
 

 

On the use of electroglottography and speech signals for automatic classification of patients 

with voice pathologies  

 

 

Néstor Rafael Calvo Ariza 

 

 

Tesis de maestría presentada para optar al título de Magíster en Ingeniería de 

Telecomunicaciones  

 

 

 

Director 

 Juan Rafael Orozco Arroyave, Doctor (PhD) en Procesamiento de Señales 

Asesor 

Tomas Arias Vergara, Doctor (PhD) en Ciencias de la computación 

 

 

 

 

  

Universidad de Antioquia 

Facultad de Ingeniería 

Maestría en Ingeniería de Telecomunicaciones 

 Medellín, Antioquia, Colombia 

2024  



  

Cita  Calvo Ariza [1] 

Referencia 

 

Estilo IEEE (2020) 

[1] N. R Calvo Ariza, “On the use of electroglottography and speech signals for automatic 

classification of patients with voice pathologies”, Tesis de maestría, Maestría en 

Ingeniería de Telecomunicaciones, Universidad de Antioquia, Medellín, Antioquia, 

Colombia, 2024. 

  

 

 

Maestría en Ingeniería de Telecomunicaciones, Cohorte XVIII.  

Grupo de Investigación en Telecomunicaciones Aplicadas (GITA). 

Centro de Investigación Ambientales y de Ingeniería (CIA). 

 

 

 

 

Biblioteca Carlos Gaviria Díaz  

 

Repositorio Institucional: http://bibliotecadigital.udea.edu.co 

 

Universidad de Antioquia - www.udea.edu.co 

 

 

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento 

institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la 

responsabilidad por los derechos de autor y conexos.  

 

https://co.creativecommons.org/?page_id=13
https://co.creativecommons.net/tipos-de-licencias/


On the use of electroglottography and speech
signals for automatic classification of patients

with voice pathologies

Master’s Thesis in Telecommunication Engineering

Nestor Rafael Calvo Ariza

Director: Prof. Dr.-Ing. Juan Rafael Orozco Arroyave
Advisor: Dr. Tomas Arias Vergara

Faculty of Engineering

Department of Electronics and Telecommunications

University of Antioquia.



Acknowledgments

I want to thank my parents, Nestor Calvo and Mireya Ariza, for all the
support and love I have received from them while completing this work. They
are my motivation and my role models. I also want to thank my younger
brother, Andres Felipe, who has supported me in many difficult moments
and motivated me to keep growing and be an example for him, as well as my
older siblings, Nestor Antonio and Lauren, who have always been watching
my progress and have given me valuable life advice. I also want to thank
my close family, who have always been there for me; I hope to continue
being a source of pride for them. Additionally, I want to thank my girlfriend,
Yina, who has given me unconditional support and love in difficult times and
encouraged me to keep going. I love you.

Now, I would like to thank my colleagues Cristian Rios, Daniel Escobar,
Santiago Moreno, Jeferson Gallo, Diego Lopez, Jaime Vergara, Fredy Mer-
cado, and Christian Garzón, as well as the other colleagues of the GITA lab
with whom I have shared many years. They have been people with whom
I have been able to have very enriching conversations and who have helped
me in one way or another during this process.

Last but not least, I would like to thank my director, Prof. Dr.-Ing. Juan
Rafael Orozco Arroyave and my advisor, Dr. Tomas Arias Vergara, for all
the support and knowledge you provided during this process. Thank you for
your experiences, patience, and willingness to discuss and review my work.

I also want to thank the University of Antioquia for the financial support
I received while developing this master’s thesis through the CODI project
number 2023-58010.

1



Abstract

Voice production is a crucial aspect of human life; problems with the voice
can affect the quality of life by influencing how we communicate. Speech
production involves various muscles and neural connections so that voice
pathologies can arise from multiple sources. Early detection of these disor-
ders is critical to maintaining or improving the patient’s condition. However,
diagnosing these pathologies is often time-consuming and subject to physi-
cians’ assessment. The increased popularity of Artificial Intelligence (AI) has
led to the creation of machine learning and deep learning models that perform
an automatic analysis based on patterns found in the data. These AI tech-
niques offer the potential to simplify the diagnostic process, providing more
consistent and objective assessments. However, they require a previous anal-
ysis of the data, the features that will be extracted, and the classifiers. This
work analyzes and compares multiple techniques to classify voice pathologies
using the Saarbrücken Voice Database, a German database containing mul-
tiple voice pathologies and healthy controls performing different tasks. This
work aims to apply and compare different machine learning and deep learn-
ing techniques to find the best classifier, considering an unbiased analysis for
age and gender. Also, this work aims to showcase the capabilities of a novel
feature set called phase plots, which represented glottal cycles as elliptical
trajectories superimposed in a 2D plane. Additionally, the study explores the
impact of incorporating complementary information through early and late
fusion methods on the classification process. By integrating these techniques,
the study aims to enhance the accuracy and robustness of voice pathology
classification. The findings of this work highlight the potential of automated
techniques in voice pathology detection.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, one-third of the labor force uses their voices in daily routine [1].
Most voice pathologies result from wrong vocal use, such as vocal hygiene,
laryngeal infection, and vocal fatigue. However, due to the complexity and
the number of parts of our body involved in speech production, identifying the
causes and detecting voice pathologies can be challenging. Additionally, some
voice pathologies can be caused by neurological problems, which increases the
difficulty in the detection process. These pathologies often require specialized
physicians and a multidisciplinary approach [2].

Machine learning advances have helped researchers create technology ca-
pable of extracting patterns from different bio-signals. These patterns are
usually analyzed by physicians or automatic models that classify if the sub-
ject has "features" of a person with a voice pathology, generating early re-
ports. Early detection of the pathology would allow early treatment. In the
long run, these early classifications will be a tool that physicians can use
in conjunction with their medical analysis to assess a patient. Afterward,
these tools can be integrated into a cellphone or a PC so the patient can be
continuously monitored.

Research has found multiple combinations of features, classifiers, bio-
signals, and techniques to achieve this classification. The main focus of this
work is to test different strategies for the classification and compare the
methods tested in the German Saarbrücken Voice Database (SVD), which
contains voice and electroglottography (EGG) recordings of subjects with
different voice disorders.
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6 1.2. State of the art

This work employs multiple feature extraction techniques to extract rele-
vant information from the electroglottography and speech signals of patients
with voice disorders and healthy subjects. It compares the performance of
this task alongside different classifiers to identify the combinations that yield
the best results in the classification task. Additionally, a new set of fea-
tures called phase plots is tested and compared with the more traditional
feature sets. Lastly, a multimodal approach is explored to discover whether
combining the information from both signals can be advantageous for the
classification problem.

1.2 State of the art

Many works have been dedicated to exploring techniques and architectures
that allow the use of speech to perform pathology analysis. The majority of
these works use 3 datasets: Massachusetts Eye and Ear Infirmary Database
(MEEI) [3], Arabic Voice Pathology Database (AVPD) [4], and Saarbruecken
Voice Database [5]. Because this work only uses SVD, only the works that
used SVD at least once are considered in this brief review.

Works will be categorized by their samples from the database, the
pathologies used, the extracted features, the classification methods used,
and the results obtained. Finally, the SVD contains speech and electroglo-
tography signals; this opens a window for analyzing "what happens when we
combine both signals." So fusion, if there is any, will be taken into account.

Lastly, the analysis of voice pathologies is usually carried out from three
research branches. The most common one is to analyze the problem in a more
general approach, considering all the pathologies and aiming to differentiate
between a healthy subject (HC) and a subject with a voice pathology (VP)
[6], [7]. Another approach is to assess the voice quality of subjects with a
voice pathology using a scale like the Dysphonia Severity Index (DSI) [8] or
the Grade of dysphony, Roughness, Breathiness, Asthenicity, and Strainess
scale (GRBAS) [9]. The last focus is pathologies, either narrowing down the
first approach by selecting one pathology [8] or focusing on differentiating
between two or more pathologies [10]. This work focuses exclusively on the
first classification approach.

There are many studies about classifying between HC and VP subjects.
In [11], the authors used both the SVD and the MEEI datasets. They ex-
tracted Mel-Frequency Cepstral Coefficients (MFCC) and noise-related fea-
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tures such as Harmonic-to-Noise Ratio (HNR), Normalized Noise Energy
(NNE), and Glottal-to-Noise Excitation Ratio (GNE). Gaussian Mixture
Models (GMM) were used for the classification process, and metrics such
as Accuracy (ACC), Receiver Operating Characteristic curve (ROC), Sensi-
tivity (SEN), and Specificity (SPE) were reported. All three vowels and four
intonations were used in the SVD, creating 12 subsets. The authors men-
tioned that they could not guarantee that a subject is in the same subset for
all 12 combinations, and they comprehend that this can generate "optimistic
results". 30 folds were created; 29 were used for training the classifier, and
the remaining was used for testing. Results showed accuracies of more than
70% for the classification task using the vowels, and the best result (87.9%)

is obtained when the three (3) vowels are combined; this is also one of the
first works that analyze task combination techniques with the SVD.

In [12], the authors used the vowel /a/ as their selected task for the
analysis. 50 HC and 70 VP subjects were selected from the database; 24
had Chronic laryngitis, 6 had Cysts, 19 had Reinke edemata, and 21 had
Spasmodic dysphonia. Articulation features were extracted, specifically 13
MFCC, the first and second derivatives, using a Hamming window of 30 ms
with an overlap of 15 ms. The authors also used Linear Discriminant Analysis
(LDA) to reduce the dimensionality of the features and an artificial neural
network for the classification. An accuracy of 75.13% was reported for the
MFCC and 87.8% when combining the MFCC with both the first and second
derivative and the features transformed by LDA.

Another work that used classical features such as MFCC is [13]; it includes
features like Fundamental Frequency (F0), Jitter, and Shimmer, which can
be grouped as phonation features together with HNR. The authors followed
a 10-fold cross-validation strategy to train different classifiers with features
extracted from sustained vowel /a/ recordings. Support Vector Machine
(SVM), Decision Tree (DT), Bayesian Classifier (BC), and Logistic Model
Tree (LMT) were used. The authors also performed a feature selection us-
ing a correlation method to find the features with a high correlation to the
classes and an information gain method that assesses which features give
more information. SVM and DT yielded the best results with accuracies of
85.7% and 83.6%, respectively.

With the increasing popularity of neural networks and deep learning
methods, multiple works adopted different architectures to avoid the feature
extraction method. For instance, [14] proposes an automatic voice pathol-
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ogy detector using deep neural networks to analyze the sustained vowel /a/.
In this work, the authors used a Long-Short-Term-Memory (LSTM) with
a Convolutional Neural Network (CNN) responsible for receiving the audio
signal, previously segmented into 64 ms windows with 30 ms overlapping.
The convolutional layers perform automatic feature extraction, and these
extracted features are the input of the LSTM, which is in charge of the final
classification. The authors reported an accuracy of 68.1% when testing using
960 samples for training, 206 for validation, and 874 for testing.

In [15], the authors presented a framework for continuously evaluating
a patient’s condition based on speech signals. They used two databases for
the model’s training: the MEEI and the SVD. The MEEI database contains
samples of the sustained vowel /a/. The signal is divided into 40 ms frames,
with a 20 ms overlapping. The Fourier transform is applied to extract the
spectrograms that are subsequently analyzed by two convolutional network
architectures: the VGG16 network and the CaffeNet. Three experiments are
reported. The first is training a model with the MEEI database, which is
tested using the SVD database; the second experiment trains the model with
the SVD and tests it with the MEEI.

The authors in [16] presents a deep learning model that seeks to detect
and reconstruct dysarthria in speech; this work used neural networks but
also attacks the problem that neural networks are often considered black
boxes. This problem was solved by analyzing the characteristics encoded
by the neural network and reconstructing the signal with a decoder, show-
ing that the network can encode features that may be interpretable. This
work proposed an architecture composed of a Recurrent Convolutional Neu-
ral Network model (RCNN); the output of this network passes through a
dense bottleneck layer, considerably reducing the features. These bottleneck
layers are usually very common among autoencoders. To evaluate the model,
they use a Leave-One-Subject-Out (LOSO) cross-validation scheme and re-
port an accuracy of 92.9%. This work provides insight into a new architecture
strategy, which, in turn, allows for internal knowledge of the characteristics
and what is being observed by the network.

In [17], classical features such as MFCCs and Linear Prediction Cepstrum
Coefficients (LPCCs) were extracted from spectrograms with a 40-ms win-
dow and a 20-ms frame shift. Additionally, the authors used Higher-Order
Statistics (HOS) to identify speech impairment. Specifically, the 3rd and 4th
statistics were selected, named normalized skewness and normalized kurto-
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sis. The authors utilized a Feed-Forward Network (FFN) and a combination
of a CNN and a fully connected network for the classification process. For
both classifiers, the authors used the features mentioned previously as their
input layer. The vowels /a/, /i/, and /u/ were considered, and the authors
performed experiments focusing on gender to address the imbalances in the
SVD database. An accuracy of 82.7% was reported, using the LPCC features
but only with male subjects. The highest accuracy considering both genders
was 76.6% and was obtained by extracting the MFCCs from the vowel /a/
and using the CNN with the fully connected classifier.

A work using EGG and audio signals to detect voice pathology is [18].
This study employs a cloud framework similar to [15] to group and analyze
different signals to make pathology detection. In this work, the authors used
a GMM, which receives both the audio and the EGG signal. Traditional
features like jitter and shimmer, among others, are extracted from the audio
signal. For the case of the EGG signal, commonly used features such as the
quotients, peak-related features, and some cepstral features are used. The
GMM was evaluated using the SVD database. The results show a model
that achieves an accuracy of 92.8% using just the speech, 77.7% using only
the EGG signal, and 94.2% using both signals. These findings showcase
that combining both signals can yield good results for the voice pathology
detection task.

In [19], the authors extracted traditional features like MFCCs and LPCCs,
similar to [17]. The authors used the whole SVD database. To solve the
imbalances between classes, the authors proposed an oversampling method
called the Synthetic Minority Oversampling Technique (SMOTE); this over-
sampling method allowed the authors to create artificial samples to balance
the database between HC and VP. The authors performed a similar classi-
fication process to the one used in [17]. The highest accuracy reported was
98.8% using a combination of MFCC and LPCC features with the oversam-
pled data.

Finally, both [20] and [21] are very recent works that propose an automatic
classification of voice pathologies using a combination of the signals. In [20],
the authors use a CNN combined with a fully connected layer; for this work,
the authors stacked the three vowels using just the normal pitch and the ones
with different pitches. The vowels are introduced as raw data to the model.
The authors reported different metrics like precision, recall, and F1-score.
The model that yielded the best result was the stacked vowels with a normal
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pitch with an 80% F1-score.
In the case of [21], the authors use the features extracted with the CNN

and perform an early fusion to combine the handcrafted features. This new
set of features is then used in an SVM classifier to classify healthy and patho-
logical. The highest accuracy was 90.1% and was obtained when the hand-
crafted features were combined with those obtained from the CNN.

The analysis of voice pathologies has gained increasing attention over the
past decade. Figure 1.1 illustrates the trend in the number of research works
focused on voice pathology detection over the last ten years. The figure also
highlights the subset of studies that utilized the SVD as one of their primary
datasets. Additionally, Figure 1.2 and Figure 1.3 present a comparison of the
most commonly used features and classifiers for voice pathology detection
over the years.

In terms of feature extraction, MFCCs are among the most frequently
used features. Moreover, using CNNs has become increasingly popular, often
in combination with MFCCs, to compare results obtained from automatic
feature extraction against more traditional approaches. It is important to
note that these CNNs are typically trained on spectrogram images derived
from the audio signals.

On the classification side, SVMs are frequently the classifier of choice
for voice pathology detection. This is due to their robustness and proven
effectiveness in such classification tasks. Another commonly used classifier
is the Artificial Neural Network (ANN), which, when combined with CNNs,
can directly process raw audio signals and perform classification without the
need for explicit feature extraction. However, the adoption of these deep
learning methods introduces challenges related to the interpretability of the
results [22].
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Figure 1.1. Voice pathology papers from 2014 to 2024

Figure 1.2. Most common features used in voice pathology detection
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Figure 1.3. Most common classifiers used in voice pathology detection

Several studies in the state-of-the-art review have demonstrated promis-
ing results in detecting voice pathologies. However, a deeper analysis reveals
several critical considerations. One major issue is the imbalances in age
and gender within the SVD database. Some studies address these imbal-
ances by applying oversampling techniques [19] or performing classifications
within specific gender groups [17]. Others either focus on particular pathol-
ogy groups or overlook these imbalances altogether.

These challenges open up multiple research directions. One promising av-
enue involves exploring more advanced oversampling and data augmentation
techniques that balance the dataset and preserve the essential pathological
information in the generated data. Another approach is to reduce the num-
ber of subjects used during the training process, mitigating the effects of
imbalances on model performance.

Furthermore, testing different sets of features and classifiers remains a
popular research strategy. This includes methods like automatic feature ex-
traction, with a focus on interpretability, where convolutional neural net-
works (CNNs) are used to generate embeddings from spectrogram images,
which are then utilized by more traditional models. Other promising strate-
gies involve exploring alternative audio signal representations to extract novel
features, applying transfer learning, or using fusion techniques to integrate
external information into the classification process.
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The reviewed works are summarized in Table 1.1. Some of the main
limitations of these studies include a lack of analysis regarding the influence
of other vowel tasks in the classification process [12]–[15], [18], [19], [21], a
focus on specific voice pathologies [20], and limiting the analysis solely to
speech signals [17].

The present study aims to identify which biomarkers are most effective
for the different tasks and how the information from the two modalities can
be combined.
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1.3 Problem statement

Voice pathologies can arise from various muscular issues combined with con-
tributing factors. These disorders may be due to organic, neurological, or
overuse-induced conditions of the voice [23]–[25]. Organic causes include the
growth of nodules, cysts, or other abnormal masses that hinder the normal
function of the muscles responsible for voice production. Neurological condi-
tions, such as paralysis, spasms, or involuntary movements of the vocal cords,
may stem from brain or nervous system problems. Additionally, abuse of the
voice through excessive shouting or unnatural pitch levels can lead to voice
disorders.

