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a b s t r a c t 

This paper reports on a convolutional neural network (CNN) – based regression model, called FocusNET, to predict 

the accurate reconstruction distance of raw holograms in Digital Lensless Holographic Microscopy (DLHM). This 

proposal provides a physical-mathematical formulation to extend its use to different DLHM setups than the optical 

and geometrical conditions utilized for recording the training dataset; this unique feature is tested by applying 

the proposal to holograms of diverse samples recorded with different DLHM setups. Additionally, a comparison 

between FocusNET and conventional autofocusing methods in terms of processing times and accuracy is provided. 

Although the proposed method predicts reconstruction distances with approximately 54 μm standard deviation, 

accurate information about the samples in the validation dataset is still retrieved. When compared to a method 

that utilizes a stack of reconstructions to find the best focal plane, FocusNET performs 600 times faster, as no 

hologram reconstruction is needed. When implemented in batches, the network can achieve up to a 1200-fold 

reduction in processing time, depending on the number of holograms to be processed. The training and validation 

datasets, and the code implementations, are hosted on a public GitHub repository that can be freely accessed. 
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. Introduction 

Digital Lensless Holographic Microscopy (DLHM) is an imaging tech-

ique that uses computational methods to retrieve the complex wave-

eld information of light scattered by micrometer-sized samples [1] .

LHM is based on the in-line Gabor holographic setup with spherical

llumination [2 , 3] . Its simplicity is highlighted by the required hard-

are: a digital sensor, the sample to be studied, and a divergent spher-

cal wavefront source. In DLHM, the magnification of the recorded

ologram is controlled by the location of the sample: the closer the

ample to the point source, the higher the magnification [1] . In other

ens-free microscopy techniques, such as computational microscopy, the

agnification is fixed to the unit [4] . These imaging modalities rely

n highly resource-demanding super-resolution techniques and other

earning-based approaches [5 , 6] which are not needed in DLHM. DLHM

llows the retrieval of amplitude and phase information of the object by

umerically backpropagating the recorded hologram to an accurate re-

onstruction distance [1] . In general, lens-free microscopy implementa-

ions allow non-destructive and label-free imaging, which has propelled
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ts study and research around biomedical applications, providing po-

arization sensitivity [7] , in vivo analysis [3 , 8] , and disease diagnosing

8 , 9] , among others. 

In Digital Holographic Microscopy (DHM), a significant challenge

s determining the samples’ exact location within the inspection vol-

me without any extended procedure [10] . For samples containing weak

catterers axially non-connected specimens, a digital hologram provides

lane-by-plane information about the said volume. Nevertheless, there

s no straightforward way to establish the in-focus reconstruction plane

f the studied object [11 , 12] . Autofocusing methods have been pro-

osed mainly in Digital Holography (DH) and lens-based DHM to tackle

his challenge [10 , 13 , 14] . The Dubois’ metric is one of the most quoted

ethods, consisting of a pixel-wise summation of the amplitude module

f each reconstructed hologram in the inspection volume [15] . As this

ne, many other proposals can be found in the literature to solve this

roblem in lens-based DHM [10 , 12] . The application of these proposals

as allowed flow analysis [16] , tracking of living cells [17] , and living

ell analysis [18] , among other high-impact applications [19] . Although

ighly effective, all these methods require hundreds, and sometimes
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Fig. 1. Digital lensless holographic microscopy (DLHM) setup. The source-to- 

sample distance z, the source-to-sensor distance L and the sensor width W es- 

tablish the geometry of the DLHM setup. 
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housands, of sequential numerical reconstructions to provide accurate

n-focus reconstruction distances. Thus, conventional methods are com-

utationally demanding and time-consuming [20] . 

Beyond being computationally demanding, conventional autofocus-

ng proposals fail for DLHM holograms because they do not consider this

echnique’s illumination source wavefront sphericity [21] . In [12 , 21] ,

he authors developed an autofocusing method based on finding the re-

onstruction plane in which the smallest area around the object to be

ocused encloses a given amount of irradiance. For each reconstruction

lane, the enclosed irradiance is weighted by the inverse of the spherical

llumination radius at that plane. The proposal successfully autofocuses

ntricate inner-structure samples, at the expenses of requiring high com-

utational complexity preventing its implementation for in vivo applica-

ions [12] . 

Deep learning-based methods are powerful tools for solving com-

uter vision problems and image analysis [22 , 23] . These methods pro-

ide promising strategies to obtain the in-focus reconstruction distance

irectly from the hologram without requiring several back-propagation

perations. Some learning-based proposals can be encountered in holo-

raphic imaging to solve the autofocusing challenge. For instance, Shi-

obaba et al. [24] proposed a CNN-based regression to automatically

ocus DH holograms with millimeter precision directly from the power

pectrum of the holograms. Rembo et al. reported an autofocusing pro-

osal for DH using a CNN-based classification model by splitting the

econstruction distances into categories [25] . The same authors later

eported a CNN-based regression to directly predict the reconstruction

istance from the hologram [26] . Pitkäaho et al. proposed the first ap-

roach to deep learning autofocusing in lens based DHM, successfully

voiding stack reconstruction procedures. Although these deep learning-

ased models have been successfully implemented and tested for DH and

ens-based DHM, to the authors’ best knowledge, these methods have

ot been applied yet to DLHM, where the autofocusing problem is more

hallenging because of its required spherical illumination and the wide

ange of routinely attained reconstruction distances. 

