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Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia, 28Department of Medicine and

Therapeutics, Chinese University of Hong Kong, Hong Kong, China, 29Department of Psychiatry and Center for Mind, Brain

and Behaviour, University of Marburg, Marburg, Germany, 30 Institute of Psychology, University of Gdańsk, Gdańsk, Poland,
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We organized 10Kin1day, a pop-up scientific event with the goal to bring together

neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI

connectivity datasets during a 3-day workshop. In this report, we describe the motivation

and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome

maps of the human brain.

Keywords: MRI, connectome analysis, diffusion weighted MRI, brain, network

Ongoing grand-scale projects like the European Human Brain
Project (1), the US Brain Initiative (2), the Human Connectome
Project (3), the Chinese Brainnetome (4) and exciting world-
wide neuroimaging collaborations such as ENIGMA (5) herald
the new era of big neuroscience. In conjunction with these

major undertakings, there is an emerging trend for bottom-up
initiatives, starting with small-scale projects built upon existing
collaborations and infrastructures. As described by Mainen et al.
(6), these initiatives are centralized around self-organized groups
of researchers working on the same challenges and sharing
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interests and specialized expertise. These projects could scale
and open up to a larger audience and other disciplines over
time, eventually lining up and merging their findings with other
programs to make the bigger picture.

10KIN1DAY

One type of event that fits well with this grass-roots
collaboration philosophy are short gatherings of scientists
around a single theme, bringing together expertise and tools
to jointly analyze existing neuroscience data. We organized
10Kin1day, an MRI connectome event, with the goal to bring
together an international group of researchers in the field of
neuroimaging and consistently analyze MRI connectivity data
of the human cerebrum. We organized the event around five
founding principles:

• use existing neuroimaging data, available from many research
groups around the world; we focused on diffusion MRI data
and aimed to bring together 10,000+ datasets

• analyze data from varying cohorts and imaging protocols,
using a single, straightforward analysis strategy to encourage
across-group collaborations and multisite studies

• perform all processing during a short workshop, with only
basic expertise of analysis needed

• provide education on how to analyze resulting connectome
data, so participants can continue to work on their projects
after the event

• each participant analyzes their own data and is free to decide
what to do with their analyzed results

THE 10K WORKSHOP

Over 50 participants from 40 different neuroimaging groups
gathered in The Netherlands for a 3-day event. Participants
brought and worked on their own datasets, varying from MRI
data on healthy human brain organization, cross-sectional and
longitudinal brain development, aging, cognitive psychology, as
well as MRI data of a wide range of neurological and psychiatric
brain disorders (including among others: Schizophrenia, Mood
Disorders, Alzheimer’s Disease, Mild Cognitive Impairment,
Amyotrophic Lateral Sclerosis, Frontotemporal Dementia,
Epilepsy and Parkinson’s Disease). Written informed consent of
the included healthy controls and/or patients was obtained by
each of the participating researchers at their local institute. 10 TB
online storage space and 50,000+ CPU hours was reserved on
the Cartesius supercomputer of the collaborative Information
and Communication Technology (ICT) organization for Dutch
education and research (SURF, https://surfsara.nl/) to analyze the
data during the workshop. Workshop participants performed
data quality checks on their data 1 week before the event after
which they uploaded the MRI data (Diffusion Weighted Images
(DWI) and pre-processed T1 data, see Materials and Methods)
to their own user account on the supercomputer. During the
workshop, participants were brought up to speed on DWI
processing, connectome construction (see section Materials and
Methods for details on the performed analysis), and running
parallel jobs on a supercomputer. Together, a total of 15,947

MRI datasets were processed into anatomical connectome
maps, with each output dataset including connectivity matrices
with different types of connection weights and multiple
parcellation resolutions (Figures 1A,B). Data processing was
paralleled by interactive educational talks and workshops on
connectome analysis.

OPEN DATA

In line with the collaborative nature of the event, the
10K group discussed making the connectome maps available
to the scientific community for non-commercial use, free
of restrictions. We include herein the resulting individual
connectome maps of 8,000+ connectome datasets across an
age range of 0–90 years, with five different edge weights
[number of traced streamlines (NOS), streamline density (SD),
fiber length, fractional anisotropy (FA), and mean diffusivity
(MD)] at three parcellation resolutions (80+ cortical and
subcortical regions, 100+ and 200+ cortical regions, see section
Materials and Methods for details). Connectome maps are
presented anonymously and blinded for participation site,
together with basic demographics (age in bins of 5 years,
gender, patient/control status, Figure 1). Data is presented under
the Non-Commercial Common Creative (CC BY-NC) license,
free for all scientists to use in a non-commercial setting. A
download request can be made at dutchconnectomelab.org for
a download link to the data. Data for download includes
connectivity matrices with five connectivity weights (NOS, FA,
MD, fiber length, SD) at three atlas resolutions, information on
the cortical and subcortical nodes, blinded group site and subject
demographics (gender, age in 5 year bins, case/control).

