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Abstract 

In this paper, k-linear representations of posets are used to define 
lattice-based schemes of visual cryptography for color images. 
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1. Introduction 

Visual cryptography is a kind of cryptography where the decoding 
process only requires the use of the human visual system without any special 
computation. This kind of cryptography was introduced by Naor and Shamir 
in [8]. In this case, a secret is shared between a group of n persons by giving 
to each of them an image (called shadow) with no information about the 
secret, such images are printed onto a transparency in such a way that the 
only way to recover the secret is by stacking the transparencies all together 
[2, 3]. 

Naor and Shamir analyzed the case of k out n or ( )nk, -threshold visual 

cryptography schemes (TVS), in which the secret image is visible if and only 
if any k transparencies are stacked together. Soon afterwards, this set up was 
generalized by Blundo et al. [1] Droste [5] and Klein and Wessler [6]. 

Tsai et al. and Feng et al. proposed sharing methods for multiple secret 
images in [22] and [13] via XOR computing for embedding and extracting 
images, and Lagrange’s interpolation, respectively, [10]. According to Shyu 
et al. [20], Wu and Chen might be the first researchers to consider the 
problem of sharing two secret images in two shares in visual cryptography 
[23]. Afterwards, Shyu et al. [20] proposed a generalization of the work of 
Wu and Chen, actually, they defined a visual secret sharing scheme to 
encode more than two secrets. 

Nakajima and Yamaguchi [7] introduced the use of natural images in 
schemes of visual cryptography (see Figure 1), besides Ross and Othman 
[18] applied gray-level extended visual cryptography schemes to preserve the 
privacy of digital images stored in a central database. 

We also recall that some visual secret sharing schemes (VSSS) have  
been introduced by using some mathematical structures. For instance, 
Cañadas et al. [3] introduced a visual cryptography scheme with a special 
share 0T  containing sets of nested images, all secrets can be revealed by 

superimposing some transparencies to this fixed share. These authors also 
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have used some properties of k-linear maps to generate schemes of multiple 
secret sharing. 

 

Figure 1. Example of a Nakajima’s ( )2,2 -scheme. In this case, shadows S1 

(Dog) and S2 (Pyramid) are used to encrypt the original image (Cat). 

In 1998, Koga and Yamamoto [17] proposed a lattice-based TVS for 
color images, in this case pixels are treated as elements of a suitable lattice S 
and the stacking process is defined as an operation between elements of the 
lattice, according to them the commutative and associative laws of such 
operation allow to ( )nk,  VSSS to decrypt k shares by stacking up of all 

them in an arbitrary order. Permitting the existence of inverses for all Ss ∈  
leads to pathological VSSS for example, stacking a black subpixel with 
another subpixel yield to a white or transparent subpixel, finite lattices           
are one of the simplest structures that meet these requirements. Under         
these circumstances we generalize this kind of TVS by using k-linear 
representations in such a way that the VSSS is completely defined by the 
orbits defined by some admissible transformations between columns and 
rows of a matrix representation. 
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This paper is organized as follows: Basic notations, facts, and definitions 
are included in Section 2, the main results of this paper are given in Section 3 
actually in this section, we interpret visual cryptography schemes as some 
matrix representations of some color-lattices. Finally, in Section 4, we give 
some concluding remarks. 

2. Preliminaries 

In this section, we introduce basic definitions, and notations to be used 
throughout the paper [1-5]. 

2.1. Visual cryptography schemes 

A visual cryptography scheme (VCS) is based on the fact that each pixel 
of an image is divided into a certain number m of subpixels. This number m 
is called the pixel expansion of the image. If the number of black subpixels 
needed to represent a white pixel in an image is l, and the number of black 
subpixels needed to represent a black pixel is h, then we call the number 

m
lh −=α  the contrast of the image [2, 3]. 

Here we present the definition of a VSSS according to Cañadas et al.        
[2, 3, 12]. 

Formally, let { }n...,,2,1=P  be a set of elements called participants 

and let P2  denote the set of all subsets of .P  Let P2Qual ⊆Γ  and ⊆ΓForb  

,2P  where .ForbQual ∅=ΓΓ ∩  Members of QualΓ  ( )Forb,lyrespective Γ  are 

called qualified sets (respectively, forbidden sets). The pair ( )ForbQual , ΓΓ  is 

called the access structure of the scheme [12]. 