The variability in the presentation of voice pathologies complicates their
diagnosis. Age and gender play essential roles in manifesting these patholo-
gies, and similar conditions may present with different characteristics. Most
diagnostic methods rely on clinicians’ subjective judgment, which can result
in inconsistent diagnoses and treatments. Therefore, objective tools such as
Electroglottography (EGG) analysis and speech signals are necessary, as they
offer more reliable and uniform diagnostic conclusions.

Electroglottography is a noninvasive technique that records electrical
impedance between electrodes placed on the neck, providing information
on the vibration patterns of the vocal folds. Speech signal, on the other
hand, captures the acoustic properties of the voice, offering insight into the
sound output from the vocal tract. Both types of signals have their unique
advantages and limitations.

EGG signals directly measure vocal fold activity, making them useful for
analyzing pathologies related to irregular vocal fold activity, which is common
in many voice disorders [26]. However, EGG has limitations in measuring
aspects related to speech production, such as airflow characteristics. Factors
such as patient anatomy, electrode placement, skin conductivity, and neck
tension can also introduce noise and variability in EGG recordings [27].

Speech signals, on the other hand, are highly effective for investigating
various voice pathologies. These signals enable the measurement of parame-
ters like loudness, pitch, jitter, and formants, which often vary in the presence
of a voice disorder. Unlike EGG, speech signals capture both the source (vo-
cal fold vibration) and the filter (shaping of the signal by the vocal tract)
involved in speech production. However, speech signals are prone to noise,
often from environmental factors, and can be influenced by the speaker’s
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accent, emotions, and pronunciation [28].
The combination of EGG and speech signals could prove helpful, as each

complements the limitations of the other. While EGG focuses on vocal fold
movement, speech signals offer a broader perspective on voice production.
Combining these two signals could improve the detection of voice pathologies
and lead to the development of more robust diagnostic models.

1.4 Research question

To what extent can features extracted from speech signals be effectively trans-
ferred to EGG data to improve the detection of voice pathologies?

1.5 Objectives

1.5.1 General Objective

To design and evaluate classical and modern machine learning methods for
discriminating between pathological and healthy control subjects, considering
information extracted from EGG and Speech signals.

1.5.2 Specific Objectives

• Assess the efficacy of machine learning models in classifying patients
with voice pathologies using features derived from speech signals.

• Assess the efficacy of machine learning models in classifying patients
with voice pathologies using speech features extracted from EGG sig-
nals.

• Determine the impact of integrating EGG and speech signals on the
accuracy and informativeness of models for voice pathology classifica-
tion.

1.6 Contribution of this study

Multiple works have used the SVD database to classify voice pathologies, but
only some of those works ensure that the results they obtain come from an
unbiased dataset. To contribute to this way of analysis, the following are the
main outcomes of this work.
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• Achieved a detection accuracy of 64.6% for voice pathology using mod-
els trained on a balanced dataset with EGG signals.

• Enhanced classification performance in the uni-modal approach by in-
corporating phase plots in an early fusion strategy, leading to an accu-
racy of 88.5%.

• Verified the impact of dataset imbalances on model performance in
voice pathology detection, providing insights into the effects of training
data distribution.

1.7 Outline

This work is divided into four chapters. Chapter 2 explains the theoretical
background used in this work. Chapter 3 discusses the data. Chapter 4
shows the methodology followed and the results obtained. Lastly, chapter 5
shows the conclusions of the work.



Chapter 2

Theoretical background

This chapter briefly explains some basic concepts in speech production and
how the human body coordinates to perform the task. This chapter aims to
inform the reader about the most common speech analysis and the features
that will be extracted for the automatic analysis.

Lastly, the final part of the chapter shows the classifier and the mathe-
matical formulation behind the classification process.

2.1 Physiological process of speech production

Speech production is a complex physiological process that involves multiple
anatomical structures and neural pathways, as shown in Figure 2.1. The
process begins with activating the speech motor cortex, a region in the brain’s
frontal lobe that controls the movement of the articulators, including the lips,
tongue, jaw, and vocal cords [29].

18
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Figure 2.1. Important areas on speech production

This process involves a delicate balance between muscle control, air-
flow, and vibration, which must work together ideally to produce intelligible
speech. Disruptions of these mechanisms can result in speech disorders that
can impair communication and quality of life. For example, the vocal cords
transform the energy that comes from the lungs into acoustic energy radi-
ated by the lips; when a disruption occurs, this can be seen in changes in
the vibration of these vocal cords. The vibration on the vocal cords has a
waveform that goes up and down in the mucous membrane surface in regular
cycles [30].
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2.2 Electroglottography

Human sound is produced by combining different muscles, including the vocal
folds. Vibration in the vocal folds generates a quasi-periodic sound. These vi-
brations are caused by the air that comes from the lungs through the trachea.
This generates the fundamental frequency of those vibrations depending on
how soft or rigid the vocal folds are [31].

Due to their importance in speech production, research has focused on
analyzing vocal folds. The best way is to observe the movement of these
folds directly when the speech is being produced. This can be achieved by
a laryngeal endoscopy, usually done when a patient presents problems with
vocal quality or hoarseness [32]. This endoscopy can be performed directly
or indirectly. The easiest and least invasive of the two is the indirect way,
where the physician introduces a mirror and points it with a light; this mirror
goes to the back of the mouth and allows the physician to see parts of the
laryngeal area [32].

The direct way can be divided into two types: rigid and flexible. The
flexible examination requires the patient to be upright, and the physician
introduces a fiberscope or flexible endoscope through the nose that consists
of two optical wires inside a flexible unit. The rigid examination uses the
same fiberscope, but this time, it is inserted through the mouth [33]. In
both cases, the patient is requested to do sustained vowels. At the same
time, the physician observes the closing of the glottis during the phonation
process through the fiberscope camera. Afterward, the clinicians compared
the degree of closure of the vocal fold based on a scale from 1 to 6, with 6
being fully open.

It is worth mentioning that the patient is awake during all procedures,
and there is no sedation process. Sometimes, a small portion of a numbing
substance is sprayed [33] or applied with cotton pledgets [34]. Some works
have also reported that if the procedure needs to be done on infants, three
people are required to hold the patient in place, and the infant is wrapped in
a sheet to restrain the movement that the discomfort of the fiberscope can
cause [34].

All this creates a procedure that is too invasive and generates discom-
fort. Currently, this procedure is the most straightforward and gives the
best information. However, alternatives such as electroglottography are also
used.
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Electroglottography, sometimes also known as electrolaryngography
(ELG), is a method that captures the opening of the glotias via an elec-
tric current sent through a couple of electrodes. These electrodes are placed
on opposite sides of the neck close to the glottis, and small currents with
high frequency are sent from one electrode to another. The basic concept
behind this is that when the glottis is closed, the folds around the glottis
are touching, allowing the current to flow through the muscles without too
much resistance. This generates the maximum value of amplitude in the
EGG signal.

On the other hand, when the folds are open, air is in between. This
increases the resistance, reducing the amplitude of the signal received. Re-
search has shown that other substances, such as mucus or cysts, can also
generate changes in the signal.

As we can notice, this method allows physicians and researchers to know
how the vocal folds are behaving non-intrusively. A comparison of speech
and EGG can be seen in Figure 2.2.

Figure 2.2. Comparison of speech and EGG signal

2.3 Feature extraction

2.3.1 Nonlinear features

Studies have shown evidence that the vocal tract is not linear [35], that
there is the existence of nonlinear structures in the speech signals [36], and
that voice pathology, depending on the impairment, can generate nonlinear
pressure-flow in the glottis or nonlinear collision in the vocal fold area [37].
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Defining the speech process as a linear model means that in the case of an
increase in the velocity of the sound, the passive systems, like the glottis,
will have an increase in the resonance, and that is not usually the case [36].

The existence of non-linearity in speech dynamics has led research to treat
it as a turbulence or dynamical system. In the area of the fluid, turbulence
problems are analyzed either stochastically with concepts like autocorrelation
functions or deterministically with the chaos theory [38].

The dynamic systems have the characteristics of using phase spaces to
define the changes over time, which can be defined either by differential
equations or dimensional maps [39], as shown in Equation 2.1.

xn+1 = F(x(n))
d

dt
xt = f(x(t))

(2.1)

The phase spaces, known as state spaces, can determine future states
based on a fixed present state in a fully deterministic system. Analyzing the
phase space dynamics allows us to study the dynamics of the problem, i.e.,
the vocal tract [40].

The trajectories described by the phase space are called attractor. This
attractor can show graphically how "chaotic" a system can be, generating
different types of attractors like a fixed-point type when the system is non-
chaotic, a limit-cycle type when the system becomes periodic after some time,
and the strange type that represents a chaotic system [41].

In real-world problems, we don’t have phase spaces; we only have a series
of data. Our job is to transform this data in a state space; this is done using
the delay reconstruction method [41]. Supposedly, we want to find the nth
element in our phase space; this can be reconstructed using Taken’s theorem
[42]. This theorem states that a dynamical system representation can be
formed using a time-delay version of the original series. We can define the
vector Xn(t) as shown in Equation 2.2, where τ is the delay and m is the
dimension. Figure 2.3 shows the comparison of the phase space or attractors
with m = 3 from an HC and a VP using the speech signal and the vowel /a/

Xn(t) = [x(t), x(t− τ), x(t− 2τ), ...., x(t− (m− 1)τ)] (2.2)
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Figure 2.3. Attractor comparison between HC subject and VP subject. HC: Healthy
Control. VP: Voice Pathology

Multiple nonlinear features can be extracted. In this work, we computed
Largest Lyapunov Exponent (LLE), Sample Entropy (SampEn), and Hurst
Exponent (HE).

Largest Lyapunov Exponent

This feature quantifies the predictability or stability of a system in the pres-
ence of changes [43]. It is computed based on the concept of attractors, with
the exponents defined as the average differences between neighboring points
in the attractor.
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Figure 2.4. Distance between orbits for calculation of the Lyapunov Exponent

Figure 2.4 shows an example of a zoomed attractor where two orbits are
close. A reference orbit is selected, as well as a point d0 from an initial t0.
Afterward, we can define a point in d1 in the attractor for a time t1, where
t1 > t0. The ratio between the distance can be expressed exponentially [44]
as shown in Equation 2.3.

d1
d0

= eλ(t1−t0) (2.3)

Where λ is the Lyapunov exponent. It is worth mentioning that when
λ > 0, both orbits will be drifting from each other exponentially, λ < 0, the
orbits will end in 0, and if λ = 0, the change over time is not exponential.

For the calculation of the exponents, distances below a predefined
threshold ϵ are discarded, and the highest of these exponents is selected as
the feature. The exponent provides a quantitative measure of the level of
chaos or irregularity present in the signal. It can potentially differentiate
between standard speech and speech affected by a disorder.

Sample Entropy

This feature measures the level of regularity or unpredictability in time series
data. It is used to quantify a signal’s complexity by calculating the likelihood
that similar patterns will repeat themselves inside the signal. SampEn was
defined as an improved estimate for the randomness of data compared to
the approximate entropy (ApEn). Studies have shown that ApEn introduces
statistical biases that SampEn solves [45].
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For the calculation of SampEn, a template of consecutive data points with
size m is generated, as shown in Figure 2.5. This template is then compared
with another set of m points within the dataset, and the number of times
the template appears in the dataset is counted. It is worth noting that when
the template finds itself, this is not counted as this is one of the biases in the
approximate entropy calculation [46].

Figure 2.5. Points comparison for sample entropy

This number is commonly named B and can be represented as B =∑N−m
i=1

∑N−m
j=1,j ̸=i(d[xm(i)− xm(j)] < r) as shown in Equation 2.4, where d is

the euclidean distance. The value r is a tolerance set to verify if two points
are similar, normally set to 0.2 ∗ std(xm), being std the standard deviation
[47].

Lastly, the algorithm counts the number of times the template m + 1 is
similar to a set of points of size m+ 1. This value is commonly known as A

and can be represented as A =
∑N−m

i=1

∑N−m
j=1,j ̸=i(d[xm+1(i)−xm+1(j)] < r), as

shown in Equation 2.4. Finally, the negative logarithm of the ratio between
A and B is calculated as the sample entropy.

SampEn = −log

∑N−m
i=1

∑N−m
j=1,j ̸=i(d[xm+1(i)− xm+1(j)] < r)∑N−m

i=1

∑N−m
j=1,j ̸=i(d[xm(i)− xm(j)] < r)

(2.4)

Hurst Exponent

This feature quantifies the possible “long-term memory" or the presence of
long statistical dependencies in a time series that are not attributed to cycles.
It was defined by [48] when analyzing the problem of river water storage in
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reservoirs for irrigation. Hurst found that if we divide the variation rank R

by the standard deviation of the signal S this can be represented as shown
in Equation 2.5

R

σ
=

(
N

2

)H

(2.5)

Where N is the length of the segment, and H is the Hurst exponent.
Hurst also showed that the value of H changes depending on the phenomena
[49].

First, the series is divided into segments to calculate the Hurst exponent
from a time series. Each segment is divided into segments, and the means,
cumulative deviations, and range of cumulative deviations are calculated.
Lastly, the segment’s standard deviation is computed. The Hurst exponent
is the logarithm of the ratio between the range and the standard deviation.

The range of values for this exponent typically spans from 0 to 1. A value
of 0.5 corresponds to a random process or no correlation between values.
Values higher than 0.5 mean that the time series is persistent, so increments
usually follow increments. On the other hand, values lower than 0.5 represent
an anti-persistent series where values usually decrease after an increment in
the time series.

2.3.2 Phonation features

Phonation is a critical part of speech production; it includes analyzing the vo-
cal folds, the diaphragm, and the glottal cavities, among others. Depending
on their position, these muscles produce sounds with different tones, pitch,
and volume.

People with voice pathologies present problems such as lower volume,
breathiness, or raspiness. If the stability of the audio is analyzed, problems
in the vocal folds can be detected.

Fundamental Frequency

Phonated speech is created by quasi-periodic vibrations in the vocal folds
[50]. The frequency in this periodicity is known as fundamental frequency.
Figure 2.6 shows a 40 ms segment of a healthy subject during the sustained
vowel /a/; the figure shows the quasi-periodicity in the voice production,
where T0 is the fundamental period.
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Figure 2.6. Example of quasi-periodicity in speech. HC: Healthy Control.

In the case of the speech signals, F0 is sometimes considered the pitch
and is defined as the rate of the vibration of the vocal folds [51]. F0 is usu-
ally extracted from short-time frames (e.g., 40ms) using the autocorrelation,
which compares segments of the signal with other segments offsets to find a
match.

Temporal perturbation of the fundamental frequency - jitter

The word "quasi" in quasi-periodic means "more or less". Voice production
not being fully periodic always means that the F0 value is not the same during
the whole audio length. This behavior is called a frequency perturbation and
can be represented as the frequency variability between cycles [52]. The
measurement of this perturbation is called jitter. Figure 2.7 and Figure 2.8
show the contrast of the frequency perturbation between a healthy subject
versus a patient with a voice pathology, the figures show that |Ti−1 − Ti| <
|Tj−1 − Tj|.
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Figure 2.7. Temporal perturbation in an HC subject. HC: Healthy Control.

Figure 2.8. Temporal perturbation in a VP subject. VP: Voice Pathology.

Different types of Jitter can be calculated:

• Jitter (absolute) is the cycle-to-cycle variation of the fundamental fre-
quency calculated between two periods.

Jitter(absolute) =
1

N − 1

N−1∑
i=1

|Ti − Ti+1|

• Jitter (relative) is the average difference between two consecutive peri-
ods divided by the average period.

Jitter(relative) =
Jitter(absolute)

1
N

∑N
i=1 Ti

∗ 100

Studies have shown that relative Jitter values are usually less than 0.5%
for healthy subjects [53] and subjects with impairments like vocal tremor,
aphonia, or roughness in the voice present higher jitter variations [52].
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Amplitude perturbation of the fundamental frequency - shimmer

Shimmer, also known as amplitude perturbation, is similar to jitter but with
a distinct focus. While jitter measures variations in the duration of successive
periods, shimmer examines fluctuations in the amplitude or the signal’s peak
value within each fundamental period.

It is usually represented in dB, and values for healthy subjects are less
than 0.35 dB [54]. Figure 2.9 and Figure 2.10 show a similar contrast as the
ones shown in jitter, but in this case, we focus on the perturbations in the
amplitude. These plots are generated from the EGG signal and the phrase
task, showing that the metric can be extracted for both signals and gives
information for different tasks.

Figure 2.9. Amplitude perturbation in a HC subject. HC: Healthy Control.

Figure 2.10. Amplitude perturbation in a VP subject. VP: Voice Pathology.

It is worth noticing that not only |Ai−1 − Ai| < |Aj−1 − Aj| but also the
VP subject exhibits bigger fluctuations in the amplitude for the following
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fundamental periods.
Similar to Jitter, different types of shimmers can be calculated.

• Shimmer (dB) is the variability of the peak-to-peak amplitude in deci-
bels

Shimmer(dB) =
1

N − 1

N−1∑
i=1

∣∣∣∣20 log(Ai+1

Ai

)∣∣∣∣
• Shimmer (relative) is the average difference between two consecutive

periods divided by the average period.

Shimmer(relative) =
1

N−1

∑N−1
i=1 |Ai − Ai+1|
1
N

∑N
i=1Ai

Relative average perturbation (RAP)

It represents the average deviation of a period from its mean value and two
adjacent periods, normalized by the period’s average [55]. The equation for
the RAP metric can be found in Equation 2.6

RAP =

1
N−1

∑N−1
i=1

∣∣∣Ti −
(

1
3

∑i+1
n=i−1 Tn

)∣∣∣
1
N

∑N
i=1 Ti

∗ 100 (2.6)

Pitch perturbation quotient (PPQ)

This type of jitter is defined as the ratio of perturbations over certain peri-
ods to the average period. It is commonly represented by the symbol PPQ
followed by a number, e.g., PPQ5, which represents the ratio of disturbances
over five periods divided by the average period [55], as shown in Equation
2.7.

PPQ5 =

1
N−1

∑N−2
i=2

∣∣∣Ti −
(

1
5

∑i+2
n=i−2 Tn

)∣∣∣
1
N

∑N
i=1 Ti

∗ 100 (2.7)

Amplitude perturbation quotient (APQ)

Similarly to PPQ, APQ is another metric that asses perturbations related to
shimmer. APQ quantifies the changes in amplitude across multiple funda-
mental periods [54]. Like PPQ, APQ is denoted at the end with a number,
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e.g., APQ3, APQ5. The number denotes the number of fundamental periods
considered for the averaging. This average at the end is divided by the mean
of the amplitude as shown in Equation 2.8.

