than the mean amplitudes of the congruent block of the same group (CrI =

[−0,682, 0,232]). There is decisive evidence (BF = 478,679) that the mean amplitudes of

the differences among congruent and incongruent blocks of the positive IAT effect group

(CrI = [0,264, 0,819]) are more positive than the mean amplitudes of the differences among

congruent and incongruent blocks of the neutral group (CrI = [−0,629,−0,113]). There is
strong evidence (BF = 9,361) that the mean amplitudes of the differences among congruent

and incongruent blocks of the positive IAT effect group (CrI = [0,264, 0,819]) are more

positive than the mean amplitudes of the differences among the congruent and incongruent

blocks of the negative group (CrI = [−0,474, 0,118]).
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(a) Topographic map of congruent block, positive IAT score group
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(b) Topographic map of congruent block, neutral IAT score group
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(c) Topographic map of congruent block, negative IAT score group

190 ms 290 ms 400 ms 500 ms 680 ms

-2.4
-1.6
-0.8
0.0
0.8
1.6
2.4

µV

(d) Topographic map of incongruent block, positive IAT score group
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(e) Topographic map of incongruent block, neutral IAT score group
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(f) Topographic map of incongruent block, negative IAT score group

Figura 10

Topographic maps of clusters found with the proposed methodology. According to clusters

found, these are the topographic maps of each block×group’s interaction at selected times.



Cluster 2: There is decisive evidence (BF = 882,991) that the mean amplitudes of the

incongruent block of the positive IAT effect group (CrI = [0,688, 1,421]) are more positive

than the mean amplitudes of the congruent block of the same group (CrI = [0,002, 0,569]).

There is strong evidence (BF = 20,128) that the mean amplitudes of the incongruent block

of the positive IAT effect group (CrI = [0,688, 1,421]) are more positive than the mean

amplitudes of the incongruent block of the neutral group (CrI = [0,117, 0,669]). There

is moderate evidence (BF = 9,448) that the mean amplitudes of the incongruent block

of the positive group (CrI = [0,688, 1,421]) are more positive than the mean amplitudes

of the incongruent block of the negative group (CrI = [−0,016, 0,719]). There is strong

evidence (BF = 53,400) that the mean amplitudes of the differences among congruent and

incongruent blocks of the positive IAT effect group (CrI = [−1,101,−0,437]) are more

negative than the mean amplitudes of the differences among congruent and incongruent

blocks of the neutral group (CrI = [−0,273, 0,295]). There is strong evidence (BF =

19,832) that the mean amplitudes of the differences among the congruent and incongruent

blocks of the positive IAT effect group (CrI = [−1,101,−0,437]) are more negative than

the mean amplitudes of the differences among the congruent and incongruent blocks of the

negative group (CrI = [−0,341, 0,602]).

Cluster 3: There is strong evidence (BF = 40,607) that the mean amplitudes of the

incongruent block of the positive IAT effect group (CrI = [0,647, 1,472]) are more positive

than the mean amplitudes of the congruent block of the same group (CrI = [0,065, 0,708]).

There is strong evidence (BF = 23,345) that the mean amplitudes of the incongruent block

of the positive IAT effect group (CrI = [0,647, 1,472]) are more positive than the mean

amplitudes of the incongruent block of the neutral group (CrI = [0,024, 0,612]). There

is strong evidence (BF = 44,324) that the mean amplitudes of the differences among the

congruent and incongruent blocks of the positive IAT effect group (CrI = [−0,772,−0,177])
are more negative than the mean amplitudes of the differences among the congruent and

incongruent blocks of the neutral group (CrI = [−0,057, 0,474]). There is strong evidence

(BF = 14,898) that the mean amplitudes of the differences among the congruent and

incongruent blocks of the positive IAT effect group (CrI = [−0,772,−0,177]) are more

negative than the mean amplitudes of the differences among the congruent and incongruent

blocks of the negative group (CrI = [−0,049, 0,580]).

Cluster 4: There is moderate evidence (BF = 9,768) that the mean amplitudes of

the incongruent block of the positive IAT effect group (CrI = [0,359, 1,337]) are more

positive than the mean amplitudes of the congruent block of the same group (CrI =

[−0,345, 0,340]). There is moderate evidence (BF = 3,546) that the mean amplitudes of



the incongruent block of the positive IAT effect group (CrI = [0,359, 1,337]) are mo-

re positive than the mean amplitudes of the incongruent block of the negative group

(CrI = [−0,212, 0,422]). There is moderate evidence (BF = 6,088) that the mean am-

plitudes of the differences among the congruent and incongruent blocks of the positive

IAT effect group (CrI = [−1,383,−0,317]) are more negative than the mean amplitu-

des of the differences among the congruent and incongruent blocks of the neutral group

(CrI = [−0,270, 0,277]). There is strong evidence (BF = 13,546) that the mean am-

plitudes of the differences among the congruent and incongruent blocks of the positive

IAT effect group (CrI = [−1,383,−0,317]) are more negative than the mean amplitu-

des of the differences among the congruent and incongruent blocks of the negative group

(CrI = [−0,268, 0,502]).

Cluster 5: There is moderate evidence (BF = 26,580) that the mean amplitudes of the

incongruent block of the positive IAT effect group (CrI = [0,778, 1,743]) are more positive

than the mean amplitudes of the congruent block of the same group (CrI = [0,253, 0,983]).

There is moderate evidence (BF = 6,606) that the mean amplitudes of the incongruent

block of the positive IAT effect group (CrI = [0,778, 1,743]) are more positive than the

mean amplitudes of the incongruent block of the neutral group (CrI = [0,454, 1,089]).

There is moderate evidence (BF = 4,774) that the mean amplitudes of the incongruent

block of the positive IAT effect group (CrI = [0,778, 1,743]) are more positive than the

mean amplitudes of the incongruent block of the negative group (CrI = [0,077, 0,983]).

There is strong evidence (BF = 18,514) that the mean amplitudes of the differences

among the congruent and incongruent blocks of the positive IAT effect group (CrI =

[−1,113,−0,173]) are more negative than the mean amplitudes of the differences among

congruent and incongruent blocks of the neutral group (CrI = [−0,293, 0,249]). There
is strong evidence (BF = 25,116) that the mean amplitudes of the differences among the

congruent and incongruent blocks of the positive IAT effect group (CrI = [−1,113,−0,173])
are more negative than the mean amplitudes of the differences among the congruent and

incongruent blocks of the negative group (CrI = [−0,177, 0,889]).

Cluster 6: There is moderate evidence (BF = 24,732) that the mean amplitudes of

the incongruent block of the positive IAT effect group (CrI = [−0,163, 0,757]) are more

positive than the mean amplitudes of the congruent block of the same group (CrI =

[−0,792, 0,006]). There is moderate evidence (BF = 3,568) that the mean amplitudes of

the incongruent block of the positive IAT effect group (CrI = [−0,163, 0,757]) are more

positive than the mean amplitudes of the incongruent block of the neutral group (CrI =

[−0,663, 0,042]). There is strong evidence (BF = 24,770) that the mean amplitudes of the



differences among the congruent and incongruent blocks of the positive IAT effect group

(CrI = [−1,127,−0,253]) are more negative than the mean amplitudes of the differences

among the congruent and incongruent blocks of the neutral group (CrI = [−0,198, 0,533]).

Cluster 7: There is moderate evidence (BF = 3,543) that the mean amplitudes of

the incongruent block of the positive IAT effect group (CrI = [−0,615, 0,492]) are

more positive than the mean amplitudes of the congruent block of the same group

(CrI = [−1,051,−0,087]). There is moderate evidence (BF = 3,231) that the mean am-

plitudes of the incongruent block of the neutral IAT effect group (CrI = [−1,249,−0,502])
are more negative than the mean amplitudes of the congruent block of the same group

(CrI = [−0,870,−0,137]). There is moderate evidence (BF = 7,694) that the mean am-

plitudes of the incongruent block of the neutral IAT effect group (CrI = [−1,249,−0,502])
are more negative than the mean amplitudes of the congruent block of the positive group

(CrI = [−0,615, 0,492]). There is moderate evidence (BF = 8,084)that the mean ampli-

tudes of the incongruent block of the neutral IAT effect group (CrI = [−1,249,−0,502])
are more negative than the mean amplitudes of the congruent block of the positive group

(CrI = [−0,508, 0,251]). There is moderate evidence (BF = 3,568) that the mean ampli-

tudes of the incongruent block of the positive IAT effect group (CrI = [−0,163, 0,757])
are more positive than the mean amplitudes of the incongruent block of the neutral group

(CrI = [−0,663, 0,042]). There is strong evidence ((BF = 36,058) that the mean am-

plitudes of the differences among the congruent and incongruent blocks of the positive

IAT effect group (CrI = [−0,963,−0,051]) are more positive than the mean amplitu-

des of the differences among the congruent and incongruent blocks of the neutral group

(CrI = [0,037, 0,706]).

