
Predictive model for estimating nitrogen density in MD2 pineapple crops
from multispectral images and sensors integrated in an IoT platform

Jorge Enrique Chaparro Mesa

Tesis para optar al título de Doctor en Ingeniería Electrónica y de Computación

Director
José Edinson Aedo Cobo, Ph.D

Universidad de Antioquia
Facultad de Ingeniería

Doctorado en Ingeniería Electrónica y de Computación
Medellín, Antioquia, Colombia

2024



Cita (Chaparro Mesa, 2024)

Referencia

Estilo APA 7 (2020)

Chaparro Mesa, J. (2024) Predictive model for estimating nitrogen
density in MD2 pineapple crops from multispectral images and
sensors integrated in an IoT platform [Tesis doctoral]. Universi-
dad de Antioquia, Medellin, Colombia.

Doctorado en Ingeniería Electrónica y de Computación, Cohorte XXIV.
Grupo de Investigación en Sistemas Embebidos e Inteligencia Computacional (SIS-
TEMIC)
Centro de Documentación de Ingeniería

Centro de documentacion UdeA (A-Z)

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Cespedes.
Decano/Director Dr. Julio César Saldarriaga.
Coordinadora de Posgrados: Natalia Gaviria Gómez.

El contenido de esta obra corresponde al derecho de expresión de los autores y no com-
promete el pensamiento institucional de la Universidad de Antioquia ni desata su re-
sponsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos
de autor y conexos.



Advisor
José Edinson Aedo Cobo

Date
November, 2024.



Dedication
I dedicate this achievement with deep gratitude to God, to my family, and to each of
the people who in one way or another contributed to this academic formation process.
Your support, encouragement, and understanding have been fundamental to reach this

goal.



Acknowledgements

I would like to express my deepest gratitude to Dr. José Edison Aedo Cobo for his
invaluable management in obtaining equipment and scientific support. I extend my
gratitude to the research group in Embedded Systems and Computational Intelligence
(SISTEMIC) of the Faculty of Engineering of the University of Antioquia, as well as
to the Research Group in Agro-sciences, Biodiversity and Territory - GAMMA, of the
Faculty of Agricultural Sciences of the University of Antioquia, especially to Dr. Mario
Fernando Cerón Muñoz for his advice and support in the loan of equipment and the
construction of the experimental design. I also thank the Universidad Autónoma de
Barcelona, the Computer Vision Research Center (CVC), the MSIAU research group
(MultiSpectral Image Analysis and Understanding) and PhD Felipe Lumbreras Ruiz for
their support and guidance in image processing and the construction of predictive mod-
els. I also thank engineer Nelson Barrera Lombana, from the Universidad Pedagógica y
Tecnológica de Colombia (UPTC), for his support in the patenting process of the hu-
midity sensor, and the Ministry of Science, Technology and Innovation MINCIENCIAS
for the financial support during the Bicentennial Doctoral Excellence Scholarship.

My gratitude is also extended to the Universidad Internacional del Trópico Americano
(Unitrópico) for its logistic and economic support during the completion of my doctorate,
and to the Empresa Agrícola Santana de los Llanos for allowing me to carry out the
experimental design in their crops and for providing qualified labor and guidance during
the development of the research process. Finally, I thank my family and friends for their
love, patience and for encouraging me to continue with this educational process.



Abstract

Nitrogen is the most important nutritional element during the vegetative growth phase
of the pineapple crop; however, its presence in the soil is insufficient to meet plant de-
mands. In this doctoral research, nine machine learning techniques were validated to
estimate total nitrogen (TN) content in MD2 pineapple crops from data from multi-
ple sources. These sources included multispectral images captured by an unmanned
aerial vehicle (UAV) and in situ sensors that collected information on ecological and
environmental factors, such as pH, temperature, solar radiation, relative humidity, soil
moisture, and wind speed and direction. In addition, plant information was collected
related to SPAD values, which indicate leaf chlorophyll content, and total nitrogen (TN)
values, obtained from leaf tissue samples sent to a certified laboratory for analysis. To
introduce nitrogen variability, a randomized complete block experimental design was
implemented, applying five different treatments in five blocks, each with 12 replications,
during a 6-month period in a pineapple crop located in the municipality of Tauramena,
Casanare, Colombia. To address the inherent variability of the agricultural and environ-
mental data, dimensionality was reduced using Principal Component Analysis (PCA).
Regularization techniques were also applied, including cross-validation, feature selection,
boost methods, L1 (Lasso) and L2 (Ridge) regularization, as well as hyperparameter op-
timization. These strategies generated more robust and accurate models, among which
regression, multilayer perceptron (MLP regressor) and extreme gradient boosting (XG-
Boost) algorithms stood out. On the first sampling date, XGBoost achieved an R2 of
86.98%, which was the highest during the entire experiment. On subsequent dates, MLP
achieved an R2 of 59.11% on the second date; XGBoost achieved an R2 of 68.00% on
the third date, and on the last date, MLP achieved an R2 of 69.4%. These results indi-
cate that the integration of data from multiple sources and the use of machine learning
models enable nitrogen (N) diagnostics in pineapple crops, especially in real-time appli-
cations. These results highlight the promising potential of developing machine learning
models that integrate multisensor data fusion for various applications in agriculture. In
the implementation of the machine learning models, the total nitrogen content obtained



vii

in the laboratory was considered as the response variable. The predictor variables com-
prised sensor data, SPAD values, and statistical information derived from 16 vegetation
indices calculated from the multispectral images. To reduce the dimensionality of the
predictor variable dataset, Principal Component Analysis (PCA) was applied. Follow-
ing this dimensionality reduction, nine regression algorithms were used to estimate leaf
nitrogen content during each of the four study periods. This comprehensive approach
yielded close estimates of leaf nitrogen content. The results of the study indicated that
the MLP (Multilayer Perceptron) and XGB (XGBoost) regression algorithms stood out
for their superior performance, evidenced by the best performance metrics.

Keywords — Multispectral Imaging, Unmanned Aerial Vehicle (UAV),
Internet of Things IoT, Predictive Models, Sensors in the crop, Image pro-
cessing.
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tr(·) trace of a matrix

Functions
k (·, ·) covariance function for a Gaussian process of xvn

fd(t) d-th output or response function evaluated at t

ϕ (·) nonlinear mapping function
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Vectors and matrices
xvn Observation of the nth object in the vth view, xvn ∈ RDv

ϕ (xvn) Observation of the nth feature object in the vth view, ϕ (xvn) ∈ RLd

ζj Latent feature vector for the jth correspondence, ζj ∈ RK

Bv Projection matrix for the vth view, Bv ∈ RLd×K

θj Mixture weight for the jth cluster, θj ≥ 0, ∑∞
j=1 θj = 1

Kv covariance matrix with entries k (xvn, x′
vn)

fd fd(t) evaluated at fd = [fd(td,1), . . . , fd(td,Nd
)]⊤

f vectors {fd}D
d=1, stacked in one column vector

IN identity matrix of size N
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Abbreviations
AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
DL Deep Learning
EC Electrical Conductivity
ELM Extreme Learning Machines
ET Evapo-Transpiration
ETc Estimation of evapotranspiration
GBM Gradient Boosting Model
GPS Global Positioning System
IoT Internet of Things
LAI Leaf-Area Index
LASSO Least Absolute Shrinkage and Selection Operator Regression
LS-SVM Least square support vector machine
MAE Mean Absolute Error
ML Machine Learning
MLP Multi-Layer Perceptron
NDVI Normalized Difference Vegetation Index
(N) Nitrogen
NIR Near-Infrared
NN Neural Network
PCA Principal Component Analysis
R Correlation Coefficient
RF Random Forest
RGB Red Green Blue
Red Edge Red Edge
RIDGE Ridge Regression
RMSE Root Mean Square Error
RT Regression Tree
R2 Coefficient of Determination
SVM Support Vector Machines
SVR Support Vector Regression
TN Total Nitrogen
UAV Unmanned Aerial Vehicle
VI Vegetation Index
XGBoost Extreme Gradient Boosting



Introduction

Nitrogen (N) is one of the most sought after nutrients in crops and is essential to ensure
optimal yield (Liang et al., 2022; Yao et al., 2024). It is considered a primary macroele-
ment and its content in the soil is not sufficient to cover the plant needs despite its
abundance in the form of N2 in the air, since it is only usable in its assimilable forms of
ammonium (Mello Prado, 2021). Pineapple is the second most produced tropical fruit
worldwide after mango, with an average annual growth rate of 4.6% in recent years, sold
and consumed worldwide (Mohd Ali et al., 2023). According to DANE figures (Colom-
bia Department of National Administrative Statistics), between January and July 2022,
Colombia exported more than 3 million net kilos of pineapple. Pineapples grow in warm
and humid tropical climates, generally in warm environments with temperatures rang-
ing from 20◦C to 36◦C (Maia et al., 2020). The average rainfall required is between
1,500 and 3,500 mm. If this value is too low, growth is affected and the size of the
fruit is reduced; on the other hand, if there is excess water, root diseases occur. Within
nutritional requirements, potassium (K) and nitrogen (N) are the two most important
elements for plant growth. The amount of nitrogen used in pineapple varies between 5
and 8 g/plant (330-630 kg/ha with 80,000 plants/ha) (Mohsin et al., 2020). Previous
studies have shown that pineapple fruit yields increase significantly with high levels of
N under irrigated and rainfed conditions (Oliveira et al., 2022). Balanced nutrition in
pineapple can be considered one of the main determinants of improving fruit quality
and weight (Maia et al., 2020). In this sense, monitoring nutrient levels is essential to
reduce economic costs and reduce environmental impacts; therefore, matching nitrogen
supply with actual crop demand is one of the strategic objectives of site-specific nutrient
management (Wang et al., 2022a).

Non-destructive technologies for assessing nutrients in pineapple crops are gaining
popularity over conventional methods (Mohd Ali et al., 2023). The introduction of the
concept of digital agriculture has transformed traditional agriculture, improving agri-
cultural productivity and environmental sustainability (Pathmudi et al., 2023). In the
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last decade, the combination of digital imaging, IoT platforms, and machine learning
techniques has gained relevance for the development of interdisciplinary tools that facil-
itate the understanding of agroecological and environmental systems (Boursianis et al.,
2020). These three instruments, when combined, become a powerful interdisciplinary
tool that helps improve agricultural planning and optimize resources in crop production.
In this context, the Internet of Things (IoT) provides tools for real-time monitoring of
environmental, soil, or plant variables, such as temperature, humidity, pH, wind speed,
solar radiation, and rainfall, among others (Mathi et al., 2023).

Spectral imaging methods such as near-infrared (NIR) and mid-infrared (MIR) have
been widely used to measure nutrients in different fruit crops such as banana, avocado,
blackberry, blueberry, cherry, mandarin, and others (Cozzolino et al., 2020; Kljusurić
et al., 2020). These methods commonly use image-derived vegetation indices (VI) for
the estimation of nutrients (Mouazen et al., 2023).

Machine learning (ML), in this context of precision agriculture, together with in-
ternet of things (IoT) devices and multispectral cameras superimposed on unmanned
aerial vehicles (UAVs), have been making significant contributions to the concept of
smart agriculture (Akkem et al., 2023). Various research studies have evaluated differ-
ent machine learning algorithms to predict nitrogen (N) in traditional crops, such as
rice, palm, sugar, wheat, among others (Liao et al., 2023; Mouazen et al., 2023). Al-
gorithms such as artificial neural networks (ANN) have been used to predict vegetation
and crop yield parameters, presenting better performance metrics than some supervised
learning algorithms (Sakthipriya and Naresh, 2022). However, algorithms such as Ran-
dom Forest (RF), Support Vector Machines (SVM), and XGBoost have demonstrated
robustness and high accuracy in predicting plant N status (Chen et al., 2023; Sakthipriya
and Naresh, 2022). The combination of IoT, multispectral imagery, and predictive mod-
eling results in intelligent fertilization systems that improve accuracy in the amount of
fertilizer needed (Berger et al., 2020b; Saranya et al., 2023).

In this doctoral thesis, different machine learning algorithms were validated to es-
timate the nitrogen content in the MD2 variety of pineapple plants from multispectral
images, IoT sensors, and SPAD values of leaf chlorophyll content. To obtain the vari-
ability of nitrogen, a complete randomized block experimental design was carried out,
applying five different nitrogen treatments (0, 3.3, 6.7, 9.3 and 12.0 g N / plant) in
five blocks. Twelve replications were carried out over a period of six months, based on
the methodology proposed by (Shendryk et al., 2020). In this case, the experimental
application of blocks is not used to estimate the effect of treatment on the biomass or
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yield of the crop; instead, it is used as a source of variability to obtain different samples
of nitrogen content.

This doctoral thesis represents a significant contribution to scientific and technolog-
ical knowledge in the field of precision agriculture and agricultural sustainability. The
document is divided into 8 chapters which are detailed below:

• Chapter 1. Statement of the Problem, Justification and Objectives. In
this chapter, the specific objectives of the research are established, the problem to
be addressed is presented, and the relevance of this study is justified.

• Chapter 2. Systematic Literature Review and Key Factor Analysis.
Presents a systematic review of the literature and a detailed analysis of the factors
that will provide crucial input for the following stages of the research.

• Chapter 3. Theoretical framework. Develops a theoretical framework that
supports the research methodology, addressing aspects such as pineapple crop eco-
physiology, techniques for nitrogen estimation in fruit crops, the use of multispec-
tral images and sensor networks in agriculture, as well as the concepts associated
with artificial intelligence applied in this sector.

• Chapter 4. Materials and Methods. Details the methodology used to achieve
the general objective, including materials and methods, the description of the study
area, and the experimental design implemented.

• Chapter 5. Data Acquisition. The purpose of this chapter is to show the
development of the data acquisition methodology, providing details on the capture
of multispectral images, the acquisition of data on soil and environmental variables,
and the acquisition of chlorophyll level data using SPAD values.

• Chapter 6. Predictive Models. This chapter presents data processing and
analysis, the calculation of vegetation indices, the reduction of dimensions, and the
development of predictive models for the estimation of nitrogen in the pineapple
crop.

• Chapter 7. Discussion. This chapter presents an analysis and interpretation of
the data obtained in this research, contrasting these results with previous studies
that have used similar methodologies and objectives in other crops. Since the
systematic review of the literature did not identify comparable studies on pineapple
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crops, studies on other crops will be used as a reference for the discussion and
comparison of findings.

• Chapter 8. Conclusions and Future Lines of Research. Finally, this chapter
summarizes the general conclusions of the study, offers recommendations, and
points out possible lines of future research.



Chapter 1

Problem, Justification and
Objectives

1.1 Problem Statement

Pineapple cultivation accounts for almost 20% of the world’s tropical fruit production,
after mango and banana. Globally, 27.81 million tons of pineapple are produced on 1.07
million hectares under cultivation, with the Philippines, Costa Rica and Brazil being
the three main pineapple producers in the world (Lakho et al., 2023). Colombia is a
strategic country for the establishment of this type of crop, due to its location in the
tropical zone. According to figures for 2022, the average annual pineapple production in
Colombia reached 432 thousand tons. Santander stands out as the main contributor, ac-
counting for 39.9% of the total, followed by the departments of Valle del Cauca (17.2%),
Cauca (11.1%), Quindío (5.1%), Meta (4.7%), Casanare (4.1%) and other departments
that contribute on a smaller scale (Olaya et al., 2022). Currently, the most requested
variety by both pineapple producers and consumers is MD2, a hybrid from Hawaii. This
variety stands out for its high Brix content compared to other varieties, as well as for
reaching maturity earlier. These attributes have made it one of the most commercialized
options worldwide (Hasni and Ahmad, 2022). The dynamics of pineapple production in
Colombia, measured in tons per hectare, varies between 41 and 60 t/ha, with production
costs close to US$11,400 per hectare and harvest times of 14 to 15 months. In contrast,
countries such as Indonesia and Costa Rica, the main exporters of fresh pineapple in
the world, achieve yields ranging between 83 and 120 t/ha, which motivates Colombian
farmers to improve their yields (Cerón, 2022). However, increasing the planting density
requires more efficient crop management, as plant spacing significantly influences fruit
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size and quality. Higher density implies increased nutrient consumption per unit area,
integrated pest and disease management, as well as the implementation of better flower
induction methods and more efficient irrigation and drainage systems.

In this context, adequate nutrient intake is revealed to be one of the most significant
factors to increase productivity, given its crucial impact on fruit growth and development.
Maintaining a nutritional balance in pineapple cultivation is positioned as one of the main
determinants of improving both fruit quality and weight (Maia et al., 2020). Among the
essential nutrients for pineapple cultivation, nitrogen (N), phosphorus (P) and potassium
(K) stand out, followed by calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn).
It is important to note that nitrogen (N) stands out as one of the most requested
macronutrients by pineapple and is closely related to the weight and productivity of
the fruit (Maia et al., 2020). Adequate nitrogen nutrition leads to the production of
larger and higher quality fruit, thanks to an optimal ratio between acidity and soluble
solids. On the other hand, nitrogen deficiency causes generalized chlorosis, initially
manifested in older leaves, since nitrogen is considered a mobile element in the plant.
This deficit directly impacts growth, resulting in plants of smaller stature and yellowish
coloration (Liang et al., 2022). Nitrogen shortages can arise from various biotic and
abiotic factors, linked to crop management, climatic conditions, soil properties, and the
specific nutritional needs of each variety.

On the contrary, excess nitrogen application not only implies unnecessary costs in
inputs and fertilizers, but also leads to the release of anthropogenic nitrogen into the air,
water, and soil. This generates a series of environmental and human health problems
that highlight the importance of managing the application of this nutrient in a balanced
way. The application of fertilization that exceeds the recommended dose causes nutri-
tional imbalances, generating negative effects on the environment, and contributing to
greenhouse gas emissions (Demir et al., 2024). Additionally, the cultivation and fertiliza-
tion practices adopted by farmers are based mainly on their individual experience, which
is one of the key reasons for the remarkable yield disparities between different farms.
In this regard, site-specific nutrient management (SSNM) presents itself as a solution
to address this problem. The implementation of SSNM not only improves fertilizer ef-
ficiency, decreases environmental pollution, but also increases profits, and reduces yield
disparities between farms within the same region (Demir et al., 2024).

Efficient water management is another crucial factor that directly affects crop yield.
Pineapple differs from most commercial crops due to its photosynthetic adaptation
through crassulacean acid metabolism (CAM), which facilitates the absorption of carbon
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dioxide at night, thus improving its efficiency of water use, especially under dry condi-
tions (Carr, 2012). Inappropriate water management leads to liquid losses and favors
the proliferation of diseases and pests, directly affecting the farmer and the environment
(Ricson L Ines et al., 2023).

The water requirements of the pineapple crop are related to the phenological stage,
the type of soil, and the altitude (de Azevedo et al., 2007). It is advisable to irrigate
preferably during the phenological stage of the greatest plant growth activity, which is
from planting to flower induction. This avoids water stress and prevents possible effects
on plant growth (Ricson L Ines et al., 2023). Consequently, continuous crop monitoring,
including environmental variables and soil conditions, is imperative as an integral part
of efficient crop management. Within this approach, monitoring can be integrated into
management strategies that incorporate Decision Support Systems (DSS), which allow,
for example, determining crop nitrogen requirements and assessing soil water status.
The use of these strategies, when combined with practices such as fertigation and drip
irrigation, is essential for efficient nitrogen management, reducing losses and minimizing
environmental impacts (Padilla et al., 2020).

Agriculture 4.0 is generating a significant transformation in traditional agriculture,
contributing to improving both agricultural productivity and environmental sustainabil-
ity. In this context, the concept of precision agriculture, based on information technolo-
gies, is consolidating as an attractive technique for modern and sustainable agricultural
development (Bui et al., 2024). During the last decade, the combination of digital im-
ages, the (IoT) platforms, and machine learning techniques has gained relevance in the
development of interdisciplinary tools that facilitate understanding of the complexity
characterizing agroecological and environmental systems (Kumar Kasera et al., 2024).
To monitor and manage agricultural operations, this cutting-edge technology combines
networks, devices, AI (AI), and big data analytics from the (IoT). Through the use of
various electronic, biochemical and electrical sensors and actuators, various crop data
can be collected, and environmental, soil or plant variables such as temperature, soil
moisture, relative humidity, pH, wind speed, solar radiation and rainfall, among others,
can be monitored in real time; and from these data it is possible to develop various
operations for specific agricultural applications (Kumar Kasera et al., 2024). On the
other hand, multispectral photogrammetry has gradually displaced traditional soil mon-
itoring and mapping methods. This technology offers faster, more accurate, informative
and professional assessment techniques in a cost-effective manner, making it one of the
most valuable resources for precision agriculture. Multispectral imagery provides key
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information for computing vegetation indices, such as the (NDVI) and the Crop Water
Stress Index (CWSI). These indices facilitate the evaluation of crop vegetative state,
evapotranspiration and biomass, among other aspects. They also allow for more ef-
ficient nutrient management, adequate irrigation and early detection of crop diseases
and pests (Hareesh, 2024). The combination of images, sensors and AI, used together,
becomes a powerful interdisciplinary tool to develop models that optimize agricultural
planning through research. Although this approach has recently been implemented in
several crops such as rice, soybeans, corn, citrus, vegetables, and coffee, its application in
pineapple cultivation has been little explored, showing a limited presence in the scientific
literature. This gap offers an opportunity to carry out research that contributes to the
advancement of knowledge in this area, facilitating the optimization of nutritional sys-
tems. This process, in turn, will result in increased yield per hectare, reduced costs, and
reduced environmental impacts (Devia et al., 2019; Kumar Kasera et al., 2024; Mej and
Narvaez, 2020). This thesis evaluates the effectiveness of several regression algorithms
to estimate the amount of nitrogen needed in a pineapple crop of the MD2 variety. For
this purpose, multispectral images captured by a drone, agrometeorological information
provided by a network of sensors, and plant chlorophyll data obtained through SPAD
values are analyzed. This agricultural planning tool seeks to help pineapple growers
manage their crops more efficiently, improving yields. Information on the amount of
nitrogen present in the plant will allow better dosing of nutrient application, avoiding
waste, and reducing input and fertilizer costs. In addition, it will be possible to trace
agro-meteorological information on the crop and mitigate the environmental impacts
associated with excessive nitrogen use.

