Supplemental information

Comparative efficacy and safety of antibiotic prophylaxis for reducing recurrent urinary infection in children: A systematic review and network meta-analysis

Authors: Juan E De La Cruz-Mena, Paloma Beltrán, Mónica Gil-Artunduaga, Claudia Beltrán-Arroyave, Iván D. Florez.

Content

Contenido

Supplemental information 1. Search strategies
Supplemental information 2. Definitions
Supplemental Table 1. Excluded studies and reasons10
Supplemental Table 2. List of articles full text could not be retrieved15
Supplemental Table 3. Characteristics of Included studies
Supplemental Figure 1. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for new kidney scars
Supplemental Figure 2. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for asymptomatic bacteriuria
Supplemental Figure 3. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for antimicrobial resistance
Supplemental Figure 4. Risk of bias assessment of included studies
Supplemental Figure 5. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for adverse events
Supplemental Figure 6. Forest plot for sensitivity analysis of recurrence of UTI at 6 months including studies classified as low risk in 'overall domain'
Supplemental Figure 7. Forest plot for sensitivity analysis of recurrence of UTI at 12 months including studies classified as low risk in 'overall domain'
Supplemental Figure 8. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroup younger than 2 years
Supplemental Figure 9. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroup VUR
Supplemental Figure 10. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroup VUR in younger than 2 years
Supplemental Figure 11. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroups Recurrent UTI
Supplemental Figure 12. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroup younger than 2 years
Supplemental Figure 13. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroup VUR

upplemental Figure 14. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroup VUR in younger than 2 years	32
upplemental Figure 15. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroups Recurrent UTI	33
upplemental Figures 16. Grouped NMA for recurrence of UTI at 6 months and 12 months	34
upplemental Figures 17. League table for grouped NMA of UTI recurrence at 6 months	35
upplemental Figures 18. League table for grouped NMA of UTI recurrence at 12 months	35
upplemental Figures 19. Network plot for NMA for new kidney scar, asymptomatic bacteriuria and antimicrobial resistance	
upplemental Figures 20. League table for grouped NMA of asymptomatic bacteriuria	36
upplemental Figures 21. League table for grouped NMA of new kidney scar	37
upplemental Figures 22. League table for grouped NMA of antimicrobial resistance	38
upplemental Figures 23. Mean and standard error plot of recurrence at 6 months NMA	38
upplemental Figures 24. Mean and standard error plot of recurrence at 12 months NMA	39
upplemental Figures 25. Funnel plots for incidence of UTI at 12 months	39
upplemental information 3. Egger's test results for UTI recurrence at 12 months	10

Supplemental information 1. Search strategies.

OVID MEDLINE

- 1. urinary tract infection\$.mp. or exp Urinary Tract Infections/
- 2. vesico-ureteral reflux.mp. or exp Vesico-Ureteral Reflux/ or vesicoureteral reflux.mp.
- 3. exp Pyelonephritis/ or pyelonephritis.mp.
- 4. exp Cystitis/ or cystitis.mp.
- 5. or/1-4
- 6. exp Antibiotic Prophylaxis/
- 7. (antibiotic\$ adj2 prophyla\$).mp.
- 8. prevent\$.tw.
- 9. exp anti-infective agents, urinary/
- 10. recurrence/ or recurren\$.tw.
- 11. exp Nitrofurantoin/ or nitrofurantoin.mp.
- 12. trimethoprim.mp. or exp Trimethoprim/
- 13. cotrimoxazole.mp. or exp Trimethoprim, Sulfamethoxazole Drug Combination/
- 14. exp Cephalosporins/ or cefprozil.mp. or cefuroxime.mp. or cefaclor.mp. or cefadroxil.mp. or cefixime.mp. or cefalexin.mp.
- 15. amoxicillin.mp. or exp Amoxicillin/
- 16. exp Clavulanic Acids/ or exp Clavulanic Acid/ or clavulan\$.mp.
- 17. or/6-16
- 18. 5 and 17

19. (Infan\$ or newborn\$ or new-born\$ or perinat\$ or neonat\$ or baby or baby\$ or babies or toddler\$ or minors or minors\$ or boy or boys or boyfriend or boyhood or girl\$ or kid or kids or child or child\$ or children\$ or schoolchild\$ or schoolchild\$.mp. or schoolchild.tw. or schoolchild\$.tw. or adolescen\$.mp. or juvenil\$.mp. or youth\$.mp. or teen\$.mp. or under\$age\$.mp. or pubescen\$.mp. or exp Pediatric\$ or pediatric\$.mp. or pediatric\$.mp. or school.tw. or school\$.tw. or prematur\$.mp. or preterm\$.mp.

- 20. random:.tw. or placebo:.mp. or blind:.mp. or randomi?ed.mp. or randomized controlled trial.pt.
- 21. 18 and 19 and 20

EMBASE

1974 to 2024 January 05

- 1. urinary tract infection\$.mp. or exp Urinary Tract Infections/
- 2. vesico-ureteral reflux.mp. or exp Vesico-Ureteral Reflux/ or vesicoureteral reflux.mp.
- 3. exp Pyelonephritis/ or pyelonephritis.mp.
- 4. exp Cystitis/ or cystitis.mp.
- 5. or/1-4
- 6. exp Antibiotic Prophylaxis/
- 7. (antibiotic\$ adj2 prophyla\$).mp.
- 8. prevent\$.tw.
- 9. exp anti-infective agents, urinary/
- 10. recurrence/ or recurren\$.tw.
- 11. exp Nitrofurantoin/ or nitrofurantoin.mp.
- 12. trimethoprim.mp. or exp Trimethoprim/
- 13. cotrimoxazole.mp. or exp Trimethoprim, Sulfamethoxazole Drug Combination/
- 14. exp Cephalosporins/ or cefprozil.mp. or cefuroxime.mp. or cefaclor.mp. or cefadroxil.mp. or cefixime.mp. or cefalexin.mp.
- 15. amoxicillin.mp. or exp Amoxicillin/
- 16. exp Clavulanic Acids/ or exp Clavulanic Acid/ or clavulan\$.mp.
- 17. or/6-16
- 18. 5 and 17