APQ3 =

1
N−1

∑N−1
i=1

∣∣∣Ai −
(

1
3

∑i+1
n=i−1An

)∣∣∣
1
N

∑N
i=1 Ai

∗ 100 (2.8)

2.3.3 Articulation features

Figure 2.1 shows that the last part of the speech production process involves
the articulatory system. This system is based on different sections, as shown
in Figure 2.11, that mold the vibrations from the vocal folds [56]. It includes
organs such as the tongue, lips, teeth, or mouth areas like the hard palate or
the alveolar ridge, among others [57].

Figure 2.11. Articulators in vocal tract

Depending on the phonemes, multiple articulators move. In the vowel’s
case, for example, the change is mainly done in the thong and the lip’s
positions because they are produced by allowing the free pass of the airflow
and without friction [57]. For instance, in the production of the vowel /a/,
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the thong is usually low while the lips are open, and for the vowel /u/, the
thong is closer to the roof of the mouth, and the lips are closer and round
[58].

Articulation features describe and analyze how those different limbs and
muscles work together in speech production. Voice pathologies can affect
different muscles and nerves used to move these muscles efficiently [59]–[61],
so modeling how these muscles interact is crucial in speech analysis.

Articulation can be analyzed in both voiced and unvoiced segments. Stud-
ies have shown that patients with voice pathologies, e.g., Parkinson’s disease,
have difficulties with some articulatory movements [62] or speeding when do-
ing repetitive muscle movement [63].

Articulation features are extracted using Disvoice [64]; a total of 122 de-
scriptors are generated, but all the descriptors, including voiced and unvoiced
segments, are removed, leaving only the first and second formant as well as
their firsts and second derivatives. The Mel Frequency Cepstral Coefficients
of the audio replace the removed descriptors.

Mel Frequency Cepstral Coefficients

Our hearing system is based on the external part of our ear that captures the
audio signals, a middle part that converts the sound waves to pressure, and
an internal part that takes these pressure signals and sends information to
the brain [65]. This inner part is mainly formed by the cochlea, which has a
membrane that vibrates in a set of frequencies. This non-uniform vibration
focuses primarily on lower frequencies [65].

This knowledge has led researchers to estimate how our ear captures
sound by defining a set of bandpass filters separated linearly in lower fre-
quencies and logarithmically in higher frequencies [66].

MFCCs are one of them; they focus on extracting audio information based
on how the human auditory system works. This system doesn’t work linearly;
for a tone with frequency f , a pitch can be measured on a ’Mel’ scale. The
Mel (Melody) scale focuses on that pitch, the relative tone the ear perceives,
rather than the actual frequency. It was established based on human percep-
tion experiments.

Equation 2.9 shows the equation to find the value of a frequency in a
’Mel’ scale.
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MEL(f) = 2595 ∗ log10
(
1 +

f

700

)
(2.9)

An analysis in the frequency domain is required to apply the filter bank to
the signal. This filter bank consists of triangular filters with the spacing and
bandwidth defined by the Mel-frequency constant, as shown in Figure 2.12.
The number of filters will depend on the constants we want to analyze. This
shows that the number of filters and the type of window used to divide the
audio are hyper-parameters selected when the MFCC is extracted.

Figure 2.12. MFCC triangular filters. MFCC: Mel Frequency Cepstral Coefficients

To extract the MFCCs, the audio signal must pass through multiple steps
shown in Figure 2.13. First, a pre-emphasis filter is used to increase the
relevance of high-frequencies. This increment in the energy helps when we
work with fricative phonemes such as ’s’ or ’f’ [67]. The filter is calculated
using Equation 2.10, where s(n) is the input signal and α is the filter’s cutoff
frequency, and it takes values around 0.94.

y(n) = s(n)− αs(n− 1) (2.10)

The next step is to frame the audio in small chunks, usually from 20 to
40 ms, with an overlapping of 50%. Now that the frames have a fixed length,
they are passed through a Hamming window to avoid discontinuities at the
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endpoints. The function of the Hamming window is multiplied by the frame
and is represented in Equation 2.11, where N is the length of the frame and
0 ≤ n ≤ N − 1.

W (n) = 0.54− 0.46cos

(
2πn

N − 1

)
(2.11)

Each frame is converted into the frequency domain using the Discrete Fourier
Transform (DFT), and once in the frequency domain, the frames are filtered
using the Mel filter banks.

Finally, to extract each coefficient, the representation in the Mel-scale is
brought back to the time domain using a Discrete Cosine Transform (DCT).

Speech signal Framing Hamming
Window

DFT

MEL scaleLogInverse DFTMel Cepstrum

Mel Spectrum

Frames

Figure 2.13. MFCC extraction process diagram. MFCC: Mel Frequency Cepstral Co-
efficients

Twenty MFCC features are extracted using a 200 ms Hamming window
with 50 % overlap. Because it is a static analysis, four statistics (mean, std,
skewness, and kurtosis) are extracted for each descriptor (104 features, 80
descriptors for the MFCC, and 24 descriptors with the formants).

2.3.4 Bark Frequency Cepstral Coefficients

Bark-frequency cepstral Coefficients (BFCCs) work similarly to the MFCC.
These coefficients are based on the Bark scale, an alternative to represent how
humans perceive sounds. While the Mel scale focuses on the perceived pitch,
the Bark scale is based on how the basilar membrane performs a spectral
analysis, which can be modeled with band-passing filters with a bandwidth
of one critical band or one Bark [68].

Both are perceptual scales that aim to reflect how humans perceive sound
from different perspectives. The extraction process is the same for the
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MFCCs in Figure 2.13, but changing the scale to the Bark scale, Figure 2.14
shows a comparison of the triangles bandpass filter bank for both MFCC and
BFCC. It is worth noting that before 500 Hz, both scales are equal; this is
based on the premise that the bands are almost linear up to 500 Hz [69];
after that point, we can notice the small differences between the two scales.
Equation 2.12 shows how to convert frequency in Hertz to Bark [70].

BARK(f) = 6 ln

( f

600

)
+

√(
f

600

)2

+ 1

 (2.12)

Figure 2.14. Comparison of BFCC and MFCC triangular filters. MFCC: Mel Fre-
quency Cepstral Coefficients. BFCC: Bark Frequency Cepstral Coefficients

2.3.5 Phase plot analysis

In general, phase plots can be obtained by plotting the real and imaginary
parts of an analytic signal of the form

z(t) = x(t) + jy(t) (2.13)

where x(t) is the acoustic/EGG signal and y(t) is the imaginary part ob-
tained with the Hilbert transform. As shown in [71], when the phase plots
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are extracted from glottal signals, glottal cycles are represented as ellipti-
cal trajectories superimposed in a 2D plane. In the case of acoustic signals,
the phase plots result in more complicated shapes due to the non-linearities
present in the signal.

Figure 2.15 shows an example of the phase plot extracted from a segment
of a sustained phonation.

Figure 2.15. Example of the phase plot extracted from a segment of the sustained phona-
tion of a vowel.

From the Figure, it can be observed that analyzing abnormal vibration
in the signal can be complex due to the complexity of the plot, which is the
result of the components (e.g., harmonics) that compose the acoustic signal.
Thus, we propose the following procedure to perform analysis with phase
plots:

• Extract the temporal fine structure (TFS) [72] of the acoustic/EGG
signal to reduce the complexity of the phase plot. The TFS is ob-
tained by dividing the acoustic/EGG signal by the amplitude envelope
of the signal, i.e., the magnitude of the analytic signal. The top part
of Figure 2.16 shows an example.
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Figure 2.16. Extraction of the TFS.

• Compute the Hilbert transform of the resulting TFS to obtain z′(t) =

x′(t) + jy′(t) and plot the real and imaginary parts to get the phase
plot, i.e., x′(t) vs. y′(t). The middle part of Figure 2.17 shows an
example.

Figure 2.17. Extraction of the phase plot from the analytic signal of the TFS (z′(t)).

• Transform the resulting phase plot into an image with dimensions
256×256. The phase plot is converted into a heatmap by computing
a bi-dimensional histogram with 248 bins and applying a 2D Gaussian
filter with a standard deviation of 12 to smooth the data points. The
bottom part of Figure 2.18 shows an example.

An example of the phase plots (as heatmaps) obtained from the recordings
of a healthy control and a patient can be observed in Figure 2.19. It can be
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Figure 2.18. Phase plot converted into a heatmap.

observed that the phase plot of the patient is more “noisy" than the one of
the healthy subjects.
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Figure 2.19. Phase plot of a patient (left) and a healthy subject (right)

Because the generation of the phase plots requires the use of the Hilbert
transform to calculate the real and complex part of the signal, which at the
same time uses the Fourier transform, then the computational complexity in
terms of time can be represented in O notation as O(n log n), being n the
number of samples in the audio that depends on the length of the audio and
the sample frequency.

Phase plots are significant because they provide a condensed graphical
representation of the glottal cycle during vocal fold vibration. Traditionally,
these graphical representations have been subjectively analyzed. Research
has shown that certain patterns in these plots correspond to specific vibratory
behaviors, which in turn can indicate the presence of certain types of voice
pathologies.
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For example, phase plots are built on rims that represent a cycle. Since
the audio contains multiple cycles, the rims overlap in a circular pattern.
Clinicians often observe features such as the shape of the rims, the degree of
vibratory irregularities, the luminosity or intensity in certain areas, and the
curvature of the rims to diagnose voice problems [73].

Some examples of these patterns are illustrated in Figure 2.20. In one
case, a male subject over 50 years old with a pathology is shown. The
heatmap reveals high luminosity on the right side of the rims and a flattened
right edge, which may be associated with a long open phase that abruptly
transitions to a closed phase. The intensity in that area suggests that this
pattern occurs multiple times during the glottal cycles, generating many
points in that part of the plot.

Figure 2.20. Heat map of phase plot for a male with over 50 years old and a voice
pathology

A similar pattern is observed in the heatmap shown in Figure 2.21, this
time for a female subject between 20 and 30 years old with a voice pathology.
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This subject exhibits a similar pattern on the right side of the heatmap,
but also displays two rims with higher luminosity compared to the previous
heatmap, indicating the presence of two distinct patterns during the glottal
cycle.

Figure 2.21. Heat map of phase plot for a female between 20 and 30 years old and a
voice pathology

Lastly, a heatmap of a healthy subject is presented in Figure 2.22. This
heatmap shows a long closed phase, unlike the pathological cases in Fig-
ure 2.20, as the intensity is now concentrated on the left side of the heatmap.
Additionally, this figure displays fewer vibratory irregularities, maintaining a
circular figure with only one prominent rim, which is typical in healthy vocal
function.
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Figure 2.22. Heat map of phase plot for a healthy male between 20 and 30 years old

The quantitative analysis of the proposed phase plots is performed by
training a CNN and then using embeddings of the last layers as a feature
vector, no special system requirements are needed for the creation and cal-
culation of the phase plots but a GPU is recommended for the training of
the CNN.

The details of the architecture used in this study are given in Section 2.4.7.

2.4 Pattern recognition methods

2.4.1 Hard Margin Support Vector Machine

Support Vector Machines, a popular supervised learning method, are the
classifiers in this research. SVMs excel at creating hyper-planes to separate
data points.

Suppose we have a linear SVM; the main focus is to find a margin or so-
called hyperplane that maximizes the distance between the data and itself.
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For a binary classification problem, we have a subject Si with a label yi and
a set of features xi with size d, being d the number of features.

With this, we can select a decision limit, as shown in Figure 2.23 where:

< w, xi > +b = 0

where < w, xi > is the dot product and w and b are the parameters of the
SVM model.

ma
rgi
n

Figure 2.23. Hard-Margin SVM

For a set of data (x1, y1), (x2, y2), (x3, y3), ...(xi, yi), with i being the num-
ber of subjects, we can linearly separate them with the following inequalities
that will be two margins:

< w, xi > +b ≥ 1 if yi = 1 (2.14)

< w, xi > +b ≤ −1 if yi = −1 (2.15)
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That can be grouped in inequality 2.16:

yi(< w, xi > +b) ≥ 1,∀i (2.16)

Suppose we have two elements, xa over one margin and xb over the other as
shown in Figure 2.24. These elements over each margin are called support
vectors. If we want to maximize the distance between 2.14 and 2.15, we
should subtract the equations to find the distance between the two:

(< w, xa > +b)− (< w, xb > +b) = 2 (2.17)

< w, xa − xb >= 2

Figure 2.24. Support vectors xa and xb

The dot product between two vectors can be represented as the product
of their magnitudes by the cosine of the angles between them.

|w||(xa − xb)|cos(θ) = 2
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From the Figure 2.24 we notice that the distance d between this two
elements can be express as |(xa − xb)|cos(θ) = d, rewriting the equations we
have that:

d =
2

|w|
This means that if our goal is to find the best hyperplane, which means the
one where the distance of the points to this hyperplane is the maximum, we
need to maximize the previous equation, or:

min
w

|w|2

2

Subject to yi(< w, xi > +b) ≥ 1. This optimization problem can be
solved using Lagrange’s multipliers, creating a new equation:

Lp(w, b, λi) =
|w|
2

−

[
N∑
i=1

λi(yi(< w, xi > +b))−
N∑
i=1

λi

]
(2.18)

With λi ≥ 0 and i = 1, 2, 3, ..., N . The optimal points can be found by
derivating the 2.18 equation for w and b and making it equal to 0 as can be
seen in 2.19 and 2.20.

∂Lp

∂w
= w −

N∑
i=1

λiyixi = 0 (2.19)

∂Lp

∂b
= −

N∑
i=1

λiyi = 0 (2.20)

Because the optimization problem is subject to an inequation, we need to
make sure that our best hyperplane fulfills the Karush-Kuhin-Tucker (KKT)
conditions that can be expressed as:

1. Primal feasibility or primal constraint

yi(< w, xi > +b)− 1 ≥ 0

2. Stationarity
∇Lp = 0

∂Lp

∂w
= 0 ⇒ w =

N∑
i=1

λiyixi
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∂Lp

∂b
= 0 ⇒

N∑
i=1

λiyi = 0

3. Complementary slackness

λi [yi(< w, xi > +b)− 1] = 0, ∀i

4. Dual feasibility
λi ≥ 0,∀i

Replacing all these restrictions in 2.18, we get a Lagrange Dual problem:

Lp(w, b, λi) =
N∑
i=1

λi −

[
N∑
i=1

λi

(
yi

(
N∑
j=1

λjyjxj

)
· xi + b

)]

+
1

2

(
N∑
i=1

λiyixi

)T ( N∑
j=1

λjyjxj

)

LD(w, b, λi) =
N∑
i=1

λi −

 N∑
i=1

N∑
j=1

λiλjyiyj < xi, xj >

A

+
N∑
i=1

bλiyi

B


+
1

2

N∑
i=1

N∑
j=1

λiλjyiyj < xi, xj >

C

(2.21)

From the 2nd condition of KKT we noticed that B = 0 and C = 1
2
A, so

replacing we are left with:

LD(w, b, λi) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyj < xi, xj >

2.4.2 Soft Margin Support Vector Machine

For the soft margin, we are working with a similar problem as the hard mar-
gin, but we need to add a threshold or a tolerance; this tolerance allows data
that is outside the margin to be included and added, as shown in Figure 2.25
to Equation 2.14 as follows:
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yi(< w, xi > +b) ≥ 1− ξi,∀i (2.22)

Figure 2.25. Soft-Margin SVM

This introduces a new set of values to optimize, modifying the equation
to:

min
w,ξ

|w|2

2
+

N∑
i=1

ξi (2.23)

Subject to yi(< w, xi > +b) ≥ 1 − ξi. Because all values of ξi need to be
greater than zero (values outside of the margins), we need to add a new
restriction:

ξi ≥ 0

We add a new variable, C, used as a parameter of the importance of this
new tolerance ξi. This new parameter also modifies the 4th KKT condition
to λ ≥ 0 to 0 ≥ λi ≥ C.
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The parameter C represents how many errors we accept in return for a
more general classifier:

• A high value of C means an SVM with hard margin.

• A value of C close to 0 creates a broader margin in return for errors in
the classification

• A value of C = 0 generates a hyperplane that doesn’t classify

2.4.3 Kernel trick

All the previous mathematics was done, supposing the data was linearly
separable. Still, in the case of data that cannot be separated linearly, we
need to find ways of using the SVM for classification. To solve this, the
data can be transformed into other dimensions that can probably be more
separable.

An example of the advantages of the kernel trick can be seen in Figure 2.26
This transformation is feasible in the case of a few samples, but the dif-

ficulty of this transformation increases with the increments of the samples.
A trick can be used to solve this problem. If we take just one sample

< xi, xj >, we can use a function K(xi, xj) that takes the points and finds
the result of the operation in this new space. With this, we don’t need to
transform all the data into the new space; we see the result of the operation
in the new dimension.

The kernel function for a linear kernel can be represented as:

K(xi, xj) =< xi, xj >= xi · xj

Another commonly used kernel is the Radial Basis Function (rbf) kernel:

K(xi, xj) = e−γ|xi−xj |2

This last kernel type introduces a new parameter γ; this controls the
behavior of the hyperplane, and a small value of γ makes the model behave
as a linear model.



48 2.4. Pattern recognition methods

(a) Data non-linearly separable

(b) Hyperplane after kernel trick

Figure 2.26. Kernel trick example
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2.4.4 Decision tree

Decision trees are based on constructing trees that can be used to group the
data; the main focus is optimizing the generalization error. These groups
can be done recursively, grouping the data in partitions with the same label.

The trees are based on impurity criteria between the features to know
which attribute is the best for the split. The best "score" attribute is com-
monly used for the split criteria. After the split is done, the idea is to reduce
the impurity; thus, we need to find a tree that always performs this reduction
in the impurity, making it another optimization problem.

For this problem, suppose we have a feature vector xi representing the
features of the subject i with a label yi.

