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Abstract 

This doctoral thesis delved into the relationship between allostatic load (AL) and heart rate 

variability (HRV) in healthy men, with a particular focus on HRV as a biomarker of chronic 

stress. Our research, which emphasizes a healthy population sample, significantly contributes 

to the field of preventive medicine.  

After establishing the theoretical framework, we conducted a scoping review to summarize 

the current evidence on the relationship between AL and HRV, confirming the gap in the 

topic. Subsequently, we conducted a cross-sectional study with healthy adult men from 

Medellín, Colombia. We developed an allostatic load index (ALI) and extracted HRV metrics 

from 24-hour Holter monitoring. Multiple linear regression models were used to evaluate the 

relationship between ALI and HRV. Additionally, we used magnetic resonance imaging to 

explore how ALI interacts with brain connectivity and structure in relation to HRV. 

Our study included 88 men aged 21-40, with 70% from middle socioeconomic backgrounds. 

We developed a new ALI using seven parameters (waist to height ratio -WHtR-, high density 

cholesterol -HDL-, glycosylated hemoglobin, HbA1C, c reactive protein -CRP-, systolic and 

diastolic blood pressure, and dehydroepiandrosterone sulfate -DHEAS-). The ALI was 

correlated with sympathovagal quotient -SQ- after adjusting for confounders (β = 0.093, p = 

0.004, CI = 0.03-0.15). In the exploratory MLR analyses of the interaction between ALI-7, 

resting-state brain networks, and structures of the central autonomic network, several 

interactions had negative correlations with HRV. 

These findings suggest that the SQ is an indicator of AL, highlighting its potential as a 

biomarker for preventing, diagnosing, and managing chronic stress. Our exploratory analysis 

indicates that HRV reflects the interplay of central and peripheral physiological processes 

related to chronic stress. This finding underscores the need for validation in future research, 

which could further contribute to the field of preventive medicine. 
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CHAPTER 1: INTRODUCTION AND OBJECTIVES 

 

INTRODUCTION 
 

Stress is a necessary physiological response to maintain allostasis and survival (De Kloet et 

al., 2005). However, excessive stress, both acute and chronic, can become maladaptive and 

threaten physical and mental health (McEwen, 2007). Continuous exposure to stressors is 

associated with a higher risk of cardiovascular, neurological, mental, and autoimmune 

diseases (Catale et al., 2022; Chesnut et al., 2021; Ilchmann-Diounou & Menard, 2020; 

Osborne et al., 2020). Additionally, chronic stress deteriorates daily functioning and reduces 

quality of life (Ribeiro et al., 2018). Despite this evidence, measuring stress has been difficult 

due to the lack of a consensual definition and its multisystemic nature, especially in chronic 

stress (Crosswell & Lockwood, 2020; Wulsin et al., 2022). 

Most chronic stressors are psychosocial (Everly & Lating, 2019) and are evaluated using 

scales or questionnaires that measure exposure to stressors, individual perception of stress, 

and its impact on mental and physical health (Epel et al., 2018). However, these instruments 

present limitations in the clinical context, as most have not been validated and lack 

consensual recommendations for their application (Crosswell & Lockwood, 2020; Wulsin et 

al., 2022). Additionally, they do not capture the multisystemic response to stress or its impact 

on physical and mental health (Cohen et al., 2019; Epel et al., 2018). 

In summary, stress includes cognitive, behavioral, physiological, and biochemical reactions, 

and its comprehensive evaluation should include elements of all these components (Cohen et 

al., 2019; Crosswell & Lockwood, 2020; Epel et al., 2018; Everly & Lating, 2019). 

The identification of biomarkers related to chronic stress is an important line of research. 

These investigations focus on pathways activated by stressors, but specific biomarkers have 

not yet been defined, nor the most suitable ones to measure chronic stress (Noushad et al., 

2021). In 1993, McEwen and Stellar introduced the concept of allostatic load, which 

describes the wear and tear on the body due to chronic stress, predisposing it to disease 

(McEwen & Stellar, 1993). This model has been used as a conceptual framework for 

empirical studies of chronic stress in humans (Carbone et al., 2022; Guidi et al., 2021; Parker 

et al., 2022). The first operationalization of allostatic load was proposed by Seeman et al., 
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with an allostatic load index (ALI) that included ten variables from different physiological 

systems (Seeman et al., 1997). Since then, other ALIs have been proposed, combining 

different medical variables. However, there is no consensus on the most suitable index to 

measure chronic stress due to uncertainty in selecting and the ideal number of biomarkers, as 

well as how to calculate the index (Guidi et al., 2021; Mauss & Jarczok, 2021; Carbone et al. 

