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Abstract
Consider the following simple parking process on �n := {−n, . . . , n}d , d ≥ 1: at each
step, a site i is chosen at random in �n and if i and all its nearest neighbor sites are empty,
i is occupied. Once occupied, a site remains so forever. The process continues until all
sites in �n are either occupied or have at least one of their nearest neighbors occupied.
The final configuration (occupancy) of �n is called the jamming limit and is denoted by
X�n . Ritchie (J Stat Phys 122:381–398, 2006) constructed a stationary random field on Z

d

obtained as a (thermodynamic) limit of the X�n ’s as n tends to infinity. As a consequence
of his construction, he proved a strong law of large numbers for the proportion of occupied
sites in the box �n for the random field X . Here we prove the central limit theorem, the
law of iterated logarithm, and a gaussian concentration inequality for the same statistics. A
particular attention will be given to the case d = 1, in which we also obtain new asymptotic
properties for the sequence X�n , n ≥ 1.
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1 Introduction

Parking processes, also known as random sequential adsorption models, refer to processes
in which particles are randomly introduced into a bounded domain, and are adsorbed (and
remain as such forever) only if they do not overlap with any previously adsorbed particle. A
question of interest in these models is to determine the proportion of the space that is covered
by the adsorbed particles at the end of the process (i.e., when it is not possible to absorb
more particles). Variations and generalizations of random sequential adsorption models have
received attention for their applications in the physical and chemical sciences. For an overview
and motivation, see, for instance, [8, 16]. Many analytical results have been established in
one-dimensional models (see [4, 6, 14, 16, 19]) and also in quasi-one-dimensional models
(see [1, 2]). In higher dimensions, some statistical properties have been studied via computer
simulations (see [8, 21]), however, there exist few rigorous theoretical results. In this regard,
we highlight the contributions of Penrose [17] andRitchie [20]who proved asymptotic results
for special classes of these models.

In this work, we consider a version of a parking process on the box �n :=
{−n, . . . , n}d , d ≥ 1with a simple occupation scheme. It is constructed iteratively as follows.

1: Start with all sites in �n empty.
2: A non yet chosen site in �n is chosen at random, and if all its nearest neighbors are

empty, then the site is declared occupied. Once occupied, a site remains so forever.
3: Repeat step 2 until all sites in �n have been chosen (that is, are either occupied or have

at least one of their nearest neighbors occupied).

Assigning 1’s to occupied sites and 0 to non-occupied sites, we end up with a configuration
in {0, 1}�n , called the jamming limit of �n , and denoted by X�n .

Penrose [17] proved the law of large numbers (L p-convergence) and the Central Limit
Theorem (CLT) for 1

|�n |
∑

i∈�n
X�n (i), n ≥ 0, the sequence of occupancy densities of the

jamming limits. Later on, Ritchie [20] designed an algorithm that samples X�n , and X
such that X�n → X almost surely. This X can be seen as the jamming limit on Z

d of the
parking process, and in the statistical physics terminology, it is the thermodynamic limit of
the jamming limits X�n , n ≥ 1. As a corollary of his construction, Ritchie [20] obtained the
strong law of large numbers for the sequence of occupancy densities of the jamming limits.

In the present paper, we take advantage on the construction of Ritchie [20] to obtain new
results for the proportion of occupied sites in �n for the parking process. We can split the
main contributions of the present paper into two parts: results that hold for any d ≥ 1, and
results that we were able to prove for the specific case d = 1.

For any d ≥ 1, we prove the central limit theorem (CLT) and the law of iterated logarithm
(LIL) for 1

|�n |
∑

i∈�n
X(i), n ≥ 1, the sequence of proportion of occupied sites in �n in the

thermodynamic jamming limit. We also provide a gaussian concentration inequality (GCI),
that quantifies precisely how the proportion of occupied sites deviates from its mean, in any
finite boxes �n (non-asymptotic result). The proofs of these results use the construction of
the thermodynamic limit X provided by Ritchie [20]. Indeed, his algorithm allows us to
show good mixing properties of the random field X , and then, to rely on existing results for
stationary mixing random fields. These results for d ≥ 1 should be contrasted with those
of Penrose [17]: his convergence results are obtained for the sequence free boundary boxes
X�n , n ≥ 1 while we obtain our results directly on the random field X . In other words,
we consider the proportion of occupied sites 1

|�n |
∑

i∈�n
X(i), n ≥ 1 and he considers

1
|�n |

∑
i∈�n

X�n (i), n ≥ 1.
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Finally, the above observation motivated us to present other results for the case d = 1.
Indeed, under this restriction, we are able to transpose the above results to the sequence of
proportions 1

|�n |
∑

i∈�n
X�n (i), n ≥ 1. So in particular, the LIL and GCI are new results in

this context.
The paper is organized as follows. In Sect. 2, we introduce some notation, explain the

construction of Ritchie [20] and state our main results. The proofs are given in Sect. 3.

