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A B S T R A C T

Introducing the Industrial Internet of Things (IIoT) into traditional industrial processes has
marked a new era of enhanced connectivity and productivity. By integrating advanced sensors,
communication technologies, and data analysis, IIoT enables real-time monitoring, proactive
maintenance, and increased operational efficiency. However, this increased complexity and
interconnectivity also introduce new challenges in maintaining system dependability and safety.
Considering these issues, this work presents an IIoT Anomaly Classification Framework designed
to detect and categorize anomalies such as failures and attacks. The research addresses the
critical need for robust anomaly detection and classification in IIoT systems by providing a
comprehensive and scalable solution adaptable to various industrial contexts. The framework
comprises two main components: an anomaly detection model and an anomaly classification
model. The anomaly detection model operates unsupervised, continuously monitoring system
data to identify deviations from normal behavior patterns. At the same time, the anomaly
classification model categorizes these anomalies based on historical data using machine learning
algorithms. The proposed framework has been tested in a realistic IIoT environment, demon-
strating its effectiveness and practicality. During the cross-validation process, a precision of
0.95, recall of 0.88, and F1-score equal to 0.91 were obtained. This research contributes
significantly to IIoT, offering a valuable tool for improving industrial operations and laying
the groundwork for future anomaly classification and system resilience advancements.

. Introduction

The incorporation of the Industrial Internet of Things (IIoT) into conventional industrial operations signifies the dawn of a
ew age of connectivity, productivity, and intelligence. [1–3]. By embedding advanced sensors, communication technologies, and
ata analytics into industrial operations, IIoT has enabled real-time monitoring, predictive maintenance, and enhanced operational
fficiency [4–6]. However, these systems’ increased complexity and interconnectivity have also introduced new challenges,
articularly in maintaining system reliability and security [6]. Anomalies such as unexpected equipment failures and cyber-attacks
an disrupt operations, leading to significant financial losses and safety risks [6–9].

Anomaly detection in Industrial Internet of Things is a critical research issue due to the vulnerability of IIoT networks to novel
nd complex cyber threats [1]. Unlike traditional Information Technology IT environments, the IIoT integrates cyber elements
nto core operational processes, making the consequences of security breaches more severe [10]. The dynamic and heterogeneous
ature of IIoT environments, characterized by a vast array of devices and communication protocols, complicates the detection of
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anomalies [11]. This needs continuous research into sophisticated, adaptable anomaly detection methods that can effectively discern
between normal fluctuations in data and genuine security threats [12].

The significance of advancing anomaly detection in IIoT is underscored by recent research efforts that employ diverse
methodologies ranging from statistical approaches to machine learning and deep learning techniques. Key works in this area include
he exploration of unsupervised techniques by Zhang et al. for multivariate time series analysis in IIoT settings [10] and the approach

of Ding et al. in adapting machine learning models to handle concept drift in dynamic environments [13]. Additionally, Truong
et al. introduced a lightweight architecture suitable for edge computing devices, optimizing resource usage while maintaining high
etection accuracy [12]. These studies highlight the ongoing need for research that enhances detection capabilities and ensures that

anomaly detection systems are scalable, efficient, and capable of operating under the constraints typical of IIoT environments.
Additionally, anomalies must be classified to mitigate their effects on the IIoT. Since Industrial Internet of Things systems support

industrial operations, they must promptly address malfunctions or cybersecurity threats [14]. This requires the collaboration of
arious teams, each with specific roles; for instance, maintenance staff handles physical failures, while the IT department manages
yber attacks. However, the detection and classification system must operate automatically with minimal human intervention to
ddress these anomalies quickly.

Considering the above, we propose an Industrial Internet of Things Anomaly Classification Framework to detect and categorize
nomalies such as failures or attacks. This research aims to contribute significantly to the field by addressing the critical need
or robust anomaly detection and classification in IIoT systems. It provides a comprehensive and scalable solution that can be

adapted to various industrial contexts. The proposed framework offers a valuable tool for improving modern industrial operations’
reliability, security, and efficiency, paving the way for more resilient and intelligent IIoT systems. This work makes several significant
contributions to the field of IIoT:

• Incorporation of Contextual Information: Demonstrating the value of integrating contextual data into anomaly detection and
classification, leading to more accurate and reliable results and allowing the classifier to differentiate between average CPS or
IIoT events or situations caused by failures or attacks.

• Development of an IIoT anomaly Classification Framework: Introducing a new framework that combines machine learning
techniques with traditional statistical methods to improve classification speed and accuracy. The goal was to create a
framework that can be easily scaled and adjusted to meet the diverse requirements of various sectors.

• Real-World Testing and Validation: Implementing the proposed frameworks in emulated settings to validate their effectiveness
and adaptability and conducting extensive testing and validation of the framework using a realistic testbed environment,
ensuring its applicability in real-world industrial settings.

• Discuss Implications for Future Research and Practice. Anomaly classification is an ongoing process that requires continuous
monitoring and model updates. Based on the implementation results, exhaustive analysis, and knowledge provided, some lines
of future work are described in the field of anomaly classification in IIoT systems.

The remainder of this paper is organized as follows. Section 2 reviews related works on IIoT anomaly classification. Section 3
describes the methodology for developing the IIoT anomaly classification framework and introduces its implementation. It includes
a detailed description of its architecture, development environment, and software tools. Section 4 presents the framework’s
implementation and validation results with performance metrics, such as precision, recall, and F1-score. Finally, Section 6 concludes
this work and outlines potential future research directions stemming from it.

2. Related works

The Industrial Internet of Things (IIoT) represents a significant leap in industrial automation and digital transformation. By
nterconnecting devices and systems through advanced networks and integrating Cyber–Physical Systems (CPS), IIoT enhances
ndustrial operations’ efficiency, productivity, and adaptability [6–9]. However, this interconnection also introduces vulnerabilities,

making IIoT systems susceptible to anomalies. Effective anomaly classification is critical for maintaining the integrity, safety, and
eliability of IIoT systems [6].

Anomaly classification in the Industrial Internet of Things (IIoT) remains an open research issue due to the complexities inherent
in distinguishing between anomalies such as cyber-attacks and physical failures [14]. The challenge is amplified by the diversity of
IIoT environments where distinct anomalies may manifest similarly, complicating accurate classification [15,16]. For instance, Yang
t al. [15] developed a data-driven approach to classify physical faults and cyber-attacks in manufacturing motor drives. Despite its

effectiveness, this method relies heavily on specific motor data patterns and may not generalize across IIoT systems, highlighting the
need for more adaptable and comprehensive solutions. Similarly, the solution described in Ganjkhani et al. [17] excels in identifying
specific electrical faults and attack types in power systems but does not address the broad spectrum of anomalies present in IIoT
domains.