19. (Infan\$ or newborn\$ or new-born\$ or perinat\$ or neonat\$ or baby or baby\$ or babies or toddler\$ or minors or minors\$ or boy or boys or boyfriend or boyhood or girl\$ or kid or kids or child or child\$ or children\$ or schoolchild\$ or schoolchild\$.mp. or schoolchild.tw. or schoolchild\$.tw. or adolescen\$.mp. or juvenil\$.mp. or youth\$.mp. or teen\$.mp. or under\$age\$.mp. or pubescen\$.mp. or exp Pediatric\$ or pediatric\$.mp. or pediatric\$.mp. or school.tw. or school\$.tw. or prematur\$.mp. or preterm\$.mp.

- 20. random:.tw. or placebo:.mp. or blind:.mp. or randomi?ed.mp. or randomized controlled trial.pt.
- 21. 18 and 19 and 20

CENTRAL (via Ovid)

ID Search Hits

- #1 MeSH descriptor: [Vesico-Ureteral Reflux] explode all trees 191
- #2 MeSH descriptor: [Pyelonephritis] explode all trees 343
- #3 MeSH descriptor: [Cystitis] explode all trees 652
- #4 MeSH descriptor: [Urinary Tract Infections] explode all trees 3039
- #5 (urinary tract infection or cystitis or pyelonephritis or vesico-ureteral reflux):ti,ab,kw 11349
- #6 #1 or #2 or #3 or #4 or #5 12382
- #7 MeSH descriptor: [Antibiotic Prophylaxis] explode all trees 1788
- #8 MeSH descriptor: [Recurrence] explode all trees 14687
- #9 MeSH descriptor: [Nitrofurantoin] explode all trees 186
- #10 MeSH descriptor: [Cephalosporins] explode all trees 4786
- #11 MeSH descriptor: [Amoxicillin] explode all trees 3268
- #12 MeSH descriptor: [Clavulanic Acids] explode all trees 975
- #13 MeSH descriptor: [Sulfamethoxazole] explode all trees 1254
- #14 MeSH descriptor: [Trimethoprim, Sulfamethoxazole Drug Combination] explode all trees 920
- #15 MeSH descriptor: [Nalidixic Acid] explode all trees 68
- #16 (antibiotic* NEAR prophyl* or antimicrob* NEAR prophyl*):ti,ab,kw 6578
- #17 (prevent* NEAR urinary):ti,ab,kw 2208
- #18 #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 30032
- #19 #6 and #18 2838

#20 CHILD* or INFAN* or ADOLESCEN* or NEWBORN* or PRESCHOOL* or KINDERGARTEN* or NURSERY SCHOOL or ELEMENTARY SCHOOL or TEEN or TEENS or TEENAGE* or UNDERAGE* or PREEMIE* or NEONAT* or YOUTH or YOUTHS ORUNDERAGE* or BABY or BABIES or PREPUBESCEN* or PUBESCEN* or SCHOOLCHILD* or DAYCARE* or SCHOOLAGE* or BOY* or GIRL* or OFFSPRING or PAEDIATRIC* or PEDIATRIC* or JUVENIL* or TODDLER* or NURSERY or NURSERIES or HIGH SCHOOL* OT HIGHSCHOOL* or PRIMARY SCHOOL* or SECONDARY SCHOOL* 408864

#21 MeSH descriptor: [Pediatrics] explode all trees 1180

- #22 #20 OR #21 408874
- #23 #19 AND #22 in Trials 824

LILACS

(antibiotics or antibiotic prophylaxis or nitrofurantoin or trimethoprim or cotrimoxazole or trimethoprim sulfamethoxazole or cephalosporins) and (children or infant* or bab*) and (UTI or Urinary tract infection or pyelonephritis or cystitis)

Supplemental information 2. Definitions.

Definition of Antibiotic Prophylaxis

Synonyms: Continuous Antibiotic Prophylaxis (CAP), Long-Term Low-Dose Antibiotic Therapy

Antibiotic prophylaxis refers to the administration of long-term, low-dose antibiotics to prevent recurrent UTI. In this study, long-term is defined as a **minimum duration of two months, and the dosage is typically administered once daily**, resulting in a lower dose compared to standard treatment regimens.

A variety of antibiotic regimens have been described for long-term prophylaxis, including: trimethoprim/sulfamethoxazole (TMP/SMX, also known as co-trimoxazole) at 2 mg/kg/day of trimethoprim and 10 mg/kg/day of sulfamethoxazole, nitrofurantoin (1-2 mg/kg/day), cefadroxil (12.5-15 mg/kg/day), the fluoroquinolone nalidixic acid (30 mg/kg/day), and beta-lactams such as cefixime (2 mg/kg), cefadroxil (5 mg/kg), cefprozil (10 mg/kg), cefuroxime axetil (15 mg/kg), cefaclor (15 mg/kg), co-amoxiclav (15 mg/kg/day), and pivmecillinam (100-200 mg/day).