2 Definitions and Notation

2.1 Notation

Throughout this paper we use the following notation. Let 0 := (0, . . . , 0)denote the origin
of Zd . For i ∈ Z

d , let ‖i‖ denote the Euclidean norm of i . Given two sites i, j ∈ Z
d ,

we say that they are nearest neighbors if ‖i − j‖ = 1, denoted by i ∼ j . For A ⊂ Z
d ,

we denote by |A| the number of elements of A and by ∂A the boundary of A, that is,
∂A = {i ∈ A : there exists j /∈ A and i ∼ j}. Notation�n(i) := { j ∈ Z

d : ||i− j ||max ≤ n}
stands for a box of size n centered on i ∈ Z

d , and in particular �n := �n(0).
For any set � ⊂ Z

d and any collection of random variables X(i), i ∈ Z
d , we write

X(�) to denote the vector {X(i)}i∈�. We use the shorthand notation X = {X(i)}i∈Zd for the
random field.

For any� ⊂ Z
d , we denote byF� the σ -algebra generated by the random variables X(i),

i ∈ �.

2.2 Construction of the Jamming Limit of the Parking Process onZd

Recall the construction of the process in�n given in introduction. We start giving an alterna-
tive construction, using i.i.d. random variables in (0, 1) instead of iteratively choosing sites
uniformly at random as done in introduction.We also extend the construction to any bounded
region � and any boundary configuration.

Definition 2.1 (The parking process on � ⊂ Z
d with boundary condition x ∈ {0, 1}Zd

)
Fix a configuration x and let U = {U (i)}i∈Zd be a family of independent and identically
distributed (i.i.d) random variables with a uniform distribution on (0, 1).

1: Set X (x)
� (i) = 0 for i ∈ � and X (x)

� (i) = x(i) for i ∈ �c;
2: choose i ∈ � such thatU (i) = min{U ( j) : j ∈ � and j has not been chosen previously};
3: if X (x)

� ( j) = 0 for all j ∼ i , then set X (x)
� (i) = 1. Otherwise, X (x)

� (i) = 0;
4: if there are points in � not chosen yet, then go back to step 2. Otherwise, stop the

algorithm.

We call the final configuration X (x)
� the jamming limit of the parking process on � with

boundary condition x .

Observe that the jamming limit X (x)
� on a finite subset � of Zd is constructed as a random

element in {0, 1}Zd
, that is, X (x)

� is a random field with frozen configuration x on �c. The

projection on �n of the random field X (0)
�n

(notation for X (x)
�n

when x(i) = 0, i ∈ Z
d ) has the

same distribution as the vector constructed in introduction.
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In order to formalize the construction of the jamming limit of the parking process on the
whole grid Zd , we first need to define the concept of armour.

Definition 2.2 (The armour of � ⊂ Z
d with respect to U ) For i, j ∈ Z

d , we write U (i ↓ j)
if there exist i0, . . . , in ∈ Z

d with i0 = i , in = j, ‖ik − ik−1‖ = 1, k = 1, . . . , n, and the
event {U (i0) > U (i1) > . . . > U (in)} occurs. Besides, given a subset � ⊂ Z

d , we define
the armour of � as the random subset

A(�) := � ∪ { j ∈ Z
d : there exists i ∈ � such that U (i ↓ j)}.

Observe that formally, the armour is obtained as a function of the random field U . When
necessary to avoid possible confusions, wewill emphasize this dependence using the notation
A(�)(U ).

For any finite set � ⊂ Z
d , A(�) is almost surely finite, see [20, Lemma 31]. This

allows defining, for each i ∈ Z
d , the jamming limit on the armour A({i}) according to

Definition 2.1. With this, Ritchie [20] constructed the random field X as a deterministic
function of the random field U through

X(i) := X (0)
A({i})(i), ∀i ∈ Z

d .

Here also, the field X is obtained as a deterministic function of the field U . When necessary
to avoid possible confusions, we will emphasize this dependence using the notation X(U ).
As a direct consequence of this construction he also proved that

lim
n→∞ X (0)

�n
= X , almost surely.

The random field X is called the thermodynamic jamming limit of the parking process on
Z
d .

In order to make the distinction later on, let us introduce the following notation for pro-
portions of occupied sites, depending on whether we refer to the random field X or to the
free boundary sequence of vectors X (0)

�n
, n ≥ 1:

ρn := Nn

|�n | :=
∑

i∈�n
X(i)

|�n | and ρ̄n := N̄n

|�n | :=
∑

i∈�n
X (0)

�n
(i)

|�n |

2.3 Main Results for Any d ≥ 1

Here we state the results we have proved in any dimension. We start with asymptotic prop-
erties. The strong law of large numbers for the occupation density for the thermodynamic
jamming limit

lim
n→∞ ρn = E[X(0)] =: ρ, almost surely, (2.1)

was proved by Ritchie [20, Theorem 42]. In the next result, we provide the Central Limit
Theorem and a Law of Iterated Logarithm for the number of occupied sites in the box �n by
the thermodynamic jamming limit on Zd .