1.1.1 Research question

¿Is it possible to estimate the optimal nitrogen demand in pineapple crops using non-
invasive techniques, integrating machine learning, from multispectral images and data
from field sensors integrated in an IoT platform?

1.2 Justification

Traditional agriculture is highly vulnerable to climate change and to the presence of
diseases and pests, which are increasingly harmful and resilient to common agrochem-
icals. This type of agriculture is characterized by the use of rudimentary techniques
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that minimize the productive capacity of soils and cause negative impacts on the en-
vironment and human and animal health (Saikanth et al., 2023). Although Colombia
is a vocation agricultural country and has become a strategic country for pineapple
cultivation, due to its location in the tropical zone, yields are below international stan-
dards, especially compared to leading export countries such as Indonesia and Costa Rica
(Olaya et al., 2022). The Strategic Plan for Science, Technology and Innovation in the
Colombian Agricultural Sector, PECTIA - Pineapple Chain, highlights the urgent need
to strengthen research processes, focusing especially on two critical areas: plant phys-
iology and nutrition, as well as soil and water management. According to established
priorities, plant physiology and nutrition is the essential core, addressing fundamental
aspects such as "diagnostics for the identification of physiological and edaphoclimatic
causes that affect fruit quality" and "studies of nutritional requirements in relation to
the phenological stage of the crop" (Minagricultura, 2022).

A crucial strategy to improve productivity in pineapple cultivation involves the pre-
cise definition of nutritional requirements adapted to the specific environmental con-
ditions of each plantation. This approach requires detailed analyses, such as growth
studies and foliar analysis, to understand the nutritional needs of plants (Mohsin et al.,
2020). It is important to note that this topic has been scarcely addressed in the country,
and growers base their nutritional recommendations on research conducted in countries
such as Brazil, Costa Rica, and Mexico (Rúa et al., 2016). Efficient determination of
nutrient use in the crop is essential to achieve maximum yields, prevent fertiliser loss,
and understand the nutrient absorption capacity of the plant. The balanced nutrition of
pineapple is one of the main factors in improving fruit quality and weight, with nitrogen
(N) being one of the most requested macronutrients, closely related to fruit weight and
productivity.

However, fertilisation is one of the most expensive activities for the farmer when
establishing a production system, where agricultural inputs represent between 30-40 %
of total production costs (FAO, 2016). In this context, nitrogen emerges as the most
expensive element in pineapple production. The timely assessment of nitrogen content in
the crop canopy becomes a fundamental aspect for the diagnosis of growth and accurate
crop management. This approach not only seeks to maximise crop yield and quality,
but also aims to minimise adverse environmental impacts, thus contributing to more
sustainable and efficient agricultural production (Liu et al., 2023a). Precision agriculture
offers solutions for efficient nitrogen management through noninvasive techniques that
combine technologies such as IoT, multispectral imaging, and AI. These technologies



6 Problem, Justification and Objectives

allow real-time monitoring of environmental and crop variables and the generation of
vegetation indices such as NDVI and CWSI, which help to assess crop condition and
nitrogen need.

Despite the potential offered by precision agriculture, its implementation in pineap-
ple cultivation has not been explored sufficiently, and the lack of existing information
prevents definitive conclusions on the effectiveness of these technologies in accurately
predicting nitrogen requirements. This knowledge gap presents a clear opportunity to
develop predictive models that address the specific nitrogen demand in pineapple culti-
vation, enabling more efficient management of this nutrient. The fundamental purpose of
this research is to contribute to the advancement of knowledge in the application of pre-
cision agriculture in pineapple cultivation. It aims to fill the existing gap in the scientific
literature, providing valuable information that not only benefits the academic commu-
nity, but also translates into practical tools for farmers. Successful implementation of
predictive nitrogen demand models would not only improve farmer competitiveness, but
also strengthen the sustainability of the sector by optimising input use and potentially
reducing environmental impacts associated with overfertilization.

1.3 General Objective

To develop a predictive model to estimate the amount of nitrogen required for the ef-
ficient management of an MD2 pineapple crop, based on non-invasive techniques that
combine the analysis of multispectral images and agrometeorological information trans-
mitted by sensors.

1.3.1 Specific objectives

• Determine the main parameters, variables and information required for the con-
struction of the model, based on the multispectral images and data obtained with
the sensors.

• Define the modeling technique, structure and methodology for the construction of
the predictive model according to the hypothesis and available data.

• Implement a prototype prediction system, where the selected model is integrated,
in order to carry out the process of controlled experimental verification and effec-
tiveness estimation, in a regional agricultural context..
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• To carry out a systematic verification process of the proposed model, based on
simulation and/or experimental tests in controlled environments.



Chapter 2

Systematic Literature Review and
Key Factor Analysis

This chapter presents a comprehensive and systematic search of the literature applying
predefined methods and inclusion and exclusion criteria. Given the significant progress
in the field of AI in the last two years, this systematic review of the literature identifies
articles published in scientific journals indexed in the Scimago Journal Rank (SJR) portal
of Scopus during the period 2022-2024. The primary purpose of this review is to provide
an objective summary of the existing evidence regarding nondestructive techniques for
nutrient estimation, involving predictive models, multispectral imaging, and IoT sensors
installed in the crop. It seeks to identify possible knowledge gaps and point out areas
that require further research, thus contributing to the advancement of knowledge in this
specific field.

In the last decade, agriculture has witnessed a radical transformation, called Agri-
culture 4.0, characterized by the integration of Information and Communication Tech-
nologies (ICT) into traditional agricultural methods (Li et al., 2023a). Emerging tech-
nologies such as remote sensing, the (IoT), (UAV), Big Data Analytics (BDA) and
Machine Learning (ML) stand out for their great potential. These innovations represent
a milestone in the progress of agricultural practices, ushering in a new era in the sector
(Boursianis et al., 2020). The use of satellite and aerial imagery has been implemented
to monitor crops, detect diseases, assess plant health, estimate nutrients, and forecast
yields. However, (IoT) technologies use sensors connected in real time to monitor envi-
ronmental conditions such as humidity, temperature, and soil pH. Machine learning (ML)
makes use of the information generated by images and sensors to predict yields, identify
diseases, and optimize agricultural practices, providing personalized recommendations
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based on the specific conditions of each crop (Istiak et al., 2023). Accurate nutrient
estimation plays a crucial role in efficient crop management. Various techniques have
been developed in applied AI to agriculture to improve this task. Methods such as spec-
tral analysis, remote sensing, and machine learning algorithms enable a more accurate
assessment of crop nutritional requirements, thus optimizing yields (Ennaji et al., 2023).

One of the most demanded macronutrients in fruit crops, and at the same time
the most important for fruit growth, weight and quality, is nitrogen (N) (Fu et al.,
2022). This element is directly related to the photosynthetic capacity of crops. Over- or
under-application of nitrogen fertilizers not only limits crop productivity, but also causes
negative environmental impacts. Excess nitrogen can cause eutrophication in water
bodies, a process that refers to the increase of inorganic nutrients, such as nitrogen and
phosphorus, often resulting from runoff from human activities. On the other hand, lack
of nitrogen can reduce crop yields. In addition, excessive use of nitrogen fertilizers can
release nitrogen oxides into the atmosphere, contributing significantly to global warming
(Fu et al., 2022).

Accurate estimation of nitrogen (N) in crops is essential to optimize productivity,
reduce costs, and minimize environmental impact. There are several methods for (N)
estimation, which fall into two categories: destructive and non-destructive (Liao et al.,
2023). Destructive methods, such as soil and plant tissue analysis, are accurate but
require time and effort to process. Additionally, laboratories are generally not located
near crops, implying higher costs and time to obtain results (Liang et al., 2022). Non-
destructive methods, on the other hand, are becoming increasingly popular due to their
speed, ease of use, and lower cost. Some examples of these methods are sensors, which
allow measurement of the reflectance of light at different wavelengths, which can be
related to the N content of the plant. Multispectral imaging, which captures images of
the plant in different bands of the electromagnetic spectrum, allowing the estimation of
N content through image analysis techniques, and predictive models that use information
such as crop phenological stage, climatic conditions, and soil properties to estimate N
demand (Ruan et al., 2023).

The use of canopy spectral measurements in crop nutrient estimation has attracted
considerable interest in the scientific community. These measurements are more effective
in determining growing conditions compared to foliar spectral measurements, which are
limited to predicting information about individual leaves. This approach offers a more
holistic and accurate perspective for assessing the nutritional status of crops, supporting
more efficient decision making in agriculture (Fu et al., 2022).
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In this doctoral research, a systematic review of the literature (SLR) is conducted
with the objective of establishing the state of the art in the use of multispectral imagery,
IoT technologies, and machine learning methods for the estimation of nutrient content,
especially nitrogen, in crops. The systematic review of the literature is approached as a
comprehensive and methodical approach that seeks to identify, evaluate, and synthesize
the available research in this area of knowledge (Bandara and Syed, 2023).

According to the search criteria established in the methodology described in this
chapter for systematic review of the literature (SLR), 523 relevant studies were identified
and analyzed in five electronic databases: ScienceDirect, Scopus, Springer, IEEE Xplore,
and Google Scholar. From this broad selection, 87 articles were examined in detail,
applying inclusion and exclusion criteria. These research papers were carefully selected
and organized by topic using the Mendeley tool, which facilitated the management
and selection of these documents by specific topics. This tool not only enables the
organization and sharing of research material, but also the referencing of documents,
participation in academic social networks, and the stimulation of debate around a specific
topic.

The analysis of the 87 selected papers focused on answering four carefully formulated
research questions detailed in section 2.2.1 of this thesis. These questions were designed
to address various aspects related to the predictive models reported in the literature for
the estimation of nitrogen content in crops. The predictive models analyzed are based on
machine learning techniques, such as neural networks, decision tree learning, Support
Vector Machines and linear regression, among others. These models use information
derived from multispectral images and IoT platforms for the measurement of various
crop parameters, with special emphasis on nitrogen.

This literature review explores the most recent advances in the use of machine learn-
ing to support crop yield prediction, with a particular focus on nitrogen estimation by
analyzing multispectral images and relevant variables captured by soil and plant sensors.
Given the significant progress in the field of AI in the last two years, this systematic
review covers the period from the year 2022 to the papers identified up to the first quar-
ter of the year 2024. It starts by providing an account of related works, i.e., similar
literature reviews, with the purpose of establishing a general context and guiding the
subsequent analysis towards the identified knowledge gaps.

Before analyzing the 87 research articles, a search for review articles was conducted
to contrast their results with those obtained from the analysis of the 87 studies, in order
to guide the research. The results of the analysis of the review articles are presented
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below, followed by the methodology used and the analysis of the 87 articles.

2.1 Review articles analyzed

In this section, several literature reviews published between 2022 and 2024 in the field of
Machine Learning, multispectral imaging, vegetation indices and IoT sensors applied to
agriculture are examined. Priority is given to works focused on the prediction of nutrients
and crop yields from agricultural 4.0 technologies, covering the most commonly employed
algorithms in these areas of study. This specific period addressed in the review allows
obtaining an updated view of the most recent advances and approaches in the integration
of these technologies to improve agricultural management. The review of related works
was structured by topic to facilitate the understanding of the papers reviewed.

2.1.1 Estimation of nutrients (nitrogen) and crop yields through
UAV imagery

(Ennaji et al., 2023), present a review of machine learning-based techniques for esti-
mating fertilizer and nutrient status developed in the last decade. The authors make a
comparison of the advantages and disadvantages of machine learning approaches, and
future prospects for ML adaptation in crop nutrient management are discussed. In the
study carried out by (Rivera et al., 2023), a literature review was conducted on the use
of machine learning as a support tool to predict yields in various types of crops. On the
other hand (Saikanth et al., 2023), they present results that show the positive impact
of combining machine learning and IoT in improving crop yields. The authors highlight
the effectiveness of the combined use of machine learning and IoT in smart agricul-
ture in increasing crop productivity. (Zhou et al., 2022), they conducted a review on
determining fruit maturity to decide the optimal harvesting time and yield prediction.
Non-destructive methods, including colorimetry, visible imaging, spectroscopy, as well
as machine learning and regression models used to assess maturity, were also analyzed.
(Goffart et al., 2023) investigated advances in the use of optical sensors to monitor nitro-
gen (N) status in potato crops. They concluded that traditional methods are accurate
but laborious, and that developing a more generic reference method would allow rapid
assessment of N status using biophysical variables derived from optical sensors, with
promising real-time monitoring capabilities. In the review by (Patil et al., 2023), the
estimation of nitrogen content in sorghum crops using (UAVs) was addressed. Five dif-
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ferent RGB-spectrum vegetation indices were evaluated and correlated with current crop
nitrogen content values using simple linear regression and stepwise backward regression.
(Bazzo et al., 2023), conducted a comprehensive review of recent studies using (UAVs)
to estimate aerial biomass in grasslands. They analyzed 64 articles, considering key
aspects such as, species composition, drone platforms, flight parameters, sensors, field
measurements, biomass indices, data processing and analytical methods. This review
established a comprehensive workflow, from data collection to data processing. In the
work done by (Istiak et al., 2023), the authors examined several critical dimensions fac-
ing (UAVs) in precision agriculture. They also conducted an assessment of the impact of
imaging modalities and datasets in agricultural applications, as well as a categorization
of UAV configuration and a detailed analysis of currently used AI (AI) methods. (Zheng
et al., 2022), they conducted a study to identify current research trends and key issues
related to nitrogen (N) monitoring. They began with a comprehensive statistical anal-
ysis of the literature on remotely sensed N monitoring in rice and wheat over the past
two decades. Subsequently, they elucidated the physiological mechanisms and spectral
response characteristics of canopy N remote sensing monitoring. (Wong, 2023) discussed
the potential of optical remote sensing for phenotyping, monitoring and evaluation of
vegetation. Optical properties, vegetation index applications, sun-induced fluorescence,
and machine learning approaches were addressed, highlighting how covariance can em-
pirically approximate plant traits and functions.

(Montero et al., 2023), present "Awesome Spectral Indices" (ASI), a standardized
catalog of spectral indices for terrestrial research. ASI provides a complete, machine-
readable catalog of indices linked to a Python library. It includes a variety of attributes
for each index, such as names, formulas and references, making it easy to use and under-
stand in a variety of scientific contexts. On the other hand (Radočaj et al., 2023), they
reviewed the most relevant plant indexes, considering their frequency in scientific pa-
pers indexed in the Web of Science Core Collection (WoSCC) since 2000. By examining
articles related to "precision agriculture" and vegetation index (VI), it became evident
that the United States and China stand out in global research on precision agriculture
and the use of vegetation indices.
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2.1.2 Analysis of Articles on Machine learning techniques for
nutrient and crop yield estimation

The article published by (Kganyago et al., 2024), provides an overview of recent ad-
vances in remote sensing technology and machine learning algorithms for estimating key
parameters in precision agriculture. It aims to highlight advances in obtaining these pa-
rameters by remote sensing and advances in sensing technologies and machine learning
algorithms. Likewise (Wakchaure et al., 2023), they conducted a comprehensive review
of recent studies using AI and robots for agricultural applications. This work performs a
comparative analysis in three essential phases of agriculture: Cultivation, Tracking and
Harvesting, detailing in each of these the applicability of machine learning techniques
and agricultural robotics. (Wang and Yao, 2023), carried out a review on machine
learning techniques in the field of crop yield, highlighting the use of artificial neural net-
works, fuzzy systems, decision trees, regression-based analysis and Bayesian networks.
In addition, they considered time series analysis, Markov chain models and clustering
techniques such as k-means, k-nearest neighbor and support vector machines applied
to agriculture. Similarly (Pandey et al., 2022), conducted a comprehensive review of
nearly 170 papers applying the latest methodologies in image processing, machine learn-
ing, deep learning, (IoT), data mining and wireless sensor networks in the agricultural
sector. (Wang et al., 2023b), they highlighted advances in optical sensors and machine
learning algorithms to develop multi-organic nitrogen estimation models for rice. The
authors conducted rice field trials over three years, using manual sampling along with
digital and hyperspectral imagery captured by UAVs. (Petso and Jamisola, 2023; Silva
et al., 2023), conducted a literature review in which monitoring systems with drones
and deep learning algorithms are addressed, focusing on optimizing plant agricultural
production and improving yields. Different models and their effectiveness under various
environmental conditions and drone types are evaluated.

2.1.3 IoT and UAV technology in agriculture

In the work aimed at (Boursianis et al., 2020), the authors conducted a survey of the
most recent research on the application of IoT and UAV technology in agriculture. The
fundamental principles of IoT technology are described, addressing aspects such as smart
sensors, types of IoT sensors, networks, and protocols used in agriculture, as well as the
various IoT applications and solutions in smart agriculture. (Chander et al., 2023), dis-
cusses advances in smart agriculture technologies, providing information on the current
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state and future possibilities. The authors comprehensively review the integration of
IoT, wireless communication, sensors and hardware in smart agriculture, highlighting
the transformative potential of integrating IoT and advanced technologies in agriculture
to improve efficiency and automation. The paper presented by (Boursianis et al., 2020)
reviews the fundamental principles of IoT technology, considering smart sensors, types of
sensors, networks and protocols used in agriculture, as well as IoT applications and solu-
tions in smart agriculture. Along the same lines, (Majumdar et al., 2021), conducted an
analysis of contemporary IoT-oriented agricultural automation methods using weather
monitoring. Within this analysis, they reviewed IoT components, communication pro-
tocols, prediction methods, security vulnerabilities of communication protocols, cost of
IoT hardware, comparison of data repositories, and dependency analysis of weather
parameters. (Prakash et al., 2023), the authors of this article thoroughly analyze the
key components of smart agriculture, such as IoT, wireless communication technology,
sensors, and hardware. The authors present a systematic review of the implications of
agricultural automation and how operations can benefit from technological advances.
Challenges and future applications for crop, human, and machine health are discussed.
In the paper by (Abbasi et al., 2022), a systematic review of the literature related to
precision agriculture published in the last decade is carried out. The results showed
that digital technologies such as autonomous robotic systems, the (IoT), and machine
learning are significantly explored; also, it is found that these technologies are more
frequently applied in open field crops (69%), as opposed to indoor crops (31%). (Alah-
mad et al., 2023), this review analyzes the potential advantages of using Information
and Communication Technologies (ICT) in precision agriculture to promote sustainable
agricultural development. Highlights the relevance of incorporating modern technologies
such as the (IoT) and AI (AI) in the agricultural industry to ensure long-term produc-
tivity. The authors (Alexopoulos et al., 2023), reviewed the challenges and advantages
of UAVs, satellites, and ground-based sensors (IoT) in agriculture, highlighting their
joint use to drive Precision Agriculture and the transition to Agriculture 4.0. The arti-
cle concludes that by combining technologies such as terrestrial IoT sensing and remote
sensing via satellite and UAV, along with data analytics, agriculture is moving towards
a more efficient, productive and sustainable approach.
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2.2 Methodology used in this review

The methodology carried out for this systematic review of the literature was divided
into three phases which, in turn, were organized into 10 steps, as detailed in Figure. 2.1.

Figure 2.1: Description of the phases of the review protocol. Source: Own elaboration.

• Phase 1: In this phase, research questions are defined, and a document selec-
tion protocol is developed and validated. Additionally, publication sources, search
equations, and selection criteria are established.

• Phase 2: The review is conducted by selecting publications that meet the inclusion
and exclusion criteria from the chosen databases. Bibliographic data are automat-
ically extracted using Mendeley, and key information is summarized in the "notes"
section to address the research questions.

• Phase 3. This phase ends with the analysis of the papers, taking into account the
formulated research questions. Figure. 2.1 illustrates the steps to follow in each of
the phases.
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2.2.1 Research Questions

This section formulates the general objective of the review, which is structured around
four research questions.

Objective: Critically evaluate the current scientific evidence on the use of machine
learning techniques to estimate the amount of nutrients, especially nitrogen, in crops,
from the information provided by spectral images and sensors integrated in IoT plat-
forms.