Suppose we have a node t, which we represent as Nt. This node will be
divided into two parts. For this division, a feature is selected, and a range
of this feature is used to know the side a value will belong if we define a pair
β = (i, tht) where i is the node and tht is the threshold defined for this node,
then we can say that the values for two subsequent nodes will be:

N left
t = {(x, y)|xi ≤ tht}

N right
t = Nt/N left

t

Nevertheless, we need to select the features that will be used and the
order; for this, we use the impurity criteria defined as I, the number of
samples defined as S and C as the variable to optimize, such as:

C(Nt, β) =
Sleft
t

St

I(N left
t (β)) +

Sright
t

St

I(N right
t (β))

At the end, the optimal candidate β will be:

β = minC(Nt, β)

The algorithm continues to generate splits or branches until one of the
following conditions is fulfilled:

• One sample is obtained at the end.

• The value of samples in a node is less than the minimum value of
samples allowed.

• The maximum depth is reached.
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For the decision trees, a maximum depth and a minimum number of
samples in a node are recommended so the algorithm doesn’t generate too
many ramifications to solve the data’s variability; this is called "pruning"
and avoids overfitting when the model is being created.

2.4.5 Random forest

Similarly to decision trees, random forest is a classifier that uses impurity
criteria to create branches and trees. In the case of the random forest, mul-
tiple decision trees are created, each performing the classification process. In
the end, the final prediction is decided either by averaging the decisions of
each tree or by the majority of the votes.

This combination of decision trees allows the random forest to be a rel-
atively good classifier against overfitting problems and works well with high
amounts of data. However, it increases the complexity of a decision tree, and
we lose interpretability.

In this work, we used Information Gain (IG) and the Gini Index (GI) in
decision trees and random forests out of all impurity criteria.

Information Gain

To apply this impurity test, we first need to talk about entropy. The entropy
measures the impurity and randomness within a dataset; it ranges between
0 and 1, being 0 in a pure homogenous dataset [74]. Entropy E, can be
calculated by adding the probability to obtain each possible event multiplied
by the base 2 logarithms of the same probability as shown in 2.24

Entropy = −
N∑
i=1

pilog2(pi) (2.24)

Information can then be defined as the difference between the entropy of
one class and the conditional entropy of one class with a set of features [75]

IG(x) = E(D)− E(x) (2.25)

With D being the dataset, x the feature and E being the entropy.
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Gini Index

It is considered another impurity measurement and is related to the Gini
value, which is the probability of two samples having labels different from
their original labels [75]. This Gini value can be calculated as shown in
Equation 2.26:

Gini value =
N∑
i=1

∑
j ̸=i

pipj = 1−
N∑
i=1

p2i (2.26)

Being pi, the probability of the label or event i being in the dataset.
With this, we can define the Gini index as the impurity of a subset Sn vs the
dataset, as shown in Equation 2.27.

Gini index =
N∑

n=1

Sn

D
Gini(Sn) (2.27)

2.4.6 Deep Neural Network

Deep neural networks (DNNs) or feed-forward networks are architectures
that allow computers to learn from patterns found in data they have seen
before. These networks are inspired by how our brains work. The most basic
element of a neural network is the neuron, a unit that receives one or more
inputs, applies a mathematical operation, and gets an output.

A neuron in a DNN assigns a weight to each input, and then these
weighted inputs are summed along a term called bias; this bias acts as a
threshold or a shift. Afterward, this operation’s result is passed through an
activation function such as sigmoid, tanh or ReLU that induces non-linearity.
Equation 2.28 shows the output of a neural network where l is the layer num-
ber, m is the number of units in the layer, w is the weight, b is the bias, g
is the activation function, and x and y are the input and the output of each
layer, respectively. This same concept can be seen in Figure 2.27.

z
(l)
i =

(
w

(l)
i,1x

(l)
1 + w

(l)
i,2x

(l)
2 + ...+ w

(l)
i,mx

(l)
m + b

(l)
i

)
y(l) = g

(
z
(l)
i

)
= g

(
w

(l)
i x(l) + b

(l)
i

) (2.28)
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Figure 2.27. Graphical description of neuron with 4 inputs

The weights and biases can start randomly, from zero or an initialization
criteria. Then, after each iteration, they will be updated to minimize a
loss function using an optimization algorithm, allowing the neuron to learn
patterns to classify the inputs.

However, one network is not enough; more complex data requires combi-
nations of neurons. This is when DNNs are used; these architectures intercon-
nect multiple neurons in a chained structure where the output of one function
is the input of the next one, creating a more robust model. The DNNs are
based on an input, hidden, and output layer, as shown in Figure 2.28. Hid-
den layers are the intermediate layers of the network and consist of a set of
neurons, where all the outputs are inputs to the next layer [76].

DNNs are highly customizable because their architecture is based on the
number of inputs, hidden layers, neurons inside the hidden layers, intercon-
nectedness, and outputs.
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Figure 2.28. Visual representation of fully connected neural network

Loss function

When training our models, we aim to obtain the combination of parameters
that yields the best results for our data. This "best results" statement means
there needs to be a way to compare multiple results to find the "best." This
is done using a loss or cost function, which measures the differences between
the predicted values and targets. A loss function is selected depending on
the task, classification, or regression; the loss value calculated is the one we
aim to minimize by updating the weights and biases in the network [77]. In
the case of classification, the cross-entropy function is the most used because
it compares the probability distributions of the actual targets versus the
predicted distribution and applies a logarithmic penalization, which is more
drastic than a linear one. Equation 2.29 shows the cross-entropy loss, where
N is the number of samples in training, y is the vector of actual targets and
ẏ

L = − 1

N

N∑
i=1

[ylog(ẏ) + (1− y)log(1− ẏ)] (2.29)
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Backpropagation

Backpropagation is a method used in neural networks to update the weights
and biases based on the values in the loss function after each feedforward
pass. Adjusting the parameters is the network’s "learning" process, making
this the core of neural networks.

As mentioned before, the backpropagation is applied after a feedforward.
In the end, the lost function is calculated, which gives us an idea of how
much we need to adjust the parameters to reduce the loss. To update the
parameters, we need to find how much the change of weight or bias will affect
the cost function. This can be calculated using the cost function’s derivative
with respect to the influence of weight. Because the cost function doesn’t
have any direct relation with the weights in Equation 2.29, we applied the
chain rule when doing the derivative as shown in Equation 2.30

∂L
∂w(l)

=
∂L
∂ẏ

∂ẏ

∂z(l)
∂z(l)

∂w(l)
(2.30)

Three derivatives appear with the chain rule:

• The first one represents the influence of the output on the loss function.
This partial derivative depends on the loss function selected.

• The second one shows how much the output changes depending on the
activation function selected; this partial derivative consists of derivating
the activation function. This adds the constraint of being derivable to
the activation functions.

• The last one represents how the activation function is affected by the
change of the weights. This consists on derivating w

(l)
i x(l) + b

(l)
i

2.4.7 Convolutional Neural Network

Convolutional neural networks are feed-forward networks widely employed
in computer vision and video recognition. Like DNNs, CNNs are based on
neurons and are self-optimized using the knowledge learned from the data
[78]. CNN’s main advantage is that it can extract features from raw images.

This network is based on how humans use our visual organs or percep-
tions. Because CNN focuses mainly on images, the neurons must be adapted
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for the inputs. For this, multiple layers are interconnected; these layers are
the so-called kernels.

The input image goes through those kernels where image segments are
convolved with the kernels following Equation 2.31, where S is an image
segment and K is the kernel. Note that the kernel has a size of nxn in this
case, but this size is considered a hyper-parameter, so it can be optimized
based on the problem. A bigger kernel generates fewer operations, but smaller
details can be overlooked. This convolution operation is the core operation of
the CNN as it creates feature maps as shown in Figure 2.29. These features
highlight borders or big contrasts in the image on the first layer and more
abstract features in the following layers [79].

S ∗K(x, y) =
n∑

i=0

n∑
j=0

S(x+ i, y + j) ·K(i, j) (2.31)

Figure 2.29. Convolutional operation between inputs and kernel

To generate the remaining values of the feature map, the kernel slides into
different segments to perform the convolutional operation, and the number
of pixels by which the kernel is moved is called stride. Sometimes, because of
the image, segment, or kernel size, the operation cannot be performed in the
borders because of missing information. Padding is applied to avoid losing
information; this operation includes zeros near the borders when necessary
to complete segments. Figure 2.30 shows an example of an input image with
zero padding of 1 and a stride of 2.
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Figure 2.30. Input image with zero padding and a stride of 2

In the same fashion as DNN, CNN uses activation functions at the end
of each convolutional layer. Section 2.4.6 shows the importance of this acti-
vation function. The most common activation function for the convolutional
layers is the ReLU based on the good results compared to other activation
functions like hyperbolic tangent [80].

Lastly, CNN’s main focus is to reduce the image to a set of features
that allow us to compare it with other images. The convolution operation
is applied to each pixel so the remaining image will be the same size. For
this, a pooling operation is done, reducing the dimensionality of the data in
terms of width and height while keeping information. The two most common
pooling operations are max pooling, which selects the maximum value from
the convolution operation within a rectangle, and average pooling, which
takes the mean of the resulting pixels. This pooling operation makes it more
computationally efficient and allows the network to learn robust features
against small variants in the input [76].

2.4.8 Regularization

A common problem that happens not only in deep learning but also in ma-
chine learning is how to make the algorithm perform better for samples that
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the model hasn’t seen. Usually, these models generate great results when
training but low performance for new inputs. This commonly happens be-
cause the model fits too much to the training data, reducing his generalization
capabilities. This phenomenon is called overfitting; different strategies have
been created to reduce errors during tests, even if it means increasing errors
during training [76]. Dropout and early stopping are two methods used in
this work for the regularization process.

Dropout

The multiple connections between neurons in a DNN make this architecture
good when learning difficult patterns from the data. Increasing the number
of connections can improve the performance of the network but at the same
time can lead to a more expensive model, computational speaking, and also
a model prune to overfit [81].

Dropout is a regularization method used to reduce the model’s complex-
ity and the risk of overfitting; this is done by dropping some neurons from
the network based on fixed probability [82]. Dropping a neuron means tem-
porarily removing all its input and output connections; this process forces
the network to learn more general representations of the data and avoid co-
adapting some neurons to certain samples.

Equation 2.28 is modified when using dropout. Now, the output vector of
a layer is multiplied by a binary mask from a Bernoulli distribution as shown
in Equation 2.32, generating a new output vector where some outputs will
be 0, similarly as if the neuron was "turned off".

Dropouts have not also shown good results in feed-forward networks but
in probabilistic models or other types of networks like recurrent neural net-
works [76] or CNNs [83].

d(l) ∼ Bernouli(p)

x̂(l) = d(l) ⊙ x(l)

ŷ
(l)
i = g

(
ẑ
(l)
i

)
= g

(
w

(l)
i x̂(l) + b

(l)
i

) (2.32)

Early stopping

Most neural networks update their internal parameters, such as the weight
and biases, to minimize the loss function. This process is done iteratively in
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epochs, where an epoch is a complete pass from the training set. After one
run, we can test the network with the current parameters, so two loss values
are obtained at the end, one for the training and the test set.

Sometimes, the test or validation loss can increase after some iterations
while the training loss keeps decreasing. This means that the model is adapt-
ing well to the information from training but cannot correctly classify new
data, which is the concept of overfitting.

If the validation loss keeps increasing, that means that at one point, this
loss was at its lowest peak, meaning that we can obtain a model with a
better validation performance if we "stop" and use the parameters at that
point [76]. This process is called early stopping and consists of monitoring
the validation loss during training. Let’s assume Lval(n) as the validation
loss calculated in epoch n; the early stopping algorithm consists of stopping
the training process when Lval(n) ≥ Lval(n−1), but because sometimes there
are fluctuations in the loss values because of the iterative process of finding
the best parameters a patience p is defined as a wait criterion. Now, the
algorithm will stop training if the validation loss of the nth epoch is higher or
equal to previous epochs based on the patient value, as shown in Equation
2.33

Lval(n) ≥ max{Lval(n− 1), ...,Lval(n− 1− p)} (2.33)

2.5 Multi-modal approach

Modality fusion aims to combine and include information from two different
signals that capture the same phenomena. This approach has gained consid-
erable attention in the research area due to the multiple benefits of combining
different signals. The common method is to take a signal that describes a
phenomenon and extract information from it. This information is called fea-
tures, and its main use is to create a representation of this sample. The set
of features is then introduced to a classifier, which gives us a discrete result
if we are working with classes (i.e., 1, 2, HC, VP) or a continuous result in
the case of a regression problem.

Combining different modalities can give classifiers new information that
can be complementary and improve the results obtained [84]. However, it
is crucial to note that analyzing multiple modalities comes with challenges
depending on the topic and the signals. Synchronization is one of them;
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capturing different signals usually comes with different rates [85], more so
when the signals are not captured simultaneously; this causes an alignment
to be required to combine both signals correctly.

Another challenge is the cost associated with the acquisition of multi-
ple signals, involving financial and computational costs [85]. Therefore, an
analysis of the available information is essential to prevent investments in
expensive equipment for issues that could be addressed more cost-effectively.
For example, in the context of medical image screening, Krones et al. [86]
identify various imaging modalities, including X-rays, Computed Tomogra-
phy (CT), Magnetic Resonance Imaging (MRI), and Ultrasound. Each of
these methods presents distinct drawbacks, such as high costs (as seen with
MRI) and potential health risks associated with radiation exposure (as in the
case of CT). Given that each imaging modality typically requires separate
procedures, the cumulative costs can escalate significantly. Additionally, the
synchronization of signals requires special equipment’s that can increase the
cost. In contrast, integrating different forms of information, such as time-
series, tabular, or text data, can provide complementary insights at a lower
overall cost.

Lastly, the question of "how to fuse?" remains. Multiple techniques have
been developed with some variations, but they depend on the types of signals
and the way they are obtained. We can use two types of fusion, a feature
level fusion (early fusion) or a more decision level fusion (late fusion) [87] as
shown in Figure 2.31.

The researchers have already solved most of these challenges for the SVD
database. Both signals (EGG and speech) were recorded simultaneously,
removing the synchronization problem. The signals recorded analyze the
same phenomena but from a different point of view. EGG analyzes the
glottal opening. Meanwhile, speech measures sound pressures a microphone
captures, making them worth the evaluation and analysis.

A systematic analysis is done on "how to fuse?" Both early and late
fusion are tested to see which one is best for classifying a healthy subject as
a subject with a voice pathology.
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Figure 2.31. Different approaches using two modalities
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2.6 Performance metrics

As mentioned, multiple metrics are commonly used to evaluate the models’
performance. These metrics give a numerical value to the model’s perfor-
mance. The accuracy is the most commonly used, usually represented in
percentages, and provides us with a notion of the correctly classified classes.
However, accuracy cannot determine whether the model performs well, lead-
ing to misleading results. The other performance metrics used in this work
are described in the following subsections.

2.6.1 Confusion matrix

It is one of the most popular performance metrics used in classification prob-
lems. It can be used both in a binary or a multi-label classification problem;
for the case of a binary problem, it is based on a two by two matrix that com-
pares the values predicted with the actual values. It takes each prediction
and counts the number of values that fall into the following categories:

• True Negative (TN): Number of negative samples that were cor-
rectly classified as the negative class

• True Positive (TP): Number of positive samples that were correctly
classified as the positive class

• False Negative (FN): Number of positive samples that were incor-
rectly classified as the negative class

• False Positive (FP): Number of negative samples that were incor-
rectly classified as the positive class

Table 2.1 shows an example of the confusion matrix. From this matrix,
multiple metrics can be extracted.

Table 2.1. Example of a confusion matrix

Predicted values
0 1

0 TN FP
Original values

1 FN TP
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2.6.2 Accuracy

It is considered one of the main criteria or at least one of the most used
criteria to define the success or failure of a machine or deep learning model.
Accuracy measures correctly classified or identified subjects out of all the
predictions, which can be calculated by checking each prediction one by one,
summing all the correct values and dividing by the total amount, or using
the results of the confusion matrix as shown in Equation 2.34

ACC =
TP + TN

TP + TN + FP + FN
(2.34)

Accuracy tends to be a good metric when dealing with balanced classes.
However, using other metrics alongside accuracy can be beneficial in the case
of imbalances.

2.6.3 Sensitivity

Equation 2.35 shows the sensitivity, also known as recall or True Positive
Rate (TPR). It is a metric that shows the ratio of True Positive out of
all possible positive values, which is the ability of the classifier to find the
positive class when predicting. Table 2.2 shows the values that will be used
from the confusion matrix to calculate the sensitivity.

Sensitivity or recall =
TP

TP + FN
(2.35)

Table 2.2. Values in confusion matrix for the sensitivity

Predicted values
0 1

0 TN FP
Original values

1 FN TP

2.6.4 Specificity

Equation 2.36 shows the specificity or True Negative Rate (TNR). Similar
to sensitivity, specificity calculates the number of negative classes correctly
classified out of all possible negative samples. This metric shows the model’s
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capability to predict the negative class. Table 2.3 shows the values that will
be used from the confusion matrix to calculate the sensitivity

Specificity =
TN

TN + FP
(2.36)

Table 2.3. Values in confusion matrix for the specificity

Predicted values
0 1

0 TN FP
Original values

1 FN TP

2.6.5 F1-Score

Equation 2.37 shows the F1-score, also known as the harmonic mean of pre-
cision and recall. This metric is similar to the accuracy, but because it uses
recall and precision, it is better when dealing with imbalanced class datasets,
which makes it a more robust metric to analyze the performance of a ma-
chine learning model. For this metric, all elements in the confusion matrix
are used.

F1-Score = 2 ∗
TP

TP+FP
∗ TP

TP+FN
TP

TP+FP
+ TP

TP+FN

(2.37)



Chapter 3

Data

The dataset that will be used is a public dataset called the Saarbruecken
Voice Database. This German database has information on patients with
a voice pathology and healthy controls performing tasks such as sustained
vowels /a/, /i/, and /u/ for normal, high, low, and low-high pitch levels and
a small phrase.

A basic analysis of the signals is performed. Table 3.1 shows general
information about the subjects in the dataset, such as age or gender; also
Table 3.2 shows all the voice pathologies that are present in the SVD dataset,
as well as the number of subjects in each pathology. Still, the classes are
imbalanced, and the table combines medical, voice, and speech diagnoses.
The SVD, a public dataset, does not contain much information on how the
clinical data was extracted. Still, the work mainly focuses on the automatic
analysis with different biomarkers extracted from the signals, considering
all these pathologies as one class so that the classification will be between
healthy and pathological.