CONCLUDING WORDS

We performed a few first analyses on the joint dataset, including
cross-site consistency, comparison to Human Connectome
Project (HCP) data and a first examination of effects of age
(see Materials and Methods for more detail). We observed a
high average consistency across sites with an average cross-
site overlap of 92% (sd:0.0251) and a cross-site correlation of
FA weights r = 0.88 (sd:0.0958), as well as a high consistency
of the 10K group averaged matrix with data derived from the
high-quality HCP, with at least 69% of pathways identified in
HCP also observed in the 10K set and with 98% of all non-
existing connections in HCP verified in the 10K set (Figure 1C).
Furthermore, the distribution of weights across reconstructed
connections is highly similar across the two datasets (FA weights,
r = 0.93, p < 0.0001, Figure 1C). Age analysis shows clear
developmental patterns of cortical morphology (Figure 1E) and
white matter microstructure across age. Analysis of inverse
MD showed rapid growth of microstructure in early years,
with continuing development throughout adolescence, peaking
around the beginning of the third decade, followed by a steady
pattern of decline throughout aging (Figure 1D).

We acknowledge that there are many shortcomings to the
presented MRI connectome dataset. Besides general, inherent
limitations of diffusion MRI (7), the presented dataset is a
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FIGURE 1 | (A) For each dataset, DWI tractography was combined with T1-based parcellation of cerebral brain regions to reconstruct a brain network. (B)

Group-averaged (group threshold 33%) FA matrix of the 10K dataset. (C) High overlap (r = 0.93) between group-averaged FA values as derived from high-resolution

HCP data and the 10K dataset. (D) Relationship between age and average inverse mean diffusivity (MD, sec/mm2) across the 10K dataset. Colors indicate the

different included datasets. Insert shows a pie diagram of the size of included datasets, color coded to set participation. One dataset (set_634413) was excluded from

this plot, showing (across the age span) deviating FA (lower) and MD (higher) values than the other datasets (see methods). Due to the high total n, excluding this

dataset did not change the relationship with age. (E) Relationship between age and average cortical thickness (CT). (F) Age distribution of the presented data as in

(D,E). T1, anatomical MRI; DWI, diffusion weighted imaging; CT, cortical thickness.

collation of data from a wide variety of groups, acquired with
different scanners, different scanning protocols, varying data
quality etcetera, and includes data from a mixture of different
patient and control populations. While these limitations place
constraints on the type of investigations that one can perform
with such collated multi-site datasets, we are optimistic that
the 10K dataset can be used as a large reference dataset for
future studies, enabling many technical and neuroscientific
research questions to be addressed (e.g., Figure 1). As such,
we hope that the presented data will be of use to the
neuroscience community in the examination of the human
connectome. Above all, we hope that our report will inspire
others to organize exciting 10Kin1day-type of events in the
near future, bringing together existing neuroimaging data and
further catalyze open neuroimaging research of the healthy and
diseased brain.

MATERIALS AND METHODS

A total of 42 groups (52 participants) participated in the
workshop, some working on multiple datasets. Each dataset

included a diffusion MRI scan and T1 MRI scan processed
using FreeSurfer (8). Datasets across groups included data
from 1.5 and 3 Tesla MRI with varying scanner protocols and
number of applied DWI gradients. Data included MRI data
of healthy participants and patients with a neurological or
psychiatric disorder. Twenty-three groups were able to make
their data available, making a total of 8,000+ connectome maps
publicly available through means of this report. Reconstructed
connectome maps are presented anonymously, coded for
participation site and disease condition(s). Basic demographics
of the datasets are included in the download set.

DWI Preprocessing
DWI datasets were corrected for susceptibility and eddy current
distortions using the open tools from the FMRIB Software
Library (FSL, http://fsl.fmrib.ox.ac.uk). Depending on their DWI
dataset, participants preprocessed their data using the FSL
eddy_correct or eddy tool. For those DWI sets that included a
subset of scans with an opposite k-space read out, an additional
field distortion map was formed and applied to the DWI
images (9).

Frontiers in Neurology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 425



van den Heuvel et al. 10Kin1day

Cortical Parcellation
Before the event, the participants created FreeSurfer files based
on their T1 images, with this output being subjected to
varying degrees of quality control. The resulting parcellations
of the cerebrum were used to select the regions of interest
for the connectome reconstruction. The 68 cortical regions of
FreeSurfer’s standard Desikan-Killiany Atlas (10, 11) as well
as 14 subcortical regions were selected as network regions.
Additionally, FreeSurfer files were used to further parcellate the
cortex into 114 and 219 regions, respectively using the Cammoun
atlas (12).