This paper proposes a convolutional neural network (CNN) model

alled FocusNET to autofocus raw DLHM holograms. Directly from the

ologram, the model uses a regression strategy to predict the in-focus

econstruction distance, thus the object’s location within the inspec-

ion volume. After describing the DLHM fundamentals and the proposed

ethod in detail, a validation of its accuracy after proper training is

resented. This validation evaluates the FocusNET-yielded intensity re-

onstructions for holograms in the test dataset and holograms recorded

ith different geometrical and optical parameters. For the latter case, a

hysical-mathematical formulation is provided using the scalar diffrac-

ion integral that describes the reconstruction procedure in DLHM to

xtend the use of FocusNET to DLHM holograms with arbitrary record-

ng conditions. Finally, the method performance is contrasted against

onventional methods considering the computation times to reach ac-

urate in-focus reconstruction distances [8] . Experimental results show

hat FocusNET predicts the object’s in-focus reconstruction distance di-

ectly from raw DLHM holograms without any numerical reconstruc-

ions at remarkably reduced processing times. The datasets and the

mplemented codes are publicly available via the GitHub repository

 https://github.com/mmonto95/focusnet ". 

. Digital lensless holographic microscopy 

As previously mentioned, DLHM only requires a spherical wavefront

ource, a sample, and a digital sensor [3] . The sample is placed after the

llumination source to produce a magnified diffraction pattern of the

pecimen at the sensor plane. Fig. 1 shows a basic DLHM setup. 

To mathematically describe the DLHM hologram, consider that the

ample transmittance 𝑆( ⃖⃖⃗𝑟 0 ) , placed at a distance z from the point source,

s illuminated by a diverging spherical wavefront exp [ 𝑖 
→
𝑘 ⋅

→
𝑟 0 ]∕ | →

𝑟 0 |.
he diffracted wavefield is magnified by free-space propagation until it

eaches the digital sensor at a distance L from the point source. Vectors
2 
⃖⃖⃗ 0 = ( 𝜉, 𝜂, 𝑧 ) and ⃗𝑟 = ( 𝑥, 𝑦, 𝐿 ) denote locations at the sample and camera

lanes, respectively. The description of the complex-valued optical field

hat reaches the sensor is given by the Rayleigh-Sommerfeld diffraction

ormula given by Eq. (1) [27 , 28] . 
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Then, the intensity distribution recorded at the sensor plane, known

s the DLHM hologram, is described by Eq. (2) , 

 

(→
𝑟 
)
= 𝑈 

(→
𝑟 
)
⋅ 𝑈 

∗ 
(→
𝑟 
)

(2) 

here 𝑈 

∗ ( ⃗𝑟 ) is the complex conjugate of the optical field, say, 𝑈 

∗ ( 
→
𝑟 ) =

∫
amp le 

𝑆 

∗ ( 
→
𝑟 0 ) 

exp [− 𝑖 
→
𝑘 ⋅

→
𝑟 0 ] |→𝑟 0 |

exp [− 𝑖 
→
𝑘 ⋅( 

→
𝑟 − 

→
𝑟 0 )] |( →𝑟 − →𝑟 0 ) | d 

→
𝑟 0 . 

The information of the sample 𝑆( ⃖⃖⃗𝑟 0 ) is later retrieved by backprop-

gating the DLHM hologram as being illuminated with a converging

pherical wavefront exp [− 𝑖 
→
𝑘 ⋅

→
𝑟 ]∕ | →

𝑟 |, which is the complex conjugate

f the illumination wavefront used during recording. This diffraction

rocess can be numerically described through a scalar diffraction for-

ula; the sample’s information is found via Eq. (3) . 

 

(
⃖⃖⃗𝑟 0 
)
= ∫
𝑠𝑒𝑛𝑠𝑜𝑟 

𝐼 
(
𝑟 
) exp 

[
− 𝑖 ⃗𝑘 ⋅ 𝑟 

]
||𝑟 ||

exp 
[
− 𝑖 ⃗𝑘 ⋅

(
𝑟 − ⃖⃖⃗𝑟 0 

)]
|||(𝑟 − ⃖⃖⃗𝑟 0 

)|||
d ⃗𝑟 . (3)

A discrete version of Eq. (3) is used for the digital reconstruction

f the DLHM holograms [28] . From Eq. (3) , the complex-valued op-

ical field of the sample 𝑆( ⃖⃖⃗𝑟 0 ) is recovered, and its amplitude |𝑆( ⃖⃖⃗𝑟 0 ) |,
ntensity 𝑆( 