Based on this general objective, the following research questions are raised:

1. Q1- What are the most commonly used machine learning algorithms for nutrient
and crop yield estimation from spectral imagery and IoT sensors

2. Q2- How do IoT technologies and (UAVs) integrate with machine learning algo-
rithms to create comprehensive agricultural management systems

3. Q3- On what types of crops have machine learning techniques been implemented
for nutrient and yield estimation, and what evaluation parameters have been used
to measure their effectiveness

4. Q4- What is the current scientific evidence on the accuracy and reliability of ma-
chine learning techniques for crop nitrogen estimation from machine learning, spec-
tral imaging and IoT systems and what are the challenges and future prospects

2.3 Results

2.3.1 Extraction of required data

This section presents the results of the extraction of information from the 87 studies
analyzed. To answer the research questions, the information was organized in different
tables. Table. 2.1 details the name and acronym of the algorithms used in the analyzed
articles to estimate crop nitrogen. Table A.1 and Table A.2 describe the machine learning
algorithms used for crop nitrogen estimation from spectral images and sensors. Tables
A.3 and A.4 detail the variables and types of UAV and satellite spectral images used for
the estimation of nitrogen and other crop parameters. Table. A.5 presents the vegetation
indices used for this estimate. Finally, Table. A.6 describes the work carried out with
IoT systems and images, which were used in the analyzed articles to estimate nitrogen
and other variables in crops.
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Table 2.1: Name and acronym of algorithms used in the articles analyzed for the esti-
mation of Nitrogen in crops.

Abbreviation Algorithm name

PLSR Partial Least Squares Regression
MLR Multiple Linear Regression
SVR Support Vector Regression
GPR Gaussian Process Regression
ANN Artificial Neural Networks
MLP Multilayer Perceptron
CNN Convolutional Neural Networks
BPNN Backpropagation Neural Networks
ResNet Residual Neural Network
RegNet Regularized Neural Network
EfficientNet Efficient Neural Network
EfficientNetV2 Efficient Neural Network Version 2
RF Random Forest
DNN Deep Neural Networks
LSTM Long Short-Term Memory
Lasso L1 Regularized Linear Regression
K-NN K-Nearest Neighbors
ELM Extreme Learning Machine
NNA Neural Network Architecture (unspecified)
SMLR Stepwise Multiple Linear Regression
QRF Quadratic Random Forest

2.3.2 Analysis and synthesis of information to answer research
questions

The results corresponding to the 4 research questions, based on the previously mentioned
tables, are presented below.

Q1- What are the most commonly used machine learning algorithms for
nutrient and crop yield estimation from spectral images and IoT sensors?

Most used algorithms and explanatory variables

The most commonly used machine learning algorithms for estimating crop and nutrient
yields from spectral imagery and IoT sensors comprise several advanced techniques. To
address this question, a literature review was conducted on 37 articles, the results of
which were compiled in Table A.1 and Table A.2. In these, the algorithms used for crop
nitrogen estimation using spectral imagery and sensors are detailed.

The analysis of the articles reveals that the most commonly used algorithms for crop
nitrogen estimation are Random Forest (RF) and Support Vector Regression (SVR),
with 19 and 5 occurrences respectively (Fan et al., 2022a; Liang et al., 2023; Wang
et al., 2023b; Zhou et al., 2023). Other common algorithms include Partial Least Squares
Regression (PLSR) and combinations such as random forest and gradient boost machines
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(RF, GBM) (Bossung et al., 2022; Fan et al., 2022a; Jiang et al., 2023; Li et al., 2023b;
Liu et al., 2023a; Shu et al., 2022; Singha et al., 2023; Zhou et al., 2023). Other prominent
algorithms are Artificial Neural Networks (ANN), which employ various algorithms such
as Decision Neural Network (DNN), Long Short-Term Memory (LSTM), multi-layer
perceptron (MLP) and, evidencing a diversity in the approaches used for this task in
agricultural research (Jiang et al., 2023; Putra et al., 2022; Ruan et al., 2023; Sahoo
et al., 2023). The Machine Learning Algorithms used in the reviewed articles to estimate
nitrogen from remote sensing are described in Figure. 2.2. The Table. 2.1 shows the
machine learning algorithms used in the first column the acronym and in the second
column the definition of the algorithm.

Figure 2.2: Machine Learning articles used in the analyzed articles.

The estimation of nitrogen in soil and crops is carried out using a set of explanatory
variables that include soil properties, the characteristics of the crop itself, information
obtained from remote sensors and, in some cases, additional data such as meteorology
and genetics. The choice of the most appropriate variables depends on the specific objec-
tive of the study and the estimation technique used. Based on the types of explanatory
variables used for crop nitrogen estimation, the following conclusions can be drawn from
the articles reviewed:

Soil variables: many studies use variables related to soil properties, such as pH,
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electrical conductivity (EC), organic matter (OC) content, nitrogen (N), phosphorus (P),
zinc (Zn), and soil particle composition (clay, sand, silt). These soil variables provide
important information on plant nutrient availability and growing conditions (Liu et al.,
2023a; Ruan et al., 2023; Singha et al., 2023; Venkatesh and Naik, 2024; Wang et al.,
2023b).

Plant variables: The vast majority of studies relate variables such as plant biomass,
leaf chlorophyll content, leaf area index (LAI) and nitrogen concentration in leaves (LNC)
and stems (SNC), which provide information on the health status and photosynthetic
capacity of the plant. These variables are related to plant health and nutritional status,
which can influence nitrogen uptake and utilization (Bossung et al., 2022; Fu et al.,
2022; Liu et al., 2023b; Lu et al., 2022a; Patel et al., 2024; Patil et al., 2023; Wang et al.,
2023b; Zhou et al., 2023).

Phenotypic and morphological variables: Some studies incorporate phenotypic
and morphological variables of plants, such as leaf and stem shape, as well as leaf area
and chlorophyll density. These variables can provide information on plant development
and growth, which may be related to their ability to absorb and utilize nitrogen (Fan
et al., 2022b).

Meteorological variables: It is noted that some studies include meteorological
variables, such as temperature, precipitation and solar radiation data. These variables
can influence the availability and uptake of nutrients by plants, and are therefore im-
portant for the estimation of nitrogen content (Li et al., 2023a; Singha et al., 2023).

Table 2.2 details the explanatory variables used by machine learning models to predict
nitrogen content in crops according to the articles analyzed in this review.

Analysis with respect to R2 and RMSE performance metrics

The analysis of performance metrics in models for crop nutrient estimation, especially
in the application of spectral imaging for nitrogen prediction, reveals a diversity of
approaches and results. A wide range of coefficients of determination R2 and root mean
square errors (RMSE) is observed, which evidences the variability in the accuracy and
predictive ability of the models evaluated. To compare their performance, an analysis
is performed using the R2, considering that the value of the RMSE varies significantly
according to the type of crop.

In this context, models based on machine learning (ML) techniques such as Random
Forests (RF), Support Vector Machines (SVM), Artificial Neural Networks (ANN) and
Multilayer Neural Networks (MLP) have shown outstanding performance, reaching (R2)
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Table 2.2: Explanatory variables used in machine learning models
Explanatory variables used in ML models

Soil properties
pH
Electrical conductivity (EC)
Organic matter (OC)
Nitrogen (N)
Phosphorus (P)
Zinc (Zn)
Texture (clay, sand, silt)

Plant variables
Leaf chlorophyll content (LCC)
Leaf area index (LAI)
Leaf nitrogen concentration (LNC)
Stem nitrogen content (Zn)
Stem nitrogen content (SNC)

Meteorological variables
Temperature
Precipitation
Solar radiation
Wind speed and direction

Remote sensing data
Vegetation indices
Canopy images

Other data
Crop growth stage
Weather data
Genetic information
Management practices

values between 0.64 and 0.99. However, the vast majority of related studies converge
to a mean R2 of 0.75. This consistent trend is attributed to the intrinsic complexity of
agroecological and environmental systems, where multiple variables interact in different
compartments (Dong et al., 2022; Fan et al., 2022a; Jiang et al., 2023; Wang et al.,
2023b). Figure 2.3 shows the results of the analysis of the R2 performance metric.

These models have the ability to capture nonlinear and complex relationships be-
tween spectral variables and nutrient levels in crops. Among them, RFs stand out for
their remarkable ability to estimate the nutritional status of nitrogen in crops, with
coefficients of determination ranging from 0.63 to 0.93 (Jiang et al., 2022, 2023; Li et al.,
2022b; Lu et al., 2022a; Ruan et al., 2023; Wang et al., 2023b). However, it has been
observed that in advanced phenological stages, problems of saturation of spectral vari-
ables can arise, affecting the accuracy of the estimates. Despite this complexity, the
significant advance in the performance of ML models for nitrogen prediction represents
an important step towards more accurate and sustainable agriculture. The ability of
these models to analyze and process large data sets efficiently allows researchers and
producers to optimize nitrogen fertilizer application, improve crop yields and manage
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Figure 2.3: Frequency of R2 values found in the reviewed articles.

water resources efficiently, since nitrogen is a crucial element in the water cycle, so its
accurate prediction allows better irrigation management and conservation of this vital
resource (Peng et al., 2022; Tian et al., 2022; Zhang et al., 2023).

Q2- How do IoT technologies and (UAVs) integrate with machine learning
algorithms to create comprehensive fertilizer management systems especially
Nitrogen?

The integration of IoT technologies and (UAVs) with machine learning algorithms
enables the creation of highly efficient and accurate integrated agricultural management
systems. UAVs equipped with remote sensors can collect detailed data on crop condition
and environmental conditions in real time, providing a complete and up-to-date overview
of the crop (Shu et al., 2022). This data, along with information collected by IoT
devices such as soil sensors and weather stations, can be processed using machine learning
algorithms such as neural networks and support vector machines for advanced analysis
and accurate predictions (Patil et al., 2023).

In order to answer question 2, a comprehensive analysis of the literature related to
the application of spectral imagery and IoT systems in agriculture was carried out. The
analysis focused on two main aspects: crop yield estimation and fertilizer management,
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with special emphasis on nitrogen. The information gathered was synthesized in Ta-
bles A.3 and A.4, which detail studies employing spectral imagery for yield estimation
and fertilizer requirement. As for IoT systems in agriculture, several approaches were
identified, described in Table A.6. In the area of multispectral imagery for fertilizer and
crop yield estimation, the extensive use of vegetation indices (VI) derived from mul-
tispectral imagery obtained using drones or satellites has been observed. Among the
most commonly employed indices are the (NDVI), enhanced vegetation index (EVI),
and near-infrared vegetation reflectance (NIR). The vegetation indices mentioned above
are described in Table. A.5 with their respective formulae.

Types of sensors used

In this research, several studies were reviewed that employed sensors of different nature
to estimate the foliar and soil nitrogen content in crops. In order to facilitate their
understanding, they were classified into two main categories: contact sensors, which
require direct access to the crop for data acquisition, and remote sensors, which do not
require physical contact with the plant and use nondestructive techniques to capture
information.

Remote sensors
Among the sensors employed, those that capture multispectral or hyperspectral im-

ages, both from satellites (such as Sentinel-2) and from (UAVs), stood out. These sensors
provide detailed spectral information of the soil and vegetation canopy in various bands
of the electromagnetic spectrum, facilitating the calculation of vegetation indices re-
lated to nitrogen content. Among the most widely used are the MicaSense sensors,
which combine MicaSense technology with UAV platforms (e.g. MicaSense RedEdge-M,
MicaSense Altum)(Li et al., 2023a; Liu et al., 2023a; Mathi et al., 2023; Mouazen et al.,
2023; Narmilan et al., 2022; Nikos Tsoulias, 2023; PEI et al., 2023; Pereira et al., 2022;
Salazar-Reque et al., 2023; Shu et al., 2022; Su et al., 2023; Wang et al., 2023c; Zhu
et al., 2022). UAVs equipped with RGB cameras, multispectral or hyperspectral sensors
represent a valuable tool for nitrogen estimation at local scales, as they allow obtaining
high resolution aerial images with great spatial detail (Kou et al., 2022; Lukáš et al.,
2023; Song et al., 2022).

Contact sensors
GreenSeeker and Crop Circle ACS-430: These sensors attach to tractors or other

agricultural equipment and measure canopy reflectance across the field. SPAD-502: This
portable meter measures light transmittance in the leaf to estimate chlorophyll content,
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indirectly related to nitrogen (Dong et al., 2022; Farid et al., 2022; Wang et al., 2023e;
Zsebő et al., 2024). Leaf fluorescence sensor Dualex: Measures leaf fluorescence, another
indicator of nitrogen status in the plant (Dong et al., 2022; Song et al., 2022). ASD
HandHeld-2 Spectroradiometer: This portable device allows high-resolution spectral
measurements to be obtained in the field (Patel et al., 2023; Wang et al., 2023b; Yin
et al., 2023). Figure. 3.4 details the types of sensors used to acquire data on foliar
nitrogen content in crops.

Figure 2.4: Type of sensors used to acquire data on foliar nitrogen content.

2.3.3 Vegetation Indices

The use of vegetation indices (VI) derived from multispectral images, either taken with
drones or from satellites, is fundamental for fertilizer and crop yield estimation. Among
the most commonly used is the (NDVI), which assesses vegetation health and density
(Chen et al., 2022; Li et al., 2022c; Wang et al., 2023e; Zhou et al., 2023). Another com-
mon index is the Enhanced Vegetation Index (EVI), which corrects for atmospheric and
soil distortions of the NDVI. In addition, the Near Infrared Vegetation Reflectance (NIR)
provides valuable information on plant health and chlorophyll content. These indices,
along with others derived from multispectral imagery, allow researchers and farmers
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to more effectively monitor and manage crops, optimizing fertilizer use and improving
yields (Chen et al., 2022). In addition to the aforementioned indices, specific others can
be found in related articles, such as Modified Soil Vegetation Index (MSAVI), Modi-
fied Enhanced Chlorophyll Reflectance Index (MCARI), Leaf Area Index (LAI), among
others, which offer a variety of insights into crop health and development, improving
the assessment of fertilizer needs and yield potential(Kayet et al., 2023; Liu et al., 2024;
Salazar-Reque et al., 2023; Thinley et al., 2024; Wang et al., 2023f). The above men-
tioned vegetation indices with their respective formulae are listed in Appendix A.5.

IoT and sensor applications in crops

Agriculture 4.0 represents a cutting-edge technological innovation aimed at optimiz-
ing agricultural production and management at all stages. This revolution seeks to
improve control, monitoring and efficiency through modern, scalable and automated so-
lutions. Key enablers include the (IoT), big data analytics, AI (AI), cloud computing,
remote sensing, (UAVs) and the fifth-generation (5G) network, which enable automated
predictive services and smarter, more reliable agricultural decisions (Morchid et al.,
2024b). The (IoT) and (UAVs) are revolutionizing agriculture by enabling comprehen-
sive monitoring of soil conditions, including moisture, temperature and pest presence,
through interconnected sensor networks (Majumdar et al., 2023; Morchid et al., 2024a,b;
Prasanna Lakshmi et al., 2023). This technology enables accurate and efficient manage-
ment of resources, allowing a timely response to any problems that may arise. UAVs,
meanwhile, offer the ability to survey large areas of crops quickly and in detail, facilitat-
ing the timely application of pesticides and detailed monitoring of crop growth (Hundal
et al., 2023; Javaid, 2023; Kumar Kasera et al., 2024; Kumar Singh and Sobti, 2022;
Prasanna Lakshmi et al., 2023; Saba et al., 2023). Table. 2.3 and Table. A.6, describes
the technologies and relevant aspects of the articles that include sensor and IoT infor-
mation to estimate nutrients and water in crops. From the information analyzed, it can
be concluded that there is a wide variety of devices and systems used to monitor and
collect data in the agricultural field.

Wireless sensor networks (WSNs) play a key role in the collection and management
of data crucial for informed decision making. The WSN architectures proposed in the
different papers are based on heterogeneous sensor networks that collect a wide range
of parameters, including light irradiance, soil characteristics such as temperature, pH,
salinity, moisture and nutrients, as well as foliar variables such as leaf wetness and leaf
thickness, and atmospheric aspects such as humidity, carbon dioxide content and air
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temperature. The quality of data acquisition, along with the efficient processing and
transfer of data through the WSN infrastructure, are critical to ensure the efficiency of
predictive models. Some of these architectures found include communication modules
such as DHT22 and water level and humidity sensors, connected to embedded systems
such as ESP32 and using the ThingSpeak cloud (Irwanto et al., 2024; Morchid et al.,
2024a; Phasinam et al., 2022). In addition, microcontrollers, positioning modules such
as the Beidou/GPS ATK-1218-BD, and wireless sensor networks such as PotatoNet are
used. Common controllers such as Raspberry Pi 3 (RPI3) are used to control various
sensors, and specific technologies such as LoRa and LoRaWAN are used for long distance
wireless communication (Hasan et al., 2022; Karaman et al., 2023; Ting and Chan, 2024).

Table 2.3: IoT technologies and supporting sensors for nutrient and crop yield estima-
tion.

IoT technologies and supporting sensors for nutri-
ent and crop yield estimation

Sensors for Environmental and Crop Monitoring:
Main sensors: humidity, temperature, pH, NPK (nitrogen,
phosphorus, potassium).
Additional sensors: Light (visible and infrared), RGB sen-
sors.
Function: Collection of data on the crop environment (hu-
midity, temperature, illumination) and its condition (nu-
trients in the soil).

Microcontrollers and Development Boards:
Examples: Raspberry Pi 3, Arduino, NodeMCU.
Function: Process information from sensors and send it
to other devices or the cloud.

Wireless Sensor Networks (WSN):
High-Level WSN Architecture
Heterogeneous Environmental Sensors
Protocols and Topologies
Function: connect sensors to each other and to other de-
vices to transmit data wirelessly.

Communication Technologies:
LoRaWAN, LoRa and NB-IoT: Long-range, low-power
communication protocols for wireless sensor networks.
WiFi: For local communication between devices.
Function: Enable data transmission from sensors to the
cloud or mobile devices.

Remote Sensors:
Mentioned together with: Technologies such as LoRa and
NB-IoT, suggesting their use to collect data remotely.
Function: Capture crop information from satellites or
other aerial devices (complementing sensors in the field).

In terms of specific applications, according to the review it was found that these
technologies have a wide range of uses in modern agriculture. They are applied in smart
irrigation systems to optimize water use, as well as in the detection of diseases in crops



26 Systematic Literature Review and Key Factor Analysis

such as potatoes, fruits and vegetables, which contributes to the effective management
of pests and diseases. In addition, they are used to monitor water quality and create
optimal conditions in greenhouses and mushroom crops. They are also used to assess and
monitor ecological factors and environmental conditions, helping to improve efficiency
and sustainability in agricultural production (Jabbar et al., 2024; Kumar Kasera et al.,
2024; Prakash et al., 2023).

Q3 - On what types of crops have machine learning techniques been im-
plemented for nutrient and yield estimation, and what evaluation parameters
have been used to measure their effectiveness?

Spectral imaging techniques combined with sensor data have become a valuable tool
for nitrogen (N) estimation in various crops. This technology offers a non-invasive and
efficient alternative to monitor crop nutritional status and optimize N management,
which is crucial for sustainable agricultural production. When analyzing the results of
studies on non-invasive techniques for estimating nitrogen in different types of crops
using spectral imaging and IoT sensors, interesting trends are observed that reveal the
effectiveness of these methodologies. These trends are reflected in Figure. 2.5, show-
ing how these technologies are being successfully applied in various crops to estimate
nitrogen content effectively and non-invasively.

-Cereals (rice, maize, winter wheat): Cereals represent the category most stud-
ied, with a total of 16 occurrences. This reflects the importance of these crops as a food
source and their high (N) demand.

-Industrial crops (sugar cane, cotton, sugar beet): These crops also stand
out for their frequency, with 5 occurrences. Accurate estimation of N in these crops is
crucial to optimize yield and quality of the final product.

-Other crops: A variety of other less frequent crops are observed, including grasses,
vegetables, fruit trees and root vegetables. This indicates that spectral imaging and
sensor techniques are being explored for a wide range of crops.

On the other hand, analyzing the variables used in the machine learning models to
estimate nitrogen, the following can be stated:

- Emphasis on soil properties: frequent use is observed of variables related to
soil properties, such as pH, electrical conductivity (EC), organic matter (OC), clay, sand
and silt content. These variables provide information on the soil’s capacity to retain and
release nitrogen.

- Remote sensing data: Multispectral images and derived vegetation indices
(NDVI, RVI, NDRE, RERVI) are used to estimate plant nitrogen content from foliage
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Figure 2.5: Types of crops in which nitrogen estimation techniques from images, sensors
and Machine Learning have been implemented.

reflectance. - Plant variables: variables directly related to the plant are used, such as
leaf chlorophyll content, leaf area index (LAI) and leaf nitrogen concentration (LNC).

- Other relevant data: Additional variables such as crop growth stage, meteo-
rological data, genetic information and management practices (nitrogen rate applied,
irrigation, previous crop) are included.

Q4 - What is the current scientific evidence on the accuracy and reliability
of machine learning techniques for crop nitrogen estimation from machine
learning, spectral imaging and IoT systems and what are the challenges and
future prospects?

Accuracy: Several studies have demonstrated the high accuracy of machine learning
techniques for estimating nitrogen (N) content in crops. As detailed in Figure 2.3.
the mean R2 of all reviewed articles is found to be 0.75, this value is very interesting
considering the complexity of agricultural and environmental systems.

Reliability: The reliability of machine learning techniques depends on several fac-
tors, such as the quality of the training data, the selection of algorithms and the param-
eters used.

Machine learning and crops: Machine learning algorithms can process and ana-
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lyze large datasets of spectral images and IoT sensor data to extract relevant informa-
tion about crop N status. Spectral imaging: Spectral imaging captures the reflectance of
light at different wavelengths, providing information on chemical composition and plant
health. IoT systems: IoT systems collect real-time data on environmental variables such
as temperature, humidity and solar radiation, which can be used by machine learning
models to improve the accuracy of N estimates.