Fiber Reconstruction
After preprocessing of the DWI data, in-house developed scripts
were used to fit a diffusion tensor to the diffusion signal in
each voxel of the white matter mask (selected based on the
white matter segmentation map of the FreeSurfer files) using
robust tensor fitting (13). Simple Diffusion Tensor Imaging (DTI)
reconstruction was used due to its robustness and relatively low
sensitivity to false positive reconstructions compared to more
advanced reconstruction methods (14), and thus potentially
being the least distorting solution for connectome reconstruction
and analysis based on MR imaging data (15). Decomposition
of the tensor into eigenvectors and eigenvalues was used to
select the main diffusion direction in each voxel, and to compute
fractional anisotropy (FA) and mean diffusivity (MD) (16).
Deterministic fiber tractography was used to construct large-scale
white matter pathways. Eight seeds (evenly distributed across the
voxel) started in each white matter voxel, and fiber streamlines
were formed by following the main diffusion direction from
voxel to voxel using the fiber assignment by continuous tracking
(FACT) algorithm (17), until one of the stopping criteria was
met. A streamline was stopped when (1) it hit a voxel with an
FA<0.1, (2) went out of the brain mask, or (3) made a turn
>45 degrees.

Connectome Reconstruction
A connectome map was made by combining the (sub)cortical
parcellation map and the set of reconstructed fibers using
commonly described procedures [see (18–21)]. For each of
the Cammoun Desikan-Killiany parcellation maps (i.e., 14+68,
14+114, and 14+219 regions, respectively), the total collection
of reconstructed fiber streamlines was used to assess the level
of connectivity between each pair of (sub)cortical regions,
represented as the connectivity matrix CIJ. (Sub)cortical regions
were selected as the nodes of the reconstructed network, and
for each combination of region i and region j where fiber
streamlines touched both regions a connection (i.e., network
edge) was included in cell CIJ(i,j) in the connectivity matrix.
Five different types of strength of a connection were computed
and included as edge strength: (1) the number of reconstructed
streamlines (NOS) between region i and j, (2) the average
FA of the voxels traversed by the reconstructed streamlines,
(3) the average MD of the reconstructed streamlines, (4)
the average length of the reconstructed streamlines and (5)
streamline density computed as the number of reconstructed

streamlines corrected for the average volume of region i and
region j (18, 19).

Outliers
A total of 15,947 connectome maps were analyzed across the
participating groups. Of the datasets that could be shared, 197
were detected as outliers (and were subsequently removed from
the dataset). Outliers were detected automatically by testing per
dataset and for each connectome map their average connection
strength and their distance to the group average prevalence
map. The average connection strength of a connectome map
was calculated for each of the five connection weights as the
mean of the strengths over all existing (nonzero) connections.
To measure the presence of odd connections or absence of
common connections in a connectome map, we constructed a
group prevalence matrix for each dataset, counting per node
pair how many times an edge was observed across the group
of subjects in the dataset. For each connectome map the total
prevalence of all observed connections and the total prevalence
of all non-observed connections was computed. Outliers were
identified as connectome maps that displayed on any of the 7
measures (5 weight and 2 prevalence measures) a score below Q1
– 2×IQR or above Q3 + 2×IQR, with Q1 and Q3 referring to
the first and third quartile, respectively and IQR the interquartile
range IQR = Q3 – Q1. This resulted in the detection of 189
outliers in total, which were excluded from the dataset. One
complete dataset (set_634413, n=584) showed across all included
individual sets an average lower FA / higher MD as compared
to the other datasets and this set was excluded from the age
curves shown in Figure 1. Due to the high overall sample size,
including or excluding this dataset did not change the shape of
the final plot.

Cross-Site Comparison
Datasets across sites were compared by computing for each site
a group average connectome map (group threshold 60%) and
comparing the group average connectivity matrices across each
of the sites. Cross-site overlap was computed as the percentage of
overlap of the binary matrices and as the correlation between the
non-zero elements of the FA group-average matrices.

Comparison to HCP
To test the validity of the 10K dataset, we compared the group
average matrix of the 10K set to the group average matrix of
data from the Human Connectome Project (HCP) (3). First,
for the 10K dataset, a group average FA matrix was computed,
by including those edges that were observed in at least 33%
of the group (i.e., a group threshold of 33%, >2700 subjects
showing a particular network edge). Average weight values of
the included edges were taken as the non-zero mean of those
edges across the group of subjects. Second, a similar group
average FA matrix was derived from previously analyzed HCP
data (22) (n = 487 datasets). In brief, HCP analysis included
the following steps [see (22) for more detailed information on
the HCP data analysis]. For each of the HCP DWI datasets
a connectome was reconstructed based on the minimally pre-
processed data of HCP. Given the high quality of the HCP
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data, analysis here included reconstruction of multiple diffusion
directions, allowing for the reconstruction of more complex fiber
configurations (e.g., crossing fibers) (22). Similarly as for the
10K data, across the total set of 487 datasets, an average FA
group matrix was computed, including those network edges that
were observed in at least 33% of the total population (i.e., >160
datasets) and taking the non-zero mean of FA values across
the group of subjects. Comparison between the 10K set and
the HCP dataset was computed by means of (1) counting the
number of existing connections and non-existing connections
in the 10K dataset as observed in the HCP dataset and (2) by
correlating the FA weights of the set of edges as observed in
both datasets.
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