2022). Nevertheless, a recent meta-analysis including individuals from multiple cohorts 

worldwide suggests that an ALI of five biomarkers can predict mortality and other clinically 

relevant outcomes, such as handgrip strength, walking speed, and self-rated health status 

(McCrory et al., 2023). 

One of the primary target organs of the stress response is the heart, which increases heart rate 

through the sympathetic nervous system (SNS). The interaction between the influences of 

the SNS and the parasympathetic nervous system (PNS) generates the heart rate variability 

(HRV). It is currently known that HRV mainly depends on the PNS's regulatory effect on the 

heart through the vagus nerve (Palma & Benarroch, 2014). In healthy individuals, reduced 

HRV is associated with altered psychophysiological mechanisms related to chronic stress, 

while those with greater emotional and cognitive self-regulation capacity exhibit higher HRV 

(Holzman & Bridgett, 2017). Additionally, some studies have found a significant negative 

correlation between HRV and various psychological measures of chronic stress, such as 

exposure to stressors and individual perception of stress (Kim et al., 2018; Mauss & Jarczok, 

2021), and also with symptoms of anxiety and depression (Chesnut et al., 2021). 

Research using neuroimaging techniques supports the neurobiological connection between 

stress and HRV (Ding et al., 2020; Koenig et al., 2021; Mulcahy et al., 2019). Human studies 

have shown a positive correlation between HRV and the activation of certain brain structures 

related to processing emotional and affective information involved in the stress response 

(Thayer et al., 2012). The structures consistently associated with HRV control are the 

prefrontal cortex, anterior cingulate cortex, insula, amygdala, periaqueductal gray, pons, and 

medulla oblongata, collectively known as the central autonomic network (CAN) (Sklerov et 

al., 2019). Notably, the amygdala and ventromedial prefrontal cortex (vmPFC) play a 

predominant role among these areas (Thayer et al., 2012). This evidence suggests that HRV 
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can be a good indicator of autonomic, cognitive, and emotional regulation in healthy 

individuals and patients with affective disorders (Mulcahy et al., 2019). 

In addition to neural control, various peripheral non-neural physiological factors influence 

HRV. Circulating hormones such as adrenaline and noradrenaline, thyroid hormones, and 

cortisol; blood pressure; ions like sodium, potassium, magnesium; certain cytokines; body 

temperature; and respiratory parameters like blood O2 and CO2 levels all influence HRV 

(Brusseau et al., 2022; Ramesh et al., 2022; Sammito et al., 2024). These peripheral factors 

interact with neural control to modulate HRV. Indeed, HRV has been negatively correlated 

with other serum biomarkers related to the biological response to chronic stress (Boschiero 

& Ilich, 2022; Sloan et al., 2007). 

In summary, HRV is considered a biomarker of autonomic regulation and could indicate the 

functioning of psychophysiological mechanisms related to chronic stress (Mulcahy et al., 

2019; Quadt et al., 2022; Ruffle et al., 2021). 

Despite several lines of research suggesting HRV's role as a biomarker of acute stress, the 

evidence on its utility for chronic stress remains scarce and controversial (Corrigan et al., 

2021; Solano-Atehortua et al., 2024). Specifically, the following issues require further 

investigation:  

• Most studies focus on acute stress, measuring HRV for a few minutes under 

experimental conditions in a laboratory (Corrigan et al., 2021; Kim et al., 2018; 

Laborde et al., 2017), contrasting with clinical guidelines recommending 24-hour 

recordings for measuring and interpreting HRV (Catai et al., 2020; Shaffer & 

Ginsberg, 2017; Task Force of the European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology, 1996).  

• According to the scoping review (Solano-Atehortua et al., 2024), only two studies 

have evaluated the relationship between HRV and chronic stress using a 

multisystemic approach within the allostatic load framework. Again, these studies 

used short-duration laboratory recordings instead of long-duration ambulatory 

recordings recommended for the clinical context.  