Challenges and future prospects

There are some challenges and difficulties encountered in the articles analyzed. First, the
lack of inclusion of the impact of environmental factors in many studies is highlighted,
which may affect the generalization of the models and make it difficult to accurately
estimate certain parameters. In addition, an unclear relationship between chlorophyll
density (CCD) and characteristics at different growth stages is noted, as well as the diffi-
culty in estimating CCD due to the complexity of canopy structure and planting density.
The limitation in the number of observations for training and testing is also highlighted
as a factor that may affect the stability and accuracy of the models. Other challenges
include difficulty in accurately converting DN values to reflectance, loss of information
by not fully utilizing multiple view images, and difficulty in extracting textural features
from images with multiple views. Lack of consideration of additional factors, such as soil
properties and integration of more factors for crop growth and nitrogen status, is also
identified as a major limitation. In addition, specific technical challenges are mentioned,
such as the difficulty in differentiating objects with similar spectral characteristics using
sensors such as HSI and LiDAR, and the need for accurate sensor calibration to ensure
the reliability of field-scale remote sensing applications. The importance of addressing
these limitations to improve the accuracy and applicability of machine learning models
in precision agriculture is highlighted. There are other challenges and limitations such
as data availability and model interpretability. The "black box" of machine learning
models can make it difficult to understand their predictions and limit their adoption by
farmers. Another challenge encountered is the lack of validation under real conditions.
More research is needed to validate the accuracy and reliability of machine learning
techniques in different growing conditions and on a large scale.
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2.4 Discussion

Optical remote sensing of nitrogen (N) status in plants is based on the nondestructive
analysis of the spectral reflectance of the plant canopy in the visible and near infrared
(NIR; 400-900 nm) wavelength range. This technique is carried out directly in the field,
which significantly reduces the number of samples required, thus optimizing the time
and costs associated with sample collection, preparation and analysis in the labora-
tory. Additionally, the estimation of N content is performed at the level of the entire
crop, thanks to the ability of multispectral images to generate georeferenced orthopho-
tomosaics of the entire cultivated area. This feature represents a great advantage over
traditional methods based on point field samples.

Regarding research question P1- What are the most widely used machine learning
algorithms for crop nutrient estimation it can be analyzed that accurate estimation of
nitrogen (N) content and crop yield is crucial for sustainable agriculture. Traditional lab-
oratory analysis techniques are costly, time-consuming and destructive. In this context,
machine learning (ML) coupled with spectral imaging and IoT sensors offer a promising
alternative for non-invasive and efficient estimation of nutrients and crop yields.

The machine learning algorithms evaluated include Random Forest (RF), Artificial
Neural Networks (ANN), Support Vector Machines (SVM) and Linear Regression (LR)
Models. The RF stands out for its robustness and versatility in estimating nutrients
and crop yields, demonstrating high precision in predicting the nitrogen nutrition index
(NNI) and grain yield in corn. ANNs, especially convolutional neural networks (CNN)
and recurrent neural networks (RNN), are preferred for their ability to identify complex
patterns in multispectral and temporal data, as observed in the CNN-based SSVT model
for estimating nitrogen status in wheat. SVMs are noted for their efficiency in classifi-
cation and regression, being effective even in small or noisy data sets, as evidenced by
recognition of the irrigation level in wheat. Finally, LR models, although simple and
transparent, show good accuracy in estimating variables such as the nitrogen content of
the leaf in rice, which makes them useful as reference models or for the interpretation
of more complex models.

Regarding the effectiveness of models in predicting the foliar nitrogen content in
crops, it is observed that metrics, such as the coefficient of determination R2, in the vast
majority of reviewed articles oscillate around 0.75, as detailed in Figure 2.3. This consis-
tent trend is attributed to the inherent complexity of agroecological and environmental
systems, which involve an interaction of multiple variables with distinct behaviors.
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2.4.1 Factors influencing the choice of algorithm.

The choice of algorithm depends on several factors, such as the size and quality of
the data set, the complexity of the relationship between the variables, and the specific
objective of the estimation. Moreover, it is important to evaluate different algorithms
and select the one that is best suited to the problem at hand.

With respect to the type of crop, estimation of N using spectral imaging and sensor
techniques has received considerable attention in various types of crops. Cereals and
industrial crops are the most studied, reflecting their economic importance and the
challenges associated with N management. There is growing interest in applying these
techniques to a wider range of crops, including grasses, vegetables, fruit trees, and root
vegetables.

Regarding Question 2 concerning the integration of IoT technologies, (UAVs) and
machine learning algorithms for nitrogen management, it is important to note that the
integration of spectral image data and IoT sensors with machine learning algorithms
will further improve the accuracy and robustness of estimates.

In addition, the importance of the interpretability of machine learning models is
highlighted to better understand the relationships between variables and facilitate agro-
nomic decision making. Although the methods described share a common structure of
image acquisition, processing and classification, the selection of specific algorithms must
be tailored to the individual characteristics of each crop and application.

The reviewed studies highlight the combined use of IoT technologies and sensor
networks in the context of precision agriculture. The integration of sensors for envi-
ronmental and crop monitoring, in conjunction with microcontrollers, wireless networks,
and machine learning models, has been shown to significantly improve yields, optimizing
efficiency in farm management.



Chapter 3

Theoretical Framework

This chapter describes the theoretical framework that supports the process of estimating
crop nutrient from spectral images. The paper discusses the most relevant aspects related
to sensors and how they are used to estimate nutrients, as well as the most relevant
characteristics of the pineapple crop.

3.1 Ecophysiology of Pineapple Cultivation

Pineapple (Ananas comosus) is one of the most important tropical fruits worldwide,
known both for its commercial value and its nutritional benefits (Martins et al., 2020).
Originally from South America, pineapple has spread to various tropical and subtropical
regions, where it is cultivated mainly for its flavor, vitamin and mineral content, and its
use in various food and cosmetic industries. Its cultivation has grown significantly in
recent decades due to global demand, which has led to the implementation of precision
agriculture techniques to improve its yield and quality. However, the success of this
crop depends largely on maintaining optimal growing conditions, which vary according
to specific climatic and edaphic factors (Liu et al., 2023c).

Pineapple is a tropical, perennial, herbaceous plant belonging to the monocotyledons
(Liu et al., 2023c). Optimal conditions for its cultivation require a precise combination
of environmental factors. The ideal altitude ranges from 300 to 900 meters above sea
level, and the temperature should be maintained between 23 and 30 ℃, with an optimum
of 27 ℃ being optimal. If the temperature drops below 23 ℃, flowering is accelerated,
resulting in smaller, acidic and perishable fruits. Conversely, temperatures above 30
℃ can burn the epidermis and underlying tissues, favoring the appearance of diseases
(Martins et al., 2020).



32 Theoretical Framework

Annual precipitation should be between 1,500 and 3,500 mm. When water is insuffi-
cient, with rainfall less than 1,000 mm, plant growth is affected and fruit size decreases;
excess water, on the other hand, favors root diseases. Soil water availability should
average between 1.3 and 5.0 mm per day.

Optimum luminosity is 1,500 hours of light per year. Excessive exposure will result
in scorching of the fruit surface, while low light reduces sugar content and increases fruit
acidity. Soil pH also plays a crucial role: it should be maintained between 5.5 and 6.2. A
high pH causes iron chlorosis (iron deficiency), while a pH below 5.5 affects root growth
and decreases the availability of key nutrients such as potassium and calcium (Martins
et al., 2020).

Nutritional requirements, nutritional demands, and mineral or organic supplemen-
tation with macro and micronutrients is required during its growth cycle to obtain high
productivity and fruit quality. The nutrients considered essential for the crop are N,
P, K, Ca, Mg, S, Fe, Mn, Zn, Cu, B and Mo. Nitrogen is one of the macronutrients
most demanded by pineapple and the one most related to fruit weight and productivity
(Martins et al., 2020). Diseases, mainly Phytophthora, which causes root rot and is
favored by poor drainage, waterlogging, wounds and pH > 6 (S. R et al., 2022; Wali,
2019). However, in order to reach harvest maturity, which is usually achieved through
floral induction, induced plants should have the same phenotypic characteristics in terms
of size, weight, and health (Mohsin et al., 2020).

Figure. 3.1, depicts a crop system, visualizing the interactions between soil and plant
in relation to the influences of several explanatory variables, such as environment, water,
soil properties and crop management. This last aspect refers to the decisions taken to
ensure the adequate development of planting and harvesting.

3.2 Nitrogen estimation in pineapple crops

Nitrogen (N) stands out as the most prevalent nutrient in fruit trees, significantly in-
fluencing the quality and development of the stem, root and fruit (Martins et al., 2020;
Mohsin et al., 2020). Pineapple is considered a plant that demands nutrients, requiring
both mineral and organic supplementation with macronutrients and micronutrients to
ensure high productivity and fruit quality. Among the essential nutrients, Nitrogen (N),
Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium (Mg), Sulfur (S), Iron (Fe),
Manganese (Mn), Zinc (Zn), Copper (Cu), Boron (B) and Molybdenum (Mo) stand out.
Nitrogen is one of the most demanded macronutrients for pineapple and is closely related
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Figure 3.1: Interactions between soil-plant components, crop management, water, re-
sponse variable (N-Nitrogen) and explanatory variables. Source: Own elaboration.

to the weight and productivity of the fruit (Martins et al., 2020; Wali, 2019). For opti-
mum yields, nitrogen (N) uptake at the end of the crop cycle has been observed to range
from 452 to 764 kg/ha, depending on the variety and growing conditions. N deficiency in
cash crops is usually associated with factors such as soil quality, inadequate management
practices and adverse weather conditions (Sanyal and Sarkar, 2021). Pineapple cultiva-
tion in sandy soils is common, but these soils are often poor in nutrients and organic
matter, requiring careful nutritional management. Organic or green fertilization is a
common strategy to increase N availability under these conditions, which contributes to
larger and higher quality fruit. N deficiency is manifested in plants by symptoms such
as generalized chlorosis, especially in older leaves, due to the mobility of N in the plant
(Mohsin et al., 2020).

The omission of N in the nutrient solution can cause severe symptoms of deficiency,
such as yellowing of the leaves and reduced fruit size and quality, as can be seen in Figure.
3.2. It is crucial to maintain an adequate N supply to ensure vigorous plant growth and
high-quality fruit production. Nitrogen deficiency leads to a reduction in amino acid
and thus protein synthesis, resulting in reduced plant growth and accumulation of non-
nitrogen metabolites. This, in turn, favors a greater availability of photoassimilates for
the synthesis of compounds of secondary metabolism, such as ascorbic acid and other
organic acids (Martins et al., 2020). However, it is important to remember that the visual
diagnosis of symptoms of deficiency serves only as an initial guide to identify potential
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nutritional problems, as several nutrients, such as iron and magnesium, also influence
leaf color formation because they are responsible for chlorophyll synthesis. Therefore,
an accurate interpretation of leaf color as an indicator of nitrogen deficiency depends on
consideration of other nutritional factors that may also affect leaf appearance (Martins
et al., 2020).

Figure 3.2: Symptoms of nitrogen deficiency in pineapple. (A) Plants without nitrogen
deficiency. (B, C y D) Nitrogen-deficient plants. Source: image taken from (Martins
et al., 2020)

3.3 Techniques to diagnose the nutrient status of
pineapple crop

Accurate estimation of nitrogen (N) in crops is essential to optimize productivity, reduce
costs, and minimize environmental impact. There are several methods for (N) estima-
tion, which fall into two categories: destructive and nondestructive (Liao et al., 2023).
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Destructive methods, such as soil and plant tissue analysis, are accurate but require
time and effort to process. In addition, laboratories are often not located near crops,
which means higher costs and time to obtain results (Liang et al., 2022). Nondestructive
methods are becoming increasingly popular due to their speed, ease of use, and lower
cost.

3.3.1 Destructive methods for nitrogen estimation in pineapple
crops

Techniques based on soil monitoring

• Soil analysis: this is the most common technique and consists of extracting
a representative sample of the crop soil to analyze its nutrient content. This
technique allows determining the levels of macronutrients (N, P, K, Ca, Mg, S)
and micronutrients (Fe, Mn, Zn, Cu, B, Mo) in the soil (Martins et al., 2020).
Proper nitrogen fertilization is based on the measurement of mineralized nitrogen,
the total amount of nitrate and ammonium, in the soil. Soil sampling with auger
and subsequent chemical analysis in a laboratory is state of the art. However, this
process is time-consuming and often delayed by the logistics involved.

• Soil sensors: These devices allow real-time or high-frequency measurement of
various soil parameters, such as moisture, electrical conductivity, pH and the con-
centration of some nutrients (Haddon et al., 2023; Vikuk et al., 2024).

Techniques based on plant monitoring

• Foliar analysis: this technique involves the extraction of a representative sample
of crop leaves to analyze their nutrient content. it is a chemical analysis of leaves
and other plant organs used to diagnose the nutrient status of fruit crops. Plant
nutrient levels can vary according to growth stage as well as from one part of
the plant to another. Samples are usually taken from the fully developed upper
leaf before the reproductive stage or mid-season. This method samples the upper
leaves, washes them and then dries them to be crushed and analyzed through
chemical processes (Llanderal et al., 2020).

• Sap analysis: This technique involves extracting a sample of plant sap to analyze
its nutrient content. This technique is less common than foliar analysis, but can be
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useful for detecting acute nutrient deficiencies. This technique has been used since
1920 and is carried out on fresh material, giving a semi-quantitative assessment
of extractable nutrients that are present in soluble inorganic forms in the plant
just at the time of sampling (Llanderal et al., 2020). Generally this method selects
samples of fully developed young leaves. Petiole sap extraction is usually performed
using a hydraulic press, according to the methodology described by (Esteves et al.,
2021).

Integrated diagnosis

The combination of different diagnostic techniques, such as soil analysis, foliar analysis
and sensor monitoring, can provide a more complete picture of the nutritional status
of the pineapple crop and allow more accurate fertilization decisions to be made. It is
important to note that the choice of the most appropriate diagnostic technique(s) will
depend on a number of factors, such as crop age, soil conditions, fertilization history
and plant symptoms (Esteves et al., 2021).

3.3.2 Non-destructive methods

Optical sensors

Optical sensors, especially those based on canopy reflectance, represent one of the most
promising non-destructive techniques to monitor crop nutritional status. In this process,
plant canopies with adequate levels of nitrogen and chlorophyll absorb photosynthetically
active radiation (PAR), comprising red and blue light, while reflecting green and infrared
light, generating a characteristic pattern. These methods have been widely applied in
various fruit crops, such as bananas, avocados, blackberries, blueberries, cherries, and
tangerines, using spectral imaging, such as near-infrared (NIR) and mid-infrared (MIR).

The estimation of nutrients from remote sensing is based on the spectral reflectance
properties of plants, which vary according to the absorption, reflection, and transmission
of electromagnetic waves of different wavelengths. These spectral characteristics depend
not only on the morphological structure of the plant, but also on its growth environment
and development conditions (Wang et al., 2023d). Factors such as soil moisture, nutrient
content, as well as the presence of pests and diseases, affect the growth and biochemical
composition of the plant, which is reflected in different spectral reflectance patterns
related to chlorophyll, nutrient, and water content (Zhang et al., 2023). The Figure 3.3
illustrates the relationship between color and vegetative state of the crop as a function of
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Figure 3.3: Relationship between color and vegetative state of the crop as a function of
spectral bands. Source: Own elaboration.

the spectral bands used. For example, if the NIR level is = 50% and a RED level = 8%
on a leaf, one can calculate whether this leaf is healthy, stressed, or dead by calculating
the NDVI as follows:

NDV I = ( NIR - RED)
( NIR + RED) = ( 50 - 8)

( 50 + 8) = 0.72 = Healthy leaf

On the other hand, if you have an NIR level = 40% and a RED level = 30%

NDV I = ( NIR - RED)
( NIR + RED) = ( 40 - 30)

( 40 + 30) = 0.14 = Stressed leaf

Spectroscopy for crop analysis

Spectroscopy has become a key tool for crop analysis within the field of precision agricul-
ture, allowing detailed and non-invasive monitoring of plant health, water stress, nutrient
content and other parameters essential for agricultural management (Cozzolino et al.,
2020). Vibrational spectroscopy methods, both near-infrared (NIR) and mid-infrared
(MIR), are widely used to measure nutrients in crops and plants. These methods mea-
sure the vibrations of chemical bonds present in samples, which occur at specific fre-
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quencies related to the mass of atoms and molecular structure. Molecules absorb these
vibrations in the infrared (IR) region, where the bonds can stretch or compress, changing
the distance between atoms (Cozzolino et al., 2020).

Figure 3.4: Applications of optical sensors (vibrational spectroscopy) in fruit and plant
analysis. Source: Own elaboration.

Depending on the capacity of the spectra handled by the optical sensor, it is possible
to obtain a large amount of crop data, and for this reason, multivariate techniques are
used to extract significant information that relates the different parameters (Li et al.,
2019). For example, correlations between leaf nitrogen and leaf chlorophyll content
(Cab) have been empirically demonstrated, which led to the (Cab) content being used
as an approximation of the N content of the crop (Berger et al., 2020a). The Figure
3.4 describes applications of optical sensors (vibrational spectroscopy) in the analysis of
fruits and plants.

3.4 Vegetation Index used in this doctoral thesis

The Table 3.1, shows the bands of the MicaSense RedEdge M multispectral camera used
in this Ph.D. thesis with their respective wavelengths in (mm). These bands were used
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to calculate the vegetation indices mentioned below.

Table 3.1: MicaSense RedEdge M multispectral camera band and wavelength informa-
tion in (mm)

Spectral Band Band Wavelength (nm)
Blue 1 475
Green 2 560
Red 3 668
Red Edge 4 717
NIR 5 840

3.4.1 NDVI - Normalized Difference Vegetation Index

The most common index in agriculture, characterizes the density of vegetation and
allows farmers to assess germination, growth, the presence of weeds or diseases, as well
as predict the productivity of the fields. Index indicators are generated through satellite
images of green mass, which absorbs electromagnetic waves in the visible red range and
reflects them in the near-infrared range. The red region of the spectrum (0.62 - 0.75 µm)
accounts for the maximum absorption of solar radiation by chlorophyll, and the near
infrared zone (0.75 - 1.3 µm) has the maximum energy reflection by the leaf cell structure.
High photosynthetic activity leads to lower values of the reflection coefficients in the red
region of the spectrum and large values in the near-infrared region of the spectrum.
The ratio of these indicators allows for clear separation of vegetation from other natural
objects (Amarasingam et al., 2022; Chen et al., 2023; Tsoulias et al., 2023; Zhu et al.,
2023).

NDV I = NIR − R

NIR + R

3.4.2 NDRE - Normalized Difference Red Edge Index

This index is used in remote sensing to measure the chlorophyll content in plants. It is
calculated using a combination of a near-infra-red (NIR) band and the RedEdge range
between visible Red and NIR (Amarasingam et al., 2022).

NDRE = NIR − RE

NIR + RE
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3.4.3 GNDVI - Green Normalized Difference Vegetation Index

This index is used to estimate photosynthetic activity and determine the water and
nitrogen consumption of vegetation cover (Amarasingam et al., 2022).

GNDV I = NIR − Green

NIR + Green

3.4.4 EVI - Enhanced Vegetation Index

An optimized (VI) invented by Liu and Huete to improve the vegetation signal with bet-
ter sensitivity in areas of high biomass. Corrects NDVI results for atmospheric changes
as well as soil background signals in dense canopy zones (Amarasingam et al., 2022;
Chen et al., 2023).

EV I = 2.5 × NIR − R

NIR + 6 × R − 7.5 × B + 1

3.4.5 CVI - Chlorophyll Vegetation Index

This index has increased sensitivity to the chlorophyll content in deciduous cover and is
used from the beginning to the middle of the crop growth cycle (Shendryk et al., 2020).

CV I = NIR

G
× Red

G

3.4.6 SAVI - Soil-Adjusted Vegetation Index

This index minimizes soil brightness influences using a soil brightness correction factor,
especially useful in arid regions with low vegetative cover (Chen et al., 2023).

SAV I = NIR − R

NIR + R + L
× (1 + L)

3.4.7 OSAVI - Optimized Soil Adjusted Vegetation Index

Developed by Rondeaux et al., this index uses the reflectance in the near-infrared (NIR)
and red (R) bands with an optimized soil adjustment coefficient (Shendryk et al., 2020).

OSAV I = NIR − R

NIR + R + 0.16
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3.4.8 SCCCI - Simplified Canopy Chlorophyll Content Index

This index avoids the use of bounds and is simply the ratio of the computed NDRE over
NDVI (Shendryk et al., 2020).

SCCCI = NDRE

NDV I

3.4.9 MACI - Modified Anthocyanin Content Index

This index estimates the anthocyanin content using the ratio of reflectances in the near-
infrared (NIR) and the green spectral bands (Shendryk et al., 2020).

MACI = NIR

Green

3.4.10 VARI - Visible Atmospherically Resistant Index

Designed to emphasize vegetation in the visible portion of the spectrum, while mitigating
illumination differences and atmospheric effects, it is ideal for RGB or color images (Zhu
et al., 2023).

V ARI = G − R

G + R − B

3.4.11 TCARI - Transformed Chlorophyll Absorption and Re-
flectance Index

Indicates the relative abundance of chlorophyll and is affected by the underlying soil
reflectance, particularly in vegetation with a low LAI (Shendryk et al., 2020).