Table 3.1. Demographic information of subjects in SVD database.

Subjects with a pathology Healthy subjects
Male Female Male Female

# of participants 681 839 201 348
Age [years] 53.08 ± 15.23 48.77 ± 15.33 32.31 ± 12.79 25.95 ± 11.97

Age range [years] 6 - 89 9 - 94 16 - 69 9 - 84
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Table 3.2. Number of subjects for each pathology in SVD dataset

Subjects in each pathology
Pathology Subjects Pathology Subjects

Amyotrophic Lateral Sclerosis 2 Leukoplakia 41
Aryluxation 6 Medial Neck Cyst 1
Stuttering 20 Mesopharyngeal Tumor 1

Bulbar Paralysis 2 Monochorditis 3
Carcinoma in situ 1 Down Syndrome 1

Chondroma 1 Parkinson’s Disease 1
Chordectomy 59 Mutation 2

Cyst 6 Mutational Fistula Voice 10
Diplophonia 5 Superior Laryngeal Nerve Lesion 3

Dish Syndrome 1 Superior Laryngeal Nerve Neuralgia 3
Dysarthrophonia 19 Non-fluency Syndrome 2

Dysodic 56 Orofacial Dyspraxia 1
Dysphonia 101 Papilloma 1

Dysplastic Dysphonia 1 Phonasthenia 10
Dysplastic Larynx 1 Phonation Nodules 17

Epiglottic Carcinoma 1 Polter Syndrome 3
Fibroma 2 Psychogenic Aphonia 1

Frontal Lateral Partial Resection 35 Psychogenic Dysphonia 91
Functional Dysphonia 112 Psychogenic Microphonia 1

GERD 3 Reinke’s Edema 68
Singing Voice 17 Recurrent Nerve Paralysis 213
Granuloma 2 Open Rhinophonia 18

Hyperasthenia 1 Closed Rhinophonia 1
Hyperfunctional Dysphonia 213 Mixed Rhinophonia 1
Hypofunctional Dysphonia 16 Sigmatism 4
Hypopharyngeal Tumor 6 Spasmodic Dysphonia 64
Hypotonic Dysphonia 5 Vocal Cord Carcinoma 22

Internal Weakness 1 Vocal Cord Polyp 45
Intubation Granuloma 4 Synechia 2

Intubation Injury 3 Singer’s Voice 2
Juvenile Dysphonia 1 Folds Hyperplasia 2
Laryngeal Tumor 5 Folds Voice 11

Contact Pachydermia 71 Velopharyngoplasty 2
Laryngitis 140 Senile Voice 40

Laryngeocele 3 Central Laryngeal Movement Disorder 14

When looking at the dataset, we notice a few imbalances. First, the
amount of subjects per class is different (more than 200 subjects of differ-
ence); secondly, the number of female subjects is almost double that of the
male subjects in the case of the healthy subject dataset; and lastly, the age
distribution of the healthy subjects set is highly skewed to the left as shown in
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Figure 3.1, where we can notice that there is a high number of subjects with
ages in the range of 20s while the pathological dataset is more distributed,
this imbalance can cause that the classifier creates a good separation between
the two classes (healthy and pathological) but influence to the fact that most
of the patterns are from younger voice and not from the actual disease.
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Figure 3.1. Age distribution

To solve those imbalances mentioned before, a subset of the database is
selected; this subset will be balanced in age and gender. Subjects that don’t
have both EGG and speech signals are also removed. This will allow the
comparison of multiple sets of features and ease the combination. The infor-
mation of the final dataset after the balance can be seen in Table 3.3; also,
Figure 3.2 shows the distribution of the ages in the data after the balance.
We can notice that both groups follow a similar distribution. Finally, pos-
sible biases introduced by age or gender are discarded according to Welch’s
t-test (p = 0.07) and a chi-square test (p = 0.89), respectively.
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Table 3.3. Demographic information of subjects in SVD database after balance in age
and gender.

Subjects with a pathology Healthy subjects
Male Female Male Female

# of participants 127 101 127 101
Age [years] 40.88 ± 12.11 41.75 ± 15.11 38.84 ± 11.92 39.82 ± 14.76

Age range [years] 18 - 67 18 - 79 24 - 69 24 - 84

0 20 40 60 80 100
Age

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

VP
HC

Figure 3.2. Age distribution balanced



Chapter 4

Experiments and results

This section compromises the results obtained during the development of
the thesis. It’s separated into three chapters; the first one shows the results
obtained when we aim to classify a person with a voice pathology vs a healthy
subject, and a comparison of the classification methods, features, and tasks is
done. The second one shows how the classification changes when we combine
the two modalities using different fusion methods. The third one compares
the results obtained in uni-modality vs. multi-modality. Some parts of these
results are published in [88].

Multiple experiments are performed to find the feature set that performs
the best in classifying VP and HC. Each set of features is extracted from
different tasks. These features are computed in the speech signal and the
EGG signal. The classical approach uses SVM, DT, and RF as classifiers.
All experiments were validated using a stratified k-fold cross-validation where
10 folds were selected; the stratified cross-validation tries to keep the same
percentage of subjects for each class in the train and test set. A hyper-
parameter optimization is performed for each classifier using a grid search,
and the best set of parameters is selected in each fold based on the training
accuracy.

The parameters optimized for the SVM were C ∈ {1e−5, 1e−4, ..., 10}, γ ∈
{1e−5, 1e−4, ..., 10} and kernel ∈ {linear, rbf}. The parameters for the DT
classifier were criterion ∈ {gini, entropy}, max depth ∈ {3, 5, 7, ..., 17}, min
samples split ∈ {2, 4, 6, 8, 10} and max leaf nodes ∈ {3, 5, 7, ..., 19}. Lastly,
the parameters for the RF classifier were max depth ∈ {10, 20, 30, ...90},
min samples split ∈ {2, 4, 6, 8, 10} and maximum features ∈ {log2, sqrt}.
After selecting the best parameters, the model’s performance is evaluated

68
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using different performance metrics like accuracy, f1 - score, sensitivity, and
specificity. More information on the metrics can be found in Section 2.6.

4.1 Uni-modal approach

4.1.1 Methodology

The methodology for the experiments can be seen in Figure 4.1. The ex-
perimental setup focuses on a multi-step process to assess the efficacy of
classical and modern machine learning approaches in classifying signals for
voice pathology detection. The methodology is divided into two key stages:
feature extraction and classification.

The feature extraction process is crucial in this experiment, utilizing both
EGG and speech signals. Different features are extracted from these signals
and categorized into phonation, articulation, nonlinear, BFCC, and phase
plots. Each type of feature serves a specific purpose in representing the
signal characteristics that are vital for effective classification:

• Phonation features capture the vibratory characteristics of the vocal
folds, which are essential in detecting abnormalities in vocal fold be-
havior, often associated with voice pathologies [89]–[91].

• Articulation features are critical for analyzing how sound is shaped by
the vocal tract, which may reveal articulation issues that can indicate
pathologies. [92]–[94].

• Nonlinear features help in identifying complex, chaotic behaviors in the
voice signal that may not be captured by traditional linear methods,
making them invaluable for detecting subtle variations in pathological
voices [95]–[97].

• BFCC (Bark Frequency Cepstral Coefficients): This feature is closely
related to MFCC but is more perceptually oriented, capturing how hu-
mans perceive speech sounds, which can lead to better characterization
of voice disorders [98], [99].

• Phase plots represent a unique way of capturing dynamic system be-
haviors in the signal and are automatically extracted. This feature
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allows for the analysis of the temporal evolution of the system, captur-
ing additional nonlinear behaviors that other feature sets might miss
[73], [100], [101].

Once the features are extracted, the next step involves classifying them
using both classical and modern machine learning approaches. The classi-
cal approach includes algorithms such as Support Vector Machine (SVM),
Random Forest (RF), and Decision Tree (DT), which have been historically
successful in voice pathology detection:

• Decision Trees provide an interpretable model that helps in under-
standing the decision-making process, making it suitable for medical
applications where interpretability is important.

• Random Forest is an ensemble learning method combining multiple
decision trees to improve classification accuracy and reduce overfitting,
essential for complex datasets like voice signals.

• SVM is a robust classifier for high-dimensional spaces and is particu-
larly effective when there is a clear margin of separation between classes
(healthy vs pathological).

On the other hand, current state-of-the-art applications are based on
deep learning in the form of neural networks, which learn complex feature
representations from raw data. This approach tends to outperform classical
methods when large amounts of data are available due to its ability to capture
patterns within the data.

For the optimization process, a grid search technique is used to find the
best hyper-parameters for each classifier to ensure the best performance. The
idea here is that various combinations of parameters are tried out at every
fold in multiple folds of cross-validation, resulting in a very robust model
selection. Train a model for each fold and select the parameters that give
the best performance by a voting mechanism across all folds.

The classifiers are then retrained on the whole training set, whose per-
formance is evaluated on the test set after the best parameters are chosen.
The average mean and standard deviation over all folds are reported as the
evaluation metrics.



71 4.1. Uni-modal approach

Figure 4.1. Base methodology for the uni-modal experiments

4.1.2 Experiments and results

Imbalance influence

Before performing the experiments shown in the methodology, it is important
to showcase the influence of the imbalances. The main focus of the work is to
test a methodology ensuring correct experimentation. One of the drawbacks
mentioned in the state-of-the-art is the imbalances in the database that can
induce biases in the model. To test this hypothesis we performed a simple
experiment, we trained a model using the whole database. The features,
models and task selection are not to much relevant to the experiment be-
cause we want to find whether the imbalances affect the results of the model,
however we train an SVM with BFCC features, focusing on the vowel /a/
and the speech task.

Since the objective is to observe how the model performs with specific
populations, we extracted a subset of the data, based on a condition such
as fixed gender or a specific age range. This approach helps us analyze
the model’s behavior under controlled conditions and assess whether the
imbalances affect its performance across different groups.

The results obtained with the whole dataset are shown in Table 4.1:
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Table 4.1. Accuracies of the model when trained with the whole dataset and selecting
different types of population

Population ACC F1-Score Specificity Sensitivity
Male 80.0% 0.80 0.65 0.85

Female 85.4% 0.85 0.86 0.84
Young (<24) 69.5% 0.59 0.97 0.04

Middle-age (24 – 40) 78.4% 0.75 0.26 0.94
Old (>40) 95.2% 0.92 0.0 1.0

On the other hand, when the database is balanced, we obtain the results
shown in Table 4.2:

Table 4.2. Accuracies of the model when trained with the balanced dataset and selecting
different types of population

Population ACC F1 Score Specificity Sensitivity
Male 60.0% 0.59 0.71 0.48

Female 54.1% 0.51 0.80 0.30
Young (<24) 53.8% 0.53 0.47 0.61

Middle-age (24 – 40) 55.1% 0.54 0.44 0.66
Old (>40) 60.7% 0.60 0.81 0.47

As shown in the table, when we use the entire database, we observe high
accuracies across the age ranges. However, many of these models demonstrate
either high sensitivity or high specificity, indicating that the models tend to
classify most samples into one class. This occurs due to the imbalances
present in the database for certain age ranges. For instance, in the case
of younger individuals, the majority of samples are from healthy subjects,
which results in high specificity (most samples are classified as healthy) and
consequently high accuracy.

In contrast, when using the balanced database, the overall accuracies
are lower, but the sensitivity and specificity values are more balanced. This
indicates that the model is making an effort to correctly identify both classes,
rather than favoring one, leading to a more reliable and fair classification.
This shows that the imbalance in the database can introduce biases in the
model, helping the model to achieve higher accuracies.

Graphs of the age vs the accuracies are shown in Figure 4.2 and Figure 4.3
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Figure 4.2. Age vs classification score with the unbalanced database

Figure 4.3. Age vs classification score with the balanced database
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Classification with phonation features

Muscles like the vocal folds, diaphragm, or larynx play a crucial role in speech
production. Abnormalities in these organs will induce changes in the subject
speech. Features based on describing abnormal changes in these organs can
be crucial in the early detection of a voice pathology. Phonation features
measure changes in pitch and frequency, as well as amplitude variations of
the speech signal.

Table 4.3 summarizes the accuracies obtained when using phonation fea-
tures in all tasks for both signals and each classifier. The accuracies obtained
for these experiments range from 52.7% up to 62.6%, which are not the great-
est accuracies. Still, it is worth considering that the dataset selected from
the SVD is balanced in terms of age and gender without worrying about the
variety of pathologies in the final dataset. Table 4.3 shows that the best
result had an accuracy of 62.6% using the vowel /u/ and the speech signal
with a DT classifier. Table 5.3 shows that the experiment has a f1-score of
57.4%, a really good specificity of 91.6% but a low sensitivity of 33.1%. The
EGG signal obtained close results for tasks like the vowel /a/ and the SVM
classifier with an accuracy of 60.9%.

Table 4.3. Accuracies obtained for each task using phonation features in both signals.
EGG: Electroglottography, ACC DT: Accuracy decision tree, ACC RF: Accuracy ran-
dom forest, ACC SVM: Accuracy support vector machine. The mean ± standard devi-
ation is reported.

Speech EGG
Task ACC DT [%] ACC RF [%] ACC SVM [%] ACC DT [%] ACC RF [%] ACC SVM [%]

Vowel /a/ 58.7 ± 9.3 61.1 ± 6.7 57.4 ± 9.2 58.9 ± 9.5 58.2 ± 11.8 60.9 ± 12.8
Vowel /i/ 55.2 ± 13.3 54.4 ± 4.4 61.6 ± 14.2 58.1 ± 8.5 56.1 ± 10.0 52.8 ± 5.1
Vowel /u/ 62.6 ± 13.9 54.7 ± 6.5 61.6 ± 10.2 55.4 ± 11.6 51.8 ± 3.4 52.7 ± 7.3

Phrase 61.0 ± 11.0 54.5 ± 7.0 58.8 ± 9.6 58.4 ± 11.4 58.0 ± 14.6 55.7 ± 5.2

Figure 4.4 shows the ROC curves of the three classifiers for the vowel /u/
using the speech signal and the vowel /a/ using the EGG signal. Also, the
bottom right part of each plot shows the area under the curve.

More detailed classification metrics like the F1-score, sensitivity, and
specificity using phonation features, as well as the results of the other tasks
and the parameters used, can be found in chapter 5 from Table 5.1 to Ta-
ble 5.4.
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Figure 4.4. ROC curve for phonation features using vowel /u/ for the EGG signal (left)
and vowel /a/ for the speech signal (right)

Classification with articulation features

After the vocal fold vibrates to generate sound waves, different muscles like
the thong, the lips, and the palate, among others, coordinate to shape the
sound waves in clear speech waves. Issues in some of those muscles will
affect the quality of the voice. For instance, changes in the volume or a
more breathy voice. Articulation features aim to capture patterns related to
issues in the organs involved in speech production. An example is the format
frequency that analyzes the changes in the resonate frequencies of the vocal
tract caused by problems in some articulators.

Similar to the previous experiment, Table 4.4 summarize the accuracies of
the different classifiers trained with the articulation features extracted from
speech and EGG. Table 4.4 shows the best results were obtained using the
EGG signal. Vowel /u/ yielded an accuracy of 62.2% with an f1-score of
57.5%, sensitivity of 37.5%, and specificity of 86.8%. Meanwhile, the vowel
/i/ obtained a similar accuracy of 62.2 but with a higher standard deviation
than the vowel /u/.
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Table 4.4. Accuracies obtained for each task using articulation features for both signals.
EGG: Electroglottography, ACC DT: Accuracy decision tree, ACC RF: Accuracy ran-
dom forest, ACC SVM: Accuracy support vector machine. The mean ± standard devi-
ation is reported.

Speech EGG
Task ACC DT [%] ACC RF [%] ACC SVM [%] ACC DT [%] ACC RF [%] ACC SVM [%]

Vowel /a/ 52.8 ± 7.8 56.7 ± 10.3 58.2 ± 9.0 54.1 ± 9.4 57.5 ± 10.1 57.8 ± 11.9
Vowel /i/ 50.2 ± 6.2 58.0 ± 9.8 57.6 ± 7.3 62.2± 13.6 56.9 ± 8.7 60.3 ± 12.2
Vowel /u/ 55.6 ± 4.9 53.4 ± 8.2 59.1 ± 7.0 62.2± 12.5 59.1 ± 10.3 59.5 ± 11.9

Phrase 50.8 ± 11.6 57.2 ± 8.8 59.3 ± 6.3 55.2 ± 6.8 58.9 ± 11.9 61.0 ± 10.9

A comparison of the performance for the three classifiers in both vow-
els/u/ and /i/ can be seen in the ROC curves shown in Figure 4.5. Informa-
tion regarding the best parameters, as well as the results for the other tasks,
can be found in chapter 5 from Table 5.5 to Table 5.8.

Figure 4.5. ROC curve for the best results obtained with articulation features using
vowel /i/ (left) and vowel /u/ (right) for the EGG signal

Classification with BFCCs features

Bark frequency cepstral coefficient features provide information about the
voice in the frequency domain. These features are usually robust against
noise and are relevant for voice pathology detection due to their close relation
to physiological processes.
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A summary of the accuracy obtained using these features for all the tasks
and signals can be found in Table 4.5. For the case of the BFCCs, the
two best results are using the EGG signal. The best result was using the
vowel /a/ alongside the DT classifier with an accuracy of 64.6%, a f1-score
of 63.7%, a sensitivity of 54.8%, and a specificity of 74.5%. The second best
was obtained using the phrase task and the SVM classifier, which obtained
a 64.3% accuracy not too far from the vowel /a/.

Table 4.5. Accuracies obtained for each task using BFCCs features for both signals.
EGG: Electroglottography, ACC DT: Accuracy decision tree, ACC RF: Accuracy ran-
dom forest, ACC SVM: Accuracy support vector machine. The mean ± standard devi-
ation is reported.

Speech EGG
Task ACC DT [%] ACC RF [%] ACC SVM [%] ACC DT [%] ACC RF [%] ACC SVM [%]

Vowel /a/ 55.0 ± 6.6 56.3 ± 8.4 58.2 ± 11.2 64.6± 12.6 59.3 ± 12.9 57.8 ± 9.4
Vowel /i/ 45.7 ± 6.8 52.5 ± 10.0 57.8 ± 8.9 56.7 ± 11.2 56.8 ± 7.7 58.0 ± 11.3
Vowel /u/ 43.1 ± 10.7 56.2 ± 15.7 57.4 ± 10.1 58.0 ± 13.1 59.7 ± 10.8 59.9 ± 14.6

Phrase 56.1 ± 10.6 61.3 ± 9.7 63.0 ± 8.0 57.3 ± 12.8 60.8 ± 13.1 64.3± 10.2

The ROC curve of the best results can be seen in Figure 4.6. Table 5.9 to
Table 5.12 show more details on the classification using different tasks and
all the metrics and best parameters.