( )ForbQual , ΓΓ  is an access structure on a set of n participants. Two 

collections (multisets) of mn ×  Boolean matrices 10, CC  constitute a visual 

cryptography scheme with pixel expansion m if there exist integers l and h 
such that lh >  satisfying: 
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(1) Any qualified set { } Qual21 ...,,, Γ∈= piiiX  can recover the shared 

image by stacking their transparencies (i.e.,  for any ,0CM ∈  the “or” of 

rows piii ...,,,, 21w  satisfies ( ) ,hmwH −≤w  whereas, for any ,1CM ∈  

it results that ( ) ,hmwH −≥w  where ( )wHw  is then Hamming weight of 

).w  

(2) Any (forbidden) set { } Forb21 ...,,, Γ∈= piiiX  has no information 

on the shared image (i.e., the two collections of tD  matrices with { }1,0∈t  

obtained by restricting each mn ×  matrix in tC  to rows piii ...,,, 21  are 

indistinguishable in the sense that they contain the same matrices with the 
same frequencies). 

Several visual cryptography schemes have been realized by using two 

mn ×  matrices, 0S  and 1S  called basis matrices. The collections 0C  and 

1C  are obtained by permuting the columns of the corresponding basis matrix 

[12]. 

In [12], it is described a VCS with perfect reconstruction of black pixels 
(where all the subpixels associated in a reconstructed image with a black 

pixel are black), in this case, for ,...,,2,1 qi =  let ( )ii
ForbQual , ΓΓ  be an 

access structure on a set P  of n participants. If a participant P∈j  is not 

essential for the ith structure, it is assumed that ij ForbΓ∉  and that j does not 

receive any share. Suppose there exists a ( )ii
ForbQual , ΓΓ -VCS with a pixel 

expansion im  and basis matrices 0
iS  and ,1

iS  for ....,,2,1 qi =  The basis 

matrix ( )resp.,10 SS  of a VCS for the access structure ( ),, ForbQual ΓΓ  

where ∑
=
Γ=Γ

q

i

i

1
QualQual  and ∩

q

i

i

1
ForbForb

=
Γ=Γ  is constructed as the 

concatenation of some auxiliary matrices ( ),resp.,ˆˆ 10
ii TT  for each 

....,,2,1 qi =  Such matrices are obtained as follows: for each ,...,,2,1 nj =  
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the jth row of ( )resp.,ˆˆ 10
ii TT  has all ones as entries if the participant j is         

not essential for ( ),, ForbQual
ii ΓΓ  otherwise it is the row of ( )resp.,10

ii SS  

corresponding to participant j. Hence, 00
2

0
1

0 ˆˆˆ qTTTS ⊕⊕⊕= "  and =1S  

,ˆˆˆ 11
2

1
1 qTTT ⊕⊕"D  where ⊕  denotes the concatenation of matrices. The 

resulting VCS has a pixel expansion ∑
=

=
q

i
imm

1
.  

2.2. Posets 

An ordered set (or partially ordered set or poset) is an ordered pair of the 
form ( )≤,P  of a set P  and a binary relation ≤  contained in ,PP ×  called 

the order (or the partial order) on ,P  such that ≤  is reflexive, antisymmetric 
and transitive [11]. The elements of P  are called the points of the ordered 
set. We will write yx <  for yx ≤  and ,yx ≠  in this case we will say x is 

strictly less than y. An ordered set will be called finite (infinite) if and only if 
the underlying set is finite (infinite). Usually we shall be a little slovenly and 
say simply P  is an ordered set. Where it is necessary to specify the order 
relation overtly we write ( )., ≤P  

Let P  be an ordered set and let ., P∈yx  Then we say x is covered by y 

if yx <  and yzx <≤  imply .xz =  

An ordered set C is called a chain (or a totally ordered set or a linearly 
ordered set) if and only if for all Cqp ∈,  we have qp ≤  or pq ≤  (i.e., p 

and q are comparable). On the other hand, an ordered set P  is called an 
antichain if yx ≤  in P  only if yx =  [11]. We let 2P  denote the set of all 

antichains with two points in .P  

( ) Cw

C
C
antichain

max
P

P
⊆

=  is called the width of the poset .P  

Let P  be an ordered set. A chain C in P  will be called a maximal chain 
if and only if for all chains P⊆K  with KC ⊆  we have .KC =  If for 
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every P∈y  comparable with ,P∈x  we have that xy ≤  ( ,lyrespective  