→
𝑟 0 ) ⋅ 𝑆 

∗ ( 
→
𝑟 0 ) or phase 𝜙( ⃖⃖⃗𝑟 0 ) = arctan ( Im [ 𝑆( ⃖⃖⃗𝑟 0 ) ]∕ 𝑅𝑒 [ 𝑆( ⃖⃖⃗𝑟 0 ) ] ) can

e retrieved [29 , 30] . As the information provided by 𝑆( ⃖⃖⃗𝑟 0 ) is affected by

he DC term, it is routine to use a contrast reference hologram [1] prior

o applying Eq. (3) to remove this noisy artifact. Additionally, this and

ther undesired artifacts can be removed from the resulting reconstruc-

ions by digitally pre-processing the acquired DLHM holograms [31] or

y applying other numerical processing methods, such as numerical

arkfield illuminations on the resulting images [32] . To address the

berration caused by the spherical illumination wavefront, a final point-

ise multiplication of the resulting complex wavefield at the sample

lane with a conjugated wavefront of the spherical illumination is used.

his point-wise operation results in phase reconstructions of the sample

ithout the undesired effects of the illumination wavefront. 

https://www.github.com/mmonto95/focusnet
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Fig. 2. Number of DLHM recorded holograms for each reconstruction distance 

𝑧 in the experimental dataset. A total of 3540 holograms constitute the dataset: 

2832 for training and 708 for testing the model. The distribution of holograms 

per reconstruction distance is the same for the training and testing sets. 
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Regarding imaging performance, the system’s resolution is limited

y its numerical aperture (NA), which is defined as follows [1] , 

A = 

𝑊 

2 
√ (

𝑊 

2 

)2 
+ 𝐿 

2 

. (4)

In Eq. (4) , W is the sensor’s width, and L is the source to camera dis-

ance, as illustrated in Fig. 1 . Eq. (4) is valid as long as the sensor is fully

lluminated. The lateral resolution δx can be approximated with the

iven expression for the numerical apertures as shown in Eq. (5) [1 , 30] .

x ≥ 

λ
2 NA 

. (5)

. FocusNET 

.1. DLHM training dataset 

A setup like the one presented in Fig. 1 , has been implemented to

ecord the DLHM dataset to train and test FocusNET. A laser source illu-

ination (632.8 nm He-Ne) is expanded and later focused by an aspheric

ens with a diameter of 6.33 mm and a numerical aperture of 0.67. A

anasonic MN34230 camera is used to record the holograms; the sensor

idth is 13.3 mm with a native pixel pitch of 3.8 μm and 3518 × 3518

quare pixels. The holograms are rescaled to 1024 × 1024 pixels, chang-

ng the effective pixel pitch to 12.99 μm, which is used in this experi-

ent. Although the latter preprocessing procedure produces low-pass

ltering affecting the reconstructed images, this hologram size has been

elected after considering a tradeoff between the model efficiency and

ccuracy; see Section 3.3 . for further details on this topic. The source-

o-camera distance L is fixed at 18.8 ± 0.1 mm . DLHM holograms with

 numerical aperture of 0.33 have been recorded. Thus, a lateral reso-

ution of 0.9 μm is attained. A total of 3540 holograms were acquired,

ith the only variable being the location of the sample (z), which was

djusted using a Vernier micrometer screw. Of those, 2832 are used for

raining, and 708 for testing the model, following a training-test ratio of

0:20. The distribution of the number of recorded holograms for each

econstruction distance z is shown in Fig. 2 . These distances range from

.3 mm to 4.1 mm. 

The ground truth reconstruction distance, which is the target vari-

ble used to train the network, is the location obtained by visually ad-

usting the reconstruction distance of each hologram during the discrete

umerical reconstruction. This is achieved by performing a batch recon-

truction procedure on every DLHM hologram in the dataset using the

mageJ plugin for DLHM [28] . The samples used to record the dataset

olograms include an optical fiber, plastic circles, a fly’s leg, a leaf, a

keletal muscle, a spirogyra, a honeybee wing, epithelial cheek cells,
3 
olvox algae, and worm eggs. The samples are uniformly distributed

n the dataset, i.e. , the number of holograms per specimen is the same.

n Fig. 3 , three examples of holograms from the DLHM dataset are dis-

layed. These include a hologram of epithelial cheek cells in (a), a plas-

ic circle in (b), and a hologram of epithelial cheek cells with a lower

oncentration in (c). 

.2. FocusNET architecture 

Convolutional Neural Networks (CNN) have played a major role in

omputer vision and image processing [33] because of their ability to

nfer features and learn abstract representations from a given set of im-

ges. These models have shown their capabilities in various recognition,

lassification, and segmentation tasks [22 , 34] . CNNs are an extension of

he multilayer neural network [35] , thus, their structure is typically a

equence of convolutional layers and filters, followed by one or more

ully connected layers [34] . This architecture has the advantages of be-

ng shift, scale, and distortion invariant: these properties make CNNs

uitable for image processing solutions [36] . 