Cluster 8: There is strong evidence (BF = 15,234) that the mean amplitudes of the

differences among the congruent and incongruent blocks of the positive IAT effect group

(CrI = [−1,048, 0,013]) are more negative than the mean amplitudes of the differences

among the congruent and incongruent blocks of the neutral group (CrI = [−0,001, 0,639]).

Cluster 9: There is decisive evidence (BF = 282,879) that the mean amplitudes of

the incongruent block of the positive IAT effect group (CrI = [0,245, 1,121]) are more

positive than the mean amplitudes of the congruent block of the same group (CrI =

[−0,700, 0,021]). There is moderate evidence (BF = 3,274) that the mean amplitudes of

the incongruent block of the positive group (CrI = [0,245, 1,121]) are more positive than

the mean amplitudes of the incongruent block of the neutral group (CrI = [−0,347, 0,460]).
There is moderate evidence (BF = 4,932) that the mean amplitudes of the incongruent



block of the positive group (CrI = [0,245, 1,121]) are more positive than the mean am-

plitudes of the incongruent block of the negative group (CrI = [−0,559, 0,411]). There is

decisive evidence (BF = 192,0) that the mean amplitudes of the differences among the con-

gruent and incongruent blocks of the positive IAT effect group (CrI = [−1,511,−0,533])
are more negative than the mean amplitudes of the differences among the congruent and

incongruent blocks of the neutral group (CrI = [−0,286, 0,288]). There is strong evidence

(BF = 67,82) that the mean amplitudes of the differences among the congruent and incon-

gruent blocks of the positive IAT effect group (CrI = [−1,511,−0,533]) are more negative

than the mean amplitudes of the differences among the congruent and incongruent blocks

of the negative group (CrI = [−0,213, 0,468]).

Accounting for all clusters, we found the following effects: (i) In a negative polarity

segment in the left occipital parietal region between 133 and 227ms. (ii) In a segment of

positive polarity in the right frontal region between 137 and 254ms, in the frontal central

region between 180 and 242ms, and in the right frontal and prefrontal regions between

281 and 340ms. (iii) In a segment of negative polarity in the prefrontal region between 340

and 461ms, in the right frontal region between 379 and 426ms, and in the central parietal

region between 383 and 430ms. (iv) In a segment of positive polarity in the central parietal

region between 457 and 539ms, and in the frontal central region between 559 and 797ms.

Some of these effects may be part of the same ERP component, but determining that is

beyond the scope of this work.

3.5 Discussion

With the proposed methodology, we found effects by levels of prejudice in the

parietal-occipital region between 133 and 227ms in a segment of negative polarity (cluster

1), consistent with findings of Chen et al. (2018) in the N2 component. In contrast, this

component did not have any effects with the other methods. Concerning the P3 component,

we found effects in the interaction block type × IAT effect group in the frontal, central

region (clusters 4 and 5), consistent with the results of Healy et al. (2015) and Portengen

et al. (2022). We also found an effect with the traditional methodology (time window 2)

consistent with one result of the new methodology (cluster 5). We did not find effects with

the massive univariate methodology.

About the N400 component, we found effects in the interaction block type × IAT

effect group in the frontal and prefrontal regions (clusters 5 and 6), which is consistent



with the results of Williams and Themanson (2011), and in the central parietal region

(clusters 7), which is consistent with findings in Healy et al. (2015). We also found an effect

with the methodology based on massive univariate analyses (cluster 1) and the traditional

methodology in the N400 component (time window 3). Concerning the LPP component,

we found effects in the interaction block type × IAT effect group in the central parietal

region (clusters 8 and 9), consistent with Williams and Themanson (2011) and Forbes et al.

(2012). We also found effects in the LPP component, both with the traditional methodology

(time window 4) and the methodology based on massive univariate analyses (cluster 2).

Finally, we found that in the frontal, central, and parietal regions, there are effects

in the interaction block type × IAT effect group in a positive polarity segment that could

be assimilated with a P3 component (clusters 2 and 3). Other authors could not find it

in their ERP-IAT studies, but the effects of this component have been reported in other

social cognition tasks (Amodio and Cikara, 2021; Portengen et al., 2022). We also found

an effect in this component with the traditional methodology (time window). However,

because the effect is more substantial on other electrodes, it is not well observed on the

pre-selected ones.

Regarding the novelty of our methodology, to our knowledge, only one study has

combined massive univariate methods and Bayesian inference methods (Schindler et al.,

2018) to test the effects on ERP components. Our proposal differs from theirs, as we

modify the parameters of the massive univariate analysis to decrease Type II errors and

find additional potential effects verified by a Bayesian analysis.

Our thesis’s proposed methodology outperformed the traditional one based on an

a priori selection of ERP components. Additionally, it allowed us to find effects in ERP

components other than the pre-selected ones. Moreover, the novel methodology provides

higher precision in the location of ERP components because it identifies the groups of

electrodes and time windows with the most potent effects. For example, in the case of the

P3 components, it was possible to establish that the effects are more substantial in the left

frontal and parietal regions and not in the central frontal region. It could be argued that

in the traditional methodology, many regions of interest covering a large region of interest

could be pre-selected, but this would add a factor to the analysis that would increase the

risk of increasing type I or type II errors, depending on the strategy adopted to deal with the

problem of multiple comparisons, as explained by Luck and Gaspelin (2017). As expected,

this strategy could not accurately locate the effect obtained with the new methodology.



The proposed methodology outperformed the data-driven one based on a massive

univariate analysis, where only three effects were identified, suggesting that the clustering

threshold (p < ,05) is too restrictive. However, this threshold could not be extended in

the univariate analysis because it would go against the frequentist approach on which it

is based, in which this value is the criterion for accepting or rejecting an effect. With

the Bayesian approach proposed by us, we can extend this threshold because we are only

using it to establish an a priori distribution of the parameters of our hypotheses. Thus,

the threshold of 0,5 that we use is interpreted as meaning that the probability that an

effect exists in that cluster (alternative hypothesis) is at least equal to the probability that

it does not exist (null hypothesis). Therefore, the data will tell which hypothesis is more

probable.

These results suggest that our novel methodology has a higher sensitivity than

traditional ones and that it is possible to find more true effects with the same data without

paying the cost of losing specificity because the Bayesian analysis filters out non-existent

effects, as evidenced by the results of several clusters.

The following chapter will cover a different method for analyzing EEG signals,

employing the frequency domain. ERP analysis has provided information on the activation

patterns of particular brain regions during specific time intervals. Subsequent analyses will

provide information on the reconfiguration of the participants’brain networks in response

to the tasks they are performing.



4 A Novel Methodology to Perform EEG-based Functional Connectivity

Analyses

This chapter presents an EEG-based functional connectivity analysis to characterize

prejudice. For this purpose, we compared seven topology measures from brain networks in

six different frequency bands and two different experimental conditions. We used Bayesian

inference methods for statistical analyses and found biases toward victims from the same

victims and biases of civilians towards ex-combatants. For the connectivity measures, we

found differences in two different frequency bands. Finally, we found a slight correlation

between the behavioral score to measure prejudice and two measures of the theta-band

network.

4.1 Literature Review

Prejudice is an individual attitude towards a group and its members that creates

or maintains hierarchical status relationships between groups and leads to discriminatory

judgments and actions. Research on the neurological basis of prejudice has elucidated how

prejudice is formed, represented in the mind, expressed behaviorally, and reduced (Rösler

and Amodio, 2022).

Studies with EEG-ERP and fMRI have shown that social identity is quickly recogni-

zed in the brain; thus, in just 100 ms (N100), a person has already categorized another based

on race, ethnicity, gender, or even arbitrary social categories (Ito and Urland, 2003; Rösler

and Amodio, 2022). After this comes a top-down processing of social identity between 180

and 200 ms (P200), which depends on the person’s explicit and implicit goal-directed goals

(Amodio and Cikara, 2021; Volpert-Esmond and Bartholow, 2019).

Three regions were observed to be involved in these two processes: the orbitofron-

tal cortex (OFC), the fusiform gyrus (FG), and the anterior temporal lobe (ATL). The

FG is involved in the visual processing of faces, and the ATL retrieves social-conceptual

associations related to perceived characteristics such as social categories (e.g., stereotypes,

person knowledge). The OFC may then use such social-conceptual information to imple-

ment top-down visual predictions that modulate FG representations of faces in line with

those predictions. This network supports rapid and flexible integration of bottom-up facial

cues and higher-order social cognitive processes (Freeman and Johnson, 2016).



Depending on the task, activations have been observed around 260 ms originating in

the dorsal anterior cingulate cortex (dACC), thought to be related to conflict and response

selection processes (Amodio and Cikara, 2021) and in the medial prefrontal cortex (MPFC),

a region related to mentalization (Molenberghs and Louis, 2018). Activations have also

been observed around 450 to 600 ms (P300) in sorting behaviors involving rapid response

evaluation (Molenberghs and Louis, 2018), in a vast area involving the anterior cingulate

cortex (ACC), a region usually related to conflict monitoring, and the prefrontal cortex

(PFC), which in this case is associated with regulative control (Ito and Bartholow, 2009).