),yx ≤  then x is a maximal point (respectively, minimal point) of .P  

If n is a positive integer, we let n denote the n-element poset with the 
special property that any two elements are comparable [19]. We also define a 
subposet Q of a poset P to be convex if Qy ∈  whenever zyx <<  in P 

and ., Qzx ∈  

Let P  be a finite ordered set. We can represent P  by a configuration of 
circles (representing the elements of )P  and interconnecting lines (indicating 

the covering relation). The construction goes as follows: 

(1) To each point ,P∈x  associate a point ( )xp  of the Euclidean plane 

,2R  depicted by a small circle with center at ( ).xp  

(2) For each covering pair yx <  in ,P  take a line segment ( )yxl ,  

joining the circle at ( )xp  to the circle at ( ).yp  

(3) Carry out (1) and (2) in such a way that 

(a) if ,yx <  then ( )xp  is lower than ( ),yp  

(b) the circle at ( )zp  does not intersect the line segment ( )yxl ,  if 

xz ≠  and .yz ≠  

A configuration satisfying (1)-(3) is called a Hasse diagram or diagram 
of .P  In the other direction, a diagram may be used to define a finite ordered 

set; an example is given below, for a poset ( ) {( ) ,30,,3 ≤≤|= ijiUM  

} 230 N⊂≤≤ j  whose points satisfy the following condition: 

( ) ( )jiji ′′,, U  if and only if ii ′≤  and jj ′≤  

for all ( ) ( ) .,,, 3M∈′′ jiji  (1) 

In this case, N  has been equipped with its natural ordering. 
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Figure 2. Hasse diagram of poset .3M  

Let ( )U,P  and ( )	,Q  be ordered sets and let QP →:f  be a map. 

Then f is called an order-preserving function if and only if for all P∈yx,  

we have: 

( ) ( ).yfxfyx 	U ⇒  

We shall say that two posets P and Q are isomorphic if there exists an 
order-preserving bijection ,: QPf →  whose inverse is order-preserving. In 

such a case, we shall write .~ QP =  

Let ( )U,P  and ( )	,Q  be ordered sets. Then QP →:f  is called an 

(order) embedding if and only if f is injective, and for all P∈yx,  we have: 

( ) ( ).yfxfyx 	U ⇔  

If ( )≤,P  and ( )	,Q  are posets, then the direct (or Cartesian) product of 

P and Q is the poset ( )U,QP ×  on the set {( ) }QyPxyx ∈∈ and:,  such 

that ( ) ( )yxyx ′′,, U  in QP ×  if xx ′≤  in P and yy ′	  in Q. To draw the 

Hasse diagram of QP ×  (when P and Q are finite), draw the Hasse diagram 

of P, replace each element x of P by a copy xQ  of Q and connect 
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corresponding elements of xQ  and yQ  (with  respect to some isomorphism 

)yx QQ =~  if x and y are connected in the Hasse diagram of P. 

If x, y belong to a poset ,P  then an upper bound of x and y is an element 
,P∈z  satisfying zx ≤  and .zy ≤  A least upper bound of x and y is an 

upper bound z of x and y such that every upper bound w of x and y satisfies 
.wz ≤  If a least upper bound of x and y exists, then it is clearly unique and is 

denoted .yx ∨  Dually one can define the greatest lower bound ,yx ∧  when 

it exists. A lattice is a poset L for which every pair of elements has a least 

upper bound and greatest lower bound. We say that a poset P  has a 0̂  if 

there exists an element P∈0̂  such that x≤0̂  for all .P∈x  Similarly, P  

has a 1̂  if there exists P∈1̂  such that 1̂≤x  for all .P∈x  Clearly all finite 

lattices have 0̂  and .1̂  

An order ideal of a poset ( )≤,P  is a subset I of P  such that if Ix ∈  

and ,xy ≤  then .Iy ∈  We let ( )PJ  denote the set of all order ideals of ,P  

ordered by inclusion. In particular, we define the order ideal or down-set         

of P∈a  to be { }.: aqqa ≤∈= P�  Dually, { }qaqa ≤∈= :P�  is the 

filter or up-set of a [19]. { } { }.\,\ aaaaaa �▲
�▼ ==  

2.3. Matrix representations 

The poset representation theory was introduced in 1972 by Nazarova 
Roiter and their students in Kiev. The main goal of its investigations was to 
obtain a complete classification of the indecomposable objects of the additive 
category rep P  of a given poset .P  In this case, a representation U of a 
given poset ( )≤,P  over a commutative ring k is a system of the form: 