Following [26 , 37] , the proposed learning-based model has the ar-

hitecture presented in Fig. 4 . The input layer is composed of a single

hannel representing the raw DLHM hologram with 8-bit intensity val-

es. Then, a resizing layer is added. The best model’s accuracy is ob-

ained when the images are resized to 256 × 256 because of the avail-

ble training data: models with more parameters are expected to be

ore data-hungry [33] . This matter is analyzed in Section 3.3 . After this

tep, a data augmentation layer is added; this layer randomly rotates the

ologram by 0°, 90°, 180°, or 270°, helping to reduce overfitting. The

ollowing preprocessing layer adds a second channel, which represents

he amplitude of the Fourier transform of the resized hologram. This

ayer plays a critical role in increasing the model’s generalization, thus

urther reducing overfitting, as demonstrated by [24] and validated dur-

ng the experiments in this proposal. Then, the two-channel layer is fed

nto the convolutional backbone, composed of five convolutional blocks,

hich is the feature extractor of the model. In this backbone, the model

earns the underlying characteristics of the holograms, which will then

e used to perform the autofocus estimation. A minimal change in this

onvolutional backbone structure will significantly diminish the model’s

erformance. Each convolutional block includes a convolutional layer,

ollowed by batch normalization and max pooling layers. As the network

oes forward inside the convolutional backbone, the number of filters

ncreases while the transformed image size decreases. Specifically, the

rst convolutional layer starts with eight neurons multiplied by a size

actor that controls the final size of the model in terms of trainable pa-

ameters, and each subsequent layer doubles the neurons until reaching

he regression head. The transformed data is fed to the regression head

fter being processed by a dropout layer and the flatten layer. The re-

ression head includes two fully connected layers and an output layer

ith only one neuron. This output neuron provides Z FN , that is, the re-

onstruction distance predicted by FocusNET. Th e swish activation func-

ion, an improvement of the very popular ReLU activation function [34] ,

s used in all the network layers except for the output layer, which has a

inear activation function. The Adam optimizer is used as the optimiza-

ion algorithm with a variable learning rate. For the best performance

odels, the training requires 500 epochs, with the learning rate start-

ng at a value of 0.001, decreasing by a factor of 2 every 100 epochs,

nd then decreasing exponentially after epoch 450. This variation of the

earning rate proved to be very effective in improving both the model’s

exibility and generalization. 

To train FocusNET, the previously described DLHM dataset has been

sed. The loss function used for optimization is the mean squared error

MSE) , which is given by the average of squared errors in the estimation.

hese errors are the differences between the predicted reconstruction

istance Z that outputs the CNN model and the corresponding ground
FN 
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Fig. 3. Three examples of holograms in the DLHM dataset. (a) 

epithelial cheek cells, (b) plastic circle, and (c) epithelial cheek 

cells in a lower concentration. 

Fig. 4. FocusNET architecture. The network receives an input hologram of 1024 × 1024 pixels, then the preprocessing stage involves a resizing layer, a data 

augmentation layer and a Fourier transform layer. After the convolutional backbone a regression head outputting a single neuron provides the predicted reconstruction 

distance of the hologram. 
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Table 1 

The best values found for the model hy- 

perparameters. 

Hyperparameter Value 

Training Epochs 500 

Batch Size 64 

Initial Learning Rate 0.001 

Changing Epoch 450 

Unchanging Period 100 

Decay 0.1 

Size Factor 4 

Dropout Rate 0.2 

Distance Unit mm 

Resizing 256 × 256 

Fourier Transform Feature Amplitude 

s  

s  

t  

d  

i  

t  

t  

h

 

r  

i  

b  

p  

t  

o  

i  

o  
ruth value z ; thus, the model’s loss function is given by Eq. (6) . 

𝑆𝐸 

(
𝑧, 𝑧 𝐹𝑍 

)
= 

1 
𝑁 

𝑁 ∑
𝑖 =1 

(
𝑧 − z FN 

)2 
. (6)

In Eq. (7) , N is the total number of holograms processed in each

atch. In this proposal, a batch size N = 64 has been set for training.

omplex loss functions, including the computation of the information

f the reconstructed image instead of only the reconstruction distance,

ould improve network training. However, these methods require larger

atasets and more complex network architectures. In future work, we

ill study the tradeoff between these advanced training strategies, pro-

essing time, and prediction accuracy. 

.3. Evaluation metrics and training details 

The MAE metric has been used to evaluate the model’s performance.

he MAE reports the average distance error between the model estima-

ion and the ground truth reconstruction distances. Thus, MAE provides

 physical measurement of the estimation error. 

AE 
(
𝑧, 𝑧 FZ 

)
= 

1 
𝑁 

𝑁 ∑
𝑖 =1 

||𝑧 − z FN 
||. (7) 

The model has been evaluated using the typical train-validation

pproach. The dataset is randomly split into two subsets with a ra-

io of 80:20 for training and validation. The best-performing model

s achieved using the hyperparameters presented in Table 1 . Except

or the resizing, all those hyperparameter values are adjusted empiri-

ally by evaluating the model performance with the MAE and the loss

unction (MSE) metrics on an epoch-by-epoch basis. The implemented

ethod consists of a grid search with variations in the hyperparameter

alues, starting with the less-complex (fewer parameters) combinations

nd choosing the parameters to tune for the next iteration based on
4 
ome characteristics of the training process, such as convergence rate,

tability, overfitting, and best and final values found for the metrics in

he training and validation datasets. See Supplementary 1 for further

etails. The best values for the model hyperparameters are presented

n Table 1 . "Changing Epoch" refers to the epoch when the exponen-

ial decay of the learning rate starts, and "Unchanging Period" refers to

he number of epochs where the learning rate remains unaltered before

alving its value. 