• Few studies on HRV and stress adequately control for confounding factors such as 

body mass index (BMI), sedentary behavior, sleep quality, diet, alcohol consumption, 
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smoking, and medication use (Catai et al., 2020; Da Estrela et al., 2021; Föhr et al., 

2016; Hayano & Yuda, 2019; Laborde et al., 2017; Ralevski et al., 2019; Strüven et 

al., 2021; Zaffalon Júnior et al., 2018).  

• The relationship between HRV and stress varies by sex. Men typically show lower 

HRV with high stress levels, but this relationship is less clear in women. Hormonal 

fluctuations during the menstrual cycle also affect HRV, so studies in women should 

adjust analyses according to the cycle phase (Jarczok et al., 2018; Kvadsheim et al., 

2022; Schmalenberger et al., 2019). 

To address some of these issues, this research focused on three key points. First, the 

development of an ALI that includes multiple biological systems involved in the response to 

chronic stress. Second, we evaluated the relationship between ALI and HRV to seek evidence 

of HRV as an indicator of chronic stress. Finally, we assessed the role of functional and 

structural brain parameters derived from magnetic resonance imaging (MRI) in the 

relationship between allostatic load and HRV to support and better understand the 

relationship between chronic stress, allostatic load and HRV. 

Considering that HRV can be easily, non-invasively, and cost-effectively measured, and 

given the various options for managing chronic stress such as physical activity, biofeedback, 

mindfulness, and yoga (Fogaça et al., 2021; Mizzi et al., 2022; Subhani et al., 2018), accurate 

HRV measurement will be very useful in defining preventive medicine strategies. 

Specifically, it could help reduce the incidence of cardiovascular (Gao et al., 2022; Osborne 

et al., 2020), autoimmune (Ilchmann-Diounou & Menard, 2020), mental (Chesnut et al., 

2021; Hickey et al., 2021; Lever-van Milligen et al., 2020), and neurological disorders 

(Catale et al., 2022; Keynejad et al., 2019; Mohammadi et al., 2022). 

Additionally, identifying brain structures and networks involved in the stress response and 

HRV control, and understanding their interaction with peripheral physiological mechanisms, 

besides supporting the biological plausibility of this relationship, could contribute to 

designing neuromodulation protocols aimed at modulating both allostatic load and HRV. 

These interventions include non-invasive electrical or magnetic stimulation, neurofeedback, 

audiovisual brainwave modulation, among other techniques that are already available in 
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clinical practice and have shown efficacy in treating various neuropsychiatric disorders 

(Cirillo et al., 2019; Mather & Thayer, 2018; Subhani et al., 2018). 

Finally, HRV could also become a therapeutic target, considering its modulation has been 

related to effects on other systems of the body, including the central nervous system (Mather 

& Thayer, 2018). 

In summary, establishing HRV as a biomarker of chronic stress would be a significant 

advance in diagnosis, prediction, and treatment (Hickey et al., 2021; Magal et al., 2022). It 

could also be used as a therapeutic target for clinical conditions related to chronic stress 

(Corrigan et al., 2021; Föhr et al., 2016). 
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OBJECTIVES 
 

General objective: 
Evaluate the association between chronic stress and HRV in healthy men. 

 

Specific objectives: 
1. Describe the sociodemographic, anthropometric, biochemical, physiological, and 

psychological characteristics related to chronic stress in the studied population. 

2. Develop an ALI as a multisystemic measurement tool for chronic stress. 

3. Establish the correlation between the developed ALI and HRV. 

4. Explore the interaction between functional and structural parameters of brain areas 

involved in the stress response with the ALI and its effect on HRV. 
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CHAPTER 2: THEORETICAL FRAMEWORK 

STRESS 

Concepts and definitions 

Although there is no universally accepted definition of stress, given its application to the field 

of health, we will adopt the definition proposed by Everly and Lating (Everly & Lating, 

2019), who define it as a "physiological response that serves as a mediating mechanism 

linking any stressor to its effect on the target organ." It is important to highlight from this 

definition that stress is assumed as a response or reaction, independent of the stimulus that 

generates it. The term stressor refers to the stimulus that triggers the stress response. 