Theorem 2.3 Let Nn = ∑
i∈�n

X(i) be the number of occupied sites in �n (relative to the
thermodynamic jamming limit X). It satisfies the central limit theorem,

Nn − |�n |ρ√
Var(Nn)

D−→
n→∞ N (0, 1),
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where ρ is defined in (2.1) and the law of iterated logarithm

P

(

lim sup
n

Nn − |�n |ρ
√
2Var(Nn) log log |�n |

= 1

)

= 1.

Next we state a result quantifying precisely the probability that the proportion deviates
from its mean in finite boxes �n .

Proposition 2.4 For any ε > 0, n, d ≥ 1

P (|Nn − ρ|�n || > ε) ≤ e
1
e − ε2

4eB|�n | (2.2)

where

B = 1 + 2d

2d − 1

∑

k≥1

(2d − 1)k[(2k + 1)d − (2k − 1)d ]
k! .

Such inequalities are reminiscent of the so-called Azuma inequalities for martingales. It
is called sub-gaussian, because the upper bound essentially recovers the optimal exponential
exponent ε2/|�n | we would get if we were quantifying the concentration of a sum of i.i.d.
gaussian random variables around its mean. The constant B is explicit although not trivial to
get for general d , but note that for d = 1, it simplifies to B = 4e − 3.

The above results hold for any dimension but are restricted to the study of the random field
X .With respect to the sequence of free boundary fields X (0)

�n
, n ≥ 1, Ritchie [20, Theorem 42]

proved a strong law of large numbers for N̄n|�n | (to the same limiting value ρ) and Penrose [17]

proved a Central Limit Theorem. Penrose [17] also proved the convergence of N̄n|�n | , n ≥ 1
in L p for any p but did not provide bounds. The next result quantifies the deviation in mean
for the numbers of occupation N̄n, n ≥ 1.

Proposition 2.5

∣
∣EN̄n − |�n |ρ

∣
∣ ≤

{
2(e − 1), if d = 1,

2d(2d−1)n

(n+1)! + (2d)2
∑n−1

k=0
(2d−1)k (2(n−k)+1)d−1

(k+1)! , if d ≥ 1.

2.4 Results Specific to d = 1

Even though the study of the sequence X (0)
�n

, n ≥ 1 in d = 1 has an extensive literature,
most works are simulation based and few works obtain rigorous results on the statistical
properties of the model. It seems that the rigorous calculation of ρ = 1

2 (1 − e−2) was done
in the 40’s as the limiting average proportion of occupied sites in the jamming limit, using
the combinatorial techniques of Flory [11] and has been re-discovered several times, see for
instance Fan and Percus [9] (see also [8] for a nice overview up to the 90’s). It is important
to reforce that at that time, ρ was not proved to be the limit proportion of occupied sites still.
Page [16] would prove the convergence of the sample mean to ρ in probability but, as far as
we know, it is Ritchie [20] whowas the first to actually prove the almost sure convergence (his
results hold in any dimension). To conclude, let us mention that the problem is considered
in the literature under different perspectives, such as seating arrangement/fatmen/packing
problem or even independents sets in graph theory (see for instance [10, 12, 13, 18]).
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Remark 2.1 Although the value ρ = 1
2 (1 − e−2) is well-known, we find it noteworthy to

mention that Ritchie’s construction allows for the direct calculation of this constant without
any limiting procedure. The proofs provided in [6, 13] implicitly draw on ideas fromRitchie’s
construction of armours to derive that particular quantity.

The next result is a consequence of Theorem 2.3 and Proposition 2.4 when we consider
N̄n, n ≥ 1 instead of Nn, n ≥ 1. As far as we know, the LIL and the concentration inequality
are new results.

Proposition 2.6 In d = 1, the sequence N̄n = ∑
i∈�n

X�n (i) satisfies the central limit
theorem

N̄n − E(N̄n)
√|�n |σ 2

D−→
n→∞ N (0, 1)

and the law of iterated logarithm

P

(

lim sup
n

N̄n − E(N̄n)
√
2|�n |σ 2 log log |�n |

= 1

)

= 1

for some constant σ 2 ∈ (0,∞). Moreover, for any ε > 0, n ≥ 1

P
(∣
∣N̄n − ρ|�n |

∣
∣ > ε

) ≤ e
1
e − ε2

16e(4e−3)|�n | + 2
1

�ε/4 + 2�! . (2.3)

The last statement can be used to consider the concentration around the mean E(N̄n).
Indeed

P
(∣
∣N̄n − E(N̄n)

∣
∣ > ε

) ≤ P
(∣
∣N̄n − ρ|�n |

∣
∣ > ε − ∣

∣E(N̄n) − ρ|�n |
∣
∣
)

≤ P
(∣
∣N̄n − ρ|�n |

∣
∣ > ε − 2(e − 1)

)

(using by Proposition 2.5 for the second inequality) which can be bounded using (2.3).
Notice also that for small ε, (2.3) is not quite a subgaussian inequality, due to boundary

effects. However, for large ε, the second term may be smaller than the first one, thus yielding
a subgaussian inequality. For instance, if we take ε = |�n | we get that the first term is

e
1
e − |�n |

16e(4e−3) while the second term is 2 1
�|�n |/4+2�! = o(e−|�n |).