Other studies of prejudice other than race have shown that other regions, such as

the amygdala (Molenberghs and Louis, 2018), striatum, and insula (Amodio et al., 2014),

are also involved in prejudice. It has also been found that the more “real” the prejudice

(e.g., prejudice based on ethnicity, nationality, or politics), the broader the brain areas

involved (Saarinen et al., 2021). From all this, it concluded that there are two groups of

brain regions involved in prejudice: those where it originates, which include the fusiform

gyrus, amygdala, ATL, striatum, and insula, and those where it is regulated or attempted

to be reduced, which include the ACC and PFC (Rösler and Amodio, 2022).

Although functional connectivity based on EEG has already been used in studies of

mental illness (Stam et al., 2014) – such as epilepsy (van Diessen et al., 2016), Alzheimer’s

disease (Cui et al., 2018), depression (Bankwitz et al., 2023), and bipolar disorder (Zhang

et al., 2022) – and emotional processing (Cao et al., 2020), to our knowledge, it has not been

used in the study of social behaviors. This technique could provide additional information

on how these brain regions are reconfigured in prejudice events.

Previous studies using EEG-based functional connectivity suggest that training

in social cognition can improve emotional recognition and modify brain connectivity

(Quintero-Zea et al., 2019; Valencia et al., 2020; Trujillo et al., 2017). Using this tech-

nique to characterize prejudice among actors in the Colombian armed conflict is expected

to provide valuable information that may help us design more specific psychosocial inter-

vention strategies to mitigate prejudice.

4.2 Methodology

For statistical analyses, the IAT test scores and network measures were compared

among the groups described in the subsection 2.1.1.



The spectrum of the signals was calculated using the multitaper method. We use the

Weighted Phase Lag Index (Vinck et al., 2011) to build the connectivity matrix. We built

connectivity matrices for each subject’s ERP and IAT block (congruent and incongruent)

on the following frequency bands: Delta (0 - 4 Hz), Theta (4 - 7 Hz), Alpha (7 - 13 Hz),

Beta1 (13 - 20 Hz), Beta2 (20 - 30 Hz), and Gamma (30 - 40 Hz). Estimating the spectrum

and constructing the connectivity matrices were done in the MNE package V. 0.23 (Gramfort,

2013).

Once the connectivity matrices were obtained, we extracted the MST using the

Kruskal method (Kruskal, 1956). Then, for each subject per block and frequency band, the

following global network measures were calculated: leaf fraction, diameter, mean eccentri-

city, maximum degree, maximum betweenness centrality, and tree hierarchy. The extraction

of MST and the calculation of network measures were done with the NetworkX package V.

2.7 (Hagberg et al., 2008).

With the IAT task scores, ANOVA and post hoc Bayesian inference t-tests were

performed to test whether there were statistically significant differences between groups. On

the other hand, the following analyses were performed to test whether there are differences

among groups in the network measures.

• Mixed ANOVA by Bayesian inference taking as a within-subjects factor the block type

(congruent or incongruent) and as a between-subjects factor the network measure. As a

priori parameter, we will consider a small effect size (Cohen’s d = 0,25).

• One-way ANOVA, taking the difference between the congruent and incongruent network

measures block as a dependent variable. As a priori parameter, we considered a small

effect size (Cohen’s d = 0,25).

• t–Post hoc analysis for those factors or interactions considered relevant in the models,

adjusting the priors according to the Westfall et al. (1997)’procedure to correct for

multiple comparisons.

Finally, we performed correlation analyses between IAT scores and network mea-

sures in which effects were found to determine whether there is a relationship between

behavioral and electrophysiological outcomes.



4.3 Results

4.3.1 Behavioral Results

For the IAT D-score, the best-fitting model explaining the observed mean amplitudes

includes measures of the actors’group (BFM = 2,466, BFnullmodel = 0,405). There is strong

evidence in favor of the hypothesis that the IAT D-scores of the victims tend to be more

positive than those of civilians (BF = 10,838) and ex-guerrillas (BF = 8,977). Table 12

displays the descriptive statistics and 95% credible intervals for each actor group’s IAT

D-score posterior.

Tabla 12

Descriptives - IAT score

95%CrI

Actors’group Mean SD N Lower Upper

civilians −0,121 0,355 15 −0,317 0,076

ex-guerrillas −0,031 0,233 22 −0,135 0,072

ex-paramilitaries 0,049 0,381 31 −0,091 0,189

victims 0,185 0,252 23 0,076 0,294

4.3.2 Functional Connectivity Results

Statistically significant differences were found in the theta and beta2 bands. No

effect was found in any other band. The effects found are presented below.

Theta band (4 - 7 Hz)

We found significant differences in mean diameters and eccentricity between con-

gruent and incongruent blocks. For diameter, the model that best explains the data is

the one that includes the actor group as a factor (BF = 11,663), and the post hoc

analyses showed that there is moderate evidence in favor of the hypothesis that vic-

tims’differences are more positive than the ex-guerrillas’differences (BF = 5,020) and

civilians’differences (BF = 3,703). We also found moderate evidence that the differences

of ex-paramilitaries are more positive than the differences of ex-guerrillas (BF = 6.854)



and the differences of civilians (BF = 4,847). Finally, we found moderate evidence that

the ex-paramilitariesánd victims’differences are similar (BF = 0,285) and that the civi-

liansánd ex-guerrillas’differences are similar (BF = 0,323). The pointplot (Figure 11(a))

shows that for victims and ex-paramilitaries, the mean diameters of the congruent block

are larger than the ones of the incongruent block. In contrast, for civilians and ex-guerrillas,

the mean diameters of the congruent block are smaller than those of the incongruent one.

For eccentricity, the model that best explains the data is the one that includes

the actor group as a factor (BF = 3,038). Post hoc analyses showed moderate evidence

in favor of the hypothesis that ex-paramilitaries’differences are more positive than ex-

guerrilla ones (BF = 3,255). We also found moderate evidence that the differences between

ex-paramilitaries and victims are similar (BF = 0,292) and that the differences between

civilians and ex-guerrillas are similar (BF = 0,329). The interaction diagram (Figure 11(b))

shows that for victims and ex-paramilitaries, the mean diameters of the congruent block

are larger than those of the incongruent block. In contrast, for civilians and ex-guerrillas,

the mean diameters of the congruent block are smaller than those of the incongruent one.

Beta2 band (20 - 30 Hz)

We observed effects in the mean diameter and mean eccentricity (and their differen-

ces) between congruent and incongruent blocks. For diameter, the model that best explains

the data is the one that includes the actor group as a factor (BF = 5,230), and the post

hoc analyses showed that there is moderate evidence in favor of the hypothesis that ex-

paramilitary differences are more negative than the ex-guerrilla differences (BF = 7,849)

and victims’differences (BF = 6,427). Additionally, we found moderate evidence that the

differences between the ex-guerrillas and victims are similar (BF = 0,295).

Concerning the mean diameter in the incongruent block, the model that best ex-

plains the data is the one that includes the actor group as a factor (BF = 48,582), and

the post hoc analyses showed that there is strong evidence in favor of the hypothesis that

ex-paramilitary diameters are more positive than ex-guerrillas’diameters (BF = 29,619)

and victims’diameters (BF = 44,733). Additionally, we found moderate evidence that the

diameters of the ex-guerrillas and victims are similar (BF = 0,322).

The pointplot (Figure 12(a)) shows that for victims and former guerrillas, the mean

diameters of the congruent block are bigger than the mean diameters of the incongruent

one. In contrast, for civilians and ex-paramilitaries, the mean diameters of the congruent

block are smaller. Regarding eccentricity, the model that best explains the data is the one
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Figura 11

Pointplots of differences between (a) diameter and (b) eccentricity means of congruent

and incongruent blocks in the theta band. The plots include 95% credible intervals. For

victims and ex-paramilitaries, the mean diameters and eccentricities of the congruent

block are larger. As a result, the differences tend to be positive. In contrast, the differences

tend to be negative for civilians and ex-guerrillas.
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Figura 12

Pointplots of (a) differences between diameter means of congruent and incongruent

blocks, and (b) differences between eccentricity means of congruent and incongruent blocks

in beta2 band. The plots include 95%CrI. For victims and ex-guerrillas, the mean

diameters and eccentricities of the congruent block are larger. As a result, the differences

tend to be positive. Conversely, for ex-paramilitaries, the differences tend to be negative.

Finally, for civilians, the differences tend to be zero.



that includes the actor group as a factor (BF = 3,455), and post hoc analyses showed that

there is moderate evidence in favor of the hypothesis that the differences of ex-paramilitaries

are more positive than the differences of ex-guerrillas (BF = 7,001) and the differences

of victims (BF = 3,894). We also found moderate evidence that the differences between

ex-guerrillas and victims are similar (BF = 0,297).

For the mean eccentricity in the incongruent block, it was found that the model that

best explains the data is the one that includes the actor group as a factor (BF = 16,856),

and post hoc analyses showed that there is strong evidence in favor of the hypothesis

that ex-paramilitarieséccentricities are more positive than the ones of ex-guerrillas (BF =

10,099) and victims (BF = 23,325). Additionally, we found moderate evidence that the

diameters of the ex-guerrillas and victims are similar (BF = 0,334).