Generally, most stressors are psychosocial, but according to the Everly and Lating model, 

there are also biogenic stressors, which refer to stimuli that do not require cognitive or 

emotional processing to generate the physiological stress response, such as the consumption 

of substances that trigger sympathomimetic physiological mechanisms of stress like caffeine 

or theobromine. 

 

The nervous system is fundamental in the stress response. The brain determines what is 

threatening, as well as the reactive behavioral and physiological responses. These responses 

are adaptive, but when they occur excessively or are not regulated, they become pathological, 

leading to dysfunction of target organs (McEwen, 2017). In a first cognitive-affective 

domain, environmental events are interpreted; if they are interpreted as threats, they become 

stressors. The next step is the activation of brain structures of the limbic system. The 

hypothalamus integrates stimuli from the limbic system and the prefrontal cortex, giving rise 

to somatic and visceral efferents in response to emotionally charged stimuli. These structures 

generate the stress response through at least three main efferent pathways: the neural, 

neuroendocrine, and endocrine pathways (Everly & Lating, 2019). The neural pathway refers 

to the activation of the central noradrenergic system from the locus coeruleus in the brainstem 

and the activation of the ANS, especially the sympathetic nervous system. This generates the 

fight-or-flight response. If the stressor is prolonged, the adrenergic adreno-medullary axis is 

activated, allowing the release of catecholamines, especially adrenaline from the adrenal 

medulla, which perpetuates the systemic adrenergic response. Additionally, with the 

persistence of the stressor, the endocrine system is activated, involving several endocrine 
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axes, with the hypothalamic-pituitary-adrenal (HPA) axis being of special importance. This 

leads to the secretion of cortisol from the adrenal cortex. This cortisol initiates a negative 

feedback process at various levels, including the pituitary, hypothalamus, hippocampus, and 

frontal cortex, to control the multisystemic response that this hormone exerts in the body due 

to the presence of multiple receptors in different organs and tissues (Everly & Lating, 2019). 

 

Despite the understanding of these mediating mechanisms between cognitive-affective 

processes and physical dysfunction or disease, the stress response is highly variable between 

individuals, even in the same individual at different times. A determining factor in the 

intensity of the stress response and its impact on health is coping. Coping refers to the efforts, 

both cognitive and behavioral, aimed at managing external and internal demands, as well as 

the conflicts between them, which can exceed a person’s resources (Everly and Lating, 2019). 

From this perspective, coping can be understood as cognitive or environmental strategies 

designed to mitigate the stress response (Everly and Lating, 2019). In this model, coping 

occurs immediately following the physiological stress response and target organ activation, 

as an attempt to re-stablish homeostasis. However, coping can occur before a stressful event, 

known as anticipatory coping (Neupert et al., 2022). Coping strategies can be adaptive or 

maladaptive. Adaptive strategies can lead to successful coping, reduce organ activation, 

stress response and promote long-term health, while maladaptive strategies may offer short-

term relief but harm long-term health (Owen et al., 2022). The most effective adaptive 

mechanisms are physical exercise, relaxation techniques, healthy nutrition, social support, 

time management and planning, problem solving; and the most common maladaptive 

mechanisms are substance abuse, avoidant behaviors, overeating or neglecting food, social 

isolation (Bondarchuk et al., 2024). The selection of a coping strategy is influenced by 

various factors, including past experiences, individual personality traits, and the behaviors 

modeled by family members (Bondarchuk et al., 2024). Coping theory significantly 

influences the effectiveness of stress management interventions by providing a framework 

for understanding how individuals respond to stressors. The transactional model of stress 

and coping emphasizes the dynamic interaction between stressors and coping strategies, 

which can enhance resilience and adaptive responses. These concepts and models can be 

applied in clinical practice related to stress management (Theodoratou and Argyrides, 2024). 
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In the clinical context, acute stress refers to the adaptive response due to short-term exposure 

to stressors, while chronic stress refers to exposure to threatening or challenging 

circumstances that disrupt daily life and continue for a prolonged period (a minimum of one 

month) (Crosswell & Lockwood, 2020). 