Moreover, the dynamic and evolving nature of industrial environments where new devices and technologies are constantly
ntegrated poses another difficulty for anomaly detection systems. Anomalies can vary significantly—from mechanical failures and
perational inefficiencies to sophisticated cyber-attacks—requiring diverse strategies to detect and classify them accurately. Research
y Younan et al. [18] and Truong et al. [12] underscores the complexity of these anomalies but also points out that many systems
re not equipped to evolve with these changes, often requiring manual recalibration or redesign to handle new types of anomalies
r to adapt to new operational contexts.
2 



M. Rodríguez et al. Internet of Things 29 (2025) 101446 
Fig. 1. Framework for anomaly classification in IIoT. During training (gray arrows), data is collected from a testbed or dataset or is artificially generated.
Features are then selected, preprocessed, and used to train the anomaly detector, and classes are balanced before training the classifier. In deployment (blue
arrows), data from the CPS and the IIoT system is processed before feeding the detector. If a sample is labeled as an anomaly, the classifier is invoked to classify
it as a failure or attack. But if there is ambiguity between the detector and the classifier, an ‘‘event’’ alert is generated for a human operator to classify the
sample.

Another significant challenge is the real-time requirement for anomaly detection in IIoT environments. Industrial processes often
require immediate responses to prevent damage or downtime, meaning anomaly detection systems must be accurate and fast. Nizam
et al. [9] and other researchers have worked on edge computing solutions to address latency issues. Still, the balance between speed,
accuracy, and computational efficiency remains delicate, with current solutions often sacrificing one aspect for another.

Furthermore, existing solutions often focus on specific subsets of IIoT applications, which limits their applicability in a broader
context. For example, the methodology by Zhang et al. [16] effectively distinguishes between sensor replay attacks and sensor bias
failures in cyber–physical systems using watermarks tailored to each threat type. However, such a specialized approach may not
be suitable for other IIoT applications where different underlying mechanisms might cause anomalies. Liang et al. [19] propose a
scheme for multi-agent systems to minimize communication loss and enhance fault diagnosis. While this method shows promise
in smart grids, its complexity and the need for extensive customization may hinder its deployment in less controlled or more
heterogeneous environments. These examples underscore the persistent gap in developing effective anomaly classification systems
that can dynamically adapt to the varied and evolving landscapes of IIoT, which makes continuous research and innovation necessary
in this field.

3. Methods and materials

This section presents the framework for anomaly classification in IIoT. It shows its structure and implementation using a testbed.
It describes data collection and processing and the deep-learning models to detect and classify anomalies in the dataset.

3.1. Framework description

The rapid evolution of the Industrial Internet of Things (IIoT) and its integration with Cyber–Physical Systems (CPS) have paved
the way for the emergence of smart factories [20]. These advanced manufacturing environments leverage digital technologies to
enhance operational efficiency, productivity, and flexibility [10,12,21]. However, these systems’ complexity and interconnected
nature introduce significant challenges in monitoring and securing industrial processes [6–8,18]. In response to these challenges,
this comprehensive framework delineates a novel approach to anomaly detection and classification designed for the IIoT landscape.
Integrating specific domain knowledge of the CPS with the data-driven insights provided by IIoT technologies. Fig. 1 and described
below shows the framework’s structure.

• Data Collection. A combination of several strategies for data collection data may be necessary. Using datasets available in
public repositories is a quick and inexpensive option. Using software to emulate failures and attacks that could occur in the
real IIoT offers the possibility of generating many samples; however, building a simulation with all the details of the real IIoT
may be challenging. Using historical data on the process, it is possible that there are not enough samples with anomalies or
that not all the types of anomalies that we want to classify are found. Techniques such as generative neural networks can be
trained to generate artificial data, but training these models requires a large amount of data. Simulating anomalies directly
in the IIoT system is the most direct way to collect the data set. Still, it can be dangerous to simulate failures and attacks in
the IIoT while the process is in production. Implementing a testbed with devices similar to the actual system and simulating
failures and attacks can be a less complex solution than programming a simulator. If extra devices are available in the plant,
it can also be not expensive.
3 



M. Rodríguez et al.

a

Internet of Things 29 (2025) 101446 
• Smart Factory. In this context, the term smart factory refers to integrating the cyber–physical system (CPS) with the Industrial
Internet of Things (IIoT) system. The CPS is an automated industrial process that uses SCADA and programmable logic
controllers (PLC). CPS is the core component of the business [10,12,21]. The IIoT system is installed to monitor the CPS
through a cloud platform, optimizing its performance. In this framework, the first activity is to know the CPS and IIoT that
already operate in the plant. In this stage, it is expected that the designers of the anomaly classification system have a good
understanding of the IIoT architecture implemented in the plant. This includes its layers, features, protocols, security, raw
data, processed information, and how the IIoT system interacts with the industrial process.

• Failures and attacks. Before collecting data, it is necessary to determine which attacks and failures the IIoT system needs to be
protected against. This involves deciding which ones to include in the list and which ones to exclude. Some may be unlikely,
while others may be too complex or expensive to address. Sometimes, alternative options, such as acquiring a policy, may be
more practical.

• Context information. It is an aspect of any application, particularly in the industrial sector. In a few words, context awareness
means using data from various sources to provide services that meet a user’s specific requirements and expectations [22]. Here,
it is crucial to identify any variables that might change based on the industrial process, which can be helpful in categorizing
anomalies in IIoT.

• Data Processing. It transforms unstructured data into a structured format suitable for analysis. It ensures data quality, consis-
tency, and error-free analysis, making it ideal for machine learning-based classification models [2]. Data processing involves the
integration of multiple data sources, handling missing values, scaling, removing duplicates, encoding non-numerical features,
normalizing the data, and handling outliers [2].

• Feature Reduction. Unnecessary features present in data lead to computational complexity and significantly decrease the
precision and effectiveness of classification techniques [2,23]. Several techniques and criteria can be used to select variables.
Understanding the problem domain and exploratory data analysis are used to understand the nature of variables. Dimensional-
ity reduction techniques can be split into feature extraction by projecting original features into a new low-dimensional feature
space [2,23], and feature selection by choosing a smaller set of features that can predict class labels more effectively. Finally,
recursive feature elimination uses decision tree models or regularization-based methods.