Because the purpose of FocusNET is to predict the accurate in-focus

econstruction distance without high inference times, the resizing layer

s crucial. As the size of the trained model affects this inference time, it

ecomes an important factor to consider when selecting the final best-

erformance model. Fig. 5 , panel (a) presents the model’s prediction

ime as its size increases on a batch of 50 holograms. The variation

f the MAE metric as a function of different model sizes is presented

n Fig. 5 , panel (b). For smaller models, overfitting is more likely to

ccur. Conversely, no significant improvement of the metric is achieved
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Fig. 5. Performance of FocusNET in terms of the number of 

parameters. (a) Inference times (seconds) of the proposed net- 

work at different model sizes. (b) Errors attained (MAE) at dif- 

ferent model sizes. 

Fig. 6. Training history for the best FocusNET model. (a) Complete MAE history. (b) Zoom in MAE history. (c) Complete loss (MSE) history. (d) Zoom in MSE history. 

Table 2 

Quality metrics of FocusNET. 

Metric Training Validation 

MSE (mm 

2 ) 0.0019 0.0070 

MAE (mm) 0.034 0.064 
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or larger models. From these results, choosing the 256 × 256 model

third from left to right) is adequate, as it has the lowest combination of

raining and validation MAE values. The model using this resizing value

resents a better generalization while reducing inference time. 

All the models have been trained using the Apolo high-performance

omputer provided by Universidad EAFIT [38] . The acceleration node

s powered by three NVIDIA V100 GPUs of 32GB each [39] . The train-

ng time varied from 2 h for the less-complex models with fewer epochs

o 16 h for the largest models. FocusNET has been trained with the hy-

erparameters presented in Table 1 ; the training history is displayed

n Fig. 6 . Panel (a) presents the complete MAE training history and

anel (b) from 150 to 500 epochs. Panel (c) shows the complete loss

istory (MSE) and panel (d) a zoom in from 150 to 500 epochs. This

istory shows a healthy training process that presents a higher variance

t the beginning and then progressively stabilizes with each iteration.

fter 400 epochs, the metrics for training continue decreasing, but the

nes for validation stop decreasing, causing the series to diverge. At that

oint, the training process is stopped to avoid overfitting. The results for

SE and MAE metrics are presented in Table 2 . 

. Results 

.1. Validation: test dataset 

Three random images are initially selected from the validation

ataset and then reconstructed based on the FocusNET predicted re-

onstruction distances. The intensity information of the samples is pre-
5 
ented in Fig. 7 : human saliva specimens in panel (a), a plastic circle

n panel (b), and epithelial cheek cells in panel (c). The standard devia-

ion of the measurements provided by FocusNET over these holograms

s 54 μm. The predicted reconstruction distance allows the proper ob-

ervation of details of the sample, as can be observed in the zoomed-in

reas of Fig. 7 . 

Two random holograms have been picked from the validation dataset

o study the quality of the retrieved images. Table 3 , Figs. 8 and 9 present

he results. 

Fig. 8 shows the intensity reconstruction for the optical fiber sam-

le with the reconstruction distance predicted by FocusNET [panel (a)]

nd using the ground truth reconstruction distance [panel (b)]. In the

oomed-in area of the FocusNET prediction, one can observe diffrac-

ion effects at the edge of the sample due to the focusing distance error

observe the green arrow). These effects are not present in the recon-

truction presented in panel (b). For a better comparison, panels (c) and

d) present horizontal (c) and vertical (d) intensity profiles of the opti-

al fiber denoted by orange for the FocusNET reconstruction and blue

or the ground truth reconstruction lines. The FocusNET-yielded recon-

truction presents more diffraction effects resulting in a narrower fiber

rofile. Nevertheless, the measured width of the fiber only differs by six

ixels, corresponding to approximately 6 μm (panel (d)). Also, the back-

round (BG) noise is approximately the same for both reconstructions,

nd the normalized gradient in the fiber’s edge is higher in the ground

ruth as the edge is sharper than the FocusNET reconstruction. 

Fig. 9 presents the intensity reconstruction of a fly’s leg hologram

ith the FocusNET reconstruction distance [panel (a)] and with the

round truth distance [panel (b)] where the tarsal claws are focused

 z = 2.38 ± 0.05 mm). One interesting effect can be observed in this

econstruction: several in-focus planes can be found. The ground truth

istance is relative depending on which part of the sample is observed.

or instance, this kind of sample presents a range of well-focused values.

f the purple area is analyzed, more details of the sample’s hairs can be

etailed at the FocusNET distance than at the considered ground truth

istance (observe the orange arrows inside the purple square). The op-
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Fig. 7. Intensity reconstructions of three random holograms 

of the validation dataset with the FocusNET predicted recon- 

struction distances. (a) human saliva specimens, (b) plastic cir- 

cle and (c) epithelial cheek cells. 