The interaction plot (Figure 12(b)) shows that for victims and ex-guerrillas, the

mean eccentricities of the congruent block are larger than those of the incongruent one. In

contrast, for civilians and ex-paramilitaries, the mean eccentricities of the congruent block

are smaller than the incongruent block.

4.3.3 Comparison Between Behavioral and Connectivity Analyses

The correlation analysis between the functional connectivity variables and the IAT

test score, shown in Table 13, did not yield promising results. The only variable that shows

a weak relationship with the IAT score is the difference in mean diameters between the

congruent and incongruent blocks in the theta band.

4.4 Discussion

This chapter outlines our proposed EEG-based functional connectivity analysis ap-

proach at the sensor level. Our methodology incorporates REST for EEG re-referencing, mi-

nimizing connectivity pattern distortion compared to conventional methods (Chella et al.,

2016; Zhang et al., 2020). We also utilize ML-based techniques for detecting noisy chan-

nels and artifacts, offering superior reliability over visual or statistical methods (Bigdely-

Shamlo et al., 2015; Jas et al., 2017). Again, our approach involves spectrum estimation

using multitaper for enhanced frequency resolution (Babadi and Brown, 2014), synchro-

nization measurement via WPLI for greater robustness against noise and biases (Vinck



Tabla 13

Bayesian Pearson correlations

Behavioral

variable

Connectivity

variables

Pearson’s r BF10

IAT score

- Diameter differences

in theta band

0,274 3,928

- Eccentricity differences

in theta band

0,251 2,240

- Diameter differences

in beta2 band

0,084 0,179

- Eccentricity differences

in beta2 band

0,098 0,200

- Diameter incongruent

block in beta2 band

−0,144 0,327

- Eccentricity incongruent

block in beta2 band

−0,173 0,495

et al., 2011; Bastos and Schoffelen, 2016), and connectivity matrix refinement using MST

to overcome the inconsistencies of thresholding methods (Garrison et al., 2015; Zakharov

et al., 2021). Furthermore, between-group comparisons were made using Bayesian Inference

hypothesis testing methods, as with ERP analyses, which are more reliable than NHST

(Keysers et al., 2020; Wagenmakers et al., 2016). Because of the combination of all these

elements, we consider that the methodology used represents a significant advance over the

methodologies traditionally used for these analyses.

We used this methodology to characterize an IAT synchronized with EEG and

designed to measure prejudice among former actors of the Colombian armed conflict. To

our knowledge, this is the first study to use this technique to characterize neural activity

related to prejudice. It could provide relevant information about how different brain regions

are synchronized in time and phase domains when social bias events occur and whether

different patterns of neural rhythms can be observed in them.

The behavioral results indicate that civilians are prone to be more prejudiced toward

combatants than victims. Ex-guerrillas and ex-paramilitaries appear to exhibit no prejudice



toward victims or themselves, and victims are more inclined to be prejudiced toward their

group. Although this seems to go against common sense, many reported cases of prejudice

towards the same group exist. For example, March and Graham (2014) showed in a study

that Hispanic women are biased toward their group concerning the white women’s group;

Newheiser et al. (2014), and Gedeon et al. (2021) have reported cases in which children of

low economic status show bias against their group in favor of children of high economic

status.

In the theta band, the mean diameter and eccentricity of the congruent block of

victims and ex-paramilitaries tended to be greater than those of the incongruent block.

Greater diameters and eccentricities are indicative of a more efficient network in transmit-

ting information (van Dellen et al., 2018), given that the MST tends to be more centralized

(star-like shape) and less linear-like (Stam et al., 2014; Tewarie et al., 2015). Theta rhythms

have been associated with executive function and cognitive control (Cavanagh and Frank,

2014). These rhythms have been detected to increase when a surprising or unpleasant

stimulus is received (Smit et al., 2023).

Considering that the congruent block of IAT associates combatants with positive

valence stimuli and victims with negative valence stimuli, and the incongruent block does

the opposite (a more detailed explanation could be seen in Section 2.1.2 and (Baez et al.,

2020)), a reasonable explanation for what has been observed is that for ex-paramilitaries

and victims, the configuration of the incongruent block task is more opposed to their

preconceptions than the configuration of the congruent block task, which would reflect a

prejudice towards victims. On the other hand, given that the diameter and eccentricity

of the congruent block of civilians and ex-guerrillas tend to be smaller than those of the

incongruent block, it could be inferred that they make a greater effort to respond in the

congruent block than the incongruent block and that this reflects a prejudice towards

combatants.

In the beta2 band, the mean diameter and eccentricity of the congruent block of

victims and ex-guerrillas tended to be larger than in the incongruent block, which, follo-

wing the same reasoning of the previous paragraph would indicate that for these groups,

the networks of the congruent block are more efficient than those of the incongruent one.

Böttcher et al. (2023) state that beta rhythm is mainly associated with sensorimotor pro-

cessing. Beste et al. (2023) found that the amplitude of beta oscillations in sensorimo-

tor areas decreases just before and during movement execution. Conversely, an increase

in beta amplitude above baseline levels is observed after movement execution, known as



post-movement event-related synchronization –ERS. Beta oscillations tend to vary during

movement. Generally, movements decrease beta activity, while successful movement cance-

llation typically increases beta activity. Therefore, beta ERS is believed to reflect an active

inhibition of the motor cortex by somatosensory feedback. For victims and ex-guerrillas,

lower efficiency in the incongruent block in this band might reflect greater inhibition to

respond correctly to the association among combatants and negative valence stimuli, or

victims and positive valence stimuli. In contrast, the lower efficiency in the congruent block

to the incongruent block observed in ex-paramilitaries might reflect greater inhibition to

respond to the association among ex-combatants and positive valence stimuli, or victims

and negative valence stimuli.

In resume:

• Victims generate more prejudice toward themselves and try to regulate this prejudice

more, which should cause them to take longer to answer the incongruent block trials than

congruent block trials. These effects would lead to positive D-scores, which is consistent

with the IAT test results (CrI = [0,076, 0,294]).

• Ex-paramilitaries generate more prejudice toward victims. However, they tend to regu-

late the prejudice toward combatants more, which would balance out the response times

in the congruent and incongruent block trials. These effects would lead to D-scores close

to zero, which is consistent with the IAT test results (CrI = [−0,091, 0,189]).

• Ex-guerrillas generate more prejudice towards combatants but tend to regulate the pre-

judice towards victims. Again, the net result is that the response times in the two

blocks are similar, which would lead to IAT scores close to 0, which is indeed the case

(CrI = [−0,135, 0,072]).

• Civilians generate more prejudice towards combatants and similarly regulate prejudice

towards victims and combatants. These effects would lead to longer response times in con-

gruent block trials than in incongruent block trials, which should produce negative IAT

scores. Again, the test result is consistent with this reasoning (CrI = [−0,317, 0,076]).

Given that we have previously conducted socio-cognitive interventions with former

actors of the Colombian armed conflict, designed to improve emotional processing (Valencia

et al., 2020) and reduce aggressiveness (Trujillo et al., 2017), the results of this research

are valuable input for customizing and improving these strategies, always aiming to reduce

prejudice and achieve reconciliation between former enemies (Ugarriza et al., 2019).



In the following chapter, we will use the electrophysiological measures obtained

through EEG-based functional connectivity, explained in this chapter, along with a set of

demographic and behavioral variables, to characterize the groups of former actors of the

Colombian armed conflict using an interpretable ML model.



5 Interpretable Machine Learning Model to Characterize Colombian Armed

Conflict Actors

In this chapter, we present an interpretable ML (iML) model to characterize our par-

ticipants. For this purpose, we fit and evaluated nine classification models and selected one

using a nested cross-validation process. We incorporated feature selection, preprocessing,

and hyperparameter tuning procedures in the inner loop. Then, we used SHAP to perform

global (at the group level) and local (at the individual participant level) interpretability

analyses. We found that five features out of 128 evaluated are sufficient to discriminate

between groups and determine whether a participant should be reclassified.

5.1 Literature Review

In recent years, ML-based methods in psychology have become very popular. By

performing a simple search in Scopus, it can be found that 2823 scientific papers have been

published between 2019 and October 2023, with a growing trend covering practically all

subfields of psychology (see Figure 13).

Typically, psychology researchers are interested in more than just making predic-

tions about a dependent variable. They usually want to know which predictor variables

influence the dependent variable and how they interact with each other (Henninger et al.,

2023). Although the ML models with the best predictive performance are not directly in-

terpretable, a set of techniques allows one to add a layer of interpretability. Despite this,

iML research in psychology remains rare and in the last five years, only seven publications

related to this topic have been published in Scopus. One of these is a tutorial explaining

how to use iML in psychology (Pargent et al., 2023), and another points out the opportu-

nities that iML models have in psychology, but also the risks of misinterpreting the results

due to poor data preparation (Henninger et al., 2023). Two more investigations use iML

models to study amnesia: Mart́ınez-Florez et al. (2021) used ensemble and SHAP models

to find the most important features to distinguish between healthy cognition and amnestic

Mild Cognitive Impairment (aMCI), and Kang et al. (2021) used iML models (unknown

which ones) to find predictors of Amyloid-β (Aβ) assessment in aMCI. On the other hand,

Kim et al. (2023) used ensemble models and the permutation importance method that

comes with implementing these to find predictors of suicide in South Korean women, and

Lu et al. (2023) used ensemble models and SHAP to study possible predictors of aggres-



Figura 13

Trending topics on ML for psychology research.

sion in people who undergo drug detoxification treatment in China. Finally, Gyorda et al.