Definition of renal scarring

Following a febrile urinary tract infection (UTI) episode, parenchymal changes can occur within the kidney. These changes are identifiable on 99mTc-dimercaptosuccinic acid (DMSA) scans as photon-deficient areas, characterized by contraction and distortion of the renal cortex with loss of volume. These features often manifest 3 to 6 months after a pyelonephritis episode. However, it is crucial to differentiate renal scarring that precedes antibiotic prophylaxis (including the index infection in trials where a UTI was an inclusion criterion) and renal scarring that develops subsequently. Ideally, new kidney scars should be assessed with two DMSA scans: initially within the first 6 months of recruitment and again

during the late follow-up period (in the latter 6 months). However, this approach presents methodological challenges and is not commonly implemented in clinical trials. Therefore, in our study, new renal scarring was defined as a scar identified on a DMSA scan during late follow-up (defined by authors). DMSA scans were evaluated by experts in the field to ensure accurate identification and interpretation of scarring.

Urinary tract infection

A urinary tract infection is defined as the presence of clinical signs or symptoms (which may vary depending on age) consistent with a UTI, accompanied by confirmed bacterial growth in a urine culture.

Asymptomatic bacteriuria

Asymptomatic bacteriuria is defined as the isolation of a significant quantity of bacteria in a urine culture from a patient who does not exhibit any signs or symptoms indicative of a urinary tract infection.

Antibacterial resistance

Antibacterial resistance is defined as the in vitro growth of a bacterial isolate in the presence of an antimicrobial agent at a concentration equal to or exceeding minimum inhibitory concentration (MIC) established by the Clinical and Laboratory Standards Institute (CLSI). For pragmatical purposes antibacterial resistance was defined by each author. Cultures derived from samples other than urine (e.g., urethral, perineal and fecal samples) were excluded from the analysis.

Adverse events

Adverse events were defined as any undesirable effect on health experienced by a participant during the clinical trial, whether considered directly related to the intervention or not. In our study, AEs were defined by the individual study authors, with the most frequently encountered being mild and transient in nature. These commonly included nausea, vomiting, skin rash, and diarrhea.

Supplemental Table 1. Excluded studies and reasons.

#	Author	Journal	Title	Reason to exclude
1	Ctri 2012	Clinical Trials.gov	A clinical trial to study the effectiveness of low dose antibiotic treatment and placebo for prevention of urinary infection in children with vesicoureteric reflux	RCT registry
2	Wang 2018	The Journal of Urology	A Reanalysis of the RIVUR Trial Using a Risk Classification System	Not an RCT, a reanalysis of RIVUR trial
3	Canning 2010	Pediatrics	Antibiotic prophylaxis and recurrent urinary tract infection in children	Already included
4	Zegers 2011	BJU International	Antibiotic prophylaxis for urinary tract infections in children with spina bifida on intermittent catheterization	Different population, only patients with neurogenic bladder on intermittent catheterization
5	Hari 2013	Indian Journal of Urology	Antibiotic prophylaxis in management of vesicoureteric reflux: a double-blind placebo controlled trial	Already included
6	Nelson 2016	The Journal of Urology	Antimicrobial Resistance and Urinary Tract Infection Recurrence	Not an RCT, a reanalysis of RIVUR trial
7	Clarke 2005	The Journal of Urology	Are prophylactic antibiotics necessary with clean intermittent catheterization? A randomized controlled trial	Different population, only patients with neurogenic bladder on intermittent catheterization

8	Tamminen-Mobius 1992	Journal of Urology	Cessation of vesicoureteral reflux for 5 years in infants and children allocated to medical treatment. The International Reflux Study in Children	Not an RCT, a reanalysis of RIVUR trial
9	Akinci 2021	Urology Journal	Effect of continuous antibiotic prophylaxis in children with postoperative JJ stents: A prospective randomized study	Antibiotic only for 10 days
10	Irct20201112049368N 2020	Iranian Registry of Clinical Trials	Evaluation of various antibiotic regimens in recurrent urinary tract infections	RCT registry
11	Nadkarni 2020	The Journal of Urology	Laboratory Findings After Urinary Tract Infection and Antimicrobial Prophylaxis in Children With Vesicoureteral Reflux	Did not report outcomes of interest
12	Zegers 2010	Developmental Medicine & Child Neurology	Low-dose chemoprophylaxis and prevention of urinary tract infections in children with meningomyelocele and clean intermittent catheterization	Different population, only patients with neurogenic bladder on intermittent catheterization
13	Schlager 1998	The Journal of Urology	Nitrofurantoin prophylaxis for bacteriuria and urinary tract infection in children with neurogenic bladder on intermittent catheterization	Different population, only patients with neurogenic bladder on intermittent catheterization
14	Yiee 2012	The Journal of Urology	Prospective blinded laboratory assessment of prophylactic antibiotic compliance in a pediatric outpatient setting	Not an RCT
15	Olbing1970	Current Therapeutic	Prospective comparison between nitrofurantoin and	Not an RCT

		Research,	sulphamethoxydiazine in the long-	
		Clinical and	term therapy of children suffering	
		Experimental	from severe chronic recurrent	
			pyelonephritis	
16	Mattoo 2016	The Journal of	Renal scarring in the randomized	Not an RCT, a
		Urology	intervention for children with	reanalysis of
			vesicoureteral reflux (RIVUR) trial	RIVUR trial
17	Cara-Fuentes 2015	Pediatric	The RIVUR study: a review of its	Not an RCT, a
		Nephrology	findings	reanalysis of
				RIVUR trial
18	Mattoo 2015	Pediatric	The RIVUR trial: a factual	Not an RCT,
		Nephrology	interpretation of our data	commentary of
				RIVUR trial
19	Wang 2019	Pediatric	Why Does Prevention of Recurrent	Not an RCT, a
		Nephrology	Urinary Tract Infection not Result in	reanalysis of
			Less Renal Scarring? A Deeper Dive	RIVUR trial
			into the RIVUR Trial	
20	Johnson 1994	British Journal	A short-term study of nitrofurantoin	Only patients
		of Urology	prophylaxis in children managed	with
			with clean intermittent	neurogenic
			catheterization	bladder on
				intermittent
				catheterization
21	Nordenstrom 2015	The Journal of	The swedish infant high grade reflux	RCT
		Urology	trial-UTI and renal damage	comparing
				antibiotic
				prophylaxis to
				endoscopic
				treatment, did
				not include no
				treatment arm
22	Brandstrom 2010	The Journal of	The Swedish reflux trial in children:	Already
		Urology	I. Study design and study population	included
			characteristics	
23	Holmdahl 2010	The Journal of	The Swedish reflux trial in children:	Already
		Urology	II. Vesicoureteral reflux outcome	included