Table 3 

FocusNET prediction for two random holograms. 

Sample Prediction time (s) FocusNET distance (mm) Reconstruction distance [visual inspection] (mm) Label distance [ground truth] (mm) 

Optical fiber 0.10 ± 0.02 2.055 ± 0.054 2.10 ± 0.05 2.10 ± 0.01 

Fly’s leg 0.10 ± 0.02 2.308 ± 0.054 [2.26 - 2.38] ± 0.05 (several focal planes) 2.38 ± 0.01 

Fig. 8. Intensity reconstruction of the fiber hologram at the FocusNET predicted distance (a) and ground truth reconstruction distance (b). Crossed sections of the 

fiber reconstruction with the ground truth distance (blue) and the FocusNET distance (red) at x axis (c) and y axis (d). 

Fig. 9. Intensity reconstruction of the fly’s leg hologram at the 

FocusNET predicted distance (a) and ground truth reconstruc- 

tion distance (b). 
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e  
osite occurs for the area enclosed by the green square. More details are

bserved with the ground truth distance than with the FocusNET-based

econstruction. This result concurs with what is stated in [40] : the accu-

acy of the autofocusing models depends on the studied sample. When

onsidering the proper reconstruction distance of this hologram after

isual inspection, FocusNET predicts its in-focus reconstruction with no

rror (see Table 3 ). 
6 
.2. Validation with holograms acquired with different DLHM setups 

FocusNET has been trained with a dataset containing holograms ac-

uired with a single DLHM geometry ( 𝑳 𝑭 𝑵 

= 18 . 8 ± 0 . 1 𝒎 𝒎 , 𝑾 𝑭 𝑵 

=
3 . 3 𝒎 𝒎 , 𝒌 𝑭 𝑵 

= 2 𝝅∕ 𝝀𝑭 𝑵 

= 9 . 9 𝜇𝒎 

−1 ). Therefore, the predicted distance

 FN corresponds to holograms registered with those geometrical param-

ters. For instance, considering a hologram 𝑰 registered with a different
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Table 4 

FocusNET prediction values for an experimental hologram with different DLHM optical parameters. 

Sample L (mm) W (mm) 𝜆(nm) Ground truth z (mm) NA NA difference FocusNET raw Z FN (mm) FocusNET corrected z (mm) 

Red blood cells 8.0 4.71 532 0.730 ± 0.005 0.31 ± 0.01 0.02 ± 0.01 1.373 ± 0.054 0.7135 ± 0.055 

Amplitude positive USAF test 16.5 3.30 405 10.50 0.10 ± 0.01 0.23 ± 0.01 2.727 ± 0.054 10.550 ± 0.055 

FocusNET setup 18.8 13.3 632.8 – 0.33 ± 0.01 – – –
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Table 5 

Conventional autofocusing 

methods and FocusNET com- 

puting times for the optical 

fiber hologram. 

Method Time (s) 

Dubois 57.1 ± 0.1 

Gradient 60.7 ± 0.1 

Power spectra 69.1 ± 0.1 

Variance 64.4 ± 0.1 

FocusNET 0.1 ± 0.02 
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LHM geometry ( 𝑳 , 𝑾 , 𝒌 ) , the recovered information of the sample is

iven by Eq. (3) . The reconstruction distance of the hologram I , with its

riginal reconstruction parameters is z i . If the FocusNET parameters are

sed to reconstruct this hologram, the information of the sample can be

ound through Eq. (8) . 

 

( →
𝒓 0 𝑭 𝑵 

)
= ∫

𝒔 𝒆 𝒏 𝒔 𝒐 𝒓 

𝑰 

exp 
[ 
− 𝒊 

→
𝐤 𝐅𝐍 ⋅

→
𝒓 𝑭 𝑵 

] 
||||

→
𝒓 𝑭 𝑵 

||||
exp 

[ 
− 𝒊 

→
𝐤 𝐅𝐍 ⋅

( →
𝒓 𝑭 𝑵 

− 

→
𝒓 0 𝑭 𝑵 

)] 
||||
( →
𝒓 𝑭 𝑵 

− 

→
𝒓 0 𝑭 𝑵 

)||||
𝐝

Let us impose that the information of the sample retrieved with

he original geometrical recording parameters ( ⃗𝒓 𝐚𝐧𝐝 ⃖⃖⃗𝒓 0 , [ 𝑳 𝒊 𝐚𝐧𝐝 𝒛 𝒊 ] )
s the same as the one recovered with the FocusNET parameters

 ⃖⃖⃖⃖⃖⃖⃖⃗𝒓 𝑭 𝑵 

𝐚𝐧𝐝 ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝒓 0 𝑭 𝑵 

, [ 𝑳 𝑭 𝑵 

𝐚𝐧𝐝 𝒛 𝑭 𝑵 

] ). This means that the magnification of

he DLHM hologram in both geometries is the same. 