(2023) used ensemble and SHAP models to assess whether treatment response to a digital

intervention for Generalized Anxiety Disorder (GAD) can be accurately predicted using

baseline characteristics.

From this, it can be concluded that the combination of ensemble modeling plus

SHAP is preferred for constructing iML. However, to our knowledge, no research has yet

taken advantage of SHAP’s capabilities to do local analysis and identify subject-by-subject

whose characteristics make them outsiders within their group. This kind of analysis can be

precious to psychologists because it allows them to decide what to do with these subjects,

considering that membership in a particular group often determines their treatment.



5.2 Methodology

The complete workflow of the methodology used is shown in Figure 14. The metho-

dology has three stages: data preparation, best model selection, and best model interpre-

tation. The procedures and techniques used at each stage will be explained below.

data
preparation

model
selection

feature
selection

data
standar-
dization

 model
interpre-

tation

hyper-
parameter

tuning

ML
model

iML
modelprepared

data

ML
models

k-fold cross-validation

random permutation cross-validation

raw data

Figura 14

Methodology flowchart. The methodology has three stages: data preparation, best model

selection, and best model interpretation.

5.2.1 Data Preparation

We constructed a data set of 128 variables that contains all the functional connec-

tivity measures based on EEG analyzed in Chapter 4, the results of the behavioral tests

described in Section 2.1.2, and the demographic variables of the participants. Table 14

shows the list of characteristics that comprised the data set.



Subjects with missing data were eliminated, so the final data set comprised 88

records. Categorical variables were coded using the one-hot technique. One-hot encoding

is a technique used to represent categorical variables as binary vectors. For each unique

category in the original variable, a new binary (0 or 1) column is created in the transformed

dataset, where a “1” denotes the presence of the category and a “0” denotes its absence.

This method effectively transforms non-numeric data into a format that machine learning

algorithms can understand. However, it can substantially increase the dimensionality of the

dataset if the categorical variable has many unique categories (Zheng and Casari, 2018).

Cuadro 14: List of dataset features

Demographical

features

Behavioral features EEG-based functional connectivity features

Test Subscale / sub-

test

Measure Band Block

Actors group IAT IAT Leaf fraction Delta Congruent

Age IRI PT, FS, EC, PD Diameter Theta Incongruent

Years of schoo-

ling

IMA IMA Mean eccentri-

city

Alpha Differences between

congruent

and incongruent

block

Gender RPQ AR, AP Maximum

degree

Beta1

Laterality EVEA AL, TD, IH, AN Maximum bet-

weenness

Beta2

EX2 EX2, self identifi-

cation as a

victim, exposure

level

Tree hierarchy Gamma

Total features: 5 Total features: 15 Total features: 108

We worked with unstandardized data for the ensemble ML models because it is

considered that these models are insensitive to data standardization (James et al., 2021).

For the other ML models, we tested the following three methods:

1. Discrete data were scaled to a [0, 1] range, and continuous data were scaled to zero

mean, unit variance (Pedregosa et al., 2011).



2. Discrete data were scaled to a range [0, 1], and continuous data were standardized

using the Yeo-Johnson (Yeo and Johnson, 2000) power transform method.

3. The data was not standardized.

5.2.2 Selection of the Best ML Model

We used the Random Permutation cross-validation (CV) technique in the outer

loop with ten splits in a ratio of 80/20. Random Permutation CV (often termed ”Shuffle &

Split”) is a model validation technique in which the data set is randomly shuffled and then

split into train and test subsets. This procedure can be repeated multiple times, leading to

different possible train-test split combinations. It is an alternative to more traditional K-

Fold cross-validation. The process can be repeated n times, producing n different train-test

splits, ensuring that the model is trained and tested on diverse data combinations, helping

to understand the variability in performance (James et al., 2021).

We utilized the k-Fold CV technique on the inner loop with five folds in a 80/20

ratio. k-Fold CV is a popular model validation technique used to assess the performance

of machine learning algorithms. In this method:

• The dataset is randomly partitioned into k equally (or nearly equally) sized subsamples

or “folds.”

• Of the k folds, k− 1 folds are used for training the model, and the remaining single fold

is used as a validation set to assess performance.

• This process is repeated k times, with each fold used exactly once as a validation set.

• The k results of the folds can then be averaged (or combined otherwise) to produce a

single estimation of the model performance.

k-Fold CV is a powerful and widely used technique, offering a more robust estimation

of model performance than a single train-test split. It is especially valuable when the

available data is limited, and you want the most comprehensive assessment of the potential

performance of a model (James et al., 2021).

To avoid data leakage (Lones, 2021), we build a pipeline consisting of feature selec-

tion, data standardization, and hyperparameter tuning processes in each fold.



We selected the F1weighted score to select the best ML model and tune the hyperpa-

rameters. This metric calculates the F1 score for each class individually and then takes a

weighted average of those scores, considering the number of true instances for each label.

The F1 score is the harmonic mean of precision and recall, with a higher score signifying

a better balance between the two (Sokolova and Lapalme, 2009). Given precision P and

recall R, the F1 score is:

F1 =
2× P ×R

P +R
(7)

Where:

P =
True Positives

True Positives + False Positives
(8)

and

R =
True Positives

True Positives + False Negatives
(9)

For a multi-class problem, the F1weighted score is:

F1weighted =
C∑
i=1

wi × F1i (10)

where C is the number of classes, F1i is the F1 score for class i, and wi is the weight

for class i.

The F1 score offers several advantages over other metrics. Unlike accuracy, which

can be misleading, the F1 score considers false positives and negatives, providing a more

accurate evaluation of the model performance. Moreover, the F1weighted score is helpful

in multiclass scenarios, as it considers class distribution, ensuring frequent ones do not

overshadow performance in underrepresented classes. This attribute is particularly benefi-

cial when classes are imbalanced, as it prevents a model from being considered ”good”based

solely on its ability to predict the majority class (Sokolova and Lapalme, 2009).

The tuning of hyperparameters was done using a tool based on Bayesian optimi-

zation, which is computationally more efficient and less time-consuming than brute force

methods, such as random, grid, and sequential search(Sandha et al., 2020). In summary,

Bayesian optimization fits a probabilistic model to capture the relationship between hy-

perparameter settings and their measured performance; it then uses this model to select



the most promising hyperparameter setting (trading off the exploration of new parts of the

space vs. exploitation in known promising regions), evaluates that hyperparameter setting,

and updates the model with the result and iterates (Feurer et al., 2015).

5.2.3 Feature Selection

To select the most relevant features, we followed a two-step process. First, we used

the techniques described in Section 2.2.5 and retained the features selected by at least three

of these methods. Later, we performed a hierarchical clustering based on Ward’s method

(Ward Jr, 1963) to control multicollinear features. It is crucial in our study because when

multicollinear features exist, it can be difficult to determine each feature’s contribution to

the model’s performance, and the model may lose interpretability.

Ward’s method (or Ward’s minimum-variance method) is a criterion applied in

hierarchical clustering. It aims to minimize the variance within clusters. When clustering

with this method, the pair of clusters that leads to the minimum increase in total variance

within the cluster after merging will be merged at each step (Ward Jr, 1963). The metric of

this method is Ward’s distance (or the increase in the error sum of squares). The following

formula shows that this metric is calculated between two clusters, A and B:

D(A,B) =
nAnB

nA + nB

d2 (CA, CB) (11)

Where:

nA and nB are the numbers of observations in the clusters A and B, respectively.

d2 (CA, CB) is the squared Euclidean distance between the centroids CA and CB of

the clusters A and B.

With this method, we selected non-collinear features as follows:

• We calculated the absolute Spearman rank-order correlations of the features chosen in

the first step.

• We measured the Ward distance among the features of the Spearman correlations.



• We build a dendrogram, a tree-like diagram that displays the sequence and results of

hierarchical clustering. Visualizes the arrangement of clusters produced by the correspon-

ding merges and splits, allowing an observer to reconstruct the history of those merges

or splits (Murtagh and Legendre, 2014).

• We set a threshold of 0,75 to prune the dendrogram. We selected this value because it

filtered out the highly correlated features, and the model performance did not degrade

appreciably.

• We preserve only one feature for each survival branch.

5.2.4 Interpretation of the ML Model Selected

Since the best models were tree-based ML models, we used TreeSHAP, a variant of

SHAP specialized in these models (Lundberg et al., 2018). The explication of TreeSHAP

is published online (Molnar, 2022). This algorithm is faster than other SHAP algorithms

but only works with tree-based ML models.