Figure 4.6. ROC curve for BFCC features using vowel /a/ (left) and phrase (right) for
the EGG signal.
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Classification with nonlinear features

Studies have shown the nonlinear dynamics during the voice production pro-
cess [35]. The involvement of multiple systems, like the vocal folds and the
vocal tract, among others, makes voice production a highly complex and
nonlinear task. The analysis of the chaotic behavior, like roughness in the
voice, is an indicator of voice pathologies or at least problems in the voice,
so features that analyze and characterize this chaos during voice production
can be relevant in the analysis of voice pathologies.

Table 4.6 summarizes the accuracies obtained when the nonlinear features
are extracted from the EGG and speech signal and used to classify voice
pathologies. The best result was obtained using the vowel /a/ with the
speech signal and the SVM classifier; this combination obtained an accuracy
of 60.6%, a f1-score of 59.3%, a sensitivity of 51.9%, and a specificity of
69.3%. The second-best result was obtained with the vowel /i/ using the
EGG signal and the DT classifier with an accuracy of 60.5%

Table 4.6. Accuracies obtained for each task using non-linear features for both signals.
EGG: Electroglottography, ACC DT: Accuracy decision tree, ACC RF: Accuracy ran-
dom forest, ACC SVM: Accuracy support vector machine. The mean ± standard devi-
ation is reported.

Speech EGG
Task ACC DT [%] ACC RF [%] ACC SVM [%] ACC DT [%] ACC RF [%] ACC SVM [%]

Vowel /a/ 58.7 ± 9.2 55.4 ± 10.8 60.6± 9.8 56.2 ± 11.1 57.5 ± 10.6 60.2 ± 13.4
Vowel /i/ 51.2 ± 7.5 51.2 ± 7.5 54.9 ± 7.8 60.5± 7.8 58.2 ± 7.2 58.3 ± 8.5
Vowel /u/ 48.1 ± 10.5 49.2 ± 9.3 51.2 ± 4.7 59.0 ± 13.7 55.8 ± 8.8 54.3 ± 6.4

Phrase 54.7 ± 8.5 54.3 ± 9.4 58.9 ± 9.4 56.2 ± 14.3 59.1 ± 10.3 59.3 ± 9.5

Figure 4.7 shows the ROC curves of the three classifiers for the vowel /u/
using the speech signal and the vowel /a/ using the EGG signal. Also, the
bottom right part of each plot shows the area under the curve.

More detailed classification metrics like the F1-score, sensitivity, and
specificity using phonation features, as well as the results of the other tasks
and the parameters used, can be found from Table 5.13 to Table 5.16.
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Figure 4.7. ROC curve for nonlinear features using vowel /a/ for the EGG signal (left)
and speech (right)

Classification with phase plots features

All previous experiments were performed using a classical feature extrac-
tion and classification approach. This classification method grants us more
control and interpretation of the features used and relates these features to
mathematically represented physiological processes. However, more modern
techniques have recently been used. This allows automatic feature extrac-
tion and a more customizable classifier. Both the feature extractor and the
classifier are trained to learn how to characterize the problem and are highly
used because they can adapt to multiple problems based on the data used
for the training.

Images are the most common input signal where features are extracted
using modern techniques. Images have high dimensionality and require an
analysis of the spatial information; this is when automatic feature extraction
can exceed handcrafted ones.

Phase plots are 2D representations of the glottal cycles during speech pro-
duction. Because it is a 2D representation (image), features are extracted
using a convolutional neural network combined with a fully connected, Fig-
ure 4.8 shows a graphical representation of the network used for this process.
The convolutional layers have 64, 32, and 16 kernels respectively, with a ker-
nel size of 3x3 except for the second layer. Rectified Linear Unit (ReLU) ac-



80 4.1. Uni-modal approach

tivation functions are employed in all layers. Max pooling with a pool size of
2x2 is applied after each convolution. The network is trained using an ADAM
optimizer [102] with a batch size of 16 and 100 epochs. To prevent overfit-
ting, an early stopping algorithm with a patience of 5 is implemented. Two
hyper-parameters of the network are optimized; the first one is the learning
rate (Lr) of the network that can take values from Lr ∈ {1e−6, 1e−5, 1e−4}
and the size of the embeddings generated after the flattened layer, the values
of the last ranges from Ls ∈ {128, 256, 512}. This optimization is done for
each combination of task and signal; the parameters that yielded the best
accuracy in the test are selected. Similarly to the classical approach, these
parameters are fixed, and the network is trained again. Performance metrics
like accuracy, f1 - score, sensitivity, and specificity are calculated for each
fold and the mean and standard deviation are reported.

Figure 4.8. CNN architecture combined with a fully connected for the classification of
voice pathologies

The convolutional layers are in charge of detection patterns inside the
image and reduce the input image’s dimensionality without losing too much
information. Lastly, after the features are extracted, a fully connected layer
uses these features to discriminate a patient with a voice pathology from a
healthy subject.
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Table 4.7. Results obtained by classifying voice pathologies using phase plots. ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity, Lr: Learning rate, Ls: Layer
size

Speech
Task Parameters ACC [%] F1 [%] SEN [%] SPE [%]

Vowel /a/
Lr= 0.0001
Ls= 512

56.1 ± 8.3 55.2 ± 8.2 57.6 ± 20.6 62.0 ± 12.0

Vowel /i/
Lr= 0.001
Ls= 128

54.4 ± 6.5 53.5 ± 7.2 38.3 ± 29.7 59.3 ± 30.5

Vowel /u/
Lr= 1e-05
Ls= 256

56.8 ± 8.0 56.2 ± 8.5 66.1 ± 46.8 33.3 ± 47.1

Phrase
Lr= 0.0001
Ls= 128

58.3 ± 9.8 57.3 ± 10.1 63.2 ± 45.6 35.7 ± 45.9

EGG
Task Parameters ACC [%] F1 [%] SEN [%] SPE [%]

Vowel /a/
Lr= 1e-05
Ls= 512

59.0± 11.1 57.3 ± 12.1 56.5 ± 42.9 53.0 ± 47.6

Vowel /i/
Lr= 0.0001
Ls= 256

55.4 ± 8.5 52.4 ± 10.8 43.5 ± 30.5 81.2 ± 17.1

Vowel /u/
Lr= 0.001
Ls= 256

58.3± 10.8 55.3 ± 13.2 34.8 ± 29.9 88.8 ± 11.4

Phrase
Lr= 0.001
Ls= 512

57.3 ± 8.0 55.1 ± 8.3 63.8 ± 33.1 43.2 ± 29.4

Since we are using a single classifier, the DNN, the ROC curve illustrates
the accuracies obtained for each task using EGG and speech. This figure can
be found in Figure 4.9.
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Figure 4.9. ROC curves for phase plot features derived from the EGG signal (left) and
speech (right) across all tasks.

4.1.3 Discussion

The process done in the balance of the dataset generated a subset that does
not consider the type of pathologies or the number of samples of each pathol-
ogy. This creates a problem that can be more difficult to solve since some
pathologies can have few subjects, the disease hasn’t affected the patient
too much, or simply the pathologies are difficult to differentiate between a
healthy subject. However, this makes the experiments closer to where we
don’t know the patient’s pathology; we aim to see if there are patterns that
can be related to voice pathology.

Overall, the uni-modal experiments didn’t show good results in accu-
racy; none of the experiments could surpass 70% accuracy, showing that the
models had difficulties during the classification process. As detailed in the
tables in the Appendix, most experiments exhibited low sensitivity values
(below 30%) but high specificity, meaning that the model couldn’t detect
voice pathology. This causes the model to predict most samples as one class,
generating accuracies close to 50 %.

Besides the low accuracy values, several observations emerged from the
experiments. Most works in the literature focus exclusively on the vowel
/a/, normally because it is the most common one. However, the experiments
showed that other vowels can also obtain great results and work better de-
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pending on the features. For example, the vowels/i/ and /u/ worked well
with the articulation features, being the best two results with that feature
set.

The best result overall was obtained by the BFCCs features; this set of
features not only got the two best results with the vowel /a/ and the phrase
but also generated more balanced models, obtaining sensitivities of 61.2%.
These findings highlight the potential of the BFCCs features.

Lastly, the phase plots did not improve the results obtained by other
classical approaches. Because the deep learning approach requires a large
amount of data for the training process, the model is not able to learn and
generalize the phenomena before being stooped by the early stopping algo-
rithm to avoid overfitting. However, other techniques are used in further
experiments to showcase the capabilities of these novel features.

4.2 Multi-modal approach

The uni-modal approach showed promising results in some combinations.
Still, it is worth noticing that the sensitivity in most of them is low (below
30%), generating a good model for detecting the negative class. Still, VP is
not the best for the positive class.

The introduction of complementary information can greatly enhance the
classifier’s performance. This is where the fusion of techniques can be useful.
The main hypothesis is that combining the information of both modalities
can improve the classification process. There are two ways of combining the
information; the first consists of concatenating the two features and creating
a new vector. The second one consists of taking the decision probabilities
obtained by the classifier at the end and, with a conjoint probability, finding
a new decision. By using these fusion techniques, we aim to introduce infor-
mation from different sources that can potentially improve the accuracy and
robustness of the classifier.

4.2.1 Experiments and results

Early fusion with classical features

Classical features are commonly created based on previous knowledge of the
problem we want to analyze; this allows us to control and have an interpreta-
tion of the information we are introducing to a classifier. Also, these features
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have proven to be effective in previous scenarios. The results obtained using
these classical features were not the best, and a possible solution to this low
accuracy can be to introduce additional information from other sources.

The hypothesis is that combining EGG and speech signals can improve
the classification process and generate a more robust model. Due to the
many combinations that can result from the fusion, only the three best results
are showcased for each task.Table 4.8 to Table 4.11 shows the accuracy, f1-
score, sensitivity and specificity for each task. The best result was obtained
using the phrase task and combining the BFCC features extracted from both
signals. The SVM obtained an accuracy of 66.8% and helped to increase the
sensitivity values obtained so far up to 56.4%. Figure 4.10 shows the ROC
curve with the best result obtained in each task.

Table 4.8. Best results obtained in the classification of voice pathologies using the vowel
/a/ and early fusion. DT: Decision Tree, SVM: Support Vector Machine, ACC: Accu-
racy, F1: F1-score, SEN: Sensitivity, SPE: Specificity, BFCC: Bark Frequency Cepstral
Coefficients

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
Articulation EGG Nonlinear speech SVM 63.0 ± 8.2 62.4 ± 8.5 59.0 ± 16.3 67.0 ± 11.0

BFCC EGG Nonlinear speech SVM 62.8 ± 8.2 62.4 ± 8.3 62.1 ± 17.5 63.5 ± 4.7
Nonlinear EGG BFCC speech DT 62.8 ± 8.4 61.6 ± 9.5 57.7 ± 22.1 67.9 ± 12.9

Table 4.9. Best results obtained by classifying voice pathologies using the vowel /i/ and
early fusion. DT: Decision Tree, RF: Random Forest, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity, BFCC: Bark Frequency Cepstral Coefficients

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
Nonlinear EGG Nonlinear speech RF 63.8 ± 8.5 63.2 ± 8.8 61.7 ± 19.7 66.6 ± 10.1
Nonlinear EGG Nonlinear speech DT 62.7 ± 10.7 60.4 ± 12.5 49.8 ± 27.1 77.0 ± 10.2

Articulation EGG BFCC speech DT 62.2 ± 13.6 56.7 ± 17.7 33.1 ± 24.3 94.1 ± 4.3

Table 4.10. Best results obtained by classifying voice pathologies using the vowel /u/
and early fusion. DT: Decision Tree, SVM: Support Vector Machine, ACC: Accuracy,
F1: F1-score, SEN: Sensitivity, SPE: Specificity, BFCC: Bark Frequency Cepstral Co-
efficients

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
Articulation EGG Phonation speech SVM 64.6 ± 10.0 62.6 ± 11.5 49.4 ± 24.3 79.8 ± 8.0
Articulation EGG Nonlinear speech DT 64.4 ± 10.0 61.8 ± 12.5 47.5 ± 23.8 81.0 ± 11.2
Phonation EGG BFCC speech DT 63.8 ± 11.4 62.9 ± 11.7 53.9 ± 18.5 73.6 ± 14.2
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Table 4.11. Best results obtained by classifying voice pathologies using the phrase and
early fusion. SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score, SEN:
Sensitivity, SPE: Specificity, BFCC: Bark Frequency Cepstral Coefficients

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
BFCC EGG BFCC Speech SVM 66.8 ± 6.2 65.8 ± 6.7 56.4 ± 14.2 77.2 ± 14.4

Articulation EGG BFCC Speech SVM 65.2 ± 9.3 64.2 ± 10.2 63.8 ± 21.3 66.7 ± 14.3
BFCC EGG Articulation Speech SVM 65.0 ± 8.3 64.2 ± 8.7 58.5 ± 18.0 71.5 ± 12.8

Figure 4.10. ROC curves for the best results for each task using early fusion in the
classical features.

Early fusion with phase plots

Some classical features that were extracted require a window frame for their
calculation. Framing the audio can lead to different feature lengths depend-
ing on the audio length. One way to solve this issue is to crop all the audios
to the same length or to calculate the features for all the windows and use
statistical values such as mean, standard deviation, kurtosis, and skewness
of the features as the feature set, creating a static vector because the time
constrain is removed.



86 4.2. Multi-modal approach

These static vectors can be useful for the classification of voice pathologies
as seen in previous results. However, some information is lost because of the
compression nature, leading to misclassification and poor performance. On
the other hand, phase plots are features that take into account the dynamics
over time. Because they are images, the most common way is to extract the
features automatically. The combination of classical features that use static
feature sets with the phase plots that take into account the dynamics of the
audio can lead to improvements in the classification process, and generate a
more robust model.

One problem arises when attempting this combination of features because
the phase plots are features extracted automatically and then used in a DNN
to perform the classification while the classical features are an array of num-
bers, the concatenation cannot be done so easily as previous experiments.
Either the classical features need to be introduced into the DNN alongside
the phase plots or the output generated by the CNN for an image is taken as
a feature set and used in the classical models. The low number of samples
and increased number of inputs can generate that a DNN model overfits, so
a better approach is to extract the features generated for the CNN and train
classical classifiers.

For the feature extraction process, the best networks found in the uni-
modal approach with phase plots are used, after the network was trained and
all the weights were adjusted, each sample was introduced to the network, and
the array obtained after the flattened layer is taken as the feature embedding
of that input.

Similar to previous experiments, just the three best results per task are
reported. Table 4.12 to Table 4.11 shows the best results obtained for each
task,

Table 4.12. Best results obtained in the classification of voice pathologies using the
vowel /a/ and early fusion with phase plots. DT: Decision Tree, SVM: Support Vector
Machine, ACC: Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
Phase plot EGG Nonlinear speech SVM 84.5 ± 13.8 82.5 ± 18.1 79.3 ± 31.3 89.5 ± 15.8
Phase plot EGG Phonation speech SVM 83.1 ± 13.5 81.0 ± 17.9 78.4 ± 32.6 88.2 ± 14.5

Articulation EGG Phase plot speech SVM 83.0 ± 13.3 80.9 ± 17.6 76.3 ± 30.5 89.5 ± 14.0
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Table 4.13. Best results obtained in the classification of voice pathologies using the vowel
/i/ and early fusion with phase plots. DT: Decision Tree, SVM: Support Vector Machine,
ACC: Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
Phase plot EGG Phonation speech SVM 87.7 ± 13.5 85.9 ± 18.1 82.8 ± 29.5 93.0 ± 11.5
Phonation EGG Phase plot speech RF 87.0 ± 15.6 85.2 ± 19.8 84.5 ± 31.8 89.5 ± 11.6
Nonlinear EGG Phase plot speech SVM 86.7 ± 14.4 84.7 ± 18.9 84.6 ± 30.5 88.6 ± 17.0

Table 4.14. Best results obtained in the classification of voice pathologies using the
vowel /u/ and early fusion with phase plots. DT: Decision Tree, SVM: Support Vector
Machine, ACC: Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
Phase plot EGG Phonation speech SVM 86.2 ± 14.9 84.1 ± 19.3 82.8 ± 31.2 89.5 ± 17.5
Nonlinear EGG Phase plot speech SVM 85.6 ± 15.0 83.4 ± 19.5 82.3 ± 31.2 88.6 ± 19.2
Phase plot EGG Articulation speech RF 85.4 ± 15.7 83.3 ± 20.0 81.4 ± 32.7 89.1 ± 15.8

Table 4.15. Best results obtained in the classification of voice pathologies using the
phrase and early fusion with phase plots. DT: Decision Tree, SVM: Support Vector
Machine, ACC: Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity, BFCC:
Bark Frequency Cepstral Coefficients

Feature 1 Feature 2 Classifier ACC [%] F1 [%] SEN [%] SPE [%]
BFCC EGG Phase plot speech RF 88.5 ± 14.9 86.8 ± 18.6 86.3 ± 29.8 90.4 ± 16.1

Phonation EGG Phase plot speech RF 87.7 ± 16.8 85.9 ± 20.6 85.4 ± 31.5 90.4 ± 16.2
Nonlinear EGG Phase plot speech RF 87.2 ± 16.3 85.6 ± 19.6 86.3 ± 29.8 87.8 ± 16.5
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Figure 4.11. ROC curves for the best results for each task using early fusion.

Late fusion classification

Another method of combining information is to perform this combination
after the classification process is performed. Each classifier at the end gives
each sample a probability of belonging to each class. Depending on the fea-
ture, the task, the signal, and the classifier, the probability can be stronger,
meaning that the classifier is more sure about the decision. Late fusion com-
bines the decision of two classifiers and gives a new probability. The decision
of the new probability can be made by selecting the maximum probability
out of the two or averaging the probabilities. The second approach is followed
for this experiment.