 

Allostasis and allostatic load 

The term allostasis was introduced by Sterling and Eyer in 1988 (Sterling & Eyer, 1989) to 

propose a physiological principle that refers to the variation and adaptation of all internal 

parameters according to environmental demands to achieve long-term stability, or as the 

authors put it: "stability through change." This allostatic model is a conceptual framework 

that explains the social and psychological modulation of human physiology and pathology, 

where the nervous system in general, and the brain in particular, play a fundamental role 

(Carbone et al., 2022). Through allostasis, the organism's stability is achieved by producing 

mediators (such as cortisol) that operate within a range to promote adaptation. This 

operational range of physiological systems or mediators is greater in health than in disease 

and greater in youth than in the elderly (McEwen & Stellar, 1993). 

 

The development of chronic stress theory continued with the works of McEwen and Stellar, 

who introduced the concept of allostatic load, defining it as "a state of the organism that 

predisposes to disease, resulting from the tension produced by the repeated ups and downs 

of physiological responses, elevated activity of the involved physiological systems, 

metabolic changes, and the impact of wear and tear on different organs and tissues" (McEwen 

& Stellar, 1993). The allostatic load theory proposes a progression that begins with exposure 

to chronic stress and triggers biological changes that, over time, lead to negative health 

outcomes. The theoretical model proposes the following biological processes and events 

(Carbone et al., 2022; Marin et al., 2011): long-term exposure to chronic stress can cause 

changes in the neuroendocrine, hormonal (cortisol, dehydroepiandrosterone sulfate -

DHEAS, epinephrine, and norepinephrine), and immune systems (interleukin 6 -IL-6- and 

tumor necrosis factor alpha). Collectively, these biomarkers are referred to as primary 

mediators. The long-term effect of primary mediators can cause changes at the cellular level, 
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known as primary outcomes. Over time, this can lead to subclinical changes known as 

secondary outcomes, such as blood pressure, abdominal fat deposition, cholesterol levels, 

glucose levels, fibrinogen, albumin, c reactive protein (CRP), etc. Finally, changes in 

secondary outcomes lead to the development of tertiary outcomes, including physical 

diseases (e.g., cardiovascular) and mental disorders (e.g., depression, anxiety). This final 

stage where the disease appears is known as allostatic overload and occurs when 

environmental challenges exceed an individual's capacity to cope. 

 

Stress measurement 

Due to the lack of a universal definition of stress, its measurement has been subject to much 

debate. However, most agree that objective biological measurements should be included 

alongside subjective psychological evaluations. Both components need to be assessed since 

neither alone fully represents the phenomenon of stress in humans (Epel et al., 2018). There 

is a wide range of instruments and techniques for assessing stress, and their selection should 

be based on the research question and the population being studied (Crosswell & Lockwood, 

2020). For instance, sometimes it may be more important to measure exposure to stressors, 

in other cases, the focus might be on individual perception of stress, or the focus could be on 

measuring biological markers. 

 

Generally, stress measurement has been grouped into three main approaches (Cohen et al., 

2016): 1) the environmental approach, focusing on the measurement of stressors, 2) the 

psychological approach, focusing on the subjective interpretation of the stressor event (stress 

perception), and 3) the biological approach, aimed at measuring the activation of different 

physiological systems. In this last approach, a series of biomarkers associated with the 

chronic stress response have been identified. These are objective biological indicators of 

physiological processes involved in the pathway between stress and disease or serve as 

markers of these processes (Crosswell & Lockwood, 2020). 

 

Despite having several biomarkers related to chronic stress, none is specific to it (Crosswell 

& Lockwood, 2020). In this context, a widely used and accepted approach to measure the 

effect of chronic stress on health is the allostatic load model described previously, as it allows 
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for a more comprehensive and integrated evaluation of the stress response in humans. The 

first to use this model in chronic stress research were Seeman et al., who developed an 

allostatic load index (ALI) (Seeman et al., 1997) and validated it in studies, including 

longitudinal studies (Merkin et al., 2014; Seeman et al., 2001; Upchurch et al., 2015). This 

index provides an assessment of the cumulative effect of stress on health and uses ten 

biological parameters to evaluate the functioning of the Hypothalamic-Pituitary-Adrenal 

(HPA) axis, (24-hour urinary cortisol, dehydroepiandrosterone sulfate -DHEA-S-), the 

sympathetic nervous system (24-hour urinary epinephrine and norepinephrine), the 

cardiovascular system (diastolic and systolic blood pressure, waist-to-hip ratio), and 

metabolic processes (glycosylated hemoglobin -HbA1c-, total/high density cholesterol ratio 