24	Brandstrom 2010	The Journal of	The Swedish reflux trial in children: III. Urinary tract infection pattern	Already included
25	Brandstrom 2010	Urology The Journal of	The Swedish reflux trial in children:	
25	Brandstrom 2010			Already
26	D: 1 2020	Urology	IV. Renal damage	included
26	Rianthavorn 2020	Pediatric	The role of antibiotic prophylaxis in	Different
		Nephrology	mild to moderate isolated	population,
			hydronephrosis detected in antenatal	only patients
			screening	with prenatal
07	L (202011120.402.00)	т ·		hydronephrosis
27	Irct20201112049368N	Iranian	Evaluation of various antibiotic	RCT registry
		Registry of	regimens in recurrent urinary tract	
• •		Clinical Trials	infections	
28	Olbing 1970	Current	Prospective comparison between	Not an RCT
		Therapeutic	nitrofurantoin and	
		Research,	sulphamethoxydiazine in the long-	
		Clinical and	term therapy of children suffering	
		Experimental	from severe chronic recurrent	
• •			pyelonephritis.	- 1.00
29	Rianthavorn 2020	Pediatric	The role of antibiotic prophylaxis in	Different
		Nephrology	mild to moderate isolated	population,
			hydronephrosis detected in antenatal	only patients
			screening	with prenatal
2.0				hydronephrosis
30	Lohr 1977	The Journal of	Prevention of Recurrent Urinary	Did not report
		Pediatrics	Tract Infections in Girls	outcomes of
	~	-		interest
31	Savage 1975	Lancet	Controlled Trial Of Therapy In	Did not report
			Covert Bacteriuria Of Childhood	outcomes of
	G 1 1005	a 11 1		interest
32	Carlsen 1985	Scandinavian	Comparison of long-term, low-dose	Did not report
		Journal of	pivmecillinam and nitrofurantoin in	outcomes of
		Primary	the control of recurrent urinary tract	interest.
		Health Care	infection in children. An open,	
			randomized, cross-over study	
33	Braga 2014	Journal of	Pilot randomized, placebo controlled	Pilot RCT.,
		Pediatric	trial to investigate the effect of	did not report
		Urology	antibiotic prophylaxis on the rate of	

			urinary tract infection in infants with prenatal hydronephrosis	outcomes of interest
34	Liern 2011	International Brazilian Journal of Urology	Recurrent urinary tract infections: Predisposing factors and antibiotic profilaxis	Did not report outcomes of interest.
35	Baciulis 2003	Medicina (Kaunas, Lithuania)	Long-term Cefadroxil prophylaxis in children with recurrent urinary tract infections	An RCT but compared cefadroxil every night versus alternate night.

Supplemental Tab	ole 2. List o	of articles full	text could not	be retrieved
------------------	---------------	------------------	----------------	--------------

#	Author/source	Year	Title			
1	Actrn	2005	A placebo controlled randomized trial of long-term antibiotics to prevent recurrent urinary tract infection in children			
2	Montini	2004	A randomised controlled trial of antibiotic prophylaxis in children with a previous documentated pyelonephritis			
3	Nct	2006	A Randomized Controlled Trial on Antibiotic Prophylaxis in Children With Vesico-Ureteral Reflux			
4	Euctr, E. S.	2014	Antibiotic Prophylaxis and Renal Damage In Congenital abnormalities of the kidney and urinary Tract			
5	Nct	2013	Antibiotic Prophylaxis and Renal Damage In Congenital Abnormalities of the Kidney and Urinary Tract			
6	Nct	2008	Antibiotic Prophylaxis in Children With Pyelonephritis			
7	Hernandez, M. E	2014	Antibiotic prophylaxis in high degree vesicoureteral reflux clinical trial and prospective, observational and multicentric study			
8	Isrctn	2007	Antibiotic prophylaxis in prevention of urinary tract infections caused by removal of a bladder catheter in children			
9	Espino, M.	2012	Antibiotic prophylaxis inhighdegree vesicoureteral reflux. Prospective, randomized and multicentric study. Preliminary results			
10	Reddy M.	1997	Antimicrobial prophylaxis in children with vesico-ureteral reflux: a randomized prospective study of continuous therapy vs intermittent therapy vs surveillance			
11	Nct	2010	Effectiveness of Antibiotics Versus Placebo to Treat Antenatal Hydronephrosis			
12	Tctr	2015	Efficacy of continuous prophylactic antibiotics in children having insignificant antenatal hydronephrosis			
13	Nct	2005	Evaluation of the Effectiveness of Antibiotic Prophylaxis in Children With a Previous Urinary Tract Infection			
14	Craig, J	2002	Long-term anitbiotics to prevent urinary tract infection in children with isolated vesicoureteric reflux: a placebo-controlled randomized trial			
15	Euctr, I. T.	2009	Management of children following acute pyelonefritis or recurrent urinary tract infection episodes and prevention of renal scarring: a prospective randomised controlled clinical trial ND			