Late fusion has the advantage that does not require the training of new
models as in the early fusion. The three best results for each task are shown
from Table 4.16 to Table 4.19. The best result overall was obtained using
the phrase task, combining the probabilities obtained by two SVM trained
with BFCCs features. Not only did the experiment yield an accuracy of
67.0% improving the best accuracy obtained in the uni-modal experiments,
but it also generated a more balanced model with a sensitivity of 61.1% and
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a specificity of 72.8%. Figure 4.12 shows the ROC curve for the best result
in each task.

Table 4.16. Best results obtained in the classification of voice pathologies using the
vowel /a/ and late fusion. DT: Decision Tree, SVM: Support Vector Machine, ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity, BFCC: Bark Frequency
Cepstral Coefficients

Feature 1 Classifier 1 Feature 2 Classifier 2 ACC [%] F1 [%] SEN [%] SPE [%]
BFCC EGG DT BFCC speech RF 65.4 ± 12.3 64.8 ± 13.0 55.6 ± 18.3 75.3 ± 7.4
BFCC EGG DT BFCC speech SVM 65.2 ± 13.2 64.4 ± 14.3 56.5 ± 22.0 74.0 ± 6.4

Phonation EGG DT Phonation speech SVM 62.0 ± 15.0 57.5 ± 17.9 37.6 ± 30.1 86.3 ± 7.3

Table 4.17. Best results obtained in the classification of voice pathologies using the
vowel /i/ and late fusion. DT: Decision Tree, SVM: Support Vector Machine, ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity, BFCC: Bark Frequency
Cepstral Coefficients

Feature 1 Classifier 1 Feature 2 Classifier 2 ACC [%] F1 [%] SEN [%] SPE [%]
Phonation EGG SVM Phonation speech RF 62.7 ± 12.2 61.0 ± 13.5 51.9 ± 26.6 75.3 ± 13.8
Phonation EGG SVM Phonation speech DT 62.7 ± 11.1 59.9 ± 13.2 44.6 ± 27.0 82.9 ± 10.1

Articulation EGG DT Articulation speech SVM 62.7 ± 10.5 60.8 ± 12.1 50.1 ± 24.3 76.8 ± 11.2

Table 4.18. Best results obtained in the classification of voice pathologies using the
vowel /u/ and late fusion. DT: Decision Tree, SVM: Support Vector Machine, ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity, BFCC: Bark Frequency
Cepstral Coefficients

Feature 1 Classifier 1 Feature 2 Classifier 2 ACC [%] F1 [%] SEN [%] SPE [%]
Phonation EGG DT Phonation speech RF 64.2 ± 12.4 61.4 ± 14.1 44.9 ± 26.6 83.7 ± 11.7
Phonation EGG SVM Phonation speech SVM 63.3 ± 12.1 61.7 ± 12.9 51.8 ± 25.6 75.4 ± 12.1
Phonation EGG DT Phonation speech SVM 62.2 ± 13.1 59.1 ± 15.1 41.4 ± 25.2 82.8 ± 9.9

Table 4.19. Best results obtained in the classification of voice pathologies using the
phrase and late fusion. DT: Decision Tree, SVM: Support Vector Machine, ACC: Accu-
racy, F1: F1-score, SEN: Sensitivity, SPE: Specificity, BFCC: Bark Frequency Cepstral
Coefficients

Feature 1 Classifier 1 Feature 2 Classifier 2 ACC [%] F1 [%] SEN [%] SPE [%]
BFCC EGG SVM BFCC speech SVM 67.0 ± 9.7 65.9 ± 10.3 61.1 ± 21.0 72.8 ± 14.2
BFCC EGG SVM BFCC speech RF 63.7 ± 11.8 62.4 ± 12.6 56.7 ± 22.8 70.6 ± 15.6
BFCC EGG RF BFCC speech SVM 63.5 ± 9.6 62.2 ± 10.3 56.3 ± 21.5 70.6 ± 14.8



90 4.2. Multi-modal approach

Figure 4.12. ROC curves for the best results for each task using late fusion.

4.2.2 Discussion

The results obtained from the fusion process demonstrate the potential effec-
tiveness of these methods. Uni-modal experiments faced challenges during
the classification process, yielding low sensitivity and, in some cases, speci-
ficity. This resulted in models with accuracies lower than 60%. To address
these issues, an early fusion of classical features was employed.

When combining classical features, nonlinear and BFCC features fre-
quently ranked among the top three best combinations. BFCCs, which previ-
ously achieved the best results in the uni-modal experiments, were expected
to perform well in the fusion process. On the other hand, the nonlinear fea-
tures proved to be a crucial element for the classification process, providing
complementary information that enhanced overall performance.

The best accuracies were obtained when the phase plots were included
in the early fusion. BFCC features, when combined with the phase plots in
the phrase task, showed a model with 88.5% accuracy. The combination of
static information from the classical features and dynamic information from
the phase plots yielded accuracies above 80%, generating more robust models
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with sensitivities and specificities, in some cases, higher than 85%. This was
particularly evident in the best result obtained in this study. SVM and RF
classifiers most commonly appeared in the top three results, while DT was left
behind in these early fusion results. This likely occurs because early fusion
increases the number of features introduced to the model, necessitating the
use of more complex models.

Lastly, late fusion did not improve upon the results obtained from early
fusion with phase plots but still showed interesting outcomes. Features like
phonation proved important when performing this type of fusion. Late fusion
can be a valuable approach when we have models that are already trained,
and we want to combine their information without needing to retrain them.

Figure 4.13 shows a comparison of the distribution score for the best result
in each main experiment. 4.13a is the result obtained when using the vowel
/a/ and BFCC features extracted from the EGG signal and a DT classifier,
we can notice that the distributions are separated but a big portion of one
class is always being misclassified. 4.13b shows the distribution obtained
when the phase plots and the BFCCs features are concatenated, the plots
show that the combination of the features improved the distribution and the
separation of the classes. Lastly, 4.13c shows the score distribution when
the probabilities of two SVM trained with BFCC features are combined, the
plot shows an improvement compared with the uni-modal approach but the
means of the two distributions are close to the threshold, generating multiple
misclassified values reducing the accuracy of the model.
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(a) Score distribution for the vowel /a/ using the
BFCCs features extracted from the EGG signal and
a DT classifier.

(b) Score distribution for the phrase task concate-
nating the BFCCs features extracted from the EGG
signal and the phase plots extracted from the speech
signal alongside a RF classifier.

(c) Score distribution for the phrase task combin-
ing the probabilities obtained by two SVM classifiers
trained with BFCCs features extracted from EGG
and speech.

Figure 4.13. Score distribution for the best results in each main set of experiments.



Chapter 5

Conclusions and future work

This work evaluated different strategies for the automatic classification of
voice pathologies, with a focus on analyzing the SVD database, a German
database that contains EGG and speech signals from healthy subjects and
patients with various voice pathologies performing sustained vowels and a
phrase task. The imbalances in both age and gender required the selection
of a subset of the database to remove these imbalances and avoid biases
in future experiments. Multiple handcrafted features were extracted based
on the physiological aspects of the phenomena. Additionally, various CNN
architectures were trained for the automatic feature extraction of a novel
feature called phase plots. Finally, early and late fusion techniques were
employed to combine the information from the two modalities.

Features such as BFCC, articulation, phonation, and nonlinear charac-
teristics were extracted as handcrafted features, while phase plots utilized
CNNs for automatic feature extraction. Initial experiments did not yield
promising results, with models achieving accuracies close to 50% and sensi-
tivity values as low as 0.0% in some cases. However, BFCC showed good
accuracy and produced a more balanced model among the uni-modal ap-
proaches. Uni-modal experiments also highlighted the importance of other
vowel tasks, such as vowel /i/, which achieved similar or even better results
compared to vowel /a/, depending on the feature set used.

In the modern approach, a CNN with a fully connected layer was trained
to classify voice pathology using phase plots, a novel feature set representing
glottal cycles over time in a 2D plot. The CNN kernels were optimized to
extract features from the phase plots, which were then used to optimize the
weights of the fully connected layer. The low accuracies observed can be
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attributed to the need for large amounts of data to train DNNs to avoid
overfitting.

Two fusion methods were implemented to combine the information from
EGG and speech. Early fusion concatenated the feature set before classifi-
cation, while late fusion used the probabilities obtained by the classifier to
perform a new classification. Since the phase plots feature was automati-
cally extracted during network training, an embedding for each subject was
generated from the CNN network post-training. Early fusion with phase
plots yielded the best results, with an 88.5% accuracy when combined with
BFCC features and using the phrase task. This feature set combined static
information from BFCC and dynamic information from phase plots.

The results observed in this work demonstrate that the fusion method us-
ing novel features complements information obtained from other features and
shows significant potential in discriminating voice pathologies from healthy
subjects. From a clinical perspective, the proposed approach presents a sig-
nificant step towards enhancing the diagnostic process for voice pathologies.
Traditional diagnostic methods often rely heavily on subjective assessments,
such as auditory-perceptual evaluations by clinicians, or invasive techniques
like laryngoscopy. These methods, while valuable, can be time-consuming,
expensive, and dependent on the clinician’s expertise. The introduction of au-
tomated classification systems, particularly those leveraging both EGG and
speech signals, offers a non-invasive, objective, and potentially more accessi-
ble solution for early diagnosis and monitoring of voice disorders. However,
because our database contains patients who have already been diagnosed,
we do not have enough information to determine whether the models are
effective for pre-assessment or confirmatory evaluation.

Another advantages of this work lies in its potential to overcome the
challenge of imbalanced datasets in medical diagnostics. Voice pathologies
are often underrepresented in datasets compared to healthy controls, leading
to biased models. The method employed in this study to mitigate these
imbalances ensures that the developed system remains reliable across diverse
patient populations, making it more generalizable and effective in real-world
clinical applications.

Future work could explore the dynamic analysis of other classical features,
like features related to the nature of the EGG signal or information from the
phase plots, to verify the influence of these dynamic features on classification.
Additionally, applying this pipeline and the phase plots features to other
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research fields, such as swallowing detection, could be highly valuable.



Appendix A

5.1 Christian-Albrechts-Universität zu Kiel time

During my master’s program, I undertook a six-month internship in Ger-
many, where the primary objective was to analyze and automatically detect
swallowing events. Although my master’s degree is not directly related to
this specific topic, the project utilized a pipeline similar to the one I em-
ployed during my master’s research. This time, however, the pipeline was
specifically adapted and focused on the detection of swallowing.

Swallowing implies the transit of food, liquids, and saliva from the mouth
to the stomach in a well-synchronized way [103]. This process can be char-
acterized by different phases, i.e., oral, pharyngeal, and esophageal. Dyspha-
gia is a syndrome that affects the typical sequence of phases, which appear
secondary to neurogenic or neuromuscular disorders - namely as functional
dysphagia -, or to structural conditions [104], [105]. Dysphagia leads to mal-
nutrition, dehydration, aspiration pneumonia, and even death.

The instrumental diagnosis of dysphagia is performed by two reference
methods, i.e. Videofluoroscopy Swallowing Studies (VFSS) and Fiberoptic
Evaluation of Swallowing (FEES) [106]. While VFSS allows the real-time
visualization of the bolus transit and the detection of penetration or aspi-
ration, it is invasive due to the X-ray exposure; this limits the number of
evaluations for follow-up, and it has associated radiation risks, e.g., cancer
or damage in the lens of the eyes [107]. Otherwise, FEES is uncomfortable
and sometimes painful with anesthesia requirements because it implies the
presence of a strange body in the nasopharynx [108].

Information obtained from less invasive sensors has been analyzed to find
alternatives for detecting swallowing problems. For this, it is important to
consider the capability of swallowing detection to establish whether a signal
or sensor can be used for swallowing evaluation. The swallowing process can
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be analyzed from different perspectives -dimensions -, such as mechanical and
acoustic. Different sensors and sources of information can address each of
them. The acoustic dimension of swallowing has been assessed with headset
microphones for automatic speech analysis using machine learning models
to determine the dysphagia screening capability [109], [110]. In addition,
throat microphones have been used in combination with accelerometers for
swallow detection [111] and swallowing-related event detection [112], mainly
using VFSS as validation and machine learning/deep learning schemes. Other
works have used throat microphones for -silent- aspiration detection under
machine learning schemes in patients with dysphagia [113], [114].

During the internship, magnetic sensors and a throat microphone were
tested for their capabilities in detecting and evaluating swallowing. A small
database of healthy subjects was recorded performing different swallowing
tasks.

5.1.1 Sensors description

Throat microphone

A commercial throat microphone from the brand IASUS, specifically the GP3
model, was used. Its frequency response ranges from 20Hz to 20kHz. Throat
microphones like these are commonly used in military or firefighting contexts
due to their ability to transmit sound effectively in noisy environments.

TM captures voice signals using a piezoelectric transducer that senses the
vibrations in the throat area when a sound is produced. This makes TM an
excellent sensor for detecting swallowing tasks, allowing us to have a suitable
baseline sensor to compare with the magnetic sensor.

Magnetic arrangement

Three DJ-type magnetic sensors were used. These are MI (Magneto-
Impedance) sensors, claimed to be capable of detecting changes in magnetic
fields on the order of nanoteslas (nT).

These sensors measure changes in the magnetic field in a specific di-
rection. Therefore, the configuration involves using two type-A sensors for
measurements along the Y and Z axes and one type-B sensor for the X axis.

The sensors require a 15V power supply, two ground pins, and one output
pin. However, since it’s a multi-sensor configuration, a synchronization signal
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is necessary in the last pin of the sensors. This signal is a sinusoidal signal
with a frequency of 1MHz, which a standard MI-CB-1DJ-OSC oscillator or
a waveform generator can generate.

Due to the sensor’s sensitivity, abrupt movements cause de-
synchronization. To prevent this, a 3D box was designed to securely hold the
sensors in their respective positions and control their movement.

A coil is placed around the neck near Adam’s apple to induce changes in
the magnetic field during swallowing. The movement of the throat during
swallowing changes the magnetic field, which the magnetic sensors detect.

5.1.2 Data collection

The swallowing dataset was built with the help of people from the Digital
Signal Processing and System Theory who participated voluntarily in the
study. All the signals were recorded in two sessions; the throat microphone
was used as the only sensor in the first recording, and for the second one, both
sensors were used to generate three sets of signals (throat microphone, mag-
netic sensor, and both sensors simultaneously). This approach allows us to
have both signals individually and check if the throat microphone influences
the signals measured by the magnetic sensors.

Participants signed a consent form in their first session, which allowed
the recordings and data to be used. A total of 8 tasks are recorded, which
are grouped depending on the aim of the task. The first group of tasks was
the swallowing task; the participant was requested to swallow saliva, water,
and yogurt three times for each liquid. The water was provided in a cup,
and a spoon was used for the yogurt; in both cases, the liquid supplied was
10 ml. The second set of tasks are called noise tasks; these aim to be sounds
that confuse the model, being sounds that can be produced in the throat
area but are not related to swallowing; for these groups, the participant was
requested to cough 10 times and clear their throats 10 times.

The two other tasks include a text that contains different swallowing and
noise tasks in between the text; for the two acoustic tasks, the participant is
asked to sustain the vowel A for three seconds or more and to say the phrase
"Guten Morgen, wie geht es Ihnen?".

This recording session is done first with the throat microphone, then the
magnetic sensor is placed, and the recordings are repeated. Finally, the
throat microphone is removed, and the last recordings are performed. The
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Kiel Real-time Application Toolkit, or KiRAT, records both sensors simul-
taneously. The software allows us to capture the signal from the throat
microphone and the three signals (one for each axis) from the magnetic sen-
sor, the camera, and the condenser microphone, store the signals under one
folder, and display the signal values in real-time.

Five labels are selected for the labeling process: swallowing saliva (S),
swallowing water (SW), eating yogurt (SY), coughing (C), and throat clear-
ing (T). The labeling process is performed by checking the audio signals in
conjunction with the camera signal to detect and select the time range of
the events. With these labels, we can select parts of the signals that contain
relevant information for the problem.

5.1.3 Pre-processing and feature extraction

Due to the sensor’s nature, a Hilbert transformation is applied; when the
absolute value of this transformation is taken, the result is the signal’s en-
velope. Furthermore, a low-pass filter with a cutoff frequency of 40 Hz is
applied to remove the power supply’s hum and any higher frequency used in
the modulation process.

From the pre-processed signal, spikes can be seen at the signal’s begin-
ning and end. This is not caused by the swallowing phenomena but by the
convolution process that is performed in the Hilbert transform because the
signal doesn’t have values before t = 0 for the convolution; a circular or
periodic padding is applied internally where the left part of the signal joins
the right, creating this spikes. To remove this, 2400 samples (440 ms) are
removed from the transformed audio (1200 at the beginning and 1200 at the
end).

A set of features is required to analyze the signals using a machine-
learning model. These features aim to represent the feature in different
characteristics that can be used to check for patterns that allow us to classify
between different classes.

5.1.4 Learning schemes

The same pipeline used in this work is applied here for swallowing detection.
Three machine learning methods are used to classify the swallowing events.
A support vector machine, a decision tree, and a random forest classifier.
SVMs excel at creating hyper-planes to separate data points; these are made
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using three hyper-parameters: C, γ, and the kernel type. On the other
hand, DT classifiers infer decision rules to predict the target label; these
rules are the different "leaves" of the tree, and usually, to get to a specific
leaf, the features for the signal needed to pass certain thresholds defined
by the classifier. Lastly, RF classifiers combine multiple trees to improve the
prediction and prevent the overfitting that the DT classifiers can cause. Still,
these classifiers are slower, and we lose the interpretability of the decision
trees.

Each classifier requires a hyper-parameter optimization to find the best
classifier for our data. Two cross-validation methods are used: Leave One
Subject Out (LOSO) and a Stratified Group K-Fold. Both methods split
the data into train and test, always keeping all subject samples in one set.
LOSO selects one subject for the test set and leaves the rest for the training,
while the Stratified K-Fold selects a particular group of subjects for testing
depending on the number of folds required; for this work, a total of 5 folds
is used.

Hyper-parameter optimization is conducted via grid search to identify the
optimal parameter set, with the mode (most frequently occurring value) used
to select the final parameters. After the grid search, a model is created with
the hyper-parameters fixed and tested in each cross-validation fold.