3 Proofs

Sections 3.1, 3.2, 3.3 and 3.4 are entirely devoted to the proof of Theorem 2.3, and are
presented in the case d = 2 in order to simplify the presentation, and because the dimension
does not have importance in the precision of the results. On the other hand, the proofs of
Propositions 2.4 and 2.5, given in Sects. 3.5 and 3.6 respectively, are done for any d ≥ 1,
because the constants involved in the statements are dimension dependents. In particular, as
we said, the case d = 1 plays an important role. Finally, Proposition 2.6, which holds only
for d = 1, is given in Sect. 3.7.

3.1 Auxiliary Definitions and Results

The strategy to prove Theorem 2.3 consists of verifying the sufficient conditions given in
classical results of the literature for both, the central limit theorem and the law of iterated
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logarithm to hold for general stationary mixing random field. To describe these conditions,
we need to introduce a piece of notation (recalling that we present the proof of Theorem 2.3
in the case d = 2 for ease of presentation).

Definition 3.1 ForG ⊂ Z
2, letFG be the σ -algebra generated by the random variables X(i),

i ∈ G. If G, H ⊂ Z
2, let

d(G, H) := inf{‖i − j‖max : i ∈ G, j ∈ H}.
If n ∈ N and k, l ∈ N ∪ {∞}, we define the mixing coefficient

αk,l(n) := sup{|P(A ∩ B) − P(A)P(B)|},
where the supremum is taken over all A ∈ FG , B ∈ FH , G, H ⊂ Z

2, with |G| ≤ k, |H | ≤ l
and d(G, H) ≥ n.

Bolthausen’s theorem [3] establishes the following criteria for a stationary random field
to satisfy a central limit theorem.

Theorem 3.2 (Bolthausen [3]) Let X be a stationary random field on Z2. Assume that

(a)
∞∑
n=1

nαk,l(n) < ∞ for k + l ≤ 4.

(b) For some δ > 0, ‖X(0)‖2+δ < ∞ and
∞∑
n=1

nα1,1(n)δ/(2+δ) < ∞.

(c) α1,∞(n) = o(n−2).

Then ∑

i∈Z2

|Cov(X(0), X(i))| < ∞. (3.1)

If in addition σ 2 = ∑

i∈Z2
Cov(X(0), X(i)) > 0, then

Nn − |�n |ρ
σ |�n |1/2

D−→
n→∞ N (0, 1).

For the law of iterated logarithm, we will rely on a result of [15] (see Theorem 7.4.2
therein). In order to simplify the reference, we give below a statement which corresponds
to our context, in particular, since we state it here in dimension d = 2, we substitute the
quantity ν therein by 2.

Theorem 3.3 (Nahapetian [15]) Let X be a stationary random field on Z2. Assume that

(a) E|X |2+δ < ∞ for some δ > 0,
(b) αk,l(n) ≤ kτ1 lτ2α(n) for some constants τ1, τ2 and vanishing sequence α(n).
(c) The sequence α(n), n ≥ 1 satisfies:

• for some δ′, 0 < δ′ < δ, the series
∑

n≥1
nα(n)

δ′
2+δ′ < ∞,

• α(n) = O
(

1
n2β

)
where β > 2(τ1 + τ2) + 1

2 .

Then ∑

i∈Z2

|Cov(X(0), X(i))| < ∞. (3.2)

123
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If in addition σ 2 = ∑

i∈Z2
Cov(X(0), X(i)) > 0 and Var(Nn) = σ 2|�n |(1 + o(1)) then

P

(

lim sup
n

Nn − |�n |ρ
√
2σ 2|�n | log log |�n |

= 1

)

= 1.

Remark 3.1 Since X(0) is a Bernoulli random variable, then ‖X(0)‖2+δ = ( ∫
X(0)2+δ

dP
)1/(2+δ)

< ∞ for all δ > 0. Besides, Ritchie [20, Theorem 51] established the super-
exponential decay of correlations in the thermodynamic limit X , that is,

lim‖i‖max→∞Cov(X(0), X(i)) · eα‖i‖max = 0,∀ α > 0. (3.3)

This directly implies statements (3.1) and (3.2) of the above theorems (see the beginning of
the proof of Lemma 3.4 below).

3.2 Technical Lemmas

In order to prove Theorem 2.3, we will verify the convergence criteria given by the previous
theorems. This is the object of the following lemmas.

Lemma 3.4 Let Nn be the number of occupied sites in �n for the thermodynamic jamming
limit X. Then

lim
n→∞

Var (Nn)

|�n | =
∑

i∈Z2

Cov
(
X(0), X(i)

)
.

Proof The proof of this lemma is analogous to the proof of Proposition 7.2 in [7]. We include
it here for the sake of completeness.