• Data Balancing. In multiclass classification, methods to address class unbalance include resampling, classifier adaptation,
ensemble strategies, and cost-sensitive techniques [24,25]. Another way to deal with a scarcity of available data is to generate
synthetic data using a generative model based on the initial dataset [26–29]. Simulating anomalous conditions through reliable
and high-fidelity simulation data can offer low-cost training data and address the problem of insufficient samples [26,27].

• Anomaly detection. It is a process that identifies patterns in time-series data that deviate from the system’s normal behavior [9].
An approach suggested in this framework is to employ an unsupervised method for detecting anomalies, in which the model
is trained only with normal data. This technique facilitates the identification of previously unknown anomalies. Autoencoders
are an example of this approach.

• Anomaly Classification. This framework proposes a two-stage approach to anomaly classification. In the first stage, a detector
differentiates between normal data and anomalies. The second stage is triggered if the samples exceed the threshold value
to classify the anomaly. The classifier is designed to identify normal data and various failures and attacks. It provides one of
three labels as output: normal, fault, or attack. However, when the classifier is used to predict, it only receives data sequences
classified as anomalies by the detector. Therefore, if the classifier identifies one of these sequences as ‘normal,’ the application
generates an ‘event’ alert. This alert will help the human operator manually verify the alert’s origin.

3.2. Testbed

Four testbeds have been used to emulate a conveyor belt system; Fig. 2 shows one of them, where each comprises an AC motor,
 speed driver, an S7-300 programmable logic controller (PLC), and a Human Machine Interface (HMI). The four testbeds are

connected through an Ethernet network implementing Profinet protocol. An IIoT Industrial Internet of Things system has been
implemented to monitor the CPS from a cloud application. In Fig. 3, the CPS is represented only with four motors and an HMI.
IIoT comprises four Raspberries PI 3B, acting as edge devices. Several sensors communicate with an ESP32 microcontroller, which
collects measurements and sends them to their edge devices through the MQTT protocol. Additionally, an edge device communicates
via MODBUS with the HMI to obtain information about the motors. On each edge device, data is processed locally before being sent
to a monitoring and control application deployed in the AWS cloud. This IIoT system will also collect data to detect and classify
anomalies while monitoring the CPS.

3.3. Dataset

In this framework implementation, data was collected for ten days at intervals of four hours. Through the HMI, an edge device
collects data from all the motors in the conveyor system. Internal data from each Raspberry PI was collected with the RPi-Monitor
app [30] and saved into CSV files using a Python script. Additionally, relative humidity and environment temperature measurements
were collected at two different locations in the plant. Table 1 describes the raw data set structure. In this work, we tried to
differentiate between failures and attacks. The following describes the failures and attacks executed on the testbed.

• High-temperature failure (F1) was simulated by turning off the fan that cools the edge device. A 24-watt AC fan was placed
20 centimeters above the Raspberry Pi.
4 
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Fig. 2. Testbed used for emulating the CPS. It is composed of a three-phase motor, speed driver, S7-300 PLC, and Delta HMI.

Fig. 3. An IIoT three-layer (Perception, Network, Application) model is used for anomaly classification. CPS is represented here with four three-phase motors
and an HMI.

Table 1
Data Collection Details. Raw data were collected from different sources with different sampling rates and stored in separate files.

Location File Variables Rate Description

CPS modbus.csv frequency, voltage, current,
power, recipe

0.1 s Data from all the motors in the
conveyor system

CPS sound.csv sound 0.001 s Sound of motor

Edge Device internal.csv Temperature, frequency, CPU
load for 1, 5, and 15 min,
voltage, free and available
memory, bytes via WiFi, current

1 s .. 10 s Internal data from edge device
collected with RPI monitor App.

Building mqtt_temp.csv humidity and temperature 10 s Environment data
5 
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Fig. 4. Raw data collected. The plots display the appearance of some of the signals that are gathered by the IIoT system.

• Miscalibrated Sensor failure (F2). To simulate the miscalibration of the motor sound sensor, the actual measurement value
was increased by 20%. This was done in the collected data, as miscalibration was not directly simulated on the sensor.

• Sensor disconnected failure (F3). A sound sensor disconnection fault was added, turning off the sensor and its respective ESP32.
The dataset reflects this failure as zero values in the respective feature. This failure is not used to evaluate the model with
previously unseen anomalies during cross-validation.

• A data injection attack (A1) was executed by spoofing the ESP32s connected to the motor sound sensors on each edge device.
Sending the MQTT broker random data between 0 and the average value of the motor’s sound signal.

• Denial of Service (DoS) attack (A2) was launched on the MQTT brokers running on all edge devices. A Python script on a
laptop connected to the local network subscribed 1024 clients to the topic ‘‘#’’ It published short messages to the Mosquitto
MQTT broker every second, thus saturating the communication channel.

3.4. Framework implementation

This section delves into the practical implementation and evaluation of the IIoT Anomaly Classifier Framework within a testbed
environment. Our experimentation involved an emulated Cyber–Physical System (CPS) represented by a four-belt conveyor system
and monitored by an Industrial Internet of Things (IIoT) system through a cloud platform. This setup was chosen to emulate
real-world industrial conditions closely and rigorously test the framework’s capability to detect and classify anomalies.

3.4.1. Data processing
Raw data often contains inconsistencies, errors, or outliers that can negatively affect the model’s performance, so data processing

prepares it to be used in classification models.

Data exploration. It involves understanding the data’s patterns, irregularities, underlying structure, and critical characteristics
through visual and quantitative methods. Fig. 4 shows some graphics obtained during visual data exploration. The figure shows, for
xample, that the features associated with bytes sent and received over WiFi have increasing trends, positive or negative, or that
he motor’s sound is strongly related to its frequency. Visual exploration of the data also allows us to determine outliers and normal
anges of the data.

Data integration. Another aspect to consider is that not all data sources were available simultaneously. Each data collection session
was stored in a different CSV file, and all the variables collected were integrated into a single dataset. This implies that only
imestamps where all variables are available are selected. In addition, since the sampling rate is different, resampling was performed
o that all variables had five samples per second.

Missing data. When working with anomaly detection, it is vital to handle missing data effectively since it can significantly impact
he accuracy and reliability of model predictions. When only a few samples were missing, we used linear interpolation to generate
 new value between two existing values by taking their average. Besides, we used hot-deck imputation when delays caused the

absence of many samples. This technique involves copying a range of well-conformed data of the same signal into the interval where
samples are missing. Fig. 5 shows a section of the motor sound where fewer samples than the average rate were collected (above).
6 
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Fig. 5. Handling missing data. Two methods to replace missing values are linear interpolation, which creates a new value between two samples, and hot deck
imputation, which copies a range of data from the same series.