16	Sureshkumar, P	2010	Recurrent urinary tract infections in children: Whom should we treat with prophylactic antibiotics?
17	Wald	2006	Urinary antibiotic prophylaxis may not be required in children with mild or moderate vesicoureteral reflux following acute pyelonephritis
18	Neto	1997	Use of ciprofloxacin as a prophylactic agent in urinary tract infections in renal transplant recipients
19	Nct	2005	Usefulness of Antimicrobial Prophylaxis in Children With Isolated Vesico-Ureteral Reflux
20	Umin	2009	Without antibiotic prophylaxis in children with mild vesicoureteral reflux (grade 0-2) after a first urinary tract infection. : a multicenter trial

Supplemental Table 3. Characteristics of Included studies

#	Author	Country	Mean Age months (SD)	% Previous UTI	% VUR	# patients	Interventions description	Classified in the grouped NMA as	Included outcomes
1	Hoberman 2014	USA	16 (18,55)	8,7	100	607	TMP- SMX (3 mg of TMP plus 15 mg SMX per Kg) vs placebo	Fixed antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months Kidney scars Antimicrobial resistance
2	Hari 2015	India	38,4 (32,4)	44	100	93	TMP- SMX (2 mg of TMP plus 10 mg of SMX per kg) vs no treatment	Fixed antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months Kidney scars Asymptomatic bacteriuria Antimicrobial resistance
3	Brandströ m 2010	Sweden	21,6 (2,48)	98	100	137	TMP- SMX (0,5- 1,0 mg/kg) as a first option, other allowed options	Pediatrician selected antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months Kidney scars Antimicrobial resistance

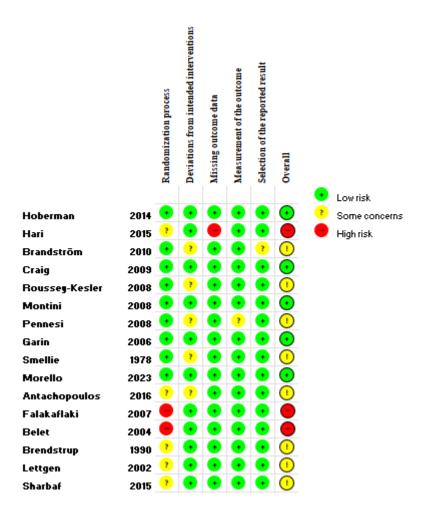
4	Craig 2009	Australia	14 (Not reported)	100	40	576	were nitrofurantoin (1 mg/kg) and cefadroxil (5 mg/kg) vs no treatment TMP- SMX (2 mg of TMP plus 10 mg	Fixed antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months
							of SMX per kg) vs placebo		Kidney scars Antimicrobial resistance
5	Roussey- Kesler 2008	France	11,2 (11,03)	Not reported	100	225	TMP- SMX (2 mg of TMP plus 10 mg of SMX per kg) vs no treatment	Fixed antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months Antimicrobial resistance
6	Montini 2008	Italy	14,7 (15,48)	0	37	338	Amoxicillin clavulanate (15mg/kg)or TMP- SMX (15mg/kg) vs no treatment	Pediatrician selected antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months Kidney scars Asymptomatic bacteriuria Antimicrobial resistance
7	Pennesi 2008	Italy	8,7 (5,64)	0	100	100	TMP- SMX (1-2 mg of TMP plus 5- 10 mg of SMX per kg) vs no treatment	Fixed antibiotic	Incidence of UTI at 12 months Kidney scars Antimicrobial resistance
8	Garin 2006	USA, Chile and Spain	55,14 (218)	Not reported	51	218	TMP- SMX (1-2 mg of TMP plus 5- 10 mg of SMX per kg) or nitrofuratoin (1.5 mg/Kg) vs no treatment	Pediatrician selected antibiotic	Incidence of UTI at 12 months Kidney scars Asymptomatic bacteriuria
9	Smellie 1978	UK	Not reported	52	Not report ed	47	TMP- SMX (2 mg of TMP plus 10 mg of SMX per kg) or nitrofuratoin (1-2 mg/Kg) vs no treatment	Pediatrician selected antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months Antimicrobial resistance
10	Morello 2023	Italy	3,3 (1,2)	0	100	292	Antibiotic agent was selected by Pediatricians. Amoxicillin	Pediatrician selected antibiotic	Incidence of UTI at 6 months Incidence of UTI at 12 months Kidney scars Antimicrobial resistance

							clavulanate		
							(15mg/kg),		
							cefexime		
							(2mg/kg),TMP-		
							SMX (2,5 mg of		
							TMP plus 5-10 mg		
							of SMX per kg) or		
							nitrofuratoin (1.5		
							mg/Kg) vs no		
							treatment		
11	Antachopo	Greece	25,75	0	Not	97	TMP- SMX (2 mg	Fixed antibiotic	Incidence of UTI at 6 months
	ulos 2016		(10,65)		report		of TMP plus 10 mg		
					ed		of SMX per kg),		
							axetil cefuroxime		
							(10 mg/kg),		
							cefprozilo (10		
							mg/kg) vs cefaclor		
10	511 01		17.6	100	10	100	(15 mg/kg)	T 1	
12	Falakaflaki	Iran	45,6	100	43	132	TMP- SMX (based	Fixed antibiotic	Antimicrobial resistance
	2007		(23,5)				on 2 mg of TMP		
							per kg) vs		
							nitrofuratoin (2 ma/Ka)		
13	Belet 2004	Turkey	65,52	100	Not	80	mg/Kg) TMP- SMX (based	Fixed antibiotic	Incidence of UTI at 6 months
15	Belet 2004	Тигкеу	(50,64)	100	report	80	on 2 mg of TMP	Fixed antibiotic	Asymptomatic bacteriuria
			(30,04)		ed		per kg) vs		Asymptomatic bacteriuna
					cu		Cefadroxil (5		
							mg/kg) or cefprozil		
							(5 mg/kg)		
14	Brendstrup	Denmark	90	100	Not	130	TMP- SMX (based	Fixed antibiotic	Incidence of UTI at 6 months
	1990		(30,11)		report		on 1-2 mg of TMP		Antimicrobial resistance
					ed		per kg) vs		
							nitrofuratoin (1-1,5		
							mg/Kg)		
15	Lettgen	Germany	61,6	100	Not	57	Cefexime (2mg/kg)	Fixed antibiotic	Incidence of UTI at 6 months
	2002		(28,12)		report		or nitrofuratoin (1-		Incidence of UTI at 12 months
					ed		1,5 mg/Kg)		

16	Beiraghi	Iran	59,5	100	92	102	TMP- SMX (based	Fixed antibiotic	Incidence of UTI at 6 months
	2011		(38,62)				on 1 mg of TMP		
							per kg) or		
							Nalidixic acid (20		
							mg/Kg)		

Supplemental Figure 1. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for new kidney scars.