 𝐅𝐍 = 

𝑳 𝑭 𝑵 

𝒁 𝑭 𝑵 

= 𝑴 = 

𝑳 𝒊 

𝒛 𝒊 
(9)

The latter assumption is valid if there is a slight numerical aper-

ure difference between the geometries. In this proposal, the validity

f Eq. (10) has been tested up to a 0.23 numerical aperture difference.

rom Eq. (9) , the reconstruction distance with the actual geometrical

LHM parameters (without considering the illumination wavelength 𝝀)

an be found from the FocusNET reconstruction distance. 

 𝒊 = 

𝑳 𝒊 

𝑳 𝑭 𝑵 

𝒁 𝑭 𝑵 

(10)

Moreover, to retrieve the full same sample information, including 𝝀,

q. (12) must be fulfilled. 

exp 
[ 
− 𝒊 

⇀
𝐤 𝐅𝐍 ⋅

→
𝒓 𝑭 𝑵 

] 
||||

→
𝒓 𝑭 𝑵 

||||
exp 

[ 
− 𝒊 

⇀
𝒌 𝑭 𝑵 

⋅
( →
𝒓 𝑭 𝑵 

− 

→
𝑟 0 FN 

)] 
||||
( →
𝑟 FN − 

→
𝑟 0 FN 

)||||
= 

exp 

[ 
− 𝑖 

⇀
𝑘 ⋅

→
𝑟 

] 
||||
→
𝑟 
||||

exp 

[ 
− 𝑖 

⇀
𝑘 ⋅

(→
𝑟 − 

→
𝑟 0 

)] 
||||
(→
𝑟 − 

→
𝑟 0 

)||||
. (11) 

Because the phase factors in (11) must be equal on both sides of the

quation, then z of the actual DLHM setup is found, Eq. (13). 

 𝑖 = 2 𝐿 − 

𝜆

𝜆𝐹𝑁 

(
2 𝐿 𝐹𝑁 

− 𝑍 𝐹𝑁 

)
(12)

From this analysis, the following procedure must be followed to ob-

ain the reconstruction distance of a DLHM hologram, regardless of its

hysical recording parameters. 

(i). FocusNET predicts the reconstruction distance Z FN . 

(ii). To fulfill the magnification assumption, Eq. (10) is applied over

he distance found in i), and z i is computed. 

(iii). Then, Eq. (12) must be applied. If the wavelength, 𝜆 = 𝜆𝐹𝑁 

,

hen this step can be avoided. 

Two holograms acquired with different DLHM setups and diverse

amples have been studied to validate the latter analysis. The sample

ontains red blood cells (RBC) and an amplitude USAF target. The DLHM

etup and the reconstruction distance results are displayed in Table 4

ogether with the NA difference between the experimental setup and
7 
he FocusNET setup. In Table 4 , the FocusNET dataset parameters are

lso presented for comparison purposes. 

The amplitude and phase reconstructions of the red blood cells sam-

le are presented in Fig. 10 . Despite the prediction difference against the

isually attained ground truth, the amplitude reconstruction, panel (b)

n Fig. 10 , allows the identification of the cells. This sample was recorded

ith a numerical aperture of 0.31, yielding a 0.85 μm lateral resolution.

or this sample, the phase map obtained with the FocusNET predicted

econstruction distance also allows the visualization of the cells with

ome deformations. The phase changes inside the cells allow observing

he typical donut-like shape of these specimens, as can be observed in

he 3D phase maps of panels (c) and (d). 

A hologram of a USAF target is also tested to observe the spatial

requency loss due to defocus. The DLHM geometry used to record this

ologram is presented in Table 4 . The NA of this setup is approximately

.10, implying a system with a 2.03 μm of lateral resolution. This resolu-

ion can be corroborated by correctly visualizing the USAF test target’s

lement 7–6 (2.2 μm, according to the manufacturer). Fig. 11 shows the

econstruction of the hologram. Panel (a) depicts the amplitude informa-

ion of the sample reconstructed using the FocusNET corrected distance,

nd panel (b) shows the reconstruction at the ground truth distance. As

an be observed in the orange zoomed-in areas, element 7–6 of the USAF

arget can be retrieved in the FocusNET prediction, as it is obtained with

he ground truth reconstruction. The latter validates FocusNET regard-

ng the proper recovery of spatial frequency information. 

.3. Comparison with conventional autofocusing algorithms 

The main advantage of FocusNET is the computing time required to

etrieve the proper reconstruction distance. Once the model is trained,

he reconstruction distance prediction is highly efficient. As no numeri-

al reconstructions are needed, changing plane-by-plane reconstruction-

ased methods (stack methods) for a one-time kernel-image multipli-

ation significantly reduces the computational complexity of the pro-

osal when compared to the conventional approaches. Dubois, Gradient-

ased, Power spectra, and variance are the conventional methods to

alidate the latter assumption [12] . The hologram of the optical fiber

resented in Fig. 8 is used for this experiment. The value of each metric

pplied to this hologram as a function of z is presented in Fig. 12 . In this

gure, the y-axis shows the normalized metrics values, and the x-axis is

n millimeters. The distance at which the minimum value is attained is

he predicted reconstruction distance by the metrics. 