-TC/HDL-, and HDL cholesterol). This original ALI was associated with poorer physical and 

cognitive performance and predicted greater decline in these functions, as well as an 

increased risk of cardiovascular disease incidence (Seeman et al., 2001). Additionally, a 

recent systematic review and meta-analysis reported a correlation between high ALI and a 

greater risk of dying from any cause (22%) and from cardiovascular diseases (31%) (Parker 

et al., 2022). After Seeman's original version, other ALIs have been proposed, combining 

different medical variables. An interesting version, given its ease of measurement and 

application, is the simplified index with five variables, including diastolic blood pressure, 

HbA1c, LDL cholesterol, abdominal circumference, and HRV, developed by Maus et al., 

which has shown a significant relationship with stress levels in various populations (Mauss 

et al., 2016; Mauss et al., 2015) and with general stress perception (Mauss & Jarczok, 2021). 

However, there is still no consensus on which ALI is the most suitable as an indicator of 

chronic stress. This lack of consensus is mainly due to uncertainty in selecting the ideal 

number of variables to include in the index and how to calculate the risk score (Guidi et al., 

2021; Mauss, Li, et al., 2015; Mauss & Jarczok, 2021). Additionally, to constitute a more 

complete and possibly more specific evaluation of chronic stress and to facilitate the 

interpretation of findings, different studies should examine the relationship between ALI and 

clinimetric assessments, ideally with validated instruments (Guidi et al., 2021). 
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HEART RATE VARIABILITY 

 

Heart rate variability measurement 

When analyzed beat by beat, the heart rate in healthy individuals varies considerably, 

primarily depending on the parasympathetic nervous system (PNS) regulatory effect on the 

heart (Palma & Benarroch, 2014). At rest, the PNS activity predominates over the SNS 

activity, resulting in a much lower heart rate than the intrinsic rate of the sinoatrial node. 

Vagal stimulation results in an immediate response that typically occurs within the cardiac 

cycle in which it occurs and affects only one or two heartbeats after its initiation; after the 

cessation of vagal stimulation, the heart rate quickly returns to its previous level (Shaffer et 

al., 2014). Conversely, vagal blockade generates a rapid increase in heart rate (HR). On the 

other hand, the effect of the SNS on the sinoatrial node is more delayed compared to the PNS. 

In conclusion, sudden changes in HR (increase or decrease) are mainly mediated by the PNS. 

HRV is operationally defined as the change in the time interval between adjacent heartbeats 

(Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology, 1996). This can be assessed using various analytical 

approaches, the most commonly used being frequency domain analysis (spectral analysis of 

the area under the curve) and time domain analysis. Initially, in a continuous 

electrocardiographic (ECG) recording, each QRS complex is detected, and the intervals 

called NN (normal to normal) are identified, meaning all intervals between adjacent QRS 

complexes resulting from sinoatrial node depolarization. 

 

Time domain analyses calculate the heart rate at any time or the intervals between successive 

normal QRS complexes. Time domain measurements can be obtained directly from R-R 

intervals or differences between adjacent R-R intervals. The most recommended include the 

standard deviation of NN intervals (SDNN) and the root mean square of successive 

differences between heartbeats (RMSSD) (Shaffer & Ginsberg, 2017). 

 

SDNN is used as an estimate of overall HRV. It is more accurate when calculated over 24 

hours than over shorter periods, as the former encompasses both short-term high-frequency 

variations and lower-frequency components observed over a longer period (Task Force of 
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the European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology, 1996). 

 

RMSSD reflects beat-to-beat variation in heart rate and is the primary time-domain measure 

used to estimate changes mediated by vagal tone, which can be measured in both long and 

short recordings (Laborde et al., 2017; Shaffer & Ginsberg, 2017). 

 

Frequency domain measures use spectral analysis of the area under the curve to separate 

HRV into its rhythmic components operating within different frequency ranges (Shaffer & 

Ginsberg, 2017). The main advantage of spectral analysis is that it provides information on 

both the frequency and amplitude of specific HRV rhythms, allowing for the quantification 

of various oscillations over a given period in the recording. Four components are recognized 

in an HRV spectrum: high-frequency (HF) component, low-frequency (LF) component, very 

low-frequency (VLF) component, and ultra-low-frequency (ULF) component. 