Study		Ris	k Rat	tio		RR	95%-CI	Weight (common)	
Hoberman 2014			<u>.</u>			1.16	[0.69; 1.96]	27.6%	27.8%
Hari 2015		1	-	1.1		1.55	[0.37; 6.48]	3.2%	3.6%
Brandström 2010	10					0.05	[0.00; 0.87]	11.2%	0.9%
Craig 2009		87 <u>—</u>	- <u></u>			0.84	[0.28; 2.52]	7.6%	6.1%
Montini 2008		-				0.58	[0.08; 4.04]	3.0%	2.0%
Pennesi 2008			+			1.22	[0.75; 1.98]	21.1%	31.9%
Garin 2006		-	in .	-		1.38	[0.48; 3.96]	6.4%	6.7%
Morello 2023			+			1.24	[0.68; 2.24]	19.9%	21.0%
Common effect model			\$			1.05	[0.80; 1.38]	100.0%	
Random effects model			\diamond			1.15	[0.87; 1.51]		100.0%
Heterogeneity: $I^2 = 0\%$, $\tau^2 <$	0.0001,	p' = 0.5	56 ¹		1		-		
• • •	Contraction of the	0.1	1	10	100				

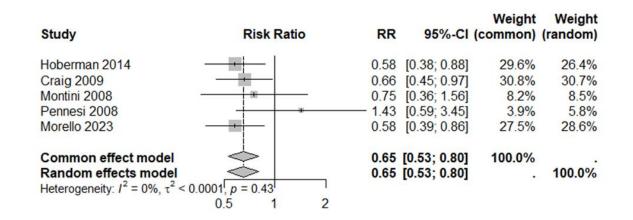

Supplemental Figure 2. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for asymptomatic bacteriuria.

Study	Risk Ratio	RR	95%-CI	Weight (common)	-
Hari 2015		0.76	[0.51; 1.14]	56.0%	50.7%
Montini 2008		0.25	[0.09; 0.70]	30.8%	34.0%
Garin 2006		0.17	[0.02; 1.35]	13.2%	15.3%
Common effect model		0.53	[0.36; 0.77]	100.0%	
Random effects model	$\langle \rangle$	0.41	[0.16; 1.08]		100.0%
Heterogeneity: $I^2 = 64\%$, $\tau^2 = 0.4$	4259, p = 0.06				
- 1841 - 18	0.1 0.5 1 2 10				

Supplemental Figure 3. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for antimicrobial resistance.

Study	Risk Ratio	RR	ç	5%-CI	Weight (common)	-
Hari 2015	+ •	6.85	[0.88;	53.51]	2.2%	7.1%
Brandström 2010		0.77	[0.30;	1.94]	19.9%	16.2%
Craig 2009		2.00	[1.02;	3.92]	26.4%	19.2%
Roussey-Kesler 2008	-	1.04	[0.39;	2.76]	16.1%	15.6%
Montini 2008		4.82	[0.61;	38.05]	2.7%	7.1%
Pennesi 2008		93.00	[5.89; 14	468.27]	1.1%	4.6%
Smellie 1978		0.53	[0.14;	1.96]	11.7%	12.3%
Morello 2023		1.78	[0.81;	3.89]	19.8%	17.9%
Common effect model		2.57	[1.84;	3.59]	100.0%	
Random effects model	\diamond	1.78	[0.92;	3.43]		100.0%
Heterogeneity: $I^2 = 61\%$, $\tau^2 = 0.4$	653, p = 0.01			(119 (14) (17) (
0.001	0.1 1 10	1000				

Supplemental Figure 4. Risk of bias assessment of included studies


Supplemental Figure 5. Forest plot Pairwise meta-analysis comparing antibiotic prophylaxis to control for adverse events

Study		Ris	sk Ra	itio		RR	9	5%-CI	Weight (common)	1 CT
Hoberman 2014			+			0.94	[0.80;	1.09]	85.5%	91.8%
Hari 2015			+			1.07	[0.52;	2.17]	5.8%	4.2%
Craig 2009		-	*			0.40	[0.13;	1.26]	5.2%	1.6%
Montini 2008			- 1			- 30.74	[1.89; 5	00.66]	0.3%	0.3%
Morello 2023			+	<u>100</u>		1.50	[0.55;	4.11]	3.1%	2.1%
Common effect model			\$			1.03	[0.89;	1.20]	100.0%	
Random effects model			4			0.95	[0.82;			100.0%
Heterogeneity: $I^2 = 56\%$, $\tau^2 <$	< 0.0001	p = 1	0.06	9	1		5.0	5.5		
	0.01	0.1	1	10	100					

Supplemental Figure 6. Forest plot for sensitivity analysis of recurrence of UTI at 6 months including studies classified as low risk in 'overall domain'