This section is zoomed in, and the graphs in the center show what the signal would look like if the data were aggregated using the
inear interpolation technique (red) and hot-deck imputation (green). It could be concluded a priori that for long stretches of data,
ot-deck imputation better preserves the signal’s shape (below).

Feature engineering. It is a process that involves using domain knowledge to create new features or modify existing ones to increase
he predictive power of a machine-learning model. In this work, to eliminate the ever-increasing trend of bytes sent and received
ver WiFi, the delta value of the signals has been decided to be used. This means taking the difference between each value and the

value that comes immediately after.

Data scaling. Datasets often contain features that have varying units and scales. These differences can result in a biased model
hat prioritizes larger-scale features. To avoid this issue, it is essential to normalize or standardize the data so that each feature
ontributes equally to the model’s prediction. We used the min–max technique, as shown below. The formula for min–max scaling
s:

𝑥′ = 𝑎 +
(𝑥 − min(𝑥))(𝑏 − 𝑎)
max(𝑥) − min(𝑥)

Where:

• 𝑥′ is the rescaled value.
• 𝑥 is the original value.
• min(𝑥) and max(𝑥) are the minimum and maximum values in the dataset, respectively.
• 𝑎 and 𝑏 are the new minimum and maximum values after rescaling.

This formula adjusts the values of the data to a specific range [𝑎, 𝑏], here to [0, 1], which can help compare measures that have
ifferent units or scales.

Sequence creation. The sliding window technique in time series analysis transforms a dataset into a format suitable for machine
learning models, especially deep learning [11,31,32]. Transforming time series data from [n-samples, n-features] to [n-samples,
timesteps, n-features] is crucial for several reasons, such as improved learning dynamics, efficient data utilization, flexible
forecasting, feature utilization, model input requirements, and temporal dependency capture [9,31]. Choosing the right window size
or anomaly detection is crucial. It should be large enough to capture patterns but not too large to dilute anomalies. No universal

solution exists, so experimentation is necessary to balance relevance and computational efficiency [11,32]. Fig. 6 graphically shows
the process of making this transformation.

Each sequence of n_times samples is pooled separately for each feature. The figure shows that the new dataset takes up much
ore memory space. For further illustration, please note the n_times vertical samples highlighted in the figure on the left and their
orizontal location on the right. The window size (‘n_times’) that slides through the data is essential to creating the sequence. Table 2

shows the F1-score for two classifiers, a Transformer and an LSTM model. According to this result, a window with 300 samples is
the best option for the case study and will be used in later models.
7 
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Fig. 6. Graphical representation for transforming time series data from [n_samples, n_features] into [n_samples, n_times, n_features].

Table 2
Length sequence data. Two anomaly classification models with different sliding
window sizes were evaluated based on their F1-score, and a length of 300 samples
was the best for these classifiers.
Window Transformer model LSTM model

100 0.799250 0.754377
200 0.812366 0.773365
300 0.833983 0.781802
400 0.804396 0.684335
500 0.778157 0.617783

3.4.2. Feature selection
Specific machine learning algorithms can be computationally expensive and require a long time to train on datasets with many

samples. To speed up the training process, a feature selection approach has been followed to reduce the number of input variables
and simplify the data, making it easier to work with during the training phase. A Spearman correlation analysis showed that the CPU
load in the last 5 min was strongly correlated with the load of 1 and 15 min. The same thing happened with the CPU’s frequency and
voltage. While correlation does not imply causation, it indicates that load_5 and cpu_volt could be eliminated from the dataset; this
was confirmed when the anomaly detector was trained with and without these features, as shown in Table 3. Bytes sent and received
over WiFi were replaced by their delta values. The temperature and relative humidity in the building where the CPS operates are
not directly related to what happens in the IIoT and were considered to be discarded. Finally, during the data exploration, it was
observed that the CPU’s available and free memory did not show significant variations when an anomaly occurred; therefore, they
were identified as candidates to be discarded. As mentioned earlier, an anomaly detection model was trained to decide whether a
variable should remain in the training set with and without each variable. Table 3 shows the metrics obtained for each case. The
best performance was obtained with a training set that included internal temperature, 1—and 15-minute load, the bytes sent and
received delta, CPU current consumption, and motor sound. Motor frequency was also included as context information to improve
model performance.

3.4.3. Data balancing
Unbalanced datasets in classification models are a crucial issue that significantly affects predictive model performance. This

occurs when the distribution of classes is not uniform, causing bias towards the more frequent class. Building classification models for
an unbalanced dataset requires special consideration for satisfactory performance [24,33]. Imbalanced datasets can cause machine
learning models to favor the majority class, leading to inadequate performance for the minority class. This is particularly problematic
for applications like anomaly detection and predicting rare events where the minority class is of greater significance [24,28,33].

In multiclass classification, some approaches combat class imbalance. Resampling adjusts the training data distribution by
oversampling the minority class or undersampling the majority class; classifier adaptation modifies the classifier’s decision boundary;
ensemble strategies combine multiple classifiers; and cost-sensitive techniques penalize misclassification of minority classes more
heavily [24,25].

Other methods include data augmentation, which is advantageous for deep learning models as they prevent overfitting [27].
Data augmentation can be significantly enhanced using Generative Adversarial Networks (GANs), particularly in domains where
8 
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Table 3
Feature Selection. The anomaly detector model was trained with all IIoT and context variables. Then, variables
were eliminated one by one, and the model was trained again until the training set was reduced to 8 features.
Features Excluded Reason Precision Recall F1 score

15 wifi_sent,
wifi_receiv

It was used
delta_sent &
delta_receiv

0.518628 0.327521 0.401446

13 indoor_temp,
%humidity

Not related to
IIoT or CPS

0.912609 0.522313 0.664335

10 cpu_freq,
memo_free,
memo_avail

Changes not
related to
anomalies

0.933241 0.529629 0.675710

8 load5,
cpu_volt

Strongly correlated
to other variables

0.922616 0.630521 0.749053

data is limited, expensive to acquire, or requires more variety than the original dataset. GANs consist of two neural networks, the
generator and the discriminator, that are trained together in a competitive process [31,34]. The training method is a zero-sum game
in which the generator attempts to increase the probability of the discriminator making a mistake. In contrast, the discriminator
eeks to distinguish actual data from fake data better. This game continues until the discriminator can no longer easily differentiate
etween actual and generated data, indicating that the generator has learned to create highly realistic data [31,34].