TCARI = 3[(RE − R) − 0.2(RE − G)(RE/R)]

3.4.12 IPVI - Infrared Percentage Vegetation Index

This index is functionally and linearly equivalent to the normalized difference vegetation
index, and is computationally faster and never negative (Liu et al., 2023a).

IPV I = NIR

NIR + R



42 Theoretical Framework

3.5 Multispectral imaging applied to agriculture

Multispectral imaging, fundamental in precision agriculture, provides valuable informa-
tion on crop health status. Mostly, the near-infrared (NIR) band is used due to the
high reflectance of vegetation in this region of the electromagnetic spectrum (Goffart
et al., 2023). These images are captured by sensors located on artificial satellites or
drones that transform the radiance of the Earth’s surface into numerical values that
represent specific wavelength ranges. Although satellites offer accuracy, low resolution,
high cost, and weather conditions limit their usefulness. In contrast, drones equipped
with multispectral cameras allow for more frequent monitoring and higher spatial reso-
lution (Patil et al., 2023). These sensors typically capture information in several bands,
including green, red, red-edge, and NIR. From multispectral images, especially in visible
and near-infrared (VIS-NIR) bands, spectral indices such as NDVI and CWSI can be
calculated, providing crucial information on the vegetative state of the crop and the
evapotranspiration, which facilitates the prediction of diseases or pests (Bazzo et al.,
2023). This technology promises to significantly improve agricultural management by
allowing a detailed and timely assessment of crop condition (Istiak et al., 2023).

3.5.1 Calibration process in multispectral sensors

To ensure the accuracy of the collected information and minimize errors, image calibra-
tion and correction procedures are required. In the field of remote sensing, sensors play
a key role in capturing specific physical parameters (Teixeira Crusiol et al., 2020). These
sensors can be active, such as radar and LiDAR, which generate and receive their own
radiation, or passive, which collect electromagnetic energy from land surfaces. Passive
sensors include photographic systems, multispectral and hyperspectral radiometers, and
imaging spectrometers. Upon receiving radiance, sensitive detectors convert wavelengths
into electrical signals which are then transformed into digital levels (DLs). Each ND
represents a pixel in the image and is based on the light reflected or emitted by the
Earth’s surface in a specific band of the spectrum. This information, essential for crop
analysis, provides a numerical representation of the characteristics of the land in par-
ticular locations, facilitating interpretation and decision making in precision agriculture
(Teixeira Crusiol et al., 2020).
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Data quality in multispectral sensors

The quality of multispectral sensors is largely determined by their resolution, which
covers spatial, spectral, radiometric, and temporal aspects. This ability to record and
discriminate information in detail is essential to obtain accurate crop data. However,
multispectral images captured by UAV can face challenges such as sensor noise, irregular
illumination, and atmospheric disturbances. These problems can be mitigated by radio-
metric calibration and atmospheric correction techniques, which improve the sensitivity
of canopy reflectance and facilitate the determination of nitrogen status in the crop. In
addition, hyperspectral images can be altered as a result of interaction with the atmo-
sphere, caused by various factors such as aerosol scattering and absorption of gaseous
substances. The application of appropriate techniques to address these challenges is
essential to ensure the reliability of the data collected and its usefulness in precision
agriculture. Figure 3.5 shows the main confounding factors, the methods for minimizing
these factors, and the corresponding application cases.

Figure 3.5: Summary of the main confounding factors, methods to minimize these factors
and corresponding application cases. Source: Own elaboration.
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3.5.2 Geometric and radiometric errors in multispectral im-
ages

The process of converting raw images to radiance and reflectance in multispectral images,
such as those captured by cameras like the MicaSense RedEdge, involves a series of
correction and calibration steps that ensure that the digital data are interpretable for
analysis of biological or physical variables. During this process, errors may arise in the
images due to a variety of sources, such as instrument failures, atmospheric conditions,
or terrain characteristics. These errors are divided into geometric and radiometric errors.
Radiometric errors occur when the mean of the pixel intensity or digital number (ND)
values is irregular, which may be due to the behavior of the recording instruments,
wavelength variability of solar radiation or atmospheric effects. On the other hand,
geometric errors can be both systematic and non-systematic, and affect the correct
alignment and spatial representation of the images (Bourgeon et al., 2016).

Conversion of digital numbers (ND) to radiancy

Radiance is the amount of energy emitted or reflected by a surface, measured over a
specific area, at a solid angle, and at a specific wavelength. In the context of multispectral
imaging, the camera captures digital values that do not directly represent radiance. The
basic formula for converting from digital numbers (ND) to radiance (L) is as follows.

The basic formula to convert digital numbers (DN) to radiance (L) is:

L = DN · a1

exposure time · gain · 2bit depth , (3.1)

Where:

• DN : is the digital number or raw value captured by the sensor.

• a1: is the radiometric calibration coefficient that converts the digital numbers to
physical units of radiance.

• Exposure time: the camera’s exposure time.

• Gain: the gain factor, usually represented by the image’s ISO value.

• 2bit depth: is the sensor’s bit depth, which indicates how many possible values the
sensor can record.



3.5 Multispectral imaging applied to agriculture 45

This process also includes camera corrections related to vignetting (darkening to-
wards the corners of the image) and black level compensation (correction for dark levels
or dark pixels present in the camera).

Geometric calibration

Geometric calibration is used to correct for the effects of pitch, roll, lateral rotation,
trajectory, height, and platform velocity. The optical device creates geometric distortions
in the images: lengths, shapes, and surfaces are modified, which will prevent the future
calculation of morphometric indicators such as leaf area. Moreover, as the luminous flux
is directed through a prism to separate visible and NIR light, the geometric distortions
of both types of images are different. The NIR and visible images could not overlap
without this correction step. Consequently, to characterize vegetation zones, we need
to correct the images for the geometric distortions produced by the wide-angle lens and
the prism of the imaging system (Bourgeon et al., 2016).

To correct errors in georeferenced images, parametric and nonparametric methods
are used. Non-parametric methods adjust the image using X and Y coordinates, being
useful in flat terrain. On the other hand, parametric methods perform inverse trans-
formations based on orbital and sensor characteristics, highlighting orthorectification
that uses terrain elevation to eliminate scale and offset variations. This approach is
recommended for remote sensing from aerial platforms.

Radiometric Calibration

Direct and reflected solar radiation interact with atmospheric factors, causing errors
in sensor data capture, known as the "atmosphere effect". These factors include gases,
aerosols, and clouds, which scatter and absorb radiation. This can result in the radiation
measured by the sensor being less than the current radiation or the capture of a pixel
being contaminated by scattering from other areas outside the intended target. This
type of contamination depends on the wavelength, the reflectivity of the surface, the
camera used, and the object of study. In addition, changes in time and date also affect
radiation (Cao et al., 2019). Figure 3.5 illustrates how the atmosphere influences the
measurement errors of the energy captured by a sensor.

The solar spectral radiance before entering the atmosphere is defined as E(λ), if the
solar zenith angle is taken as θS, it will result that the spectral irradiance incident on the
ground is the product of E(λ) cos θS. If one also takes into account the log per spectral
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Figure 3.6: Effect of atmosphere on single pixel radiance. Source. Figure Adapted from
(Cao et al., 2019).

range captured by a certain filter in the sensor indicating (λ)1 and (λ)2 (wavelength
range in which a filter can capture), then it is expressed as:

E(λ) =
∫ (λ)2

(λ)1
E(λ) cos θSdλ, (3.2)

If the difference between (λ)1 and (λ)2 is expressed as ∆λ, and this difference is very
narrow, it is assumed that:

E(λ) = E(∆λ) cos θs∆λ, (3.3)

Where E(∆λ), is the mean irradiance between (λ)1 and (λ)2,

L = 1
π

· E(∆λ) cos θs∆λρ, (3.4)

Therefore, if we know L from the above equation, we can deduce the power detected
by the sensor, in addition to the ND originating from the original image, which is directly
related to the radiance of the scene. Then, the radiance per pixel is expressed as:

L = (ND)k + Lmin, (3.5)

Here, Lmin and Lmax are the maximum and minimum radiances detected by the
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sensor and depend on the original calibration of the sensor. ND is a binary coded value
of the intensity of light reflected from the Earth’s surface, measured by the sensor using
a particular combination of exposure settings (e.g., shutter speed, aperture, ISO/gain,
etc.) (Cao et al., 2019).

Radiometric Calibration MicaSense RedEdge M

To perform the radiometric calibration process of the MicaSense RedEdge sensor, we
use the manufacturer’s radiometric conversion formula, which in this case is MicaSense,
which converts ND values to absolute spectral radiance values (MicaSense, 2020).

L = V (x, y) × a1

g
× p − pBL

te + a2y − a3tey
, (3.6)

Where,

• L: is the spectral radiance.

• V (x, y): the polynomial vignetting function at pixel (x, y).

• a1, a2, and a3: the radiometric calibration coefficients.

• g: the sensor gain setting.

• p: the normalized DN value.

• pBL: the black level shift.

• t: the exposure time of the image.

All these parameters required for the calculation of L are found in the calibration
panel and in the image metadata (MicaSense, 2020).

Pixel Value Normalization
MicaSense sensors can save images in a 12 bit or 16 bit format. The radiometric

model uses a normalized pixel value p, in the range 0 to 1. To compute the normalized
pixel value, simply divide the raw digital number for the pixel by 2N , where N is the
number of bits in the image. For 16-bit images, divide by 65536. For 12-bit images,
divide by 4096. This applies to both the pixel value and the black level value (MicaSense,
2020).
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Vignette Model
The RedEdge uses a radial vignette model to correct for the fall-off in light sensitivity

that occurs in pixels further from the center of the image. To apply the model, first
read cx, cy, and the six polynomial coefficients from the image metadata, then compute
the formula below to find a correction scale factor for each pixel intensity (MicaSense,
2020).

r =
√

(x − cx)2 + (y − cy)2, (3.7)

k = 1 + k0r + k1r
2 + k2r

3 + k3r
4 + k4r

5 + k5r
6, (3.8)

Icorrected(x, y) = I(x, y)
k

, (3.9)

Where,

• r is the distance of the pixel (x, y) from the vignette center, in pixels

• (x, y) is the coordinate of the pixel being corrected

• k is the correction factor by which the raw pixel value should be divided to correct
for vignette

• I(x, y) is the original intensity of pixel at x, y

• Icorrected (x, y) is the corrected intensity of pixel at x, y

3.6 Machine learning and deep learning applications
for nutrient estimation in crops

The integration of ML and DL with remote sensing technologies has further revolution-
ized crop yield predictions. Using large-scale, detailed observational data provided by
aerial and satellite imagery, these technologies improve the analysis of weather condi-
tions and soil characteristics. DL approaches, particularly CNNs, are adept at processing
complex, high-dimensional data from remote sensing, offering unprecedented accuracy
in predictive analysis (Bal and Kayaalp, 2021).

This synergy enables more accurate and informed agricultural planning. Using global
coverage and temporal frequency of remote sensing to monitor crop health and predict
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Figure 3.7: Graphical summary of the integration of machine learning models with im-
agery, IoT sensors, SPAD values and laboratory analysis to estimate nitrogen in pineap-
ple crops. Source: Own elaboration.

yields with greater accuracy, thereby optimizing resources and maximizing productivity
(Sharma et al., 2021).

In crop nitrogen estimation, several machine learning (ML) and deep learning (DL)
techniques are used to analyze data from images and IoT. ML techniques include super-
vised algorithms such as linear regression, KNN, Random Forest, SVM, and artificial
neural networks, as well as unsupervised algorithms such as K-means and DBSCAN
(Bal and Kayaalp, 2021; Ennaji et al., 2023). In DL, convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and recurrent convolutional neural net-
works (CRNNNs) are used primarily. Predictor variables include multispectral images,
taken by drones or satellites, and IoT sensor data such as soil moisture, temperature,
and electrical conductivity, in addition to meteorological data. The resulting models
can be regression, classification or mapping, and their application includes optimizing
fertilizer use, early detection of nutrient deficiencies, and monitoring soil health (Sharma
et al., 2021). However, they face challenges such as high-quality data availability, model
complexity, and spatial variability of soil nitrogen. Accurate data collection, proper pre-
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processing, careful selection of models, and interpretation of results are critical to the
success of these applications in precision agriculture. Figure 3.7 details the integration
of machine learning models with imagery, IoT sensors, SPAD values, and laboratory
analysis to estimate nitrogen in pineapple crops. This is the most general methodology
for estimating nutrients in any other type of crop.



Chapter 4

Materials and Methods

Chapters 3, 4 and 6 of this thesis constitute the core of the scientific contributions of
this work. These chapters develop and validate predictive models for the estimation
of nitrogen content in pineapple crops, using machine learning techniques based on
information provided by multispectral images and sensor data analysis in IoT platforms.
It is highlighted that part of the information presented in these chapters will be published
in Elsevier’s ’Journal of Agriculture and Food Research’, a quartile one (Q1) publication.

In this PhD thesis, the use of multispectral imagery and sensors integrated in an
IoT platform to predict nitrogen content in MD2 pineapple crops was investigated. The
methodology includes multispectral image capture, foliar samples for nitrogen analysis,
chlorophyll measurement using SPAD values, and soil, plant, and environmental data
through sensors, as shown in the general methodology diagram in Figure 4.1.

4.1 Study area description

The study area is located in the municipality of Tauramena, in the department of
Casanare, Colombia, with geographical coordinates WGS 84, N 5◦ 1′ 23.4′′ - W 72◦

45′ 4.7′′ at an elevation of 340 meters above sea level. The experimental design was
carried out at the facilities of the company "Agricola Santana de los Llanos S.A.S".
This company has certified processes and registration as a producer of selected seeds of
pineapple variety Gold MD2. Figure 4.2 shows the location of the crop in which the
experiments and data recording were carried out.
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Figure 4.1: The overall methodology encompasses the following phases: Systematic
Literature Review (SLR), leaf nitrogen sampling for laboratory analysis (Laboratory),
IoT data logging of crop, soil, and environment (DAQ-IOT), multispectral image capture
of crop leaf area (Multispectral Images), recording of SPAD values of leaf chlorophyll
content (Chlorophyll Meter), and predictive model processing and development. Source:
Own elaboration.

4.2 Experimental design

In order to have nitrogen variability, a complete randomized block experimental design
was carried out, applying five different nitrogen treatments distributed in five blocks,
for a total of 25 experimental units. Twelve applications were received over a six-month
period, based on the methodology proposed by (Shendryk et al., 2020). In this case, the
blocks were not used to measure the effect of treatment on biomass or crop yield but
instead as a source of variability to obtain different samples of nitrogen content. Table
4.1 details the distribution and amount of nitrogen used in each of the treatments of the
experimental design.

To guarantee the normal development of the crop, only the nitrogen content was
varied; the rest of the nutritional elements, herbicides, and insecticides were applied ac-
cording to the nutritional management plan established for the crop. Control treatment
was number 3, with 6.7 grams of nitrogen per plant, following the recommendations of
the Colombian Agricultural Research Corporation, AGROSAVIA.
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Figure 4.2: Study area located in the municipality of Tauramena; a Colombian mu-
nicipality located in the department of Casanare, in the Eastern Plains region of the
Colombian Orinoquia. Source: Own image of the place where the experimental design
was developed.

Site selection and delimitation of sample plot sizes

For the experimental setup, five hectares were established and for each hectare five
sampling sites were randomly selected. Each hectare corresponded to one furrow of the
crop and these furrows were assumed as blocks, as can be detailed in the in Figure. 4.3.

Five hectares were established for the experimental layout and in each hectare five
experimental units were established 30 meters apart to avoid possible effects on the
results of the experiment. In each sample space or experimental unit, 10 pineapple
fruits were selected, labeled with the block number and treatment, and marked with
wooden stakes keeping a 3×1.5 meter ratio (the equivalent of 10 pineapple fruits), as
shown in Figure. 4.4.

With the help of a professional agronomist, five foliar fertilization tables were pre-
pared for 50 MD2 pineapple plants for each of the treatments. These tables contained
information on the dates of application, the type and amount of nutritional element,
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Table 4.1: Nitrogen values used per treatment and block distribution of the experimental
design, unit of measurement, grams/plant.

Blocks
Treatments B1 B2 B3 B4 B5
T1 = 0.0 g/p T1 T2 T5 T4 T1
T2 = 3.3 g/p T4 T1 T3 T2 T5
T3 = 6.7 g/p T2 T4 T4 T5 T3
T4 = 9.3 g/p T5 T3 T2 T3 T4
T5 = 12.0 g/p T3 T5 T1 T1 T2

Table 4.2: Foliar fertilization table for treatment (T5), corresponding to 50 plants,
nutritional elements applied in grams and amount of water in liters.

No Date N K Mg Ca Zn B H H2O
1 30/03/2022 82 30 10 3 1,5
2 13/04/2022 92 32 10 - 3 3 - 1,5
3 27/04/2022 92 32 12 8 - 3 1,3 1,5
4 04/05/2022 100 40 12 - 3 3 2
5 18/05/2022 100 40 14 9 - 3 1,3 2
6 01/06/2022 108 40 16 - 4 4 - 2
7 15/06/2022 108 50 17 10 - 4 1,3 2
8 29/06/2022 117 50 17 - 4 4 - 2
9 13/07/2022 117 50 20 12 - 4 1,4 2
10 27/07/2022 126 60 20 - 4 5 - 2,5
11 10/08/2022 126 60 20 13 - 5 1,5 2,5
12 24/08/2022 132 60 20 - 5 5 - 2,5

and the amount of water to be applied as described in Table 4.2.

Fertilizer and Herbicide Applications

Following the experimental design, granular foliar nitrogen (CH4 N2O - urea 46%) was
applied during the twelve programmed dates for a period of six months, from March 1 to
August 31, 2022, corresponding to the vegetative stage, as shown in Figure. 4.6. Foliar
nitrogen was applied at this stage since, from the flowering stage, nitrogen promotes leaf
growth rather than fruit growth. The application was made with a handheld sprayer,
as detailed in Figure. 4.5.
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Figure 4.3: Distribution of the five blocks (B1, B2, B3, B4 and B5) in the pineapple
crop; each block is approximately 3 meters apart. Source: Own image of the place where
the experimental design was developed.

Figure 4.4: Initial marking of sample spaces, 10 pineapple fruits were selected and
demarcated with the block number and treatment. Source: Own image of the place
where the experimental design was developed.
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Figure 4.5: Application of treatments to the subplots through a manual fumigator.
Source: Own image of the place where the experimental design was developed.

Figure 4.6: Phenological cycle of pineapple cultivation variety MD2. Foliage: After
a certain period, new leaves appear. Inflorescence: Appears at the top of the stem
wrapped inside the base of the leaves. Flowering: Appearance of flowers on the inflo-
rescence. Fruiting: Fruit development and ripening. Ripening: The fruit reaches the
typical size and color of the variety. Source: Own elaboration.



Chapter 5

Data Acquisition

This chapter comprehensively details the data acquisition process, the equipment used
in data collection, and the methodological development used to analyze and process
the information obtained. Given the interdisciplinary nature of this thesis, which inte-
grates information from multiple sources for a holistic assessment of nitrogen content in
pineapple crops, each type of collected data, its origin, and the justification for its use
are described.

5.1 UAV Image acquisition and flight parameters

For the acquisition of multispectral images, the MicaSense RedEdge-M multispectral
camera was used, installed on a DJI Phantom 4 Pro unmanned aerial vehicle (UAV).

This drone is equipped with an altitude hold mode that ensures stable flights and
consistent flight times. The multispectral camera has dimensions of 9.4 cm x 6.3 cm
x 4.6 cm, with a weight of 200 g (7 oz.). It incorporates GPS and five spectral bands
spanning wavelengths from 470 to 840 nm: blue (470 nm), green (560 nm), red (680
nm), red edge (717 nm) and NIR (840 nm). The sensor has a spatial resolution of 1280
x 960 (1.2 MP per band) and a resolution (GSD) of 8 cm per pixel (per band) at 120
m ( 400 ft) AGL. Figure. 5.1 details the mounting of the drone and the multispectral
camera.

Four samples were taken at 30-day intervals, between months 4 and 8 of the crop
phenological cycle. The images were taken between 10:00 am and 3:00 pm, in order to
maintain the same luminosity in the images. On the other hand, images were taken
from a calibrated reflectance panel at the beginning and end of each flight. The Figure.
5.2 shows an image of the protocol for image acquisition, on the left side is the camera
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Figure 5.1: Mounting the MicaSense RedEdge-M multispectral camera on the Phantom
4 Pro (UAV). Source: Own image of the equipment used in the development of the
experimental design.

calibration through the reflectance panel and on the right side is the stabilized flight at
12 meters.

A longitudinal and lateral overlap of 90% and 70%, respectively, was adopted for
image capture. Flight planning was performed with the DJI ground station pro appli-
cation for iPad. Figure. 5.3, shows the composition of an RGB image taken with the
drone at an altitude of 12 meters. In this image, the label marked B4T4 can be seen at
the beginning of the sample space, which is delimited by 4 white wooden stakes.