 

The HF component represents the area under the curve in the frequency range between 0.15 

and 0.4 Hz. Generally, the HF area under the curve represents changes in heart rate related 

to respiration and is widely accepted as a measure of respiratory sinus arrhythmia (RSA) and 

the parasympathetic contribution to HRV. The HF component is generally correlated with 

RMSSD (Shaffer & Ginsberg, 2017). 

 

The LF component ranges from 0.04 to 0.15 Hz. The origin of the LF power has generated 

much controversy. Initially, it was considered a measure of sympathetic activity with a small 

contribution from the parasympathetic nervous system. However, current evidence opposes 

the use of LF as a sympathetic marker, and it is now considered a reflection of the 

combination of sympathetic and parasympathetic activity and the baroreflex (Laborde et al., 

2017; Shaffer & Ginsberg, 2017). 

 

The LF/HF ratio was previously considered the sympatho-vagal balance, with an increase in 

this ratio indicating a predominance of sympathetic activity and a decrease indicating a 

predominance of parasympathetic activity. However, given the controversy in interpreting 
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the LF component and the non-reciprocal and non-linear relationship between sympathetic 

and parasympathetic activity, the LF/HF ratio should be interpreted with caution, especially 

in short-duration recordings (Shaffer & Ginsberg, 2017). 

 

The VLF component represents the area under the curve in a range between 0.04 and 0.003 

Hz. Some studies suggest that the VLF rhythm is intrinsically generated by the heart and that 

the amplitude and frequency of these oscillations are modulated by sympathetic efferent 

activity (Lee & Becker, 2019; Shaffer et al., 2014). An increase in VLF area under the curve 

at rest could then reflect greater sympathetic activity. The ULF component falls below 0.0033 

Hz (5.6 min) and is only visible in long-term recordings (24 hours). The clinical relevance of 

these lower frequency rhythms is currently unknown (Shaffer et al., 2014). 

 

It is important to remember that the duration of the ECG recording significantly affects HRV 

measures, both in frequency and time domain parameters, and has significant implications 

for their interpretation (Hayano & Yuda, 2019). For psychophysiological research, some 

experts recommend focusing on studying vagal tone, ideally measuring RMSSD in the time 

domain and HF in the frequency domain. The measurement of additional parameters would 

be made according to the research question. Regarding this, studies suggest that RMSSD is 

less affected by respiratory influences, making it preferable over HF in case the experimental 

task involves respiratory changes (Lee & Becker, 2019). 

 

In recent years, the use of wearable devices for HRV measurement has become increasingly 

widespread due to their ease of long-term use in naturalistic settings (Immanuel et al., 2023). 

Many of these devices utilize photoplethysmography, a low-cost, non-invasive optical 

technique that detects changes in blood volume in peripheral tissues to derive pulse rate 

variability (PRV) (Allen, 2007). Through PRV, it is possible to estimate the same HRV 

parameters in both frequency and time domains (Pietilä, J. et al. 2018). However, while PRV 

can serve as a reliable proxy for HRV in healthy individuals, it may not always provide the 

same degree of precision, particularly under circumstances where blood flow is inconsistent. 

For instance, cold exposure has been shown to reduce the correlation between HRV and PRV, 

with the degree of variance depending on the site of PRV measurement (distal vs. central 
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areas) (Mejia-Mejia et al., 2020). While HRV remains a direct indicator of ANS influences 

on the heart, PRV may offer additional insight into ANS responses at peripheral sites, 

particularly under conditions of acute and chronic stress (Mejia-Mejia et al., 2020). Although 

both HRV and PRV can be monitored over extended periods in ambulatory settings, PRV 

measurement facilitates the assessment of ANS activity across a broader range of daily 

activities. This is substantiated by some studies using wearables devices for measuring HRV 

in several populations (Chrousos et al., 2022; Mason et al., 2024; Natarajan et al., 2020; 

Singstad et al., 2021). Nonetheless, for accurate interpretation of PRV as a surrogate for 

HRV, it is critical to account for local physiological conditions and external environmental 

factors (Hu et al., 2024). 