This framework implementation involves undersampling of the normal class. After creating the sequence with form [n_samples,
_times, n_features], several samples were randomly removed from normal sequences.

3.4.4. Anomaly detection
We use an autoencoder to detect anomalies. Autoencoders are a type of machine-learning model that is commonly used for

anomaly detection. These models work unsupervised and consist of two networks: an encoder and a decoder. The encoder processes
he input data and converts it into a latent representation. Then, the decoder takes this representation and generates an output. By
omparing the input and the output data, the differences can be used to identify anomalies in the original data [35]. In anomaly
etection, an autoencoder learns to compress and decompress normal data efficiently. When an anomalous piece of data is fed into

the autoencoder, the reconstruction error (the difference between the input and the reconstructed output) tends to be higher.
Here, a threshold for the reconstruction error is set. The data point is classified as an anomaly if the error exceeds this threshold.

 threshold value distinguishes normal and unusual data points. Techniques balancing sensitivity and specificity are used to calculate
he best threshold value. When the model was evaluated with normal data, we used the maximum difference between the input
nd the reconstructed output as a threshold. When calculating the threshold values, it must be considered that although datasets
ith normal data are used, they may present outliers not reconstructed by the autoencoder. This causes the reconstruction error to
e higher, affecting the autoencoder’s performance when deployed in production. To solve the above issue, the outliers from the
ormal data were removed using a Python script that eliminates outliers; all values above mean plus three times standard deviation
re replaced by the comparison value (if 𝑣𝑎𝑙 𝑢𝑒 > 𝑚𝑒𝑎𝑛() + 3 ∗ 𝑠𝑡𝑑() then 𝑣𝑎𝑙 𝑢𝑒 = 𝑚𝑒𝑎𝑛() + 3 ∗ 𝑠𝑡𝑑()). Moreover, it should be noted
hat a threshold value is calculated for each feature.

How the autoencoder works is described graphically in Fig. 7; the first plot (above) shows the delta signal of the bytes received
over WiFi, and then it shows the autoencoder’s reconstruction of this signal. The plot below shows the subtraction between both
signals and the threshold value as a dotted line. Any value over this line is labeled as an anomaly.

In this framework implementation, one-dimensional convolutional (conv1D) alternating with dropout layers have been used for
the encoder and transposed convolutional with dropout layers for the decoder. Conv1D is a type of convolutional layer designed
explicitly for 1D data. It is commonly used in sequential data models, such as time series. This layer performs a convolution operation
involving a sliding filter moving along the input data, effectively allowing the model to learn from local patterns within the sequence.
Fig. 8 shows the schematic of the anomaly detector. When the threshold value that monitors the reconstructed signal is exceeded,
the anomaly classifier is invoked. Otherwise, the sample is labeled as normal.

3.4.5. Anomaly classification
In anomaly classification, the objective is to predict a discrete label for a given input from a set of predefined classes. This is

enerally a supervised learning task in which a model is trained on a dataset with known labels and learns to classify new data based
n this training. Initially designed for natural language processing tasks, a Transformer neural network can be used as an anomaly
lassifier for time series. The transformer model used here is similar to the original encoder proposed in [36]. The core component

of Transformer models is the self-attention mechanism, which allows the model to weigh the importance of different parts of the
input data relative to each other. For anomaly classification, the Transformer can simultaneously consider the entire sequence of
inputs, determining which features are most abnormal or indicative of an anomaly. Expanding on self-attention, multi-head attention
facilitates joint attention across different representation subspaces. This is particularly useful in anomaly detection as it can help the
model capture multiple types of relationships or anomalies in the data. We do not use the input embedding or positional encoder
mechanisms; instead, the temporal sequences described in the previous section were delivered directly to the encoder block. The
rest of the layers, feed-forward, and normalization were implemented as in the original version in [36]. Fig. 9 shows the schematic
of the transformer used in the anomaly classifier.
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Fig. 7. Anomaly prediction with Autoencoder. Any sample above the threshold value is labeled as an anomaly.

Fig. 8. Autoencoder-based anomaly detector. The 1D-convolutional model reconstructs the input signal. The anomaly classifier is invoked if both signals’
ifferences exceed the threshold value.

Fig. 9. Transformer-based classifier. Data sequences are delivered directly to the encoder without input embedding or positional encoding layers.

3.4.6. Anomaly detector and classifier together
Fig. 10 shows the schematic of the anomaly detector and classifier operating together. The detector implements an autoencoder

model, which alerts of anomalies and invokes the classifier to determine whether it is a failure or an attack. If the classifier generates
an ambiguous diagnosis indicating that the detector wrongly labeled the sample and that it is actually normal, an event label is
generated so that the human operator can classify it manually.

3.4.7. Metrics
Several metrics have been proposed in the literature to evaluate the performance of machine learning models. One of the most

sed is accuracy, which measures the number of samples correctly classified. However, in this study case, there are unbalanced
atasets with much higher amounts of normal data than data labeled as anomalies. This generates high accuracy even though the

model performance is very poor. Instead, precision, recall, and F1-score metrics that do not involve the number of True Negatives
(TN) (normal values) in their equations are recommended. The equations of these metrics are shown in Table 4. On one hand,

ecall shows how many anomalies were not detected; many False Negatives (FN) lead to a low recall. On the other hand, precision
10 
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Fig. 10. Anomaly detection and classification. If the difference between the input and the reconstructed signal exceeds the threshold value, the classifier is
nvoked to classify the samples between failures and attacks; if it is classified as normal, it is labeled as an event so that the operator can classify it manually.

Table 4
Evaluation Metrics for Anomaly Classification. For unbalanced datasets, it is advisable to use
metrics that do not involve the majority class, such as precision, recall, and F1 score.
Metric Formula What it Evaluates

Accuracy 𝑇 𝑃+𝑇 𝑁
𝑇 𝑃+𝑇 𝑁+𝐹 𝑃+𝐹 𝑁 Overall correctness

Sensitivity (Recall) 𝑇 𝑃
𝑇 𝑃+𝐹 𝑁 Correctly identified positives

Precision 𝑇 𝑃
𝑇 𝑃+𝐹 𝑃 Correctness of positive predictions

F1-Score 2 × Precision×Recall
Precision+Recall Balance between precision and recall

shows how much normal data was identified as anomalies; a high False Positive (FP) rate produces a low precision. While F1-score
provides an estimate between the False Positive and False Negative rates.