5.2 DAQ-IoT acquisition of information on ecologi-
cal factors

To obtain agrometeorological data and ecological factors relevant to the crop, an IoT sta-
tion was designed and implemented specifically for this project. Additionally, a mobile
application was developed to facilitate the recording and visualization of the data col-
lected. In order to validate and corroborate the accuracy of the information recorded, a
backup weather station was installed to monitor environmental variables independently.
In this case, the Logia: 7 in 1 Wi-fi Weather Station was chosen, which is solar powered
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Figure 5.2: Camera calibration through the reflectance panel and stabilized flight at 12
meters altitude. Source: Own image of the equipment used in the development of the
experimental design.

and has a remote monitoring system for indoors and outdoors. Among the variables
measured by this station are: temperature, humidity, wind speed and direction, rain-
fall, UV index and relative humidity. The information collected by the Logia station is
transmitted wirelessly to the Weathercloud platform for further analysis. Figure. 5.4
shows the Logia station installed in the crop as a backup of the data.

With regard to installed sensors, commercial sensors were used to have the possibility
of replacing them in case of failure. Table 5.1 describes the monitored variables and the
reference information of the sensors used.

5.2.1 Agrometeorological station developed for the acquisition
of ecological and environmental factors.

An agrometeorological station composed of a Datalogger and a WiFi Gateway was de-
veloped. The Datalogger has the function of receiving and adapting the signal from
the sensors, storing the information, preprocessing the data and then transmitting it to
the WiFi Gateway. On the other hand, the WiFi Gateway facilitates the connection
between the Datalogger and the IoT web platform. This device has a WiFi connection,
3 optocoupled inputs, an RS-232 channel for sensor modules, 3 visual indicators (LEDs),
an audible indicator (buzzer) and 3 digital outputs for relay activation. The datalogger
receives information from sensors for relative humidity, ambient temperature, precipita-
tion, wind speed, solar radiation and pH. These sensors transmit to a data acquisition
card which in turn transmits to a WiFi gateway responsible for communication with the
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Figure 5.3: Image composed of red, blue and green bands. This image shows the sample
space B4T4, block/treatment, which is made up of 10 pineapple fruits, demarcated with
four stakes painted in white, as can be seen in the boxes marked in yellow. Source: Own
image of the place where the experimental design was developed.

VPS. The system is totally autonomous and power is provided by a solar panel as shown
in Figure. 5.5

To obtain data from sensors installed on the soil, measurement protocols were es-
tablished. For soil moisture, the volumetric moisture method (Hg) was used, which is a
relationship between the volume of the liquid fraction, water, or solution (Va) and the
volume of the sample (Vs) (Salman et al., 2021). This relationship is shown in Equation
5.1.

Hg = Va/Vs (5.1)

Regarding pH, three different sensors were used, as detailed in Table 5.1, two analog
and one digital, with ranges between 3 − 8 pH and an accuracy of ±2 pH. The analog
pH and soil moisture sensor is shown in the in Figure. 5.6, this sensor is analog and does
not require batteries or electricity; it is simply inserted into the soil to obtain the pH
value. However, for this project it was necessary to parameterize the sensor and convert
the analog signal to digital so that it could be transmitted to the Datalogger.
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Figure 5.4: Logia Wi-fi Weather Station: 7 in 1 installed in the crop for acquisition of
environmental variables. Source: left image taken from amazon.com. Right image: own
image of the equipment used in the development of the experimental design.

The RainWise RAINEW 111 rain gauge, known for its accuracy and low maintenance
requirements, was used to measure rainfall. This device has a highly accurate, 8-inch
(20.5 cm) diameter tipping bucket collector that meets NWS specifications for statistical
accuracy. Figure. 5.5 shows a detail of this sensor on the upper right side of the weather
station.

For more details on the sensors used, the variables monitored and the reference
information for each of the sensors used in this research are described in Table. 5.1.
The JL-FS2 sensor was employed to gauge the wind speed. This sensor provides an
output signal in the range of 0 to 5 V (voltage signal), with a resolution of 0.1 ms and
an effective measurement range of 0 to 30 ms.

5.2.2 Mobile application developed to facilitate the recording
and integration of data in cultivation

In order to facilitate the recording of crop data and the integration of information from
the two stations, a mobile application has been developed consisting of several modules,
which are described below:

• Irrigation Module: it allows visualizing the last recorded values of volumetric
humidity, as well as the evapotranspiration calculated from the data of meteoro-
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Figure 5.5: IoT agrometeorological station designed and developed for this project. It
records information on environmental variables and ecological factors. Source: own
image taken from the agrometeorological station developed for this doctoral thesis.

logical sensors. Also graphs of the variables over time, date of the last recorded
values and option to consult the last recorded data.

• Climate Module: Displays the last recorded value and the corresponding ranges
for several climatic variables such as Air Humidity (%), Ambient Temperature
(°C), Wind Speed (m/s), Precipitation (mm), Evapotranspiration (K) and Solar
Radiation (W/m2). It automatically generates graphs over time, indicates the
date and time of the last value sent by the sensor module, and offers the option to
consult and visualize the last recorded values.

• Soil Module: Displays the last value recorded and the corresponding ranges for
the pH Level, Ambient Temperature and Soil Moisture variables. In addition, it
shows graphically each of these variables over time, indicates the date and time
of the last value sent by the sensor module, and offers the option to consult and
visualize the last recorded values.
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Figure 5.6: Analog pH and soil moisture sensor, this sensor was conditioned to transmit
the signal to the agrometeorological station. Source: own image taken from the agrom-
eteorological station developed for this doctoral thesis.

• Calculate Irrigation Module: Allows calculating the daily irrigation projection
by entering the Kc constants and the irrigation system efficiency value. It also
offers the option of plotting evapotranspiration vs. precipitation.

• Logging Module: Allows the operator to log daily irrigation data, selecting the
date of the log, logger, batch, valve number, pressure (psi), start time of activation
and end time of deactivation. It also displays the last recorded values and allows
the user to enter specific observations for each valve.

Figure. 5.7 shows the main screen of the climate module.

5.2.3 ThingsBoard IoT WEB Platform for Efficient Data Col-
lection and Management

The Open Source IoT platform ThingsBoard was installed and configured to receive
information from sensors in the cloud. Based on Java, this platform streamlines the
creation and extension of IoT applications, enabling the seamless collection, processing,
visualization, and management of device data. An intuitive web interface empowers
system users to manage their assigned devices. For this project, ThingsBoard was cho-
sen due to its open source nature and its ability to store, visualize, and analyze data
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Table 5.1: Variables monitored and references of sensors used to measure soil and envi-
ronmental variables.

Environmental sensors Reference Sampling Rate

Rain 1AA800013 Station Logia 10 minutes
Relative humidity DHT22 (AM2302) St Logia 10 minutes
Ambient temperature DHT22 (AM2302) St Logia 10 minutes
Luminosity BH1750 10 minutes
Solar Radiation Station Logia 10 minutes
Wind speed OEM Station Logia 10 minutes
Wind direction Station Logia 10 minutes
Dew point Station Logia 10 minutes
pH MIOGREN/RCYAGO/Gain Express Manual registration
Soil moisture MIOGREN/RCYAGO/Gain Express Manual registration
Soil Temperature Sensor digital-MIOGREN Manual registration

Although the ’Gain Express’ sensor is an analog sensor, a specific electronic interface was designed
and built to digitize its measurements. This card allows the capture and transmission of data to the

weather station, configured with a sampling rate of 10 minutes..

transmitted by sensors. The ThingsBoard implementation was carried out on a VPS
provided by Dongee, equipped with 1 CPU, 2 GB of RAM, 55 GB of SSD storage, and
2 TB of data transfer. The installation process was performed on Ubuntu 18.04 LTS,
requiring the installation of Java 11 (OpenJDK) and the configuration of a PostgreSQL
database. After the installation, we proceeded to the configuration of super adminis-
trators through User Management (Administrator Role). This role comprises Admin
Role, granting the user administrative privileges, including management of other users,
devices, sensor types, and relays. Additionally, the User Role was created, allowing
users to manage assigned devices within limited capabilities. This role allows them to
access reports, view the status and behavior of real-time sensors, and manage relays and
sensors. The main features of the implemented ThingsBoard platform are as follows:

• Device Management: Administrators create devices with their respective sen-
sors and relays, while users manage the assigned relays and sensors.

• Sensor Management: This section allows for visualizing the sensors installed in
the field, adjusting their levels, and displaying information through various widgets
and panels.

• Telemetry: An API facilitates the collection of time series data and related use
cases.
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Figure 5.7: Main screen of the developed APP, the weather module is shown. Source:
own image taken from the mobile application developed for this doctoral thesis.

• Rules Engine: This component handles data processing and actions based on
telemetry and incoming events.

• Reports: This option allows the generation of reports for devices based on date
ranges or data volume.

Figure. 5.8 shows a user interface that presents information from various sensors
such as ambient temperature, precipitation and soil pH.

5.3 Capacitive parallel plate sensor for soil moisture
determination

Within the framework of this doctoral thesis, a parallel plate capacitive sensor has
been developed and validated, specifically designed for the integral measurement of soil
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Figure 5.8: Main screen of the developed APP, the weather module is shown. Source:
own image taken from the web application developed for this doctoral thesis.

moisture, relative humidity and temperature of both air and soil, with the capacity to
transmit this data in real time through the Internet. This sensor is in the process of
registration under national invention patent, with file number NC2022/0014133 before
the Superintendence of Industry and Commerce. This development has been possible
thanks to the support of the Ministry of Science and Technology MINCIENCIAS in
the call ’Crearlo no es suficiente’ of the year 2022, where it was recognized with the
maximum score of 100 out of 100 possible, reflecting the innovation and potential impact
of the technology. Part of the problem and solution is presented below. The theoretical
underpinnings are described in more detail in Appendix C of this document.

Water plays a fundamental role in soil biophysical processes, acting as a limiting fac-
tor for plant growth. Therefore, precise control of soil moisture is crucial in agriculture.
In this context, soil water content measurements are essential for irrigation management,
both in agriculture and environmental sciences. Measurement-based irrigation allows for
optimizing the use of water, a vital resource, and reducing negative environmental im-
pact. However, measuring soil moisture is a complex task due to the influence of various
soil biophysical factors, environmental and sensor characteristics.

Among the existing techniques to measure crop moisture, resistive moisture sensors
have gained great popularity in agriculture due to their low cost, ease of use and fast
response. These sensors work by measuring the electrical resistance of a conductive
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Figure 5.9: General diagram including each of the components of the developed parallel
plate sensor. Source: Own image of parallel plate sensor architecture.

material, such as a polymer or salt, which is affected by the amount of water present in
the soil. However, resistive moisture sensors have limitations in accuracy, as they require
precise calibration. In addition, they are sensitive to soil temperature and salinity, factors
that vary considerably depending on the spatial characteristics of the soil. To address
these limitations, dielectric moisture sensors have been developed, which offer a more
efficient and convenient method to measure soil moisture content. Dielectric sensors
reduce the influence of salinity, texture, and other soil factors on the measurement by
sensing at high frequency. However, their high manufacturing cost increases the price of
the measurement circuit, making them difficult to deploy on a large scale in agricultural
production. Figure. 5.9. shows the general architecture of the developed sensor.

In response to the limitations of conventional moisture sensors, an innovative circuit
has been designed to improve the accuracy and application range of low-frequency ca-
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pacitance sensors. This circuit is characterized by its high sensitivity, achieved through
the use of medium-dimension parallel plates that enlarge the area of the capacitor, op-
timizing the relationship between capacitance and soil moisture. To compensate for
temperature variations that affect moisture measurement, the circuit incorporates a
commercial temperature sensor that monitors soil temperature. In addition, sensors
are included to measure ambient temperature and relative humidity, allowing a more
accurate assessment of the soil environment.

General operation of the circuit:

• Capacitance Measurement: The circuit measures the capacitance of the ca-
pacitor formed by the parallel plates. This capacitance is directly related to the
amount of water present in the soil.

• Temperature Compensation: The commercial temperature sensor provides soil
temperature data, which is fed into a formula to adjust the capacitance measure-
ment and compensate for temperature effects.

• Ambient Temperature and Relative Humidity Incorporation: Ambient
temperature and relative humidity measurements are also integrated into the ad-
justment formula, providing a more complete understanding of the soil environ-
ment and further improving the accuracy of the humidity measurement.

Circuit Enhancement Features:

• Increased Accuracy: Temperature compensation and the incorporation of envi-
ronmental data significantly increase the accuracy of soil moisture measurements.

• Wide Application Range: The circuit operates effectively over a wide range of
soil and temperature conditions due to its adaptability.

• Low Cost: The circuit design uses inexpensive and readily available components,
making it a viable solution for large-scale agricultural applications.

As shown in Figure. 5.9, the parallel plate soil moisture sensor has a rectangular
shape of 20 cm on each side. The distance between the plates is 4 mm, and the thickness
of the plates is 2 mm. A cotton cloth is used as a dielectric material to absorb water from
the soil. Unlike microfiber, cotton distributes water naturally throughout the material,
which facilitates the detection of moisture in the soil.
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To ensure that the sensor absorbs some of the soil water, two 8 cm tails were left in the
dielectric material. This increases the ability to detect soil moisture and facilitates a more
uniform distribution of water throughout the material, thus improving the detection of
changes in capacitance. The parallel plates are equipped with two fully insulated metal
connectors, allowing connections to be made to the sensor without moisture affecting its
operation.

5.3.1 Calculation of the relative permittivity of the dielectric
material used between the parallel plates

As dielectric material used between the parallel plates, a 100% cotton fabric material
was used. Textiles have a low dielectric constant, therefore, when water is applied to
it, this constant varies. Next, the dielectric constant of the material used is calculated,
it should be noted that this constant is a reference for the material in dry state, since
by adding water this constant changes, for this reason it will be found with the data
obtained with the sensor in 0% water. The capacitance of a capacitor of parallel flat
plates of area A and separation d is given by the following expression:

C = ε0A

d
= KrefA

d
(5.2)

where,
- ε0 = vacuum permittivity = 8.854 × 10−12 F/m
- Kref = reference relative permittivity of the dielectric material used.
- d = Distance of separation of the parallel plates 4 mm = 0, 4 cm = 0, 004 m
- A = Area of the parallel plates of the capacitor = L ∗ L
- L = 20 cm = 0, 2 m
- A = 0, 2 m ∗ 0, 2 m = 0, 04 m2; The area of the capacitor will be constant

5.3.2 Data obtained from capacitive humidity sensor tests to
find the permittivity of the dielectric material

To obtain these results, several tests were carried out by measuring the amount of water
added to a 50 square centimeter area of dry soil. The soil was pre-dried in an oven and
then the parallel plate capacitive sensor was placed to measure capacitance, capacitor
frequency, soil temperature, relative humidity and air temperature. Subsequently, 10
cm3 of water was added on top of the soil where the sensor was placed, and the same data
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was recorded again. This procedure was repeated several times, incrementally adding 10
to 20 cm3 of water, until the information detailed in the Table was obtained. Table. 5.2
shows the averaged data used to calculate the material permittivity reference constant
Kref . Based on the data obtained experimentally, the reference dielectric constant of
the material used is calculated. Since this dielectric constant is changeable, a reference
constant Kref is calculated for the data obtained when the material is completely dry.

C = Krefε0A

d
(5.3)

C = 0.405 nF = 0.000000000405 F (5.4)

k = C · d

ε0A
(5.5)

Kref = 0.0000000000405 F · 0.004 m
8.854 × 10−12 F

m · 0.04 m2
= 4.57 (5.6)

Kref = 4.57 (5.7)

ε = Krefε0 ; ε = 4.046 × 10−11 (5.8)

The relative permittivity of the dielectric material used between the plates is 4.57

Table 5.2: Data obtained from capacitive humidity sensor tests to find the permittivity
of the dielectric material.

Capacitance
(nF)

Frequency
(Hz)

Soil temp
(C)

Relative H
(%)

Air temp
( C)

Water
(mm3)

Dielectric
state

0.405 0.000.430 22 48 26 0 Dry
0.667 0.000.424 22 48 26.7 10

0.78 0.000.414 22 50 27 20
0.992 0.000.400 21 52 26 30
1.076 0.000.388 21 53 23 40

1.38 0.000.376 20 55 22 50
1.48 0.000.363 20 57 22 60
1.62 0.000.351 20 61 21 70
1.72 0.000.349 20 65 20 80

1.854 0.000.334 20 66 20 90
1.97 0.000.329 20 71 20 100 High_ h

Figure. 5.10 shows the sensor built along with the tests performed.
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Figure 5.10: Images of the sensor and data log for the calculation of the permittivity
of the capacitor dielectric material. Source: Own image of the tests performed on the
parallel plate sensor.

5.3.3 Comparison tests of the parallel plate sensor with com-
mercial sensors

Comparative tests were conducted with two commercial sensors:

• Fivota brand sensor: Comparative tests with the FIVOTA brand analog soil
moisture sensor revealed that the capacitive parallel plate sensor offers higher
resolution, since it delivers moisture values from 0 to 100%, while the commercial
sensor provides three levels of analog moisture measurement: DRY, WET and
MAXIMUM.

• MIOGREN brand sensor: Comparative tests were carried out with the MIOGREN
digital soil moisture sensor. Unlike the analog sensor of the FIVOTA brand, the
MIOGREN sensor provides the values digitally, maintaining the same measure-
ment scales: DRY, WET and MAXIMUM. The results showed that the capacitive
sensor in parallel plate offers higher resolution, with a measurement range from 0
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to 100% humidity. This is because, when the dielectric material between the paral-
lel plates is saturated with water, the capacitance varies rapidly, reaching response
times on the order of milliseconds. The Figure 5.11 shows the three evaluated
sensors: the two commercial sensors in conjunction with the capacitive sensor on
the parallel plate.

Figure 5.11: Comparative tests with commercial sensors Fivota and MIOGREN. Source:
Own image of the tests performed on the parallel plate sensor.

5.4 Foliar samples for laboratory analysis

Plant tissue analysis is a useful diagnostic tool for determining the nutritional status
of a plant. It has the advantage of measuring the total content of nutrients and not
just the fraction called available, allowing the diagnosis of deficiency or toxicity (Mello
Prado, 2021). For sample collection, six plants were selected from the center of each
experimental unit, and of these, 3 "D leaves" were randomly chosen (Suparna Sinha,
2021). The "D leaves" are the youngest among the adult leaves and physiologically the
most active. The selected leaves were cut on the same day the images were taken and
sent to the laboratory; this procedure was repeated in the 25 sample spaces during the
four dates sampled. The laboratory performed the (NT)analysis of the 100 samples
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processed during the six months of the experiment, using the Kjeldhal method (Sáez-
Plaza et al., 2013), the extraction was carried out by digestion H2SO4 and the redox
volumetry technique.

5.5 Measurement of plant chlorophyll content

To measure plant chlorophyll, the SPAD-502 Plus chlorophyll meter was used (SPAD-
502Plus, 2021). The samples were taken on the same "D leaves" before being cut to
be sent to the laboratory, under the same lighting conditions in which the multispectral
images were obtained. Figure 5.12 describes this procedure to record the values of SPAD
.

Figure 5.12: Procedure for measuring chlorophyll content using the SPAD-502 Plus
instrument. Source: Own image of the development of the experimental design.

5.6 Data processing and analysis

5.6.1 Leaf nitrogen evaluation

In this research, the total nitrogen (TN) content was considered as the response vari-
able, with a sample size of 100 observations (n = 100), corresponding to the results
obtained on four sampling dates. These measurements were carried out at 25 sampling
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points with the objective of capturing the variability in (TN) content throughout the
experiment. The sampling dates were as follows: date 1 = 30 June 2022; date 2 =
26 July 2022; date 3 = 5 August 2022; and date 4 = 23 August 2022. It should be
clarified that the main objective of the experimental design carried out in this research
was not to measure the effect of treatments on crop biomass or yield, but rather as
a source of variability to obtain different samples of the (TN) content of the leaf area
for multispectral imaging. Statistical analysis revealed significant variability in content
(TN), particularly on later sampling dates, as shown in Figure 5.13. This variability
allowed multispectral images to be obtained with varying levels of TN, thus facilitating
the development of machine learning models. To support the existence of significant
differences between treatments and ensure consistency in the variability of TL at the
four sampling dates, the p-values and confidence intervals were calculated. The results
revealed p-values of 0.1476, 0.0685788, 0.0022363 and 0.00018 for dates 1, 2, 3, and 4,
respectively. As can be seen in the last two dates, the values (P < 0.05) are significantly
less than 0.05. This indicates that there is sufficient statistical evidence to reject the
null hypothesis with a confidence level of 95%. Furthermore, it was observed that the
confidence intervals progressively narrowed with each sampling date, indicating greater
precision in estimating the treatment means as the amount of nitrogen accumulated in
the plants increased.

The results of laboratory analyzes reveal a clear trend: the p-value decreases with
each sampling date, suggesting an increase in the statistical significance of the differences
between treatments over time. This pattern indicates a possible cumulative effect of
treatments on the amount of (TN) in pineapple leaves. Figure 5.13 shows that on
the first sampling date, the values (TN) in T1 and T2 were around 1.5 (TN), while
the values in T3, T4, and T5 were close to 1.8 (TN). This initial variability could be
explained by the short growth time of the crop and the varied location of the sampling
points. From the second sampling date, variation in nitrogen levels was observed in the
five treatments, with notable differences between T1 and T5. On the last two sampling
dates (dates 4 and 5), a significant change is observed in treatment T1 compared to T4
and T5. Specifically, on date 4, T1 exhibited a (TN) of 1.11, while T4 and T5 showed
(TN) of 2.34 and 2.31, respectively, as shown in Figure 5.13.