It follows from (3.3) that for any α > 0 there exists Cα > 0 such that for any i, j ∈ Z
2

|Cov(X(i), X( j))| ≤ Cαe
−α||i− j ||max .

Thus
∑

i∈Z2

|Cov(X(0), X(i))| ≤ Cα

∑

i∈Z2

e−α||i ||max

≤ Cα

∑

i∈Z2

∞∑

r=0

e−α||i ||max1{||i ||max=r}

= Cα

∞∑

r=0

e−αr
∑

i∈Z2

1{||i ||max=r}

= Cα

∞∑

r=0

e−αr |∂�r |.

Since |∂�r | increases only polynomially, we conclude that
∑

i∈Z2

|Cov(X(0), X(i))| < ∞. (3.4)

Consider a real sequence un → ∞ such that

lim
n→∞

un |∂�n |
|�n | = 0.
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Let Bn := {i ∈ �n : d({i}, ∂�n) < un} for n ∈ N and note that |Bn | ≤ |∂�n |un thus

lim
n→∞

|Bn |
|�n | = 0. (3.5)

Set Fn = �n \ Bn and recall that �un (i) denotes the box { j ∈ Z
2 : ‖i − j‖max ≤ un}.

Thanks to the absolute summability (3.4), we can reorder the sum as follows

Var(Nn)

|�n | = 1

|�n |
∑

i∈�n

∑

j∈�n

Cov(X(i), X( j))

= T1,n + T2,n + T3,n

where

T1,n = 1

|�n |
∑

i∈Fn

∑

j∈�n\�un (i)

Cov(X(i), X( j)),

T2,n = 1

|�n |
∑

i∈Fn

∑

j∈�n∩�un (i)

Cov(X(i), X( j)),

T3,n = 1

|�n |
∑

i∈Bn

∑

j∈�n

Cov(X(i), X( j)).

Now observe that by (3.4), we get

|T1,n | ≤ |Fn |
|�n |

∑

j∈�c
un

|Cov(X(0), X( j))| = |Fn |
|�n |

∑

j :‖ j‖max≥un

|Cov(X(0), X( j))| −→ 0.

On the other hand,

|T3,n | ≤ |Bn |
|�n | supi∈Z2

∑

j∈Z2

|Cov(X(i), X( j))| −→ 0

by (3.5) and (3.4). Finally, by (3.5) we have that

lim
n→+∞ T2,n = lim

n→+∞
|Fn |
|�n |

∑

i∈�un

Cov(X(0), X(i)) =
∑

i∈Z2

Cov(X(0), X(i))

and the proof is complete. ��
The next lemma provides the asymptotic behavior of the mixing coefficient αk,l(n).

Lemma 3.5 Let k, l ∈ N be fixed, then the mixing coefficient αk,l(n) satisfies

αk,l(n) ≤ (k + l)
3�n/4�

�n/4�! .

Proof The main idea of the proof of this lemma consists in analyzing three versions of
the thermodynamic jamming limit given by a suitable coupling. Let U = {U (i)}i∈Z2 and
V = {V (i)}i∈Z2 be two families of mutually independent i.i.d. uniform random variables on
[0, 1]. Let R1 = {(i1, i2) ∈ Z

2 : i1 ≤ 0} and R2 = {(i1, i2) ∈ Z
2 : i1 > 0}. Consider the

following random fields

Y (i) = U (i)1{i∈R1} + V (i)1{i∈R2},
Z(i) = V (i)1{i∈R1} +U (i)1{i∈R2}.

123
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Notice that Y = {Y (i)}i∈Z2 and Z = {Z(i)}i∈Z2 are two families of uniform i.i.d. random
variables on (0, 1) which are mutually independent. Recall the notation X(U ), X(Y ) and
X(Z) to denote the versions of the thermodynamic jamming limit obtained using the random
fields U , Y and Z respectively. Notice that X(Y ) and X(Z) are independent. Let G, H be
two finite subsets of Z2 with |G| ≤ k and |H | ≤ l such that

max{i1 : (i1, i2) ∈ G} ≤ −2n and min{i1 : (i1, i2) ∈ H} ≥ 2n.

Thus d(G, H) ≥ 4n. Let A ∈ FG and B ∈ FH . Consider the event

E =
⋂

i∈G∪H

{A({i})(U ) ⊂ �n(i)}.

Note that
1UA∩B = 1Y

A1
Z
B on E,

where 1UA is a shorthand notation for the indicator function of the event X(U ) ∈ A. Then,

|P(A ∩ B) − P(A)P(B)| = |E(1UA∩B) − E(1Y
A1

Z
B)|

≤ E(|1UA∩B − 1Y
A1

Z
B |)

≤ P(Ec).

It follows that

P(Ec) = P

(
⋃

i∈G∪H

{A({i})(U ) �⊂ �n(i)}
)

≤
∑

i∈G∪H

P(A({i})(U ) �⊂ �n(i))

≤ (|G| + |H |)P(A({0})(U ) �⊂ �n).