 ( ),,0 P∈|= xUUU x  (2) 

where 0U  is a k-module and for each ,P∈x  xU  is a submodule of           

0U  such that yx UU ⊆  provided yx ≤  [4, 14, 15, 21]. Attached to each 

representation U there exists its matrix representation with dimension vector 
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[ ] tT
tdddd +∈= 1

10 N"  is by definition a pair ( ),, Ad  where ddkA ×∈ 0  

and .1 tddd ++= "  The datum of d provides a partition of =A  

[ ]tAAA "21 |  into t vertical stripes idd
i kA ×∈ 0  and permits us to define 

the following equivalence relation: Two representations ( )Ad ,  and ( )Be,  

are equivalent if ed =  and if B can be obtained from A by performing the 
following transformations: 

(a) Arbitrary row-transformations. 

(b) Arbitrary column-transformations within each vertical stripe. 

(c) Additions of columns of stripe i to columns of stripe j if .ji xx <  

The set PMat  of all matrix representations of P  is closed under the 

direct sum defined by the formula 

t

t
AA

AA
AA

′′
=′⊕

#"#
#"#

00
00

1

1  

The direct sum of the k-linear representations U, V is defined by the 
formula 

( ).;00 P∈|⊕⊕=⊕ xVUVUVU xx  

A k-linear representation U of a poset P  is said to be indecomposable        
if U is non-zero and is not a direct sum of two non-zero k-linear 
representations. The dimension of a representation ( )P∈|= xUUU x,0  is a 

vector ( ),;0 P∈| xdd x  where xxx UUd dim=  and ∑
<

=
xy

yx UU  is the 

radical subspace of .xU  U is a representation sincere if 0≠xd  for all 
.P∈x  

A k-linear representation U of a poset P  is called trivial if .1dim 0 =Uk  

For any subset ,P⊆S  we define a trivial representation ( ) ( ) == �SkSk  

( ) ( )P∈|= xUkSk x;min  with kU x =  if ,�Sx∈  0=xU  otherwise. 
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For example, if 

 

is a poset consisting of three incomparable elements, then the following is a 
complete list of indecomposable representations: 

( ) ( ) ( ),,,,,, 321 aaakaakak jii    and   ,
110
101

3 =aU  

where { },3,2,1∈i  and .ji <  

2.4. Lattice-based VSSS 

Now, we present the definition of a lattice-based TVS in accordance with 
Koga and Yamamoto [17]: 

Let 0>m  be given and L  be a finite lattice of a finite number of colors 
that can be physically realized. Suppose that { }Jccc ...,,, 21=C  is a subset 

of elements in ,L  which is not necessarily a sublattice of .L  For all q 
satisfying kq ≤≤1  and distinct { }niii q ...,,2,1...,,, 21 ⊆  define a mapping 

( ) ( ) mnmiii qh LL →:...,,, 21  by 

 ( )( ) ,21
21 ...,,,

q
q

iii
iii xxxxh ∨∨= "  (3) 

where ( ) ( ) ....,,, 21
nm

nxxxx L∈=  If there exists ( ) Jjcc jj ≤≤1, YX  is called 

the lattice-based ( )nk,  VSSS with colors .C  

(1) For all Jj ...,,2,1=  and distinct { } { },...,,2,1...,,, 21 niii k ⊆  all 

jcx X∈  satisfy 

( )( ) ....,,, 21
j

k c
iii xh Y∈  

(2) For all kq <  and { } { },...,,2,1...,,, 21 niii k ⊂  define 

( )
{( ) ( ) }....,,,:...,,, 2121

...,,2,1

jq

qiii

j cniiic xxxxxx XX ∈=  
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Then 
( )

Jj
qiii

jc ...,,2,1,
...,,2,1

=X  are indistinguishable in the sense that they 

contain the same elements with the same frequencies. 