4. Results

The results presented in this section underscore the efficacy and potential of the proposed IIoT anomaly classification framework
n identifying and categorizing anomalies within industrial IoT systems. The comprehensive experimental setup, involving an

emulated Cyber–Physical System (CPS) and a robust Industrial Internet of Things (IIoT) monitoring system, provided a realistic
estbed to evaluate the framework’s performance. The framework demonstrated high detection accuracy and low false positive rates
cross various test scenarios, highlighting its reliability in real-world applications.

4.1. Dataset

Generating enough data is key for detecting and classifying anomalies, including failures, cyberattacks, and perturbations [37].
Some authors develop datasets using simulators [35,37–39], testbeds [21,40–43], or online data [2,9–11,21,32,44–48] . Utilizing
accessible online datasets can help cut down on collection expenses. We did not find a dataset that separately labeled enough
ailures and attacks in IIoT, so we used a testbed to build a set with data that met the established requirements. This dataset is

available online in a public repository.1 We collected data for ten days, storing information for approximately 4 h daily. The data
as been stored in 48 files, of which 31 contain normal data, 13 contain failures due to high temperature (F1), miscalibration
F2), and disconnection (F3), and four files contain attacks type DoS (A2) and data injection (A1). Each file can contain one or
ore anomalies of the same or different types. There are 2105134 normal records, 60463 records labeled as failures, and 38755 as

ttacks. Table 5 summarizes these data. Files with F3 failure were not used to train the model but to evaluate its ability to detect
and classify anomalies not seen during training. This dataset will help address the shortage of ensembles for training models that
classify anomalies into failures and attack categories. Likewise, it could classify specific types of failures or attacks.

4.2. Context information

The IIoT system influences the cyber–physical dataset, which affects certain variables. For instance, the sound sensor is impacted
by the operating frequency of the nearest motor. The frequency of the motors has been used as ‘‘context information’’ for the dataset

1 The repository link will be provided in the final manuscript but is omitted here to maintain author anonymity.
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Table 5
Dataset. The data was stored in 48 files, 31 with normal data, 13 with failures, and 4 with attacks. The anomaly types are, F1:
high temperature, F2: miscalibration, F3: disconnection, A2: DoS attack, A1: data injection attack.
Files Normal Failures Attacks F1 F2 F3 A1 A2

31 1 254 183 0 0 0 0 0 0 0
13 345 547 60 463 0 11 8 2 0 0
4 505 404 0 38 755 0 0 0 8 5
48 2105134 60463 38755 11 8 2 8 5

Fig. 11. Context information. By incorporating motor data into the Industrial Internet of Things (IIoT) dataset, it becomes possible to distinguish between normal
nd abnormal behavior.

Table 6
Effect of context information on anomaly detection and classification models. Context information helps classify all anomalies.
Model Context F1 F2 F3 A1 A2 F1-Score

Detector Yes ✓ ✓ ✓ ✓ ✓ 0.963900
No ✓ ✓ ✗ ✓ ✓ 0.926210

Classifier Yes ✓ ✓ ✓ ✓ ✓ 0.900422
No ✓ ✓ ✗ ✗ ✓ 0.833197

Fig. 12. Context information helps classify attacks correctly (A1). Without context information, A1 is classified as Event.

extracted from the IIoT system. Fig. 11 demonstrates that the frequency of the motor provides insight into the abnormal behavior
of the sound signal. This is particularly noticeable during a data injection attack (on the left) or a sensor disconnection failure (on
the right). If the sound level fluctuates while the motor frequency remains unchanged, this indicates the presence of an anomaly.

Table 6 summarizes the effect of context information on anomaly detection and classification models. When they do not use the
CPS feature, none of the models recognize the sound sensor disconnection failure, and the classifier does not recognize the data
njection attack performed on the same variable. The above reduces F1-score in both models.

The negative effect of the lack of context information on the anomaly detector and classifier is graphically observed in Fig. 12.
The plot above shows that A1 attacks are classified as events, meaning that the classifier does not know the nature of the anomaly.
Meanwhile, models that incorporate context information mostly correctly detect and classify these attacks (in the middle). Below,
you can see the actual classification of the anomaly.
12 
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Fig. 13. Some anomalies are detected intermittently, alternating with normal samples. Here is a zoom of around 80k on the right. If at least fifteen samples
exceed the threshold value in the output sequence, it is labeled as an anomaly. Here, ‘1’ means anomaly, and ‘0’ is normal.

Table 7
Anomalies detected intermittently affect the metrics related to the confusion matrix (TP, TN, FP, FN) and, therefore, precision, recall, and F1-score. The sequence
of the last 300 samples is used to validate if at least 15 samples have been labeled as anomalies to label the new sample.

Prediction TN TP FN FP Accuracy Precision Recall F1-Score

300-Sample
Sequence

76 119 8839 231 0 0.997288 1 0.974531 0.987101

Counting
anomaly
points

76 113 518 8552 6 0.899541 0.988549 0.057113 0.107984

4.3. Sliding window to detect anomalies

Some anomalies are not detected sustainably. Instead, samples labeled as anomalies alternate with more samples labeled as
ormal. Fig. 13 shows this situation, from which we could affirm a priori that the anomaly is correctly detected. However, if we

calculate the confusion matrix and precision, recall, and F1-score, a poor performance of the detector is obtained. The strategy used
in the detector and the classifier is to take advantage of the sequence of 300 samples with which the model works. If, in the output
sequence, there are at least fifteen samples that exceed the threshold value, the sequence is labeled as an anomaly. As a consequence
of this algorithm, the anomaly prediction appears as a continuous line in the middle plot of the figure we refer to. Table 7 shows the
metrics calculated using the 300-sample sequence and the original anomaly points. The results indicate that the window is necessary
or metrics to reflect the model’s performance. Another consequence of this detection strategy is that outliers from a single sample

are ignored and do not trigger the anomaly alert. The anomaly alert is only activated with 15 or more samples identified as such.
It means that anomalies lasting less than three seconds are ignored because the sampling rate is 0.2s.