Study	Risk Ratio	0	RR	95%-CI	Weight (common)	Weight (random)
Hoberman 2014 Craig 2009 Montini 2008 Morello 2023			0.50 0.48	[0.34; 0.91] [0.30; 0.82] [0.20; 1.19] [0.30; 0.80]	29.9% 31.5% 9.4% 29.3%	30.5% 30.2% 9.2% 30.2%
Common effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, 0.2	p = 0.98 0.5 1	2 5	0.51	[0.39; 0.67] [0.39; 0.67]	100.0%	100.0%

Supplemental Figure 7. Forest plot for sensitivity analysis of recurrence of UTI at 12 months including studies classified as low risk in 'overall domain'

Supplemental Figure 8. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroup younger than 2 years

Study	Risk Ratio	RR	95%-CI	Weight (common)	22 ²
Hoberman 2014		0.56	[0.34; 0.91]	24.5%	26.6%
Brandström 2010		0.11	[0.03; 0.45]	11.2%	3.2%
Craig 2009	2	0.50		25.9%	26.3%
Roussey-Kesler 2008	-	0.89	[0.39; 2.02]	6.8%	9.6%
Montini 2008	i		[0.20; 1.19]	7.7%	8.0%
Morello 2023	- <u>+</u> -		[0.30; 0.80]	24.0%	26.3%
Common effect model	\$	0.49	[0.38; 0.63]	100.0%	21
Random effects model	\diamond		[0.40; 0.66]		100.0%
Heterogeneity: $I^2 = 22\%$, $\tau^2 < 0.0$	001, p = 0.27		-		
	0.1 0.5 1 2 10)			

Supplemental Figure 9. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroup VUR

Study	Risk Ratio	RR	95%-CI	Weight (common)	
Hoberman 2014		0.56	[0.34; 0.91]	35.9%	24.6%
Hari 2015		2.61	[0.74; 9.23]	2.7%	15.7%
Brandström 2010		0.11	[0.03; 0.45]	16.3%	14.1%
Roussey-Kesler 2008		0.89		9.9%	20.9%
Morello 2023		0.49	[0.30; 0.80]	35.2%	24.6%
Common effect model	-	0.55	[0.41; 0.74]	100.0%	
Random effects model	\rightarrow	0.60	[0.28; 1.30]	2	100.0%
Heterogeneity: $I^2 = 67\%$, $\tau^2 = 0.5$	5571, p = 0.02				
	0.1 0.5 1 2 10				

Supplemental Figure 10. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroup VUR in younger than 2

years

Study	Risk Ratio	RR	95%-CI	Weight (common)	
Hoberman 2014		0.56	[0.34; 0.91]	36.9%	40.5%
Brandström 2010		0.11	[0.03; 0.45]		4.9%
Roussey-Kesler 2008		0.89	[0.39; 2.02]	10.2%	14.6%
Morello 2023		0.49	[0.30; 0.80]	36.1%	40.0%
Common effect model	\diamond	0.49	[0.36; 0.67]	100.0%	
Random effects model	<u> </u>	0.52	[0.38; 0.71]		100.0%
Heterogeneity: $I^2 = 53\%$, $\tau^2 < 0.0$	001, p = 0.09				
	0.1 0.5 1 2 10)			

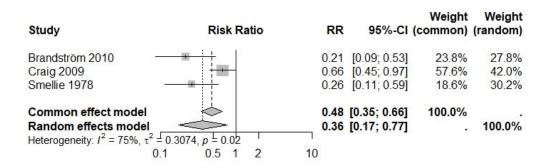
Supplemental Figure 11. Pairwise subgroup meta-analyses for incidence of UTI at 6 months. Subgroups Recurrent UTI

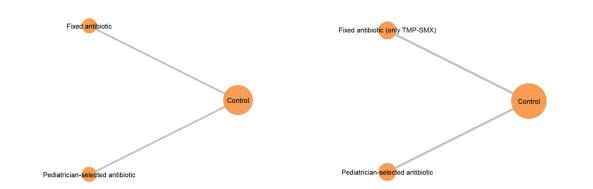
Study	Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
Brandström 2010 —	- <u>m -i i</u> -	0.11	[0.03; 0.45]	26.0%	30.1%
Craig 2009	+++	0.50	[0.30; 0.82]	60.3%	48.5%
Smellie 1978	100 - 1	0.10	[0.01; 0.71]	13.7%	21.4%
Common effect model		0.34	[0.22; 0.53]	100.0%	1217
Random effects model	\sim	0.22	[0.07; 0.73]		100.0%
Heterogeneity: $I^2 = 66\%$, $\tau^2 = 0.69$	04, p = 0.05				
	0.1 0.51 2 10				

Supplemental Figure 12. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroup younger than 2 years

Study	Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
Hoberman 2014			[0.38; 0.88]	24.2%	23.1%
Brandström 2010 -	;	0.21	[0.09; 0.53]	10.4%	4.8%
Craig 2009		0.66	[0.45; 0.97]	25.2%	26.9%
Roussey-Kesler 2008		0.62	[0.30; 1.28]	7.8%	7.6%
Montini 2008		0.75	[0.36; 1.56]	6.7%	7.4%
Pennesi 2008		1.43	[0.59; 3.45]	3.1%	5.0%
Morello 2023		0.58	[0.39; 0.86]	22.5%	25.1%
Common effect model	↓ ↓	0.60	[0.50; 0.73]	100.0%	
Random effects model	�	0.61	[0.50; 0.75]		100.0%
Heterogeneity: $I^2 = 35\%$, $\tau^2 < 0$	0.0001, p = 0.16 1 0.5 1 2	10			

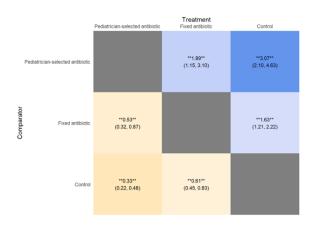
Supplemental Figure 13. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroup VUR