The prediction times obtained for the four conventional techniques

nd FocusNET are presented in Table 5 . The axial step for the stack

econstruction methods is 2 μm. All algorithms run on an intel core i7,
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Fig. 10. Amplitude reconstruction of a DLHM hologram. (a) With the ground truth reconstruction distance. (b) With the corrected FocusNET reconstruction distance. 

Phase map reconstruction of the RBC sample with (c) ground truth distance and (d) corrected FocusNET distance. 

Fig. 11. Amplitude reconstruction of a DLHM hologram of a USAF test target. (a) With the corrected FocusNET’s predicted distance. (b) With the ground truth 

reconstruction distance. 

Fig. 12. Performance of the conventional autofocusing metrics for the optical 

fiber DLHM hologram. 
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8 
ighth gen with 4 CPU cores. As can be observed, the prediction time

f FocusNET is about six hundred times faster than the average time of

he classical metrics. 

If we dive into the video-rate domain, where a series of holograms

eed to be processed sequentially in a minimal amount of time, the dif-

erence becomes even more prominent. A deep learning-based autofo-

using approach can handle batch inference and is highly parallelizable,

o the computation time does not increase linearly with the number of

nputs, as opposed to the conventional techniques, in which it would

e much harder to implement the same level of parallelism. A batch of

0 validation holograms has been tested to prove the latter with Focus-

ET and the Dubois metric. To test the Dubois metric with the batch of

olograms, a parallelized loop is implemented in MATLAB; each holo-

ram is independently reconstructed for each reconstruction distance.

s these processes are not sequential, the computing tasks can be easily

plit into each CPU core. Both algorithms run in a 4 CPU intel core i7

omputer. Table 6 presents the prediction time required by the meth-

ds. The prediction time with FocusNET for a batch of 10 holograms is

bout 1.200 times faster than the Dubois-based method in a machine

ithout GPU. These values enable accurately reconstructing in-focus

LHM holograms at video rates. The latter is confirmed when FocusNET
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Table 6 

FocusNET and Dubois autofocusing methods 

for a batch of ten holograms. 

Method Total prediction time (s) 

Batch Dubois 541 ± 1 
Batch FocusNET 0.44 ± 0.02 
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s tested using a Mac’s M1 chip powered by a GPU unit. In this case, the

rediction time for a single hologram decreases to 58 milliseconds, and

or a batch of 50 holograms, the whole prediction time goes down to

20 milliseconds, this means 8.4 milliseconds per single hologram of

024 × 1024 pixels. 

The remarkable performance of FocusNET compared to conventional

pproaches is valid under the network’s trained and modeled conditions,

ay, reconstruction distances ranging from 0.3 mm to 4.8 mm and nu-

erical apertures ranging from 0.1 to 0.33, no matter the imaged speci-

ens. If one desires to implement FocusNET in different conditions, the

etwork training time and data collection steps will increase the overall

xecution time of the proposal. 

. Conclusions 

This paper reports on a regression learning-based autofocusing

odel, FocusNET, to attain the in-focus reconstruction distances of

LHM holograms. The model is built doing a data augmentation stage

ollowed by a two-channel input including the amplitude of the Fourier

ransform of the raw DLHM holograms, and a convolutional backbone

omposed of convolutional layers ending in a conventional regression

ead. The model is trained with DLHM holograms recorded with a spe-

ific geometrical setup in which the sample location ranges from 0.3 mm

o 4.8 mm, with a numerical aperture of 0.33. The dataset, training al-

orithms and the trained FocusNET model are available on the public

itHub repository https://github.com/mmonto95/focusnet . FocusNET

redicts reconstruction distances leading to focused phase and ampli-

ude images of the samples with a standard deviation of 54 μm for DLHM

olograms of the validation dataset. The difference between the pre-

ictions provided by FocusNET and the visually attained ground truth

istances is relative, as some samples may present different in-focus

lanes, as this study corroborates. A physical-mathematical model is also

rovided to correct the predicted FocusNET reconstruction distance of

LHM holograms acquired at different recording conditions. This strat-

gy is validated with holograms of a biological sample and a USAF test

arget, yielding successful results at the autofocusing task, demonstrat-

ng the proposed learning-based method’s generalization to different

amples and setups. Compared to conventional autofocusing methods

 Dubois, spectrum-based, variance-based, gradient-based –considering

nly the prediction time, FocusNET is 600-time faster in predicting

he correct reconstruction distance of single holograms and 1200-time

aster for hologram batches without any stack numerical reconstruc-

ions. Therefore, FocusNET paves the way to autofocusing video-rate

pplications of DLHM, facilitating the usability of the technique in

otility analysis for microorganism tracking and cell counting, among

thers. 
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