4.4. IIoT anomaly classifier validation

We utilized a cross-validation technique to evaluate the classifier model and ensure that the model performs well on new data.
his involves splitting the data into subsets, training the model on some sets, and validating it on the remaining ones. Usually, the

dataset is divided into equally sized subsets or folds. However, our data is stored in 15 CSV files of different sizes, each containing
one or more failures or attacks. So, each of these files represents a fold. The model is trained on k-1 folds and validated on the
remaining fold for each. This process is repeated k times, with each fold used exactly once as the validation data. Performance
metrics (precision, recall, F1-score) are calculated for each iteration. The final performance estimate is obtained by averaging these
metrics across all folds. The results of this cross-validation are shown in Table 8. The average result provides a precision of 0.952,
indicating a very low False Positive (FP) rate, typically related to remaining effects after the anomaly’s cause has ceased; recall is
0.878, corresponding to a higher rate of False Negatives (FN) than FP. FN usually occurs right at the beginning of the anomaly due
to a delay in detection or in the middle when some samples are erroneously labeled as normal. Finally, the average F1-score is 0.91
for the evaluation set. When calculating precision, recall, and F1-score separately, we obtain 0.945, 0.797, and 0.862 for attacks
and 0.954, 0.908, and 0.927 for failures, inferring that our system detects failures better than attacks.

In Fig. 14, you can see the graphical representation of the classification results during cross-validation for the edge1 device.
ll anomalies were identified, with a few datasets showing a small number of samples labeled as events. In the edge1_13 dataset,

he number of samples incorrectly labeled as events slightly increased. After validating 15 samples (3 s) in the input sequence, the
classifier in the middle eliminates false positives not associated with real anomalies detected by the detector on the left. The plots
n the right display the actual anomalies.
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Table 8
Cross-Validation for IIoT Anomaly Classifier.
File Anomaly Precision Recall F1-Score

edge1_11.csv F1, F2 0.96 0.82 0.89
edge1_12.csv F1, F1 1 0.8 0.89
edge1_13.csv F2, F2 0.81 0.92 0.86
edge1_14.csv A2 0.9 0.74 0.81
edge2_9.csv F2, F1 0.89 0.97 0.93
edge2_10.csv F1, F1 0.99 0.75 0.85
edge2_11.csv F2 1 1 1
edge2_12.csv A2, A1, A1, A1, A1 0.91 0.88 0.89
edge3_8.csv F1, F2 0.97 0.99 0.98
edge3_9.csv F1, F1 1 0.81 0.9
edge3_10.csv F2 1 1 1
edge3_12.csv A2, A1, A1, A1, A1 0.97 0.85 0.91
edge4_10.csv F1 0.88 1 0.94
edge4_11.csv F1, F2 1 0.93 0.96
edge4_12.csv A2, A2 1 0.72 0.84
Total: 0.95 0.88 0.91

Fig. 14. Graphical result for cross-validation with edge1 device data. Here, ‘1’ represents ‘anomaly,’ and ‘0’ represents ‘normal.’ Letters represent A: attack, E:
event, F: failure, F1: temperature failure, F2: misconfigured failure, and A2: DoS attack.

4.5. Graphical interpretability of the model

Interpretability is ‘‘the ability to explain in understandable terms to a human’’ [49]. Interpretability is essential in machine
earning applications as it helps build trust, enhances understanding, and supports better decision-making. [50,51]. The graphical

method is a model-agnostic approach that compares input and output data to create various visualizations. This process helps identify
the causes of anomalies and enhances our understanding of the underlying patterns in the data. [52]. This method assumes the input
ata contains all necessary information to explain the detected anomalies [50,53].

Fig. 15 shows how the difference between the original and reconstructed signals exceeds the threshold value (dashed line) when
a temperature failure occurs in the edge device CPU. This way, the user can validate which inputs influence the autoencoder’s
anomaly detection.

4.6. Comparison with other models

New anomaly detection and a classification models based on LSTM layers were trained to compare their performance with those
implemented in the anomaly classification framework. An autoencoder has been implemented using LSTM coupled with dropout
layers for both the encoder and decoder. The output is wrapped with a TimeDistributed layer that applies a Dense layer to each
time step of the input tensor separately. LSTMs are a type of recurrent neural network (RNN) ideal for handling sequence data, such
14 
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Fig. 15. Graphical interpretability of the model. The signal reconstructed graph by the autoencoder and the threshold value allow the user to observe the
features that lead to anomaly detection.

Table 9
Comparison between anomaly detector and classifier models. Conv1d-based autoencoder and transformer-based
classifier show better precision, recall, and F1 score metrics.
Block Model Precision Recall F1-Score

Detector Conv1d 0.973610 0.913190 0.942433
LSTM 0.962211 0.870235 0.913915

Classifier Transformer 0.893578 0.944319 0.918198
LSTM 0.880367 0.894792 0.887471

as time series, due to their specialized architecture, which is particularly effective at capturing long-term dependencies in sequence
data. The LSTM encoder is responsible for compressing the input sequence into a fixed-size context vector that represents the essential
features of the input data. At the same time, the decoder tries to reconstruct the original input sequence. The TimeDistributed layer
wraps another layer, such as a Dense layer, and applies it to each time step of the input tensor independently. This implies that the
same layer weights are used for each time step, but the operation is carried out separately for each slice.

The anomaly classifier uses LSTM layers alternating with Dropout to reduce the risk of overfitting and a TimeDistributed
wrapping of a dense layer. An LSTM network comprises a series of LSTM units, each responsible for maintaining a memory cell
that can retain information across time steps. Table 9 shows the capacity of each model to avoid false negatives (recall) and false
positives (precision) and the harmonic mean of both (F1). Although LSTM-based models also performed well, the convolutional-based
autoencoder is the best detector, while the transformer-based classifier performs best in the three metrics.

4.7. Model validation with new anomalies

In the preceding section, we thoroughly analyzed the cross-validation results. The proposed system successfully identified all
anomalies and did not produce any false positives that triggered alarms for non-existent anomalies. This section examines the
classifier’s performance to uncover anomalies not part of the training set. We utilized two files containing sensor disconnection
failures (F3) to evaluate the model. The results, as illustrated in Fig. 16, indicate that the anomalies were indeed detected, but they
were classified as normal events by the classifier. Consequently, the system activated an alert for the human operator to classify
these anomalies manually. While this outcome is not ideal, it is nonetheless noteworthy that the system successfully detected the
occurrence of an anomaly.