(3) For all C∈jc  satisfying L∈≠ 1jc  all the elements in jcY  are 

composed by 1’s and at least one .jc  In case that jcjc Y,1=  has only one 

element composed by m 1’s. 

3. A Matrix Problem Induced by a Lattice-based VSSS 

In this section, we interpret the Koga-Yamamoto scheme as a matrix 
problem. To do that, we consider matrix representations ( )Ad ,  of a lattice 

L  induced by a finite number of colors. In this case, for a ( )nk,  VSSS we 

have that ddA ×∈ 0L  with md =0  is the pixel expansion, ndd ji ==          

for any L∈ji,  is the size of the set of participants and k is the number            

of qualified participants. In other words, each vertical stripe consists of           
n generators (of the corresponding module jcU  for each color )L∈jc           

with nk <  linear independent columns. Besides a lattice-color matrix 
representation of L  is an dm ×  rectangular matrix separated into vertical 
stripes with the same number c of columns. In this case, columns in each 
stripe xM  are indistinguishable (i.e., they have the same elements appearing 

with the same frequency) and constitute a composition (i.e., a partition where 

the order matters) of a given vector m
xF L∈  for any .C∈x  

For { } ,...,,, 21 C=jxxx  let M and M ′  be lattice-color matrix 

representations with associated vectors txx FF "1  and ,1 txx FF ′′ "  respectively. 

Then M and M ′  are called equivalent if and only if there exists some 
permutation mS∈π  such that 

( ( ) ( ) )m
jjx xxF j
ππ=′ ...,,1  if ( )m

jjx xxF j ...,,1=  

for each chosen .L∈jx  
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The following result establishes the existence of matrix representations 
whose columns within each vertical stripe xM  constitute compositions of a 

given set of fixed vectors .xF  

Theorem 1. If C∈x  and xF  consists of 1k  1’s and xk  x’s with 

,1 mkk x =+  then there exist n indistinguishable vectors n
xx gg ...,,1  such 

that ( ) ∑
=

=
n

i

i
xgxF

1
.  

Proof. Let ( )xF  be such that ( ) m
mx aaF L∈= ...,,1  with 1k  1’s,        

xk  x’s and ,1 mkk x =+  and a permutation mS∈π  such that =xF  

( ( ) ( ) ) ( ).1...,,1,...,,1 xxaa m =ππ "  We fix points ,, LL ∈∈ zxy �∩  and 

an nm ×  matrix xR  such that the entries of the first ( )xk  rows are y’s and 

the entries of the remain rows are z’s. Then there exist integers 1q  and 1r  

such that 111 rnqk +=  with xxx rnqknr +=<≤ ,0 1  with .0 nrx <≤  

Let us consider the matrix block 

,

B
I

I
A

xI

xI

zB
zI

zI
yA
yI

yI

RM

n

n

n

n

n

n

n

n

xx

#

#

#

#

w−=  

where nI  denotes an nn ×  matrix, the number of matrix blocks ( )nn IxI  in 

xM  is given, respectively, by ( ),1nqnqx  in this case A is an nrx ×  matrix 

with the form. Besides, –A is a matrix such that ( ) .0=−∨ AA  
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B is an nr ×1  matrix with the form 

 

It is worth noting that empty blocks in A and B denote matrices whose 
entries are all zeroes. 

By construction columns of matrix xM  constitute an n-elements set of 

indistinguishable vectors associated to the fixed vector .xF  If matrix xM  is 

obtained from xM  by applying permutation π to the rows then columns of 

xM  correspond to n indistinguishable vectors which define a composition of 

the fixed vector .xF   

The following result defines admissible transformations which guarantee 
the existence of equivalent lattice-color matrix representations. Therefore, it 
guarantees the construction of different types of ( )nk,  lattice-based VSSS. 

Theorem 2. Let M and M ′  be two lattice matrix representations of a 
given lattice .L  Then M and M ′  are equivalent if M and M ′  can be turned 

one into each other by applying the following transformations: 

(a) Row permutations of the whole matrix. 

(b) Column permutations within a given vertical stripe. 

(c) Multiplication of a given column j in the stripe xM  by some scalar 

( ) ,�x
jz λ∈  where x

jλ  is the maximum of all entries in such a column. 