Each sensor is employed independently for the classification task, obtain-
ing unimodal results. Afterward, early and late fusion techniques merge and
use both sensors’ information simultaneously. Early fusion concatenates the
features of both sensors and uses them as input for the classifiers. On the
other hand, late fusion uses the probabilities given by the classifiers trained
with each sensor and performs the classification based on the joint probabil-
ity.

This is a work in progress and the results aim to find relevant information
in the magnetic sensors that can lead to more research in the usage of these
new types of sensors.
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5.2 Tables from uni-modal experiments

Table 5.1. Performance of classical classifiers using phonation features for the vowel /a/
task. DT: Decision Tree, RF: Random Forest, SVM: Support Vector Machine, ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 3

min samples split = 10
max leaf nodes = 9

58.7 ± 9.3 54.7 ± 11.4 32.9 ± 16.9 83.8 ± 12.8

RF
max features = sqrt

max depth = 90
min samples split = 4

61.1 ± 6.7 60.3 ± 6.9 52.4 ± 13.2 69.7 ± 11.1

SVM
C = 10

γ = 0.001
kernel = rbf

57.4 ± 9.2 55.8 ± 10.2 46.1 ± 22.4 70.3 ± 11.1

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 5

58.9 ± 9.5 58.1 ± 9.9 50.5 ± 18.9 67.5 ± 7.7

RF
max features = sqrt

max depth = 40
min samples split = 2

58.2 ± 11.8 52.2 ± 15.1 29.6 ± 22.7 85.3 ± 18.2

SVM
C = 1

γ = 1e−5

kernel = rbf
60.9 ± 12.8 54.7 ± 16.4 30.0 ± 26.0 90.8 ± 7.8
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Table 5.2. Performance of classical classifiers using phonation features for the vowel /i/
task. DT: Decision Tree, RF: Random Forest, SVM: Support Vector Machine, ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

55.2 ± 13.3 54.5 ± 13.7 45.5 ± 18.4 64.9 ± 11.8

RF
max features = log2

max depth = 70
min samples split = 2

54.4 ± 4.4 52.5 ± 4.1 43.4 ± 18.5 65.3 ± 16.2

SVM
C = 1

γ = 1e−5

kernel = linear
61.6 ± 14.2 54.9 ± 18.2 30.4 ± 28.2 95.0 ± 5.9

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

58.1 ± 8.5 56.5 ± 9.2 44.8 ± 21.0 71.5 ± 7.2

RF
max features = sqrt

max depth = 40
min samples split = 6

56.1 ± 10.0 54.1 ± 11.2 42.2 ± 22.9 70.1 ± 9.8

SVM
C = 0.001
γ = 1e−5

kernel = linear
52.8 ± 5.1 49.0 ± 5.9 30.8 ± 17.6 74.7 ± 16.7
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Table 5.3. Performance of classical classifiers using phonation features for the vowel /u/
task. DT: Decision Tree, RF: Random Forest, SVM: Support Vector Machine, ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 5

min samples split = 4
max leaf nodes = 11

62.6 ± 13.9 57.4 ± 17.5 33.1 ± 24.7 91.6 ± 5.0

RF
max features = log2

max depth = 40
min samples split = 6

55.4 ± 11.6 51.6 ± 13.0 29.7 ± 15.5 80.6 ± 13.3

SVM
C = 1
γ = 0.1

kernel = rbf
54.7 ± 6.5 53.7 ± 7.3 49.1 ± 18.3 60.5 ± 7.4

EGG
DT

criterion = gini
max depth = 3

min samples split = 2
max leaf nodes = 3

58.2 ± 11.2 49.9 ± 17.4 46.0 ± 36.2 71.3 ± 36.2

RF
max features = sqrt

max depth = 50
min samples split = 2

43.1 ± 10.7 42.5 ± 11.0 40.1 ± 17.8 46.0 ± 9.4

SVM
C = 1

γ = 0.01
kernel = rbf

61.3 ± 9.7 60.6 ± 9.6 57.3 ± 18.4 65.3 ± 13.9



104 5.2. Tables from uni-modal experiments

Table 5.4. Performance of classical classifiers using phonation features for the phrase
task. DT: Decision Tree, RF: Random Forest, SVM: Support Vector Machine, ACC:
Accuracy, F1: F1-score, SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 5

min samples split = 10
max leaf nodes = 9

61.0 ± 11.0 56.6 ± 13.4 33.0 ± 20.7 88.6 ± 6.2

RF
max features = log2

max depth = 90
min samples split = 6

58.4 ± 11.4 57.3 ± 11.7 47.7 ± 18.8 69.2 ± 13.6

SVM
C = 1

γ = 0.001
kernel = rbf

54.5 ± 7.0 47.9 ± 9.6 20.4 ± 12.9 88.1 ± 5.1

EGG
DT

criterion = entropy
max depth = 9

min samples split = 2
max leaf nodes = 17

45.7 ± 6.8 42.2 ± 7.1 57.3 ± 23.8 34.1 ± 21.7

RF
max features = sqrt

max depth = 40
min samples split = 2

56.2 ± 15.7 55.1 ± 16.2 48.3 ± 22.7 64.1 ± 18.3

SVM
C = 10
γ = 0.01

kernel = rbf
63.0 ± 8.0 62.2 ± 8.3 61.2 ± 18.3 65.0 ± 13.7
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Table 5.5. Results using articulation features for the vowel /a/ task. DT: Decision
Tree, RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-
score, SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 3

min samples split = 2
max leaf nodes = 5

58.2 ± 11.8 52.2 ± 15.1 29.6 ± 22.7 85.3 ± 18.2

RF
max features = sqrt

max depth = 40
min samples split = 10

56.1 ± 10.0 54.1 ± 11.2 42.2 ± 22.9 70.1 ± 9.8

SVM
C = 0.001
γ = 1e−5

kernel = rbf
51.8 ± 3.4 35.5 ± 4.0 0.0 ± 0.0 100.0 ± 0.0

EGG
DT

criterion = gini
max depth = 3

min samples split = 2
max leaf nodes = 9

64.6 ± 12.6 63.7 ± 13.7 54.8 ± 20.1 74.5 ± 6.5

RF
max features = sqrt

max depth = 10
min samples split = 4

59.3 ± 12.9 57.6 ± 14.1 47.1 ± 25.2 71.5 ± 6.4

SVM
C = 0.1
γ = 1e−5

kernel = rbf
57.8 ± 9.4 47.7 ± 15.9 39.1 ± 35.8 77.3 ± 38.8
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Table 5.6. Results using articulation features for the vowel /i/ task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 5

min samples split = 2
max leaf nodes = 9

58.0 ± 14.6 49.7 ± 19.6 25.3 ± 27.6 92.9 ± 9.5

RF
max features = sqrt

max depth = 90
min samples split = 2

57.4 ± 9.2 55.8 ± 10.2 46.1 ± 22.4 70.3 ± 11.1

SVM
C = 0.01
γ = 1e−5

kernel = linear
61.6 ± 14.2 54.9 ± 18.2 30.4 ± 28.2 95.0 ± 5.9

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

56.7 ± 11.2 50.2 ± 16.4 34.8 ± 33.3 80.3 ± 15.8

RF
max features = sqrt

max depth = 60
min samples split = 2

56.8 ± 7.7 55.6 ± 7.9 52.0 ± 22.2 62.9 ± 10.6

SVM
C = 0.001
γ = 1e−5

kernel = linear
58.0 ± 11.3 57.3 ± 11.6 54.2 ± 21.0 63.1 ± 12.7
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Table 5.7. Results using articulation features for the vowel /u/ task. DT: Decision
Tree, RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-
score, SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 19

61.6 ± 10.2 57.1 ± 12.8 34.3 ± 21.5 88.1 ± 9.9

RF
max features = sqrt

max depth = 70
min samples split = 2

58.8 ± 9.6 57.1 ± 10.4 44.7 ± 20.3 72.8 ± 11.2

SVM
C = 0.1
γ = 0.01

kernel = rbf
60.9 ± 12.8 54.7 ± 16.4 30.0 ± 26.0 90.8 ± 7.8

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

58.0 ± 13.1 49.7 ± 18.0 28.2 ± 30.4 87.8 ± 19.3

RF
max features = log2

max depth = 10
min samples split = 6

59.7 ± 10.8 57.7 ± 11.8 46.7 ± 26.1 72.8 ± 9.5

SVM
C = 1e−5

γ = 0.01
kernel = rbf

59.9 ± 14.6 51.7 ± 20.7 48.6 ± 37.8 72.1 ± 36.5
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Table 5.8. Results using articulation features for the phrase task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 9

min samples split = 2
max leaf nodes = 17

52.8 ± 5.1 49.0 ± 5.9 30.8 ± 17.6 74.7 ± 16.7

RF
max features = sqrt

max depth = 40
min samples split = 2

52.7 ± 7.3 51.4 ± 7.7 41.9 ± 16.8 63.6 ± 12.9

SVM
C = 10
γ = 0.01

kernel = rbf
55.7 ± 5.2 53.7 ± 6.6 40.6 ± 18.4 70.6 ± 11.8

EGG
DT

criterion = gini
max depth = 3

min samples split = 2
max leaf nodes = 17

57.3 ± 12.8 55.8 ± 13.7 46.3 ± 24.0 68.4 ± 11.5

RF
max features = log2

max depth = 20
min samples split = 4

60.8 ± 13.1 59.3 ± 13.7 49.8 ± 24.6 71.9 ± 13.0

SVM
C = 10

γ = 0.001
kernel = rbf

64.3 ± 10.2 63.4 ± 10.7 55.0 ± 18.8 73.7 ± 11.6
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Table 5.9. Results using BFCC features for the vowel /a/ task. DT: Decision Tree, RF:
Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score, SEN:
Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 3

min samples split = 2
max leaf nodes = 5

52.8 ± 7.8 49.0 ± 9.2 38.8 ± 25.0 66.8 ± 21.4

RF
max features = sqrt

max depth = 40
min samples split = 10

56.7 ± 10.3 55.6 ± 10.8 49.3 ± 21.0 64.1 ± 10.2

SVM
C = 0.001
γ = 1e−5

kernel = rbf
58.2 ± 9.0 50.4 ± 16.0 50.4 ± 34.9 66.9 ± 36.3

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

58.7 ± 9.2 55.0 ± 11.5 41.8 ± 24.9 75.5 ± 20.2

RF
max features = sqrt

max depth = 10
min samples split = 10

55.4 ± 10.8 54.1 ± 11.1 46.7 ± 21.9 64.0 ± 11.6

SVM
C = 1
γ = 0.1

kernel = rbf
60.6 ± 9.8 59.3 ± 10.2 51.9 ± 21.9 69.3 ± 14.2
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Table 5.10. Results using BFCC features for the vowel /i/ task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 5

min samples split = 2
max leaf nodes = 9

50.2 ± 6.2 49.8 ± 6.1 50.8 ± 7.0 49.6 ± 12.7

RF
max features = sqrt

max depth = 90
min samples split = 2

58.0 ± 9.8 57.5 ± 9.8 55.5 ± 14.0 60.6 ± 15.6

SVM
C = 0.01
γ = 1e−5

kernel = linear
57.6 ± 7.3 57.2 ± 7.2 49.9 ± 9.3 65.5 ± 12.0

EGG
DT

criterion = entropy
max depth = 5

min samples split = 2
max leaf nodes = 19

51.2 ± 7.5 47.1 ± 8.3 28.3 ± 15.1 74.0 ± 18.2

RF
max features = sqrt

max depth = 40
min samples split = 2

51.2 ± 7.5 51.0 ± 7.6 48.6 ± 12.3 53.8 ± 6.8

SVM
C = 10
γ = 1

kernel = rbf
54.9 ± 7.8 53.1 ± 8.7 39.8 ± 16.0 70.0 ± 10.1
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Table 5.11. Results using BFCC features for the vowel /u/ task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 19

55.6 ± 4.9 51.5 ± 6.9 32.8 ± 17.1 78.4 ± 17.0

RF
max features = sqrt

max depth = 70
min samples split = 2

53.4 ± 8.2 52.5 ± 8.8 45.8 ± 17.2 60.9 ± 7.5

SVM
C = 0.1
γ = 0.01

kernel = rbf
59.1 ± 7.0 56.9 ± 8.7 42.0 ± 17.6 76.3 ± 9.5

EGG
DT

criterion = entropy
max depth = 5

min samples split = 2
max leaf nodes = 15

48.1 ± 10.5 44.9 ± 11.1 34.9 ± 21.0 61.2 ± 24.0

RF
max features = sqrt

max depth = 70
min samples split = 2

49.2 ± 9.3 48.8 ± 9.4 44.6 ± 13.3 54.0 ± 10.2

SVM
C = 1e−5

γ = 1e−5

kernel = rbf
51.2 ± 4.7 36.0 ± 8.3 23.4 ± 39.2 80.0 ± 40.0
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Table 5.12. Results using BFCC features for the phrase task. DT: Decision Tree, RF:
Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score, SEN:
Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 5

min samples split = 8
max leaf nodes = 19

50.8 ± 11.6 49.6 ± 11.4 39.4 ± 12.8 62.2 ± 19.3

RF
max features = sqrt

max depth = 80
min samples split = 2

57.2 ± 8.8 56.8 ± 8.8 55.1 ± 15.1 59.2 ± 9.6

SVM
C = 10
γ = 1e−5

kernel = linear
59.3 ± 6.3 58.9 ± 6.2 62.1 ± 13.3 56.5 ± 9.1

EGG
DT

criterion = gini
max depth = 3

min samples split = 2
max leaf nodes = 3

54.7 ± 8.5 52.5 ± 9.1 42.0 ± 21.9 67.6 ± 14.9

RF
max features = log2

max depth = 60
min samples split = 2

54.3 ± 9.4 53.7 ± 9.5 51.7 ± 17.6 57.0 ± 11.9

SVM
C = 10
γ = 0.01

kernel = rbf
58.9 ± 9.4 55.2 ± 11.1 34.1 ± 19.3 83.7 ± 6.7
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Table 5.13. Results using nonlinear features for the vowel /a/ task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 3

min samples split = 2
max leaf nodes = 9

54.1 ± 9.4 52.7 ± 10.7 47.5 ± 19.7 60.3 ± 13.2

RF
max features = sqrt

max depth = 10
min samples split = 4

57.5 ± 10.1 56.0 ± 10.6 50.6 ± 25.2 64.5 ± 12.9

SVM
C = 0.1
γ = 1e−5

kernel = rbf
57.8 ± 11.9 49.6 ± 18.0 47.3 ± 35.7 69.1 ± 36.5

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

56.2 ± 11.1 50.7 ± 13.7 32.7 ± 29.8 79.8 ± 16.6

RF
max features = log2

max depth = 60
min samples split = 4

57.5 ± 10.6 56.5 ± 11.1 51.1 ± 22.8 63.9 ± 8.4

SVM
C = 1

γ = 1e−5

kernel = linear
60.2 ± 13.4 52.3 ± 18.2 24.8 ± 24.7 95.5 ± 3.9
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Table 5.14. Results using nonlinear features for the vowel /i/ task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

62.2 ± 13.6 56.3 ± 18.3 32.2 ± 24.3 95.1 ± 4.9

RF
max features = sqrt

max depth = 60
min samples split = 2

56.9 ± 8.7 54.9 ± 8.9 51.5 ± 26.7 63.8 ± 18.8

SVM
C = 0.001
γ = 1e−5

kernel = linear
60.3 ± 12.2 58.4 ± 13.4 48.9 ± 26.3 73.4 ± 11.8

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 5

60.5 ± 7.8 59.6 ± 8.2 63.0 ± 21.5 58.6 ± 12.4

RF
max features = sqrt

max depth = 10
min samples split = 10

58.2 ± 7.2 56.8 ± 7.6 55.9 ± 24.3 60.9 ± 13.8

SVM
C = 1
γ = 1

kernel = rbf
58.3 ± 8.5 55.4 ± 10.1 42.3 ± 25.1 75.9 ± 11.9
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Table 5.15. Results using nonlinear features for the vowel /u/ task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

62.2 ± 12.5 57.5 ± 15.8 37.5 ± 27.7 86.8 ± 9.8

RF
max features = log2

max depth = 10
min samples split = 6

59.1 ± 10.3 57.2 ± 11.3 47.1 ± 25.5 71.0 ± 8.2

SVM
C = 1e−5

γ = 0.01
kernel = rbf

59.5 ± 11.9 52.4 ± 18.5 57.3 ± 36.1 62.6 ± 34.3

EGG
DT

criterion = entropy
max depth = 3

min samples split = 2
max leaf nodes = 3

59.0 ± 13.7 53.7 ± 17.3 33.1 ± 29.0 85.0 ± 8.4

RF
max features = log2

max depth = 10
min samples split = 2

55.8 ± 8.8 54.8 ± 9.2 50.7 ± 19.7 61.0 ± 12.9

SVM
C = 10
γ = 1e−5

kernel = rbf
54.3 ± 6.4 41.8 ± 11.4 30.0 ± 36.9 79.5 ± 39.8
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Table 5.16. Results using nonlinear features for the phrase task. DT: Decision Tree,
RF: Random Forest, SVM: Support Vector Machine, ACC: Accuracy, F1: F1-score,
SEN: Sensitivity, SPE: Specificity

Signal Classifier Parameters* ACC [%] F1 [%] SEN [%] SPE [%]

Speech
DT

criterion = gini
max depth = 7

min samples split = 2
max leaf nodes = 9

55.2 ± 6.8 52.7 ± 8.1 43.8 ± 20.9 66.8 ± 18.6

RF
max features = log2

max depth = 10
min samples split = 8

58.9 ± 11.9 57.8 ± 12.6 49.4 ± 21.5 68.4 ± 9.5

SVM
C = 1e−5

γ = 0.01
kernel = rbf

61.0 ± 10.9 54.0 ± 18.5 59.5 ± 34.4 63.4 ± 34.4

EGG
DT

criterion = gini
max depth = 7

min samples split = 2
max leaf nodes = 9

56.2 ± 14.3 54.0 ± 14.7 39.3 ± 20.2 73.1 ± 19.1

RF
max features = sqrt

max depth = 30
min samples split = 10

59.1 ± 10.3 58.4 ± 10.5 54.7 ± 17.6 63.5 ± 13.2

SVM
C = 10
γ = 10

kernel = rbf
59.3 ± 9.5 59.1 ± 9.6 60.8 ± 11.7 57.7 ± 10.8
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