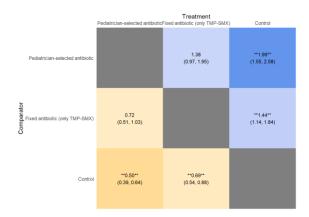

Study	Risk Ratio	RR	95%-CI	Weight (common)	
Hoberman 2014		0.58	[0.38; 0.88]	34.8%	20.8%
Hari 2015		2.94	[0.85; 10.16]	2.0%	11.2%
Brandström 2010	• · · · · · · · · · · · · · · · · · · ·	0.21	[0.09; 0.53]	15.0%	14.8%
Roussey-Kesler 2008	<u>_</u>	0.62	[0.30; 1.28]	11.3%	17.1%
Pennesi 2008	+	1.43	[0.59; 3.45]	4.5%	15.1%
Morello 2023		0.58		32.4%	21.0%
Common effect model		0.61	[0.49; 0.78]	100.0%	
Random effects model	\Leftrightarrow	0.70	[0.39; 1.24]		100.0%
Heterogeneity: $I^2 = 67\%$, $\tau^2 = 0.3$	696, p = 0.01				
0.1	0.5 1 2	10			

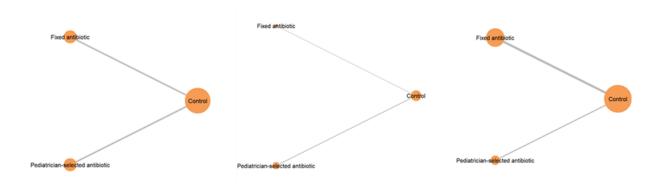

Supplemental Figure 14. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroup VUR in younger than

2 years

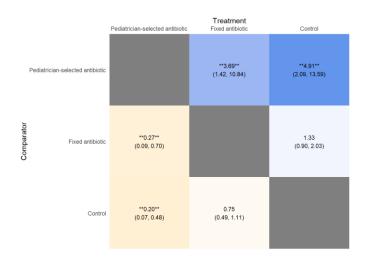
Study	Risk Ratio	RR	95%-CI	Weight (common)	
Hoberman 2014		0.58	[0.38; 0.88]	35.5%	28.4%
Brandström 2010		0.21	[0.09; 0.53]	15.3%	12.5%
Roussey-Kesler 2008		0.62	[0.30; 1.28]	11.5%	16.9%
Pennesi 2008		1.43	[0.59; 3.45]	4.6%	13.0%
Morello 2023		0.58	[0.39; 0.86]	33.0%	29.2%
Common effect model	4	0.57	[0.45; 0.72]	100.0%	
Random effects model	\diamond	0.58	[0.40; 0.85]		100.0%
Heterogeneity: $I^2 = 54\%$, $\tau^2 = 0.03$	894, p = 0.07	Ű.	R 16 (R		
0.1	0.5 1 2	10			

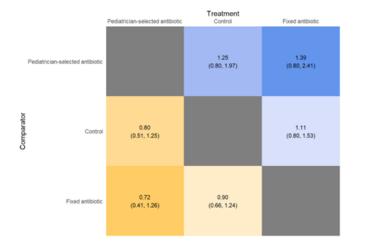

Supplemental Figure 15. Pairwise subgroup meta-analyses for incidence of UTI at 12 months. Subgroups Recurrent UTI

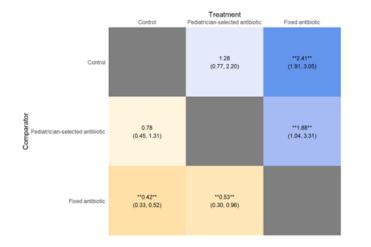



Supplemental Figures 16. Grouped NMA for recurrence of UTI at 6 months and 12 months

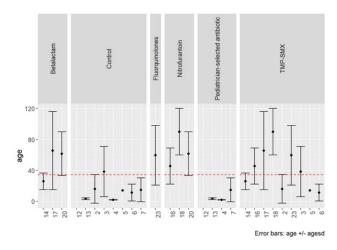
Supplemental Figures 17. League table for grouped NMA of UTI recurrence at 6 months


Supplemental Figures 18. League table for grouped NMA of UTI recurrence at 12 months

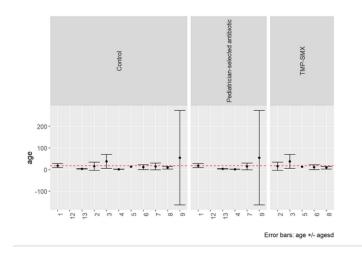



Supplemental Figures 19. Network plot for NMA for new kidney scar, asymptomatic bacteriuria and antimicrobial resistance

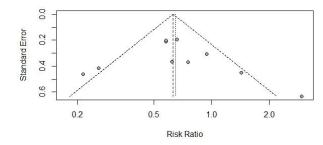
Supplemental Figures 20. League table for grouped NMA of asymptomatic bacteriuria



Supplemental Figures 21. League table for grouped NMA of new kidney scar



Supplemental Figures 22. League table for grouped NMA of antimicrobial resistance


Supplemental Figures 23. Mean and standard error plot of recurrence at 6 months NMA

Supplemental Figures 24. Mean and standard error plot of recurrence at 12 months NMA

Supplemental Figures 25. Funnel plots for incidence of UTI at 12 months.

Supplemental information 3. Egger's test results for UTI recurrence at 12 months

Linear regression test of funnel plot asymmetry Test result: t = 0.45, df = 8, **p-value = 0.6621** Bias estimate: 0.6481 (SE = 1.4283) Details: multiplicative residual heterogeneity variance (tau^2 = 2.6261)
predictor: standard error
weight: inverse variance
reference: Egger et al. (1997), BMJ