5.6 Data processing and analysis 75

Figure 5.13: Laboratory results of foliar samples of (TN) as a function of the 5 treatments
or fertilizer application rates. Each image represents a sampling date, and for each
sampling date 25 records corresponding to 5 Blocks per 5 treatments are displayed.
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On the first sampling date, values (TN) were observed in T1 and T2 close to 1.5
(TN) and T3, T4 and T5 values close to 1.8 (TN). From the second sampling date,
nitrogen levels began to vary in the five treatments, with a difference observed between
treatments T1 and T5. On the last two sampling dates corresponding to dates 3 and 4,
a significant change (TN) in treatment T1 can be observed with respect to treatments
T4 and T5. In the data obtained in the sampling carried out on the third and fourth
dates, a significant difference was achieved between treatment T1 and treatments T4
and T5. On date 4, treatment T1 = 1.11 and treatment T4 = 2.34 and T5 = 2.31 as
shown in Figure 5.13.

5.6.2 UAV data processing and ecological factors

Since the data in the spectral images are digital levels (ND) that do not represent
biophysical variables directly, it was necessary to calculate the radiance and reflectance in
each image. This process consisted of two stages: radiometric calibration and conversion
of radiance to apparent reflectance (Cao et al., 2019; MicaSense, 2022).

• Radiometric calibration

The purpose of this calibration is to transform the observation values (DN) of the images
into absolute values of the spectral radiance

(
W
m2 /sr/nm

)
.

The formula compensates for sensor black level, sensitivity, gain and exposure set-
tings, and lens vignetting effects (MicaSense, 2022). The implementation of this process
was carried out with the help of Python and the use of Micasense libraries, the formula
to calculate the spectral radiance L was performed from the pixel value p according to
Equation 5.9:

L = V (x, y) × a1

g
× ρ − ρBL

te + a2y − a3tey
, (5.9)

where,

• L: the spectral radiance.

• V (x, y): the polynomial vignetting function at pixel (x, y).

• a1, a2, a3: the radiometric calibration coefficients.

• g: the sensor gain setting.
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• ρ: the normalized DN value.

• ρBL: the black level shift.

• t: the exposure time of the image.

All these parameters required for the calculation of L are found in the calibration
panel and in the image metadata.

• Conversion of radiance to reflectance

Before this process, it is necessary to calibrate the RAW images from the camera into
reflectance maps. To do this, the normalized pixel value is calculated by dividing the raw
digital pixel number by 2n, where N is the number of bits in the image. Now that flat-
and calibrated-radiance images are available, they are converted to reflectance. To do
this, we used the radiance values from the known reflectance panel image to determine
the scale factor between radiance and reflectance. In this case, the following values were
used for each of the bands: blue: 0.67, green: 0.69, red: 0.68, red edge: 0.67 and red:
0.61 (MicaSense, 2022).

This process is shown in Figure 5.14 and is detailed below: initially, the five images
are loaded along with their respective calibration panels. The software automatically
detects the panel in each image and extracts the following information:

• Detected panel serial number: RP02-1618086-SC

• Extracted panel statistics:

– Mean: 44,794.40

– Standard deviation: 796.99

– Panel pixel count: 14,524

– Saturated pixel count: 0

The described information is obtained for each of the spectral bands. Figure 5.14,
shows the reflectance panel corresponding to the blue band. For image calibration, it is
necessary to compensate the panel values with the information obtained from the image.
This process is crucial to detect the calibration panels of the MicaSense camera and ex-
tract data related to the Lambertian surface of the panel. A Lambertian surface reflects
incident radiation uniformly in all directions and is considered an ideal reflector. Figure
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5.15 illustrates the complete process, while Figure 5.16 presents the final histogram of
the image, after applying the uniform radiation distribution procedure in all directions.

Figure 5.14: Capture of information from the image calibration panel.

Figure 5.15: Capture of information from the image calibration panel.
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Figure 5.16: Capture of information from the image calibration panel.

• Spectral band alignment

After completing the conversion of the images to radiance and reflectance, it was
essential to align the five spectral bands to allow algebraic operations between them, a
crucial step in obtaining vegetation indices. The alignment of the images was performed
using software built in Python and is an integral part of the workflow developed, based on
the information provided by the MicaSense camera manufacturer. The applied method-
ology consists of three main steps. First, the unwinding of the images was performed
using the built-in lens calibration, with the objective of correcting optical distortions.
This radial calibration counteracts the curvature of the lens, ensuring that the spectral
bands are not distorted. The second step consisted in the transformation between the
bands, where each band is aligned with respect to a reference band; in this case, the
green band (band 4). To achieve this alignment, a homographic transformation (3×3
matrix), capable of handling rotation, translation, scaling and perspective changes, was
applied. This transformation was calculated using the cv2.MOTION_HOMOGRAPHY mode
in the alignment software. Finally, an image pyramid was implemented to optimize the
alignment process. This method consists of reducing the resolution of the images to
several levels, starting with the lowest resolution images, which allows for a quick initial
solution. Subsequently, the results are refined to higher resolution until the alignment is
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complete. In this case, three pyramid levels (pyramid_levels = 3) were used, to ensure
the balance between precision and efficiency. Once aligned, the images were combined
and cropped, removing pixels that did not match in all bands, thus ensuring an accu-
rate and consistent overlay for use in further analysis. Figure 5.17, shows three spectral
bands: Blue, Green and Red. Then, the composition of these three bands (R, G, B) is
shown without applying an alignment process, which allows observing the misalignments
between them. In Figure 5.18, the same three bands (R, G, B) are displayed after having
undergone the alignment process, showing the correction of the initial discrepancies and
achieving an accurate overlapping of the bands.

Figure 5.17: At the top are three multispectral images, the blue (B), green (G) and red
(R) band. The following image shows the unaligned rgb combination
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Figure 5.18: The image shows the composition of R,G,B bands after performing the
alignment process according to the three steps mentioned above.

5.6.3 Vegetation indices used in this study

Vegetation indices (VI) have been widely used in agricultural research to estimate and
monitor the nutritional status of crops, especially the nitrogen and chlorophyll content
(Chungcharoen et al., 2022; Qiao et al., 2022; Verma et al., 2022). Chlorophyll strongly
absorbs energy in the bands centered at 0.45 and 0.67 µm; this is why our eyes perceive
healthy vegetation as green, due to the high absorption in blue and red by the leaves and
reflection in green (Qiao et al., 2022). The nitrogen shortage in crops reduces chlorophyll,
increasing reflectance in the red and giving leaves a yellowish hue. This is exploited by
vegetation indices combining different spectral bands(Tsoulias et al., 2023; Verma et al.,
2022).

In this study, 16 vegetation indices (VI) were selected as characteristic variables
to estimate the nitrogen content of the canopy in pineapple crops. Table 5.3 describe
the vegetation indices implemented with their respective formulas, including the most
common indices related to the foliar nitrogen content (NDVI, NDRE, GNDVI, MACI,
VARI, IPVI), as well as soil-regulated indices such as (EVI, SAVI, OSAVI, ARVI) and
indices related to the chlorophyll content, such as (CVI, SCCCI, TCARI, MCARI, GCI,
RECI). These vegetation indices have previously been used to find the nitrogen content
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in cotton, corn, wheat, rice, and sugarcane crops (Chungcharoen et al., 2022; Mouazen
et al., 2023; Shendryk et al., 2020).
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Removal of Background Noise

Background noise in the multispectral images was removed using an NDVI mask, exclud-
ing elements such as soil, water, and weeds. Non-plant pixels were removed by setting
those with NIR reflectance less than 20% to zero. This ensured that ground noise did
not affect the histograms of the 16 vegetation indices found in the study.

Statistics used in this study

After noise elimination, the ROI region of interest was selected. For this, the 10 pine
cones were selected in each of the treatments (25 regions of interest on each of the four
sampling dates). Figure 5.19 shows the image of the NDRE vegetation index based on
the RGB image. This image is marked in red, which corresponds to the 10 pineapple
clumps, and a label with the treatment number and block at the beginning of the region
of interest is also observed.

After selecting the ROI region of interest, we proceeded to find five statistics: maxi-
mum, minimum, average, standard deviation, and variance.

Ecological Factors

The ecological factors were obtained from the sensors installed in the crop, as well as
from the SPAD value meter and from the manual data records. These variables were
part of the predictor variables used in the machine learning models. The ecological
factors registered with the IoT platforms are described in Table 5.4.
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Figure 5.19: Vegetation index NDRE on RGB image.The image shows the region of
interest, ROI, demarcated in red; the vegetation index statistics used in the predictive
models are calculated on this region. Source: Own image of multispectral image pro-
cessing results.

Table 5.4: Ecological factors recorded with IoT platforms, including environmental vari-
ables, soil variables and plant variables.

Ecological Factor Description

pH pH of each region of interest (ROI)
H soil (%) Soil moisture of each ROI
T soil(°C) Soil temperature of each ROI
T ambient (°C) Ambient temperature of the location
Humidity (%) Relative humidity of the location
Atm pressure (hPa) Atmospheric pressure of the location
Wind speed (m/s) Wind speed of the location
Gust of wind (m/s) Wind gusts of the location
Wind direction Wind direction of the location
Rain (mm) Average rain at the site
Average SPAD SPAD value of chlorophyll of ROI



Chapter 6

Predictive Models

This chapter is devoted to the detailed presentation of the predictive models imple-
mented in this doctoral thesis, which constitute a central piece of the research. The
theoretical foundations, the machine learning methodologies applied, and the data anal-
ysis techniques used to develop and validate each model are described. The models
implemented range from advanced regression techniques to Artificial Neural Network
algorithms, each selected and adapted to optimize the accuracy of nitrogen content
estimation in pineapple crops.

6.1 Correlation analysis

Figure 6.1 shows the correlation matrices of the predictor variables of dates 1 and 4
corresponding to 30/06/2022 and 23/08/2022. On the graph of date 30/06/2022, the
variables that had the highest correlation with it (TN) can be seen. Most of these
correspond to statistical values of multispectral images, of which 14 variables obtained
correlations greater than 60%. The average OSAVI obtained the highest correlation of
around 76%, followed by the maximum OSAVI with 70%, as seen in Figure 6.1.
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Figure 6.1: Correlation matrix of the predictor variables with respect to the nitrogen
value, date one 30/06/2022, and data four 23/08/2022.
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Sampling date 2 corresponding to 27/07/2022 presented the lowest correlation among
the 4 dates sampled. The highest values on this date corresponded to the mean SPAD
value of 64%, followed by soil moisture with 54%. For date 3 corresponding to 05/08/2022,
the highest values were obtained for the mean SPAD with 68%, followed by soil moisture
with 61%. On the last sampling date, corresponding to 23/08/2022, the highest values
correlated with the percentage of (TN) correspond to the vegetation index statistics of
the multispectral images, followed by the SPAD value observed in Figure 6.1. Mean
SCCCI 71.2%, mean NDRE 70.44%, mean GNDVI 70.14%, and mean SPAD 69.34%.

6.2 Dimensionality reduction

The dataset used as predictor variables to estimate the amount of nitrogen corresponds
to 80 multispectral predictors resulting from the statistical values of the 16 vegetation
indices plus 4 ecological factors including SPAD values for a total of p=84 predictors and
n=50 observations. Since p>n, this creates a high-dimensional regression environment
(Shendryk et al., 2020). To eliminate the high dimensionality, a principal component
analysis (PCA) was used. Using PCA, predictors were reduced to a few variables, which,
in turn, allowed reducing multicollinearity. In Figure 6.2, it can be seen that for date 1
corresponding to 30/06/2022, the first five principal components explain about 60% of
the variables. By using only the first five principal components as predictors, a notable
reduction in the dimensionality of the data was achieved, while capturing most of the
variability present. It is important to note that estimating foliar nitrogen content in
tropical pineapple crops, where the four seasons interact, using images, sensors, and
SPAD values, presents a challenge due to the high variability of the data caused by the
interaction of multiple ecological and environmental factors. In this context, reaching
a level of explained variance of approximately 60% can be considered significant and
useful to understand the relationships between variables and nutrient concentration in
pineapple leaves. However, it is essential to emphasize that the percentage of variance
explained alone does not provide a complete assessment of the quality of the models.
Other aspects, such as the validity of the assumptions of the models, the robustness of
the predictions, and the replicability of the results, must be considered to determine the
purposes of this study. On the other hand, when analyzing the five most weighted vari-
ables in the first principal component of the data, in order, were the OSAVI vegetation
index, GNDVI, RECI, SPAD values and the ARVI index. This information is also very
relevant, as it provides insight into the most effective vegetation indices for estimating
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nitrogen in pineapple leaves.

Figure 6.2: Explanation of variance according to the number of principal components
date 30/06/2022.

6.3 Model construction and evaluation

Nine regression models were used to predict nitrogen levels in the pineapple crop from
the information of the five principal components. The algorithms used included the
following: Linear Regression, Support Vector Machines (SVM), Decision Tree Regres-
sor, Random Forests Regressor, XGB Regressor, AdaBoost Regressor, Lasso Regressor,
Ridge Regressor, and MLP Regressor. To assess the effectiveness of these models, two
performance metrics were used: the determination coefficient R2 and the root mean
squared error (RMSE). The coefficient R2 reflects the amount of variation in the re-
sponse variable explained by the independent variables X in the linear regression model.
A higher value of R2 indicates a better explanation of the variability by the linear regres-
sion model. However, RMSE can be considered as the standard deviation of unexplained
variance and is expressed in the same units as the response variable. Lower RMSE values
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indicate a better fit to the model.

R2 = 1 − SSRES

SST OT

= 1 −
∑

i (yi − ŷi)2∑
i (yi − ȳ)2 (6.1)

where:
SSRES is the sum of squared residuals (i.e., the sum of squared errors)
SST OT is the total sum of squares (i.e., the sum of squared deviations from the mean)

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6.2)

Where: yi = present value or current value, ŷi = predicted value, n = sample size.

6.3.1 Models that obtained the highest metrics

XGBRegressor is a supervised learning algorithm that belongs to the family of gradi-
ent boosting techniques. It is a part of the XGBoost (Extreme Gradient Boosting)
framework, which is known for its efficiency, speed, and performance in predictive mod-
eling tasks, particularly in regression and classification problems (Ennaji et al., 2023).

XGBRegressor works by combining the predictions of several weak learners, typically
decision trees, in an iterative manner. In each iteration, the algorithm trains a new
decision tree that attempts to correct the errors made by the previous trees. This
process is called boosting. The key idea is that by adding multiple weak learners, the
final model can minimize the residuals (errors) of the previous predictions and improve
accuracy.

The main advantages of XGBRegressor include:

• Regularization: XGBRegressor includes L1 (Lasso) and L2 (Ridge) regulariza-
tion terms, which help in reducing overfitting by penalizing complex models.

• Handling missing data: The algorithm can automatically handle missing data
by learning the best direction to follow in the decision trees when encountering
missing values.

• Parallel computation: XGBRegressor supports parallel processing, allowing
faster computation, especially when dealing with large datasets.
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• Gradient boosting: It minimizes the loss function by iteratively fitting decision
trees to correct the errors of previous models, resulting in a powerful ensemble
model.

• GPU support: XGBoost has built-in support for using GPUs to speed up train-
ing, which is especially beneficial for large datasets.

Overall, XGBRegressor is widely used due to its scalability, flexibility, and ability to
deliver superior performance in both small and large datasets. It is commonly applied in
fields such as finance, healthcare, and marketing, where predictive modeling is essential.

XGBoost and Learning/Validation curves

The XGBRegressor learning curve shows a model that fits the training data well and
improves its generalization ability as more training samples are provided. The curves
tend to converge, indicating a good balance between bias and variance. The model
benefits from adding more data, but after a certain point, the marginal gain decreases,
suggesting that the model is reaching its limit in terms of learning. In Figure 6.3 shows
the XGBRegressor Learning Curve.

Figure 6.3: XGBRegressor Learning Curve
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Hardware and model training parameters

The following is a list of the details of the hardware used to train the models.
The XGBRegressor model was trained using the following hardware:

• Processor: Intel(R) Xeon(R) w5-3433 1.99 GHz

• RAM: 64.0 GB

• Operating System: Windows 10 and 11 Professional

• GPU: NVIDIA RTX A4500

• Programming Language: Python 3

• Graphical User Interface (GUI) used: Anaconda Navigator

The training time for the XGBRegressor model was 0.1447 seconds.

6.3.2 MLPRegressor Model (Multilayer Perceptron - MLP)

The MLPRegressor is a multilayer perceptron (MLP) model designed for regression
tasks. MLPRegressor trains iteratively since at each time step the partial derivatives
of the loss function with respect to the model parameters are computed to update the
parameters. It can also have a regularization term added to the loss function that
shrinks model parameters to prevent overfitting. In the provided code, the following
configuration is used:

• Hidden layers: A single hidden layer with 100 neurons is used.

hidden_layer_sizes=(100)

• Activation function: The selected activation function is identity, which is a
linear activation function f(x) = x. This option is unusual for neural networks as
it does not introduce non-linearity. However, it can be useful in certain regression
problems.

activation=’identity’
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• Optimization algorithm: The optimizer used is Adam, which is a stochastic
gradient-based optimization algorithm. Adam is popular due to its efficiency on
large datasets and high-dimensional problems.

solver=’adam’

• Regularization parameter α: This parameter controls the L2 penalty to reduce
overfitting. In this case, it is set to α = 10−4.

alpha=1e-4

• Maximum iterations: Up to 10,000 iterations are allowed to ensure that the
algorithm has enough time to converge.

max_iter=10000

• Stopping criterion: Training stops if the improvement in error is less than 1 ×
10−4 over two consecutive iterations.

tol=1e-4

MLPRegressor and Learning/Validation curves

The MLPRegressor learning curve shows a constant low training error, indicating low
bias. The validation error decreases with more data, suggesting that the model bene-
fits from a larger training set and generalizes well. The small shaded area reflects low
variability, which means that the model is stable and consistent. In this sense, MLPRe-
gressor balances fit and generalization well, showing low bias and controlled variance.
In Figure 6.4 shows the MLPRegressor Learning Curve.
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Figure 6.4: XGBRegressor Learning Curve

The hardware used for training is the same as that used for XGBRegressor and
training time for the MLPRegressor model was 1.515 seconds.

6.3.3 Foliar Nitrogen Prediction

Due to changes in leaf physicochemical composition, biomass, height, diameter and noise
caused by factors such as weeds and water during the vegetative stage of the crop, it was
necessary to implement predictive models for each of the four observation dates. The
five main components were used as predictor variables and (TN) was used as the variable
to be predicted. The approach used to train and validate the regression models involved
dividing the data into 80% for training and 20% for validation. To ensure randomization
of the data, the random_state parameter of scikit-learn’s train_test_split function
was used. In addition, both training and validation were performed using cross-validation
to compare performance, and the results obtained both ways were very similar. This
approach ensures a robust and reliable evaluation of the performance of the models,
which is crucial for their application in real situations.

On the first sampling date, the XGB Regresor algorithm achieved a R2 of 86.98%,
which was the highest metric among the four observation dates, as detailed in Table 6.1.
It should be noted that the nine regression models implemented obtained the R2 metrics
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above 78% in this initial sampling phase. On date 2, corresponding to 26/07/2022, the
lowest performance metrics were obtained among the four sampled dates. In the date
2 column of Table 6.1, it can be observed that the MLP Regressor algorithm achieved
the highest R2 with 59.11%. On this second date, five algorithms obtained R2 metrics
above 50%, but no model reached R2 higher than 60%.

On date three, corresponding to 05/08/2022, the algorithm that showed the best
performance was the XGB regressor, which obtained an R2 of 68%. Finally, in the last
column of Table 6.1, corresponding to the date 23/08/2022; it can be observed that the
algorithm with the highest R2 was the MLP Regressor with a R2 of 70%. Likewise, eight
of the nine implemented models reached R2 higher than 65
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Figure 6.5: Images of the sample spaces of the four sampling dates. Date 1 corresponds
to images from 30/06/2022; date 2 on 26/07/2022; date 3 on 05/08/2022 and date 4 on
23/08/2022. Source: Own image of multispectral image processing results.

In Figure 6.6, the algorithms that obtained the highest R2 on each of the four sam-
pling dates are shown. These graphs present the current values of (%N) along with
the values predicted by the algorithms. In the upper left corner, the XGB Regressor
algorithm, which obtained the highest R2 on the first sampling date, is detailed. In
the upper right corner, the MLP Regressor algorithm, which obtained the highest R2

on the second date, is shown. In the lower left corner, we observe the XGB Regressor
algorithm, which obtained the highest metric on the third date, and in the lower right
corner, we observe the plot of the last sampling date with the MLP Regressor algorithm
that obtained the highest R2.
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Figure 6.6: Behavior of predicted versus current values of (TN) percentage of leaf area
during the four sampling dates.