Now, observe that for n ≥ 3

P(A(0) �⊂ �n) = P(∃i ∈ �c
n : U (0 ↓ i)) ≤ 4 · 3n

(n + 1)! ≤ 3n

n! . (3.6)

The 4 ·3n is an upper bound on the number of self-avoiding path of size n+1 starting from 0
(four possibilities for the first step and at most 3 possibilities for the subsequents steps), and

1
(n+1)! is the probability of any such path of size n + 1 with decreasing uniforms. We only
use the restriction n ≥ 3 to simplify to the last inequality.

We conclude that

αk,l(n) ≤ (k + l)

(
3�n/4�

�n/4�!
)

,

which is the desired result. ��

Next lemma provides the asymptotic behavior of the mixing coefficient α1,∞(n).

Lemma 3.6 The mixing coefficient α1,∞(n) satisfies

α1,∞(n) ≤ (16n + 1)3n

n! .
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Proof The proof is very similar to the proof of the preceding lemma. Let {U (i)}i∈Z2 and
{V (i)}i∈Z be two independent families of i.i.d. random variables with a uniform distribution
on (0, 1). Consider the following random fields

Y (i) = U (i)1{i∈�2n} + V (i)1{i /∈�2n},
Z(i) = V (i)1{i∈�2n} +U (i)1{i /∈�2n}.

Note that {Y (i)}i∈Z2 and {Z(i)}i∈Z2 are two families of independent uniform random
variables which are also independent between them.

X(U ), X(Y ) and X(Z) to denote the versions of the thermodynamic jamming limit
obtained using the random fields U , Y and Z respectively. Notice that X(Y ) and X(Z)

are independent.
Let A ∈ F{0} and B ∈ F�c

2n
and observe that d({0},�c

2n) ≥ 2n. Next let us define the
event

E = {A({0}) ⊂ �n} ∩ {A(∂�2n) ∩ �n = ∅}
and observe that

1UA∩B = 1Y
A1

Z
B on E .

Thus

|P(A ∩ B) − P(A)P(B)| = |E(1UA∩B) − E(1Y
A1

Z
B)| ≤ E(|1UA∩B − 1Y

A1
Z
B |) ≤ P(Ec).

Since P(Ec) ≤ 3n
n! + |∂�2n | 3nn! = (16n+1)3n

n! we conclude that

α1,∞(n) ≤ (16n + 1)3n

n! .

��

3.3 Asymptotic Variance

Next we prove that the asymptotic variance for the parking process is non-trivial. The proof
presented follows the ideas described in Penrose [17].

Lemma 3.7 limn→∞ Var (Nn)|�n | = σ 2 > 0.

Proof Let us consider the following partition of boxes centered at the origin. For n ≥ 1, the
box �7n+3 can be partitioned into (2n + 1)2 boxes of dimensions 7× 7. Specifically, �7n+3

is the union of the disjoint boxes

�κ := �3(7κ), with κ ∈ �n .

Denote by A and B the following subsets of the box �3 (see Fig. 1)

A = {(1, 2), (1,−2), (2, 1), (2,−1), (−1, 2), (−1,−2), (−2, 1), (−2,−1)},
B = {(−1, 0), (0, 1), (0, 0), (0,−1), (1, 0)}.

Also, for each �κ , we define the random variables

Uκ := max{U (i) : i ∈ A + 7κ}
and

Vκ := min{U (i) : i ∈ (�3 \ A) + 7κ}.
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Fig. 1 Representation of �3 and
its subsets A and B

We say that the box �κ is a good box if the event {Uκ < Vκ } occurs. Let Iκ := 1{�κ is good}
for κ ∈ �n which are independent Bernoulli random variables with a probability of success
β := P(Uκ < Vκ ) > 0. Consider now the σ -algebra F7n+3 generated by the value of∑

κ∈�n
Iκ and the uniform random variables of all the sites in �7n+3 except those from

{B + 7κ : κ ∈ �n and Iκ = 1}.
Observe that

Var(N7n+3) = Var[E(
N7n+3

∣
∣F7n+3

)] + E[Var(N7n+3
∣
∣F7n+3

)] ≥ E[Var(N7n+3
∣
∣F7n+3

)].
Writing

N7n+3 =
⎛

⎝N7n+3 −
∑

κ∈�n

Iκ
∑

i∈B+7κ

X(i)

⎞

⎠ +
∑

κ∈�n

Iκ
∑

i∈B+7κ

X(i),

we notice that the random variable between parentheses is F7n+3-mensurable and therefore

Var
(
N7n+3

∣
∣F7n+3

) = Var

⎛

⎝
∑

κ∈�n

Iκ
∑

i∈B+7κ

X(i)
∣
∣F7n+3

⎞

⎠ .

Now, we use the fact that, conditionally on F7n+3, the random variables
∑

i∈B+7κ X(i) for
those κ’s such that Iκ = 1, are independent and identically distributed. Thus,

Var
(
N7n+3

∣
∣F7n+3

) =
∑

κ∈�n

IκVar

(
∑

i∈B+7κ

X(i)
∣
∣F7n+3

)

.