(d) Addition of a given jth column in the stripe xM  to the jth column in 

the stripe yM  with coefficients in ( ) ,�
y
jδ  where y

jδ  is the minimum of all 

entries in the column of .yM  If yx ≤  in .L  
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Proof. Row permutations of M determine same indistinguishable vectors 
up to permutations. That is, if txx FF ...,,1  are fixed vectors attached to the 

representation M and txx FF ′′ ...,,1  are corresponding fixed vectors attached 

to the matrix M ′  obtained from M by row permutations then there exists a 
permutation tS∈π  such that if 

( ),...,,1 m
jjx xxF i =  then ( ( ) ( ) );...,,1 m

jjx xxF j
ππ=′  

thus M is equivalent to .M ′  Besides, column permutations in a given vertical 

stripe xM  keep invariant vectors ....,,1 txx FF  Therefore, if M ′  is obtained 

from M by transformations of type (a), then M is equivalent to .M ′  

On the other hand, if x
jλ  is the maximum of all entries in a column 

xMj ∈  and ( ) ,�x
jz λ∈  then x

jz λ≥  and ,x
kj

x
j g≥λ  where =x

jg  

( )x
mj

x
j gg ...,,1  is the jth column of the stripe ,xM  then .x

j
x
j gzg =  Therefore, 

if M ′  has attached fixed vectors as defined above and M is obtained via 
transformations of type (b), then ii xx FF =′  for any ti ≤≤1  therefore M is 

equivalent to .M ′  

Finally, let us suppose that y
jδ  is the minimum of the set of entries of the 

jth column in a vertical stripe ( ( )),...,,1
y
mj

y
j

y
jy gggM =  that is, y

kj
y
j g≤δ  

for all mk ≤≤1  and if ( )x
mi

x
i

x
i ggg ...,,1=  is the ith column in xM  and  

we add x
igz ∧  to the column y

jg  with ( ) ,�
y
jz δ∈  then y

kjgz ≤  for all 

mk ≤≤1  thus ( ) y
kj

y
kj

x
ki gggz =∨∧  which means that ( ) .y

j
x
i ggz ∨∧  

Therefore, if M ′  is obtained from M via transformations of type (c), then 
.MM ′=  ~ 

The following result establishes the structure of vectors xF  with .C∈x  
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Theorem 3. If C∈x  with bax ∨≠  for any ax ≠  and bx ≠  and xF  

consists of 1k  1’s and xk  x’s with ,1 mkk x =+  then an indistinguishable 

vector xg  consists of at least ⎥⎥
⎤

⎢⎢
⎡

n
k1  x’s and at least ⎥⎥

⎤
⎢⎢
⎡

n
k1  1’s, where n is the 

number of generators in .xM  Moreover, if xm  is the number of x’s in xg  

and 1m  is the number of 1’s in ,xg  then there exist ( )xmmm +− 1  elements 

in ▲x  in .xg  

Proof. Let us suppose that ( )1...,,1,...,, xxFx =  without loss of 

generality, where 1k  is the number of 1’s and xk  is the number of x’s with 

mkk x =+1  and .C∈x  Since x cannot be obtained as a supremum of two 

points y and z with xy ≠  and ,xz ≠  the number of x’s must be at least 

.⎥⎥
⎤

⎢⎢
⎡

n
kx  Indeed, for each occurrence of x each part of the partition of the 

vector xF  contains at least an x if they are ordered in the last xk  rows of the 

vertical stripe the result is obtained by using as few x’s as possible. Similarly, 
the result can be obtained for a minimal number of 1’s if it is considered      
that .1 C∈  That there exist ( )xmmm +− 1  elements in ▲x  follows from 

arguments used in Theorem 1. ~ 

 

Figure 3. Example of a ( )2,2  lattice-based encryption. In this case, two 

color-shadows and an eight color-lattice are used to encrypt an original 
image of Bart. 

We note that structure of the form ( )ii
ForbQual , ΓΓ  can be interpreted from 

this point of view as indecomposable lattice-color matrix representations (see 
Figure 4). 
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Figure 4. Example of a matrix representation induced by a ( )2,2  lattice-

based VSSS. 

4. Concluding Remarks 

Lattice-based VSSS can be seen as particular cases of some matrix 
problems. Since permutations are part of the corresponding admissible 
transformations, matrix representations allow to define multiple schemes of 
visual cryptography. 
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