We used summary graphs for global analyses, while for local analyses, we used force

plots (Molnar, 2022) from the SHAP package (version 0.41.0).

The summary plot combines feature importance with feature effects. Each point on

the summary plot is a Shapley value for a feature and an instance. The feature importance

determines the position on the y-axis; on the x-axis, it is determined by the Shapley value.

The color represents the value of the feature from low to high. Overlapping points are

jittered in the y-axis direction, so we understand the distribution of the Shapley values per

feature. Features are ordered according to their importance (Molnar, 2022).

A SHAP force plot visualizes the contribution of each feature to a particular predic-

tion, making it easier to understand which features push the prediction in one direction or

another. The elements of a force plot are (a) Base Value: This is the starting point of the

plot and represents the model’s average prediction for all instances. In other words, if it had

no specific information about the current instance and relied only on the average, this is

the prediction it would get. (b) Features: Each feature that affects the prediction is shown

as a force that pushes the prediction to increase (positive) or decrease (negative). The size

and direction of the arrow/line for each feature represent the magnitude and direction of its

impact on the prediction. (c) Output value: The end of the plot shows the final prediction



for observation, considering all the contributions of features (Molnar, 2022).

For one observation, the force plot begins by showing the base value of the pre-

diction, based on the relative frequency of the class. After that, it considers each feature

separately and adds its effects to the base value one by one. Features that increase the

prediction are shown in red, whereas those that tend to decrease it are displayed in blue.

Combining all these effects will arrive at the final prediction value.

5.3 Results

5.3.1 Selection of the Best ML Model and Feature Selection

A total of 12 models were tested: three ensemble models with unstandardized data,

i.e., Random Forest, Gradient Boosting, XG Boosting, and the three other models, i.e.,

Logistic Regression, SVM, kNN, with the three different standardization procedures des-

cribed in Section 5.2.1. Table 15 shows the cross-validation and test scores of all trained

models sorted by test score. The ensemble models make up most of the best models, and

the difference between the first three places is minor. Therefore, any of these models can be

selected. We chose the random forest model, with hyperparameters ccp alpha =1.01Ö 10=4

and n estimators = 88.

We obtained the 25 pre-selected features shown in Figure 15 for the model selected.

After that, we obtained 16 selected features with the set threshold. Selected features are

listed in Table 16.

5.3.2 Interpretation of Selected ML Model

Global analyses

We made global analyses with each group’s summary plots, shown in Figure 16.

Next, we performed NHST and chi-squared tests on each group’s most important features

to understand why they are critical for the classifier’s performance on prediction.

The summary plot of civilians (Figure 16a) shows that the two most important

features to predict whether a subject in the sample is a civilian are the EX2 score and

victims self no. For the model, a subject with a low EX2 score and who self-identifies as a



Tabla 15

Scores of classification models with selected features

Model F1 weighted

CV score

M(SD)%

F1 weighted

test score

M(SD)%

Random Forest 80.4(3.8) 86.7(6.5)

XGBoost 83.9(3.4) 85(9.1)

Gradient Boosting 82.5(3.5) 84.4(9.7)

SVC NP 77.9(3) 83.3(6.4)

SVC PT 81.5(2.7) 82.8(8.9)

SVC SC 79.1(5.2) 82.8(10.0)

Logistic Regression NP 73.7(3.2) 80(9.1)

KNN PT 74.1(4.4) 75.6(7.0)

KNN NP 74.3(4.6) 74.4(9.5)

KNN SC 74.4(4.2) 72.8(8.5)

Logistic Regression PT 45.1(0.0) 61.1(0.0)

Logistic Regression SC 45.1(0.0) 61.1(0.0)

NP: Not standardization. PT: Standardization with Power Transformer. SC: Stan-

dardization with Standard Scaler



Tabla 16

Selected features by best ML model

Demographical

features

Behavioral features Functional connectivity features

1. Age (age)

2. Years of

schooling

(school years)

3. Female gender

(gender F)

1. EX2 test score (EX2 score)

2. Perspective-taking subscale

score of the IRI test (IRI PT)

3. Empathy concern subscale

score of the IRI test (IRI EC)

4. Personal upset subscale sco-

re of the IRI test (IRI PD)

5. Reactive Aggression subs-

cale score of the RPQ test

(RPQ AR)

6. EVEA Joy subscale score on

the EVEA test (AL)

7. EVEA Anxiety subscale sco-

re on the EVEA test (AN)

8. Subject self-identifies as a

non-victim (victims self no)

1. Mean eccentricity in be-

ta2 band incongruent trials

(mean eccentricity b2i)

2. Mean eccentricity in gam-

ma band congruent trials

(mean eccentricity gc)

3. Mean eccentricity in the-

ta band congruent trials

(mean eccentricity tc)

4. Maximum degree in be-

ta2 band incongruent trials

(max degree b2i)

5. Maximum degree in beta2 band

congruent trials (max degree b2c)



vi
ct

im
s_

se
lf_

no
vi

ct
im

s_
se

lf_
ye

s
EX

2_
sc

or
e

ex
po

su
re

_le
ve

l_h
ig

h
ex

po
su

re
_le

ve
l_l

ow
m

ax
_d

eg
re

e_
b2

i
m

ea
n_

ec
ce

nt
ric

ity
_b

2i
m

ea
n_

ec
ce

nt
ric

ity
_b

2d
di

am
et

er
_b

2d
m

ea
n_

ec
ce

nt
ric

ity
_t

c
m

ea
n_

ec
ce

nt
ric

ity
_t

d
m

ea
n_

ec
ce

nt
ric

ity
_g

c
m

ea
n_

ec
ce

nt
ric

ity
_g

d
ag

e AN
ge

nd
er

_F
ge

nd
er

_M
RP

Q 
AR

RP
Q 

AP
IR

I_P
T

IR
I_P

D
m

ax
_d

eg
re

e_
b2

c
sc

ho
o 

_y
ea

rs
IR

I_E
C AL

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

vi
ct

im
s_

se
 f_

no
vi

ct
im

s_
se

 f_
ye

s
EX

2_
sc

or
e

ex
po

su
re

_ e
ve

 _h
ig

h
ex

po
su

re
_ e

ve
 _ 

ow
m

ax
_d

eg
re

e_
b2

i
m

ea
n_

ec
ce

nt
ric

ity
_b

2i
m

ea
n_

ec
ce

nt
ric

ity
_b

2d
di

am
et

er
_b

2d
m

ea
n_

ec
ce

nt
ric

ity
_t

c
m

ea
n_

ec
ce

nt
ric

ity
_t

d
m

ea
n_

ec
ce

nt
ric

ity
_g

c
m

ea
n_

ec
ce

nt
ric

ity
_g

d
ag

e AN
ge

nd
er

_F
ge

nd
er

_M
RP

Q 
AR

RP
Q 

AP
IR

I_P
T

IR
I_P

D
m

ax
_d

eg
re

e_
b2

c
sc

ho
o 

_y
ea

rs
IR

I_E
C AL

victims_se f_no
victims_se f_yes

EX2_score
exposure_ eve _high
exposure_ eve _ ow

max_degree_b2i
mean_eccentricity_b2i

mean_eccentricity_b2d
diameter_b2d

mean_eccentricity_tc
mean_eccentricity_td
mean_eccentricity_gc
mean_eccentricity_gd

age
AN

gender_F
gender_M

RPQ AR
RPQ AP

IRI_PT
IRI_PD

max_degree_b2c
schoo _years

IRI_EC
AL −1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figura 15

Description of the second step of the feature selection procedure. After having made an

initial feature selection, the second step preserves those features that are less correlated

with each other, trying not to degrade the performance of the model substantially. The

selection was made by performing hierarchical clustering on the Spearman rank-order

correlations, shown on the right side of the Figure, using the Ward distance as a metric,

obtaining the dendrogram of the left side of the Figure. Next, we picked a threshold of

0.75. Finally, we chose a feature to keep from each cluster.

non-victim is a civilian, which makes perfect sense because, by definition, in this sample, a

civilian is someone who has had low exposure to the armed conflict. AL and gender F are

also important features, although less discriminating. Thus, low values in the EX2 score

increase the probability that a subject is classified as a civilian by up to ,3. However,

given that the base probability of being a civilian is ,159 (14 civilians in a sample of 88

subjects), this may not be sufficient, so having “correct” values (with “correct” values being

understood as those that increase the probability of a subject being classified as a civilian)

of the following three features (victims self no, AL, and gender F) are also necessary. From

this, it can be stated that a civilian is characterized by having a low EX2 score, self-

identifying as a non-victim, having a high AL score, and being male.