If Iκ = 1, then
∑

i∈B+7κ X(i) = 1 with probability 1/5 and it is 4 with probability 4/5.
Then, for those κ’s such that Iκ = 1, Var

(∑
i∈B+7κ X(i)

∣
∣F7n+3

) = α for some constant
α > 0.

Putting everything together, we obtain that

Var(N7n+3) ≥ αE

⎛

⎝
∑

κ∈�n

Iκ

⎞

⎠ = (2n + 1)2αβ.

Thus,
Var(N7n+3)

|�7n+3| ≥ αβ(2n + 1)2

(2(7n + 3) + 1)2
.
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This, in turn, implies that

lim inf
n→∞

Var(N7n+3)

|�7n+3| > 0

and the proof is complete. ��

We are now ready to prove Theorem 2.3.

3.4 Proof of Theorem 2.3

Proof For the central limit theorem statement we check that we are in force of all the condi-
tions of Theorem 3.2:

• Item (a) is satisfied, by Lemma 3.5.
• Item (b) is satisfied also by Lemma 3.5, taking δ = 1 for instance (recalling that X(i) ∈

{0, 1} in our case).
• Item (c) is satisfied by Lemma 3.6.

From Lemmas 3.4 and 3.7 we have that

lim
n→∞

Var (Nn)

|�n | =
∑

i∈Z2

Cov(X(0), X(i)) = σ 2 > 0. (3.7)

So Theorem 3.2 applied and the CLT part of the theorem is proved.
For the law of iterated logarithm, we check that we are in force of all the conditions of

Theorem 3.3:

• Item (a) is satisfied with δ = 1 for instance, since X(i) ∈ {0, 1}.
• Item (b) is satisfied by Lemma 3.5, taking τ1 = τ2 = 1.
• Item (c) is satisfied by Lemma 3.5 (take δ = 1, δ′ = 1/2, and β = 5).

Finally, (3.7) above also proves the variance condition here. So Theorem 3.3 applied and the
LIL part of the theorem is proved, concluding the proof of Theorem 2.3. ��

3.5 Proof of Proposition 2.4

Let us first define the mixing coefficients.

φ∞,1(k) := sup{|P(X(0) = 1|A) − P(X(0) = 1)| : A ∈ F�c
k
,P(A) > 0}.

We will use [5, Corollary 4(b)(i)], which states that, in our framework, if B = 1 +∑
k∈Zd\{0} φ∞,1(||k||) < ∞, then

P

(∣
∣
∣
∣
Nn

|�n | − ρ

∣
∣
∣
∣ > ε

)

≤ e
1
e − |�n |ε2

4Be , ε > 0.

Proof According to what we mentioned above, we only have to compute B (and in particular
show that it is finite). First observe that for any � ⊂ Z

2 and any x we have

P(X(0) = 1|X�c = x�c ) = P(X (x)
� (0) = 1).
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On the other hand, X (x)
� can be constructed on the same probability space as X , that is, using

the same field U . Thus

|P(X(0) = 1|X�c
k

= x�c
k
) − P(X(0) = 1)| ≤ P(X(0)(U ) �= X (x)

�k
(0)(U ))

≤ P(A(0)(U ) ∩ ∂�k = ∅)

≤ 2d(2d − 1)k−1

k! .

(The last inequality follows using the same argument that yields to (3.6), but for d ≥ 1).
We therefore get for any A ∈ F�c

k
with P(A) > 0

|P(X(0) = 1|A) − P(X(0) = 1)| = 1

P(A)
|P({X(0) = 1} ∩ A) − P(X(0) = 1)P(A)|

≤ 1

P(A)

∫

A
|P(X(0) = 1|X�c

k
= x�c

k
)

− P(X(0) = 1)|dP(x)

≤ 2d(2d − 1)k

(2d − 1)k! ,

which is an upper bound for φ∞,1(k).
We conclude with

B = 1 +
∑

k∈Zd\{0}
φ∞,1(‖k‖)

≤ 1 +
∑

k≥1

∑

v∈∂�k

2d(2d − 1)k

(2d − 1)k!

= 1 + 2d

2d − 1

∑

k≥1

(2d − 1)k[(2k + 1)d − (2k − 1)d ]
k! .

��

3.6 Proof of Proposition 2.5

Proof We have
∣
∣EN̄n − |�n |ρ

∣
∣ = ∣

∣E(N̄n − Nn)
∣
∣ ≤ E

∣
∣ N̄n − Nn

∣
∣

≤ E

∑

i∈�n

1{X(i)(U )�=X�n (i)(U )}

≤
∑

i∈�n

P(X(i)(U ) �= X�n (i)(U ))

≤
n∑

r=0

∑

i∈∂�r

P(X(i)(U ) �= X�n (i)(U ))

≤
n∑

r=0

∑

i∈∂�r

P(A({0}) �⊂ �n−r )
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≤
n∑

r=0

∑

i∈∂�r

2d(2d − 1)n−r

(n − r + 1)!

