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ABSTRACT Neisseria gonorrhoeae is a pathogenic bacterium causing sexually transmit-
ted infections, and it is associated with high antibiotic resistance rates. Here, we describe
the genome sequences of four isolates from a homeless community in Colombia.

N eisseria gonorrhoeae is a Gram-negative diplococcus that colonizes only humans
(1). It infects the urethra, the endocervix, and occasionally the ocular, nasopharyn-

geal, and rectal mucosa (2). Recently, the WHO, using whole-genome sequencing
(WGS) in conjunction with linked epidemiological and phenotypic data (including sus-
ceptibility profiles), described several gonococcal genotypes in European countries (3),
some of them associated with antimicrobial resistance (AMR) (4). The WGS of N. gonor-
rhoeae isolates has been proposed as a cost-effective tool for screening for AMR in this
pathogen (4–6). However, the understanding of the molecular epidemiology of N. gon-
orrhoeae strains from developing countries such as Colombia is limited. Our objective
was to use WGS to describe the genomic characteristics of N. gonorrhoeae isolates
from a homeless community in Colombia.

Among homeless participants with urethral discharges, fluids from the urethra were
collected on calcium alginate swabs. These samples were inoculated in the selective
medium Thayer-Martin agar and incubated at 35°C 6 2°C in a 5% CO2-enriched atmos-
phere for 24 h. We obtained four N. gonorrhoeae isolates from different male patients.
The colonies were replicated two times on new plates with the same medium. These
isolates were identified with the API NH system (bioMérieux SA). Genomic DNA was
obtained from isolates using the cetyltrimethylammonium bromide (CTAB) method (7).
A 170- to 800-bp normal library was prepared from 500 ng of DNA from each isolate
using the Nextera DNA library preparation kit (Illumina). The libraries were sequenced
using an Illumina HiSeq 4000 platform, yielding 150-bp paired-end reads. The raw
reads were quality controlled and filtered using FastQC v0.11.8 (8) and Trimmomatic
v0.36 (9), respectively. The filtered reads were de novo assembled and annotated using
the Gen2Epi v0.1 pipeline (10). The contigs were scaffolded using a reference genome
(GenBank accession number NZ_AP023069.1) with Ragout v2.3 (11) The assembly sta-
tistics are shown in Table 1. In the assembled contigs from two isolates (isolates 2312
and 942021), we found plasmids associated with AMR, containing broad-spectrum
b-lactamase genes. Isolate 2312 had a pJD4 Asian plasmid (5,724 bp) with the TEM-1
b-lactamase gene blaTEM-P14S (12). Isolate 942021 showed the presence of a pSJ5.2
Toronto-type plasmid (5,216 bp) with the blaTEM-135 allele. These two TEM enzymes
have high levels of ampicillin degradation (12). TEM-135-producing isolates have also
been associated with high-level ciprofloxacin and tetracycline resistance (13).
Additionally, a conjugative plasmid (39,199 bp) lacking the tet(M) resistance gene was
found in isolates 652 and 942021. The latter has homology (.99.8%) with the plasmids
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found in the reference strains WHO L, M, O, and W, which still have an unknown role
(3). A recent global study demonstrated a high prevalence of AMR plasmids in gono-
coccal strains isolated in low/middle-income countries (LMICs) and an association with
genomic diversity among N. gonorrhoeae strains (14). Here, we found four N. gonor-
rhoeae isolates with plasmid diversity circulating in a Colombian population subset.
This may explain the molecular mechanisms by which we are seeing an increase in
AMR, mainly in neglected populations such as homeless communities (15). WGS is a
powerful tool for molecular epidemiology studies of N. gonorrhoeae, allowing early
detection of AMR and the screening of gonococcal genotypes.

The project and informed consent forms were evaluated and approved by the
Bioethics Committee of the School of Medicine of the University of Antioquia (ethics
approval number 2017-022), the Family Advocate from the Colombian Institute for
Family Welfare (ICBF), and the Mayor's Office of Medellín, Colombia. Informed consent
forms were signed by all participants.

Data availability. The whole-genome sequences and raw sequence reads were de-
posited in DDBJ/ENA/GenBank under the BioProject accession number PRJNA835124.
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