4.8. Deploying the IIoT anomaly classifier in a testbed

To ensure timely anomaly detection, it is recommended that the classifier be run on each edge device. The deployment results
are depicted here. The TFLiteConverter function set from the TensorFlow library generated a lightweight version of the classifier
and detector models to run on a Raspberry PI3. Validation is performed with data collected at the same time that the training data
was collected. The goal here is to evaluate the performance of the models when running a lightweight version of them on an edge
device. Fig. 17 shows the four anomalies evaluated. There are no false positives that generate unnecessary alerts in the graph. In
most cases, some samples are classified as events, meaning the detector classified them as anomalies, but the classifier labeled them
as normal; however, they are very few compared to the correctly classified data, so the human operator does not doubt whether
it is a failure or an attack. The classification graph of the dataset called ‘‘edge2_F1’’ shows a delay in detection; it starts around
15 
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Fig. 16. Model validation with new data. F3 anomalies were detected but classified as events.

Fig. 17. Evaluating the IIoT anomaly classifier in the testbed. Detector labels samples as normal (0) or anomaly (1), and classifier labels as normal (N), event
E), failure (F), and attack (A).

Table 10
Evaluating the IIoT Anomaly Classifier in a Testbed.
File Anomaly Precision Recall F1-score

edge2_F2 Misconfigured
Failure

0.88 0.97 0.92

edge2_F1 Temperature
Failure

1 0.84 0.91

edge2_A1 Data Injection
Attack

0.86 0.93 0.89

edge2_A2 DoS Attack 0.91 0.88 0.89

Average 0.91 0.90 0.90

sample 3k, but the original anomaly (on the right) starts near 2k. This is consistent with what was observed throughout the entire
experimental process with the temperature failures (F1). Table 10 shows the precision, recall, and F1-score values of models running
on the edge device. They are consistent with those obtained using the original model in Google Collaboratory, where the system
hows slightly better performance classifying failures than attacks.

Table 11 shows the size of the files containing the lightweight versions of the detector and classifier created with LTLite. Also,
it shows the average time the edge device takes to run these models a single time with a sequence of 300 samples. This time does
ot include sample collection and preprocessing, which could be done parallel with evaluating the models.
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Table 11
Execution time of the models on the testbed for a sequence of 300 samples.
Model Size (kB) Time (s)
Detector (Autoencoder) 361 0.06799
Classifier (Transformer) 116 0.074955

5. Discussion

The results demonstrate the effectiveness and robustness of the Framework to implement IIoT Anomaly classifiers within an
ndustrial Internet of Things (IIoT) system. The case study’s key contributions include creating a comprehensive IIoT dataset with
abeled anomalies. The dataset generated for this study fills a significant gap in available IIoT datasets, which often lack the diversity

and specificity needed for comprehensive anomaly detection and classification. By using a testbed that emulates a real-life four-belt
conveyor system, we were able to produce a dataset with detailed labels for various types of anomalies, including high temperature
F1), miscalibration (F2), disconnection (F3), Denial of Service (DoS) attacks (A2), and data injection attacks (A1).

The unsupervised anomaly detection model architecture (64-32-7 Conv1D layers in the encoder and 7-32-64 Conv1DT layers
n the decoder) provided the best balance of precision, recall, and F1-score. This model’s optimization, using metrics that do not

involve true negatives (TN), ensures a realistic evaluation of its effectiveness in practical scenarios where false positives (FP) and false
egatives (FN) are critical considerations. Using a sliding window technique to validate anomaly detection significantly improved
he model’s performance. The model reduces the likelihood of false alarms triggered by transient outliers by requiring at least 15

consecutive samples to exceed the threshold value before labeling an anomaly. This strategy aligns with the operational requirements
of real-world CPS and IIoT systems, where stability and reliability are paramount.

The two-stage classification approach, involving an initial detection by the autoencoder followed by a detailed classification using
 transformer-based model, proved effective. With its optimized architecture (3 encoders and 20 head attentions), the transformer-
ased classifier achieved high precision and recall, particularly distinguishing between failures and attacks. The cross-validation

results, with an average precision of 0.952 and an F1-score of 0.91, indicate that the model is reliable and can generalize well to new
data. One notable aspect of the study was the model’s ability to detect but not classify unseen anomalies (e.g., sensor disconnection
ailures, F3). These anomalies were identified but labeled as normal events, triggering an alert for human intervention. This outcome

highlights the model’s sensitivity and the importance of having a fallback mechanism where human operators can review and classify
new types of anomalies. This feature is crucial for maintaining the system’s adaptability and continuous improvement.

This anomaly detection and classification framework for an Industrial Internet of Things (IIoT) system is designed to be modular
nd flexible, allowing it to be adapted to various industrial environments. Since it includes tasks ranging from data collection and
nomaly selection to generating alerts related to different types of anomalies. It can be applied to different types of machinery, sensor
onfigurations, and operational conditions by focusing on essential aspects such as data collection, processing, anomaly detection,
nd classification techniques. The framework can be customized to meet specific industry requirements, enabling the detection
f anomalies in areas like manufacturing processes, energy management systems, or supply chain monitoring. Furthermore, its
apability to handle diverse data types and varying levels of variability allows it to scale and integrate seamlessly with both new
nd legacy industrial systems. This flexibility supports real-time insights and predictive maintenance across multiple sectors.

6. Conclusion

In this work we propose a dual-model framework for anomaly detection and classification for data-intensive environments, such
s those encountered in IIoT systems. The separate but complementary models for detecting and classifying anomalies leverage
dvanced machine learning techniques, optimized processing methods, and contextual integration to significantly enhance anomaly
anagement’s accuracy and efficiency. Our comprehensive framework describes a new approach to detecting and categorizing

nomalies in IIoT environments. Combines CPS domain knowledge with data-driven insights from IIoT technologies. This framework
ddresses the challenges associated with anomaly classification and provides a solution that can be adapted to various applications,
rom cybersecurity to industrial monitoring. By integrating advanced machine learning techniques with robust preprocessing and
valuation methods, this framework offers a powerful tool for identifying and responding to anomalies.

Future work in enhancing our IIoT anomaly classification framework focuses on addressing its limitations related to scalability,
adaptability, and robustness. Key areas for improvement include integrating diverse data sources such as time series, images,
and sounds and leveraging distributed architectures like federated learning to enhance anomaly detection at both local and
global levels. Although our framework detected new anomalies, it could not classify them correctly; a new version could include
clustering techniques to classify new anomalies between failures and attacks automatically. Future work can also evaluate

odels that detect anomalies of short duration and other techniques to improve models’ interpretability. Incorporating domain-
pecific knowledge, advanced variable selection and data augmentation techniques, and security measures will strengthen the

framework’s performance. Expanding the framework to other industrial sectors, fostering self-improving systems, and encouraging
interdisciplinary collaborations will refine its adaptability, ensuring its effectiveness in dynamic industrial environments.
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