=
n∑

r=0

|∂�n−r |2d(2d − 1)r

(r + 1)!

= 2d(2d − 1)n

(n + 1)! +
n−1∑

r=0

2d(2d − 1)r [(2(n − r) + 1)d − (2(n − r) − 1)d ]
(r + 1)!

≤ 2d(2d − 1)n

(n + 1)! + (2d)2
n−1∑

r=0

(2d − 1)r (2(n − r) + 1)d−1

(r + 1)! .

The last inequality follows from an application of the mean value theorem to f (x) = xd .
Notice that this inequality yields 4(e−1) for d = 1, twice the stated value of the proposition.
The calculation for d = 1 can be done slightly more easily:

∣
∣EN̄n − |�n |ρ

∣
∣ ≤

∑

i∈�n

P(X(i)(U ) �= X�n (i)(U )) ≤ 2
n∑

r=0

1

(r + 1)! ≤ 2(e − 1).

��

3.7 Proof of Proposition 2.6

Proof Let σ 2 > 0 be as given in Lemma 3.7, and write

N̄n − E(N̄n)
√
2|�n |σ 2 log log |�n |

= Nn − |�n |ρ
√
2|�n |σ 2 log log |�n |

+ |�n |ρ − E(N̄n)
√
2|�n |σ 2 log log |�n |

+ N̄n − Nn
√
2|�n |σ 2 log log |�n |

.

From Theorem 2.3,

lim sup
n

Nn − |�n |ρ
√
2|�n |σ 2 log log |�n |

= 1, almost surely,

and by Proposition 2.5,

lim
n→∞

|�n |ρ − E(N̄n)
√
2|�n |σ 2 log log |�n |

= 0.

Therefore, for the LIL it is enough to prove that, with probability 1, there exists K such that
for any n ≥ K we have |Nn − N̄n | ≤ √|�n | (in our case |�n | = 2n + 1). Consider the
construction of X and X�n using the same field U . We have

P(|Nn − N̄n | > M) ≤ P

⎛

⎝
∑

i∈�n

1{X(i)(U )�=X�n (i)(U )} > M

⎞

⎠ ≤ P (TL + TR > M)

where TL = inf{k ≥ 0 : U−n+k < U−n+k−1 ∧ U−n+k+1} and TR = inf{k ≥ 0 : Un−k <

Un−k−1 ∧Un−k+1}. Note that the last inequality comes from the dimensionality, because the
presence of local minima shields the boundary effects. Thus

P(|Nn − N̄n | > M) ≤ 2P (TL > M/2)
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by symmetry. But P (TL > i) = P (Un > . . . > Un−i−1) = 1
(i+2)! , thus

P(|Nn − N̄n | > M) ≤ 2

�M/2 + 2�! . (3.8)

We therefore get ∑

n

P(|Nn − N̄n | >
√|�n |) < ∞,

which byBorel-Cantelli proves that for only finitelymany nwewill have |Nn−N̄n | >
√|�n |,

concluding the proof of the LIL.

For the CLT, it is enough to prove, by virtue of Slutsky’s Theorem, that
∣
∣
∣
∣
∣

Nn − |�n |ρ
√|�n |σ 2

− N̄n − E(N̄n)
√|�n |σ 2

∣
∣
∣
∣
∣
→ 0, in probability.

In fact, let ε > 0, by Markov’s inequality,

P

[∣
∣
∣
∣
∣

Nn − |�n |ρ
√|�n |σ 2

− N̄n − E(N̄n)
√|�n |σ 2

∣
∣
∣
∣
∣
> ε

]

≤ |E(N̄n) − ρ|�n ||
ε
√|�n |σ 2

+ E(|N̄n − Nn |)
ε
√|�n |σ 2

. (3.9)

By Proposition 2.5, the first term on the right side of the inequality (3.9) converges to zero.
On the other hand, note that for all n ≥ 1,

E(|N̄n − Nn |) ≤
∑

i∈�n

P(X(i)(U ) �= X�n (i)(U ))

≤
∑

i∈�n

P(A({i}) �⊂ �n)

≤
n∑

i=−n

[
1

(n − i + 2)! + 1

(i + n + 2)!
]

< K < ∞,

where K is some positive number. Therefore, the second term on the right side of the inequal-
ity (3.9) also converges to zero. In this way, we obtain the desired convergence in probability,
concluding the proof of the CLT.

We now prove the last part of the proposition. Observe that

P
(∣
∣N̄n − ρ|�n |

∣
∣ > ε

) ≤ P
(∣
∣N̄n − Nn

∣
∣ + |Nn − ρ|�n || > ε

)

≤ P

(∣
∣N̄n − Nn

∣
∣ >

ε

2

)
+ P

(
|Nn − ρ|�n || >

ε

2

)

≤ 2

�ε/4 + 2�! + e
1
e − ε2

16eB|�n | .

where the last line has been obtained by using (3.8) and (2.2). ��
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