Explanation of the metrics of one sampling date from the other two dates

The general purpose of these tests was to evaluate the generality and explanatory capac-
ity of the regression models from the information of the other sampling dates, excluding
date number 2 due to its lower correlation with the percentage of (TN). However, this
omission does not compromise the overall validity of the results; in contrast, it provides
a valuable guideline for future research in this type of crop. It was observed that the
abundant presence of grass and weeds on date 2 introduced noise in the measurements,
which makes data processing difficult due to the similarity in color and shape between
pineapple leaves and grass, which is evident in Figure 6.6 and in the lower correlation
values presented in Table 6.1. Addressing this issue is discussed in depth in the dis-
cussion session section of this Thesis. Based on the above, in order to evaluate the
generality and explanatory power of the regression models using the information from
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the two remaining sampling dates, the following process was implemented. 1. Training
and validation with data from the same date: Initially, the models were trained and vali-
dated with data corresponding to the same sampling date. 2. Evaluation with data from
other dates: Models trained in stage 1 were subsequently evaluated with all data from
the other two remaining dates. This allowed us to evaluate the ability of the models to
generalize to data not seen during training. The results of this evaluation are presented
in Table 6.1.

At the top of this table is the sampling date used for training, called the "Train Date".
In the next row, there are three columns with the data that were used to perform the
tests, called "Test Date". In these columns, one is shaded gray and corresponds to the
R2 results obtained with the training and test data from the same date, where 80% was
used for training and 20% for validation. The other two columns show the R2 obtained
through training with the entire data set and validation with the data from the other
two dates mentioned.

In the Train Date 1 column, the XGBRegressor algorithm obtained the highest R2

values on the three validation dates; however, these values decrease as the validation
dates move away from the training date. Regarding the Train Date 3 column, XGBRe-
gressor maintains the highest metric value when the models are trained and validated
with data from the same date. However, when validation was performed with data
from date 1, AdaBoostRegressor obtained the highest value and when validation was
performed with data from date 4, LassoRegressor and LinearRegression obtained the
highest metrics. The results show higher metrics when the validation data are closer to
the training date. Finally, in the column in Train Data 4, when validation was performed
with data from date 1, a metric of 0.35 was obtained in three algorithms, LassoRegres-
sor, RidgeRegressor, and LinearRegression. When validation was performed with data
for date 3, the MLPRegressor obtained the highest metric. On this date, it can also
be seen that the performance metrics are higher when the validation is performed with
data from the same date or data from nearby dates.
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Chapter 7

Discussion

7.1 Implications of the results for the management
and improvement of the pineapple crop

Pineapple plant nutrition is critical for growth, yield, and fruit quality. Nitrogen, in
particular, is an essential element for healthy plant development, promoting high growth
rates and contributing to optimum yields (Mohsin et al., 2020). For growers, accurate
application of nutrients at the right time and place is a priority. In this regard, the results
of this research indicate the effectiveness of the proposed models to predict the foliar
nitrogen content in pineapple leaves during the vegetative stage of the crop. This finding
is of great relevance for nutrient management programs, since it allows the application
of fertilizers to the specific needs of the crop and soil in real time. In this way, the use
of resources is optimized and the environmental impact is minimized, contributing to a
more sustainable agriculture.

An example of practical application of these models is the generation of dynamic
fertilization plans, which can be generated from real-time predictions of foliar nitrogen
content. These dynamic plans would adjust nitrogen doses to the specific needs of each
crop zone, avoiding uniform and static applications such as the current ones (three
stages and 15 biweekly applications prior to flower induction). This strategy would
optimize the absorption of nutrients by plants, reducing environmental impact, input
costs, and ultimately improving crop yield. A relevant aspect to highlight in this study
is the monitoring capacity of the pineapple leaf, which varies between 45 and 50 leaves,
with dimensions of about one meter in height and width in adulthood, which facilitates
its evaluation through images. However, the literature in this field is scarce, and in
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the particular case of Colombia, it is attributed to the late introduction of the MD2
pineapple variety in the country in 2004 and to the continuation of its exploitation with
the application of technology developed abroad.

7.2 Multisensor data fusion and machine learning
for N status diagnosis in pineapple crop

It is important to note that, in order to develop these noninvasive nutrient monitoring
techniques, proper weed and grass management is essential. Since the MD2 pineapple
plant (A. comosus), being a low herbaceous perennial, the lack of weed control can
cause confusion between weeds and pineapple leaves in the captured images. Although
multispectral images offer high spatial resolution and more information about crop char-
acteristics than RGB images, they also present greater background noise due to shadows,
weeds, and waterlogging, among others. Therefore, it is crucial to consider strategies
to reduce this noise prior to analysis. In this study, background noise removal was per-
formed by applying a filter with the NDVI vegetation index. This process removes pixels
that do not belong to plants, setting to zero those where the NIR reflectance is less than
20%. However, this technique has limitations in that it does not differentiate between
weeds with a similar color to pineapple leaves, which can lead to pixel confusion as ob-
served in the Figure 6.5 (Date 2). The results indicated that the XGBoost Regressor
and MLP Regressor algorithms showed the best metrics for predicting nitrogen con-
tent in the pineapple crop. However, it is important to note that the effectiveness of
these models is closely linked to the quality of the multispectral images and their proper
processing, as previously mentioned. The superiority of the yield metrics on the first
sampling date (Date 1) can be explained by several reasons. First, the crop was only
a few months old and the pineapple leaves were small, which helped to reduce noise
in the pineapple canopy images. Second, the soil was free of weeds and waterlogging,
which also helped minimize interference. These factors allowed the vegetation indices to
more accurately capture nitrogen content. On this date, an R2 of 86.98% was achieved
with the XGB regressor algorithm, which is a high performance metric considering the
complexity of this type of open field agricultural system. On the second sampling date,
(date 2), the lowest correlation was observed between the predictor variables and the
percent (TN). This pattern was reflected in the performance metrics, where the MLP
Regressor algorithm achieved an R2 of 59.11%, being the highest for that date, but
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the lowest among the four dates sampled. A possible explanation lies in the presence
of weeds and waterlogging in the crop on that date, which made it difficult to extract
the weeds in the image processing due to their similarity in color to pineapple leaves.
On the third date, the XGB Regressor algorithm achieved an R2 of 68%, while, on the
fourth date, the MLP Regressor obtained an R2 of 69.41%. In contrast, the integration
of information from multiple sensors, including multispectral imagery, ecological factors
obtained with IoT sensors, and SPAD chlorophyll values, demonstrated an increase in
predictive model efficiency of approximately 7% compared to models based on images
alone. One factor that may have decreased the performance of the predictive models is
the sample size (n=100) relative to the large number of predictors (p=84). This situation
may negatively affect the accuracy of the models. To address this problem, principal
component analysis (PCA) was employed to reduce the dimensionality to only five prin-
cipal components. While PCA can be useful in reducing noise and multicollinearity,
there is also the possibility that it may have decreased predictive power by removing
relevant information contained in the original variables.

7.2.1 Comparison of performance metrics with related work

It is important to note that the results of the performance metrics obtained in this work
exceed those of other research that has used similar methodologies for data collection,
processing, and model development for nitrogen estimation in other crops. An example
of this is the work of (Shendryk et al., 2020) on sugarcane crops. In this study, a complete
randomized block design with five nitrogen levels was implemented and 160 observations
were obtained (40 observations in four time periods). Using the principal components
of the vegetation indices derived from multispectral images, a R2 value of 0.57 was
achieved for nitrogen prediction. Similarly, (Liang et al., 2023), addressed the estimation
of nitrogen status in corn crops. Their experiment was based on a split-plot design with
six nitrogen levels. For this, they used multispectral data collected with an unmanned
aerial vehicle (UAV) and obtained R2 values ranging from 0.64 to 0.79. For their part,
(Wang et al., 2023b) combined vegetation, color and texture indices with hyperspectral
parameters and machine learning methods to estimate nitrogen concentration in rice
stems and leaves. In this case, R2 values of 0.50, 0.51 and 0.63 were achieved.
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7.2.2 Analysis with respect to R2 and RMSE performance met-
rics

In the second chapter of the Systematic Literature Review, an analysis of the machine
learning techniques used in the estimation of nitrogen content in crops was carried out.
In this context, it is observed that models based on machine learning techniques, such
as Random Forests (RF), Support Vector Machines (SVM), Artificial Neural Networks
(ANN) and Multilayer Neural Networks (MLP), have shown outstanding performance,
with values of R2 between 0.64 and 0.99. However, most studies agree on an average R2

of 0.75, attributed to this consistent trend to the inherent complexity of agroecological
and environmental systems, where various variables interact in different compartments
(Dong et al., 2022; Fan et al., 2022a; Jiang et al., 2023; Wang et al., 2023b). In this
research study, the yield metrics R2 of 86.98% were achieved, as well as others close to
70%, except for the sampling date number two. These results are within the average
R2 mentioned in chapter 2 of the paper. It is important to note that the R2 metrics
obtained in this investigation correspond to current values achieved only with the fit-
ting of hyperparameters and the reduction in dimensions. No outlier eliminations were
performed, since we sought to obtain metrics that reflect the reality of the agroecolog-
ical and environmental systems, avoiding statistical adjustments that could artificially
increase the R2 metrics, but would distort the true nature of the systems studied.



Chapter 8

Conclusions and Future Work

This chapter summarizes the main contributions and advances achieved throughout the
research presented in this thesis. It details the results obtained in the estimation of
the optimum nitrogen density in MD2 pineapple crops, using non-invasive techniques
that integrate machine learning with data obtained from multispectral images and field
sensors. In addition, the implications of these findings in the field of precision agriculture
are discussed and several lines of future research are proposed that could expand and
deepen the knowledge acquired, exploring new applications, technological improvements
and effective implementation strategies.

8.1 Conclusions

The results obtained confirm that it is feasible to estimate the required amount of ni-
trogen in pineapple crops, especially during the early phenological stages, with a high
degree of precision. Using noninvasive techniques, the accuracy of the estimation of
86. 98% was achieved employing advanced machine learning algorithms, including mul-
tilayer neural networks and extreme gradient boosting (XGBoost) algorithms. These
methods were shown to be optimal for these tasks, allowing accurate and efficient esti-
mation, which represents a significant advance in precision agriculture and agronomic
management of the pineapple crop.

• In order to identify the main parameters, variables, and information necessary
for the construction of predictive models of nitrogen demand in pineapple crops,
a systematic review of the literature was carried out. This exhaustive analysis
allowed synthesizing the key factors used in various scientific investigations to
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estimate foliar nitrogen content using noninvasive techniques. During the review,
different relevant articles were analyzed, identifying an average R2 coefficient of
determination of 75% in similar projects, a figure that aligns with field standards
and validates the methodological approaches used. This systematic review not
only served to consolidate the theoretical basis of the research but also guided
the selection and definition of the most relevant variables and statistical analysis
methods used in this thesis.

• Over a period of six months, crop leaf area data were collected through mul-
tispectral imaging, sensor measurements of ecological factors, and SPAD values
indicating leaf chlorophyll content. This experimental design also explored nitro-
gen variability across five distinct treatments. Statistical analyses of the results are
especially significant on the last two sampling dates, revealing p-values of 0.1476,
0.0685788, 0.0022363 and 0.00018 for the four dates, respectively. The values on
the last two dates indicate statistically significant differences, confirming that the
data on which the models are trained have significant variations in nitrogen content
among treatments.

• The results validated the effectiveness of these techniques, with special attention to
the Extreme Gradient Boosting (XGB) and Multilayer Perceptron (MLP) regres-
sion algorithms, reaching coefficients of determination R2 of 86.98%. In addition,
it was shown that the models can generalize and explain the results when using
data from dates other than the training dates. However, the metrics decrease as
the validation data moves away from the training date. Despite this, the XGB
Regressor algorithm remained stable and provided the highest metrics.

• The presence of green weeds similar to pineapple leaves generates interference in
the images and reduces the effectiveness of the predictive models. To avoid this
problem, it is essential to capture images when the crop is free of weeds and grasses.
This ensures the generation of cleaner images and allows for better correlation with
leaf nitrogen content.

• The great advantage of these methodologies lies in their ability to capture spatial
and temporal variability in crop nutritional status, something that conventional
laboratory analysis cannot offer due to their static nature and long turnaround
times. By avoiding the typical weeks-long delays in obtaining laboratory results,
growers can respond more quickly to the changing needs of the crop, resulting in
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more efficient use of resources and reduced risk of nitrogen leaching into the soil
and nearby water bodies.

• The capacitive sensor on parallel plates has a lower susceptibility to variations
in the physicochemical composition of the soil, such as salinity and conductivity,
compared to resistive sensors. This is because the capacitive measurement principle
is based on the dielectric constant, which is less influenced by these factors than
the electrical resistance. In addition, the integration of a soil temperature sensor
into the capacitive sensor design allows temperature variations to be compensated
for, which significantly improves the accuracy of the measurement. In contrast,
resistive sensors are highly sensitive to salinity and temperature, which can lead
to inaccurate measurements.

8.2 Future Work

The results of this research highlight the potential of machine learning techniques and the
combination of data from various sources, such as multispectral images, environmental
sensors, soil sensors, and plant sensors, such as SPAD chlorophyll content values, to
estimate the nitrogen content in MD2 pineapple crops. Future research should focus
on integrating thermal, hyperspectral and LiDAR sensors to complement multispectral
data and improve prediction accuracy; developing dynamic and adaptive fertilization
models based on real-time data to optimize resource use and minimize environmental
impact; and conducting extensive field trials in diverse geographical locations in order
to better generalize results. In addition, it is crucial to conduct temporal analyses and
longitudinal studies to optimize the timing of nutrient applications and to assess the
economic and environmental benefits of these techniques. It is also important to expand
the research to include the estimation of other essential nutrients, such as phosphorus
and potassium, for more comprehensive nutrient management strategies. These lines of
research will advance precision agriculture, making it more sustainable and beneficial to
the environment and the farming community.



Appendix A

Annexes Chapter 2

A.1 Matrix of the results of the systematic liter-
ature review article searches. They are orga-
nized by tables according to the topics of the
four research questions.
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A.1 Matrix of the results of the systematic literature review article searches. They are
organized by tables according to the topics of the four research questions. 111
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A.1 Matrix of the results of the systematic literature review article searches. They are
organized by tables according to the topics of the four research questions. 113
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Appendix B

Publications and Patents

B.1 Invention Patents

Application for Patent of Invention

• Title of the Invention: Capacitive sensor of parallel plates to determine humid-
ity in soils.

• File No. NC2022/0014133. Super Intendencia de Industria y Comercio (Super-
intendence of Industry and Commerce).

• Filing Date: September 30, 2022

• Type of filing: National Patent of Invention

• Applicant: Centro de Desarrollo Tecnologico e Innovacion en TIC NetworkTIC
S.A.S, University of Antioquia UdeA, Universidad Pedagogica y Tecnologica de
Colombia UPTC.

• Inventor: Jose Edinson Aedo Cobo, Nelson Barrera Lombana, Jorge Enrique
Chaparro Mesa.

• Funding: Ministry of Science, Technology and Innovation MINCIENCIAS through
the "Convocatoria Crearlo no es Suficiente". National call to encourage patent
protection of I+D+i results that promote economic empowerment of the business
sector.
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B.2 Publications

Published article

• Title: Machine Learning for estimation of leaf nitrogen content in pineapple crops
using multispectral imaging and Internet of Things (IoT) platforms.

• Authors: Chaparro Mesa Jorge Enrique, Felipe Lumbreras Ruiz, Jose Edison
Aedo.

• Journal: Journal of Agriculture and Food Research. Online ISSN: 2666-
1543.

Subject areas: Agricultural and Biological Sciences (General).

Link Journal: www.sciencedirect.com/journal/journal-of-agriculture-and-food-research
Link SJR: https://www.scimagojr.com/journalsearch.php?q

• Year: 2024

Published Scientific Article

• Title: Remote Terminal Module for data acquisition, monitoring and control of
Agroindustrial processes - AgriculTIC.

• Authors: Chaparro Mesa Jorge Enrique, Barrera Lombana Nelson, Leon Socha
Fredy.

• Journal: Ingeniare. Chilean Engineering Journal. ISSN 0718-3291 Printed
Version. ISSN 0718-3305 Online version.

Link to the Journal: https://ingeniare.uta.cl/?numid=172. Link SJR:

https://www.scimagojr.com/journalsearch.php?q=11600154153tip=sidexact=no

• Year: 2021

https://www.sciencedirect.com/science/article/pii/S266615432400245X
https://www.scimagojr.com/journalsearch.php?q=21101044948&tip=sid&clean=0
https://ingeniare.uta.cl/?numid=172
https://www.scimagojr.com/journalsearch.php?q=11600154153&tip=sid&exact=no H-INDEX 15


Appendix C

Theoretical and technical
information patent parallel plate
capacitive humidity sensor

The parallel plate soil moisture sensor has a capacitance variation as a function of the
variation of the dielectric constant, and this in turn varies as a function of the water
concentration between the plates, in this particular case, the area of the plates and
the distance between them remain constant; thus, the variation of the capacitance as a
function of the parameters involved can be expressed as shown in Equation C.1.

C = k∗εo
∗A

d
(C.1)

As mentioned, C is the capacitance in farads, A is the area of the plates in square
meters, d is the distance between the plates in meters, ϵ0 is the constant of dielectric
vacuum permittivity, and k is the relative dielectric permittivity of the material between
the plates, which varies as a function of the water concentration in the latter.

To determine changes in capacitance and, indirectly, changes in soil moisture, an
astable multivibrator circuit was designed using the LM555 integrated circuit. This
component, introduced by Signetics in the 1970s, is still widely used today. The con-
structed circuit is shown in Figure C.1.

Figure C.2, it can be seen that the capacitor C is charged by the resistors R1 and
R2, in this case the transistor T1 is represented by a switch that will be in open state
so it will not operate; the differential equation that represents this circuit can be seen
in Equation C.2.
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Figure C.1: Astable multivibrator schematic used in the design of the parallel plate
sensor circuit designed to measure soil moisture. Figure from (Ennaji et al., 2023)

Figure C.2: Equivalent capacitor charging circuit C. Figure from (Ennaji et al., 2023)

V cc = (R1 + R2)∗i(t) + 1
C

∫ t

0
i(τ)∗dτ (C.2)

Solving differential Equation C.2, considering that the initial charge of C is zero,
yields the solution given in Equation C.3.

i(t) = V cc

(R1 + R2)e−t/(R1+R2)∗C) (C.3)

Figure C.2, shows that the current is uniform throughout the circuit, so i(t) in
equation three describes the current through capacitor C, which in this case is the
capacitor of the parallel-plate soil moisture sensor. In addition, the voltage across a
capacitor is given by Equation C.4.
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V c(t) = 1
C

∫ t

0
i(τ)∗dτ (C.4)

Since i(τ) is the current through the capacitor, replacing equation three in equation
four gives an expression for the charge on the capacitor when the bistable is in set mode,
operating as described in Figure C.2. Thus, the voltage across the capacitor Vc(t) is
expressed as in Equation C.5.

V c(t) = V cc∗
[
1 − e−t/((R1+R2)∗C)

]
(C.5)

When the voltage across the capacitor Vc(t) reaches V cc/3, according to the schematic
in Figure C.3, the two comparators will produce low voltages, bringing the biconductor
to a state without change.

Figure C.3: Internal construction LM555 Integrated Circuit. Figure from (Ennaji et al.,
2023)

The output of the circuit will remain high and the transistor will remain in the cut-off
state. This time interval, from when the circuit is energized until the voltage reaches
V cc/3, is called t1 (time 1). After that, the capacitor will continue to charge up to
2V dc/3. When the voltage across the capacitor reaches this value, a total time called t2
will have elapsed. At this point, according to the schematic in textcolormycolorFigure
C.3, comparator C1 will produce a high voltage and C2 a low voltage, which will reset
the bistable, causing the transistor to go into saturation, discharging the capacitor and
causing the output of the subsystem to take a low logic value. This new equivalent
circuit is shown in Figure C.4.
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Figure C.4: Equivalent capacitor discharge circuit C. Figure from (Ennaji et al., 2023)

Based on the above, Figure C.4, shows that the capacitor, with an initial voltage
condition equal to 2V dc/3, will now discharge through resistor R2, while the source
is connected to ground through R1. For this reason, R1 cannot be a low resistance,
as it would drain an excess charge to the ground, which could cause a short circuit.
The differential equation describing the capacitor discharge voltage Vc(t) is shown in
Equation C.6.

V c(t)
R2 + C

d[V c(t)]
dt

= 0 (C.6)

Figure C.5: Voltage signals involved in astable multivibrator. Source: Own elaboration.

According to Figure C.5, the capacitor charging time between V cc/3 and 2V cc/3,
called TON, is given by the difference t2− t1. The TOFF time, which is the interval during
which the capacitor is discharged, is given by the difference t3−t2. Furthermore, it must
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be considered that the output frequency of the monostable multivibrator is defined by
Equation C.7.

f = 1
TON + TOF F

(C.7)

For the calculation of t1, Equation C.5, describing the capacitor charge is used,
thus t1 is given when the voltage across the capacitor reaches the value of V cc/3, thus,
replacing it, we obtain Equation C.8.

V cc

3 = V cc ∗
[
1 − e−t′

1((R1+R2)∗C)
]

(C.8)

Finally, from Equation C.7, it is possible to calculate the frequency of the astable
multivibrator circuit from the capacitance of the parallel plate capacitive soil moisture
sensor, this synthesis is shown in Equation C.9.

f = 1
ln(2) ∗ (R1 + 2 ∗ R2)∗C

(C.9)

As can be seen, there is a non-linear relationship between frequency and capacitance.
The values of R1 and R2 are arbitrary but constant, therefore, the frequency will be a
function of the capacitance variation only. This capacitance variation depends on the
dielectric constant of the capacitor, which varies with the water concentration between
the plates of the parallel plate soil moisture sensor.
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