The summary plot of ex-combatants (Figure 16b) shows that the three most impor-

tant features are AL, EX2 score, and gender F. Thus, an ex-combatant is characterized by



having a low score on the AL task, which assesses joy, a score above two on the EX2 scale,

indicating that he has had high exposure to violent events, and by being male. In this

case, however, given that the probability that the model predicts ex-combatant is a priori

very high (53/88 = ,602), which makes it the default prediction, it is more valuable for

us to identify which features contribute most strongly to lowering this probability. The

summary plot of this group allows us to observe that these features are EX2 score (low

scores lower the probability of predicting ex-combatant by up to ,25), AL (low scores lower

the probability by up to ,19), gender (being female lowers the probability by up to ,18),

IRI PT (low scores lower the probability by up to ,15), and mean eccentricity b2i (low

mean eccentricity lowers the probability by up to ,15).

The summary plot of the victims (Figure 16c) shows that the most critical features

are gender F (being female raises the probability by up to ,15, and being male lowers it

by up to ,11), AL (a high score raises the probability by up to ,16 and a low score lowers

it by up to ,13), the IRI PT score (a low score raises the probability by up to ,14, and a

low score lowers it by up to ,09), and the mean eccentricity b2i (a low mean eccentricity

raises the probability by up to ,17, and a high mean eccentricity lowers the probability by

up to ,09). Thus, according to the ML model, a victim is characterized by being female,

having a high AL score, a low IRI PT score, and a low mean eccentricity in the beta2 band

incongruent block.

Finally, to understand why the model identified as the most important features,

we performed NHST and chi-square tests on the features EX2 score, victim self no, AL,

gender F, IRI PT, and mean eccentricity b2i. The NHST analysis applied to the AL feature

revealed that there are significant differences between actors groups (p − value < ,001,

n2
p = 0,275), and posthoc analyses revealed significant differences among ex-combatants and

victims (p− value < ,001, CI = [−6,243,−2,402]) and among ex-combatants and civilians

(p−value = 0,007, CI = [−5,144,−0,668]). A similar analysis performed on the EX2 score

feature shows that there are significant differences among groups of actors (p − value <

,001, n2
p = 0,304), more specifically among civilians and ex-combatants (p − value <

,001, CI = [−7,036,−3,070]) and among civilians and victims (p − value < ,001, CI =

[−6,491,−1,937]). Regarding the IRI PT feature, it was found that there are significant

differences among groups of actors (p − value < ,001, n2
p = 0,242), more specifically

among ex-combatants and victims (p − value < ,001, CI = [3,080, 8,397]). Concerning

the mean eccentricity b2i feature, it was found that there are significant differences among

groups of actors (p − value = ,017, n2
p = 0,091), more specifically among ex-combatants

and victims (p−value = ,014, CI = [0,269, 2,887]). Last, the chi-squared tests proved that



there are significant differences between actors in terms of gender (p − value < ,001) and

whether they identify themselves as victims or not (p− value < ,001).

Local Analyses

We used force graphs to perform local analyses, as shown in Figure 17. Since we

found only one error with the chosen model in the test set (one participant was misclassified

as a civilian when, in fact, she was an ex-combatant), we applied the same analysis to

subjects who, although correctly classified, had a high probability of being misclassified.

In the case of the subject who was misclassified, when analyzing the most important

features when making this prediction, we found the EX2 score, victim self no, and AL score

(refer to Figure 17a). Upon further inspection, we found that this participant had a very

low EX2 score (1), which is more typical of civilians (with a mean score of 0,929 and

standard deviation of 1,592), rather than ex-combatants (with a mean score of 5,981 and

standard deviation of 2,866). Additionally, the participant identified herself as a non-victim,

whereas the vast majority (81,1%) of ex-combatants identify as victims, while 92,9% of

civilians do not. Furthermore, the participant’s AL score was relatively high (8) for an ex-

combatant (with a mean score of 3,844 and standard deviation of 3,611) and more in line

with the scores of civilians (with a mean score of 6,750 and standard deviation of 2,600).

In particular, the participant’s gender (female) was also contrary to the prediction since

73% of the civilians are male.

Among the subjects classified correctly, one was classified as an ex-combatant with

a probability of 0,443, while the probability of being misclassified as a victim was 0,386,

two relatively close values. The local interpretability analysis (see Figure 17b) shows that

the features that most positively influenced this prediction were the IRI PT score (18),

the RPQ AR score (13), and the mean eccentricity in beta2 band incongruent trials

(14,82), which makes sense because these three values are within the typical range of

ex-combatants (IRI PT: M = 18,453, SD = 4,177, RPQ AR: M = 16,321, SD = 4,677,

mean eccentricity b2i: M = 14,420, SD = 2,142), while the features most negatively in-

fluencing prediction were AL score (8,25), atypical for ex-combatants (M = 3,844, SD =

3,611) and more usual for victims (M = 7,837, SD = 2,403), the gender (female), which

is atypical for ex-combatants (20,8% are female) and typical for victims (91,3% are fema-

le), and the self-identification as a victim (no), which is atypical for ex-combatants (only

18,86% of them self-identifies as a non-victim) and typical for civilians (92,85% of them

self-identifies as a non-victim).



5.4 Discussion

In this chapter, we presented an iML model to characterize a sample of subjects

who were immersed in the Colombian armed conflict, either as combatants, victims, or

civilian non-ex-combatants and non-victims, based on a set of demographic, behavioral,

and electrophysiological variables. For this purpose, 12 different ML models were evalua-

ted. The model selection was done with a nested CV process, using the F1weighted score

as the evaluation metric. Hyperparameter tuning was performed by CV using Bayesian

optimization techniques, incorporating feature selection, standardization, and tuning into

the pipeline to avoid data leakage. The interpretability of the selected model was done

using SHAP, mainly their summary plots and force plots.

Although studies with global analyses of iML models already exist in psychology, to

our knowledge, this is the first study in psychology that performs a local interpretability

analysis to identify the features that led the model to classify some subjects differently

from the original class.

The results revealed that the ensemble models (random forests, gradient boost, and

XG boost) perform better than other models (SVM, kNN, logistic regression) and that the

standardization technique has little effect on the result. Four behavioral variables (EX2,

EVEA-AL, self-identification as victim, and IRI-PT) and one demographic (genre) were

also identified as the essential features of the characterization. The first electrophysiolo-

gical characteristic identified as necessary was the mean eccentricity in the beta2 band

incongruent block (mean eccentricity b2i), below the mentioned characteristics. This in-

formation is valuable for future research with the same population because it gives us

insights into which variables are worth capturing and which are not, which, in the long

run, may result in resource savings.

According to these results, it is possible to affirm that ex-combatants are typically

characterized by having an AL score lower than 7, an EX2 score higher than 4, being male,

having an IRI-PT score higher than 16, and recognizing themselves as victims. A victim is

typically characterized as female, having an AL score greater than 7 and an IRI-PT score

less than 15. Finally, a civilian is typically characterized as having an EX2 score equal to

or below 2 and not recognizing himself as a victim.

Previous work with armed conflict actors has not been focused on their characte-

rization or finding features that would allow discriminating ex-combatants from victims



and civilians, but on estimating exposure to the conflict (Cano et al., 2022) and on iden-

tifying emotional processing profiles in ex-combatants (Quintero-Zea et al., 2018). Thus,

this study is the first to fully characterize the various groups of actors in the Colombian

armed conflict.

These findings are crucial in designing personalized training programs to mitigate

prejudice among Colombian armed conflict actors. The ability to reclassify subjects based

on these thresholds is essential, as it ensures that individuals receive the most appropria-

te and effective interventions aligned with their group categorization. This research has

practical implications for developing tailored interventions in social-cognitive studies.

The proposed methodology could be used in psychological research where it is ne-

cessary to characterize samples of subjects with a vast number of variables or where these

variables have non-linear relationships. Furthermore, the methodology used to perform

local interpretability analysis could be used to assess whether a participant might be re-

classified based on its scores in the set of most important features of the iML model.
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Figura 16

Summary plots of SHAP analyses by groups. Summary plots show how each feature affects

the prediction and its importance. Each dot on the plot is the effect of a feature for each

observation. The importance of the feature determines the position on the y-axis, the most

important features are at the top, and the size of the effect determines the position on the

x-axis. The color shows the value of the feature from low (blue) to high (red) (Molnar,

2022). For example, in the plot for civilians (subfigure (a)), we can see that EX2 score is

the most important feature and has a negative relationship with the prediction: lower

scores increase the prediction, and higher scores decrease it for this group.



0.0 0.4

gender_F = 1EX2_score = 1victims_self_no = 1AL = 8.0mean_eccentricity_b2i = 12.7age = 32

f(x)

0.50.30.20.1

base value

RPQ AR = 17.0

(a) Features’contribution to the prediction of subject 21137

higher lower

base value

0.1 0.2

gender_F = 1AL = 8.25max_degree_b2c = 4

0.0 0.3 0.4 0.5 0.6 0.7 0.8

f(x)

school_years = 7 mean_eccentricity_b2i = 14.8 RPQ_AR = 13.0 IRI_PT = 18.0 victims_self_no = 1 AN = 2.25

(b) Features’contribution to the prediction of subject 21114

Figura 17

Force plots of two participants. These plots show how each feature value changes the

prediction from the average. The average prediction for all data is the baseline. The plot

has arrows for each feature value that move the prediction up (positive) or down

(negative) from the baseline. These forces balance each other out at the actual prediction

of the data instance (Molnar, 2022).



6 Concluding Remarks

This thesis established that it is feasible to characterize a cohort of former comba-

tants in the Colombian armed conflict based on the demographic variables, EEG recordings,

and behavioral tests they completed. To this end, the following tasks were performed:

1. A novel methodology proposed for ERP analyses that utilizes Bayesian inference to

test hypotheses and massive univariate statistical methods.

2. A proposed methodology for an EEG-based functional connectivity analysis at the

sensor level that aggregates current best practices.

3. A deep examination, on a global and local scale, of the significance of features in an

iML model that characterizes our population.

The following section presents some conclusions from these analyses and recommen-

dations for future work.

6.1 ERP Analyses

We introduced a novel and robust methodology for analyzing ERPs by combining

massive univariate statistical permutation and Bayesian inference techniques for hypothe-

sis testing. The advantages of this approach over traditional methods are twofold: first,

it provides a significantly enhanced precision in localizing ERP components, allowing for

more accurate identification of specific effects. Second, by addressing multiple comparison

issues, our methodology can pinpoint the exact effects that traditional approaches may

struggle to identify. Furthermore, our approach surpasses data-driven methods grounded

in massive univariate analysis, demonstrating the flexibility of Bayesian methods in esta-

blishing thresholds without compromising statistical rigor. This adaptability results in a

more precise detection of effects.

In addition, the study findings shed light on the relationship between prejudice and

ERP components. Participants with prejudice toward victims showed larger incongruent

block amplitudes in the components P3, N400, and LPP compared to individuals without

prejudice or those exhibiting prejudice toward ex-combatants.



The results imply that people with prejudice towards victims allocate more cognitive

resources to process incongruent block stimuli, potentially leading to longer reaction times,

which is consistent with behavioral outcomes.

This research underscores the importance of understanding the neural correlates of

prejudice, contributing valuable insights to cognitive neuroscience and social psychology.

6.2 Functional Connectivity Analyses

To fulfill the second objective, we introduced a cutting-edge methodology that uses

state-of-the-art engineering techniques such as REST for EEG re-referencing, machine

learning-based techniques to detect noisy channels and artifacts, multitaper for spectrum

estimation, WPLI as a measure for synchronization, MST for pruning the connectivity

matrix, and Bayesian Inference Hypothesis Testing Methods for statistical analyses. The

integration of these elements represents a notable advancement in the methodologies com-

monly employed in these analyses.

The functional connectivity analysis indicates that civilians and ex-guerrillas tend

to generate more prejudice toward armed actors than toward victims and that victims

and ex-paramilitaries tend to generate more prejudice toward victims. On the other hand,

ex-guerrillas and victims tend to regulate their prejudice toward victims better. Similarly,

the ex-paramilitaries seem to regulate their prejudice toward combatants better. Finally,

it seems that civilians regulate prejudice toward victims and combatants similarly. All of

these results are highly consistent with those of the behavioral test.

The results suggest that the theta-band MST diameter and eccentricity measures

are associated with the activity of the prejudice generation network.On the other hand,,

these same measures in the beta2 band are associated with the activity of the prejudice

regulation network.

6.3 iML Analyses

We developed a novel methodology centered on ML models’global and local inter-

pretability analyses to identify the most critical features in characterizing distinct groups

and assessing the feasibility of individual subject reclassification. Although our methodo-



logy was applied to a specific task, it could be used in broader research fields to charac-

terize samples of subjects with many variables or where these variables have non-linear

relationships. Furthermore, this methodology could be used to identify features at a high

degree of granularity that determine whether an ML model incorrectly predicts a particular

subject.

Through our research, we have successfully identified four behavioral variables and

one demographic variable as critical elements in characterizing groups of actors within the

context of the Colombian armed conflict. This finding holds substantial value for future

research within the same population, as it provides essential information on which variables

are worthy of capture and which can be omitted, ultimately leading to long-term resource

savings.

Also, we determined the threshold values for this small set of critical features that

are pivotal in defining a subject’s membership within a specific group. The obtained results

will allow the customization of training/treatment interventions to the profile of the subject

to whom they will be applied, ensuring that individuals receive the most appropriate and

effective interventions aligned with their group categorization.

This analysis is crucial in designing personalized social-cognitive training programs

to mitigate prejudice among Colombian armed conflict actors. This research advances our

understanding of these actor groups’characteristics and has practical implications for de-

veloping tailored social-cognitive interventions.

6.4 Future Work

Following the research line described in this thesis, five main lines of projects could

be taken up:

a) The findings from our ERP analysis indicate that our proposed methodology exhibits

greater sensitivity than traditional approaches, enabling the detection of a higher

number of true effects within the same dataset, all while maintaining specificity. This

gain is by the Bayesian analysis’s ability to effectively filter out non-existent effects,

as exemplified by the results across various clusters. Future research should focus on

evaluating the methodology under more controlled and rigorous conditions to validate

and substantiate these promising outcomes, using, by example, synthetic data. These



controlled experiments will be instrumental in confirming the enhanced sensitivity

and specificity of the methodology, ensuring its reliability and applicability in diverse

research scenarios.

b) Future research endeavors should consider the exploration of potential electrophysio-

logical correlates of prejudice through measures of EEG-based functional connectivity

at the sensor level, like diameter and eccentricity in the theta and beta2 frequency

bands. These measures may hold valuable insights into the neural underpinnings of

prejudice.

c) An exciting avenue for future research lies in extending functional connectivity analy-

sis to the source level of EEG data. Integrating the findings of source-level connec-

tivity with the previous results of the EEG-ERP analyses, sensor-level functional

connectivity, and functional connectivity derived from fMRI would be a significant

step forward. This comprehensive approach would offer a more holistic and nuanced

understanding of the neurological basis of prejudice, providing a richer perspective

on the complex neural dynamics involved. Such research efforts have the potential

to shed light on the intricate interplay of neural networks and cognitive processes

underlying prejudice, advancing the field of neuroscience and social psychology.

d) For future investigations, a prospective direction involves exploring alternative ML

techniques, particularly clustering methods, to group subjects and determining the

most suitable method for specific tasks within neuropsychology requiring classifica-

tion or reclassification. Comparing and evaluating different ML techniques would

provide information on their efficacy in characterizing subject groups, potentially

enhancing the precision and accuracy of such classifications.

e) Last, a focus area for subsequent research within the research group entails inte-

grating measures of established ERP components to ascertain their importance as

characteristics in characterizing groups of individuals who were former actors in the

Colombian armed conflict. This approach seeks to determine well-known ERP com-

ponents’relevance and potential contributions in distinguishing and characterizing

these groups. Such an investigation holds promise in uncovering nuanced cognitive

and neural markers associated with this population, further enriching our understan-

ding of their psychological and neurological profiles.



6.5 Final Conclusions

The results of the first specific objective show that subjects with prejudice against

victims have larger ERPs than subjects who have either prejudice against combatants or

have no marked prejudice against either side. On the other hand, the results of the IAT test

show that, paradoxically, victims are the group that has more prejudice towards victims.

In comparison, civilians have more prejudice towards combatants, and former members of

guerrillas and paramilitary groups do not have a marked prejudice towards either victims

or combatants. Additionally, the results of the second objective are consistent with the

behavioral results and allow us to know that the cognitive processes that produce preju-

dice – generation and regulation – occur differently in each of the groups of actors, which

justifies from the electrophysiological point of view the design of socio-cognitive interven-

tions differentiated by groups of former actors of the armed conflict to reduce prejudice

among them. Finally, the results of the third objective provide tools to determine the best

intervention strategy subject by subject, beyond their original membership to a former

Colombian armed conflict actor group. Additionally, these results allow us to concentrate

future efforts on collecting a relatively small set of characteristics of the subjects, avoiding

unnecessary efforts to collect others that are not so significant.

All of the above allows us to affirm that the new methodologies developed in this

thesis provide a comprehensive view of the phenomenon of prejudice among former actors

of the Colombian armed conflict, which would be difficult to achieve by applying only the

classical methodologies of ERP analysis and classical multivariate statistical analysis. For

example, with the latter, it would have been more challenging to recognize the differences

in the generation and regulation processes of prejudice between groups or to identify which

characteristics should be considered to decide what type of intervention should be applied

to an individual.

In this way, this thesis achieves the objective of characterizing the phenomenon of

prejudice among former armed conflict actors from an electrophysiological point of view.

However, it goes further because it adds behavioral and demographic variables to the cha-

racterization. The integral characterization of prejudice provides researchers with valuable

information to improve intervention strategies designed to mitigate prejudice, aiming at

the final purpose of achieving reconciliation and rebuilding the social fabric in former zones

of armed conflict in Colombia.
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sociales en comunidades durante el postconflicto a través de un enfoque de intervención

biopsicosocial comprehensivo: estrategias hacia a la construcción de paz en Colombia.

Programa de investigación presentado a la convocatoria 852-2019 de Colciencias.

Valencia, S., Trujillo, N., Trujillo, S., Acosta, A., Rodŕıguez, M., Ugarriza, J. E., López,
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