 

Neural control of the HRV 

Heart rate is regulated by structures distributed throughout the neuroaxis. The intrinsic 

cardiac nervous system is a complex neuronal network composed of ganglionic plexuses 

embedded in epicardial fat and the heart wall. This system's function is controlled by extrinsic 

influences mediated by the vagus nerve and sympathetic nerves. The sympathetic innervation 

of the heart originates in the intermediolateral cell columns of the spinal cord. Cardiac 

sympathetic preganglionic neurons are cholinergic and send small myelinated axons that 

synapse with noradrenergic neurons in the superior, middle cervical ganglia, and 

cervicothoracic ganglia. Sympathetic activation increases the automatism of the sinoatrial 

node (SA), atrioventricular node (AV), excitability of the His-Purkinje system, contraction 

strength during systole, and relaxation speed of the cardiac muscle during diastole (Palma & 

Benarroch, 2014). Cardiac vagal preganglionic neurons are located in the nucleus ambiguus 

(NA) and the dorsal motor nucleus of the vagus (DMNV). Most vagal nerve fibers innervate 

the atrium, SA node, and AV node. The main parasympathetic effects (through cholinergic 

neurons in the cardiac ganglia) are the inhibition of SA node pacemaker activity (decreased 

heart rate), reduction of AV conduction, and decreased excitability of the His-Purkinje 

system. These effects are mediated by M2 muscarinic receptors, which are coupled to G-

protein transduction pathways (SA node hyperpolarization). Under resting conditions, vagal 

tone predominates over the sympathetic system in SA node automatism (Shaffer et al., 2014). 
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At the brainstem level, the rostral ventrolateral medulla (RVLM) contains glutamatergic 

sympathoexcitatory neurons that tonically activate sympathetic preganglionic neurons in the 

intermediolateral column (spinal cord) and serve as a common effector of descending and 

reflex pathways controlling cardiac function. RVLM neurons are activated by psychological 

stress, pain, hypoxia, hypovolemia, and hypoglycemia, both directly and through descending 

impulses from the forebrain. The NA contains most of the cardioinhibitory vagal motor 

neurons controlling SA node automatism and AV node conduction. These NA neurons are 

activated by glutamatergic afferents from the nucleus tractus solitarius (NTS) and inhibited 

by local GABAergic neurons and signals from the ventral respiratory group activated during 

inspiration. Neurons in the DMNV contribute to the control of heart rate, AV conduction, 

and contractility to a lesser extent. The NTS is the first relay station for visceral afferent 

information. The caudal portion of the NTS receives afferents from baroreceptors, cardiac 

receptors, chemoreceptors, and pulmonary receptors, primarily via vagal and 

glossopharyngeal afferents, and is the first central relay for all bulbar reflexes, including 

cardiac reflexes that control blood pressure and heart rate (Dampney, 2016). 

 

Brain regions and networks involved in the regulation of stress response and HRV 

Some forebrain areas form a network that initiates integrated autonomic, neuroendocrine, 

and behavioral responses (stress response) to emotionally relevant or stressful stimuli. Key 

areas involved in this response include regions of the prefrontal cortex (PFC), insular cortex, 

anterior cingulate cortex (ACC), central nucleus of the amygdala (CeA), and various 

hypothalamic nuclei. These regions project to brainstem and medullary nuclei that control 

cardiac function; these projections are direct or indirect through the periaqueductal gray 

(PAG) (Quadt et al., 2022). 

 

Cardiovascular afferent information is transmitted by dorsal horn (lamina I) or NTS neurons 

to cortical areas via the thalamus. Visceral afferent input can also reach the thalamus, 

hypothalamus, and amygdala via the parabrachial nucleus of the pons, and from 

catecholaminergic neurons of the A1/C1 group in the ventrolateral medulla. The 

hypothalamus contributes to autonomic heart control primarily from its paraventricular and 
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dorsomedial nuclei. These send sympathoexcitatory signals to the RVLM and 

intermediolateral columns of the spinal cord (Palma & Benarroch, 2014). 

 

The hypothalamus also modulates cardiovagal responses through its effects on the NTS and 

NA. The dorsomedial hypothalamic nucleus may contribute to reduced HRV in anxiety-like 

states (Palma & Benarroch, 2014). 

 

In the insula, the posterior insular cortex (IC) receives thalamic afferents transmitting 

convergent pain, temperature, and visceral sensitivity information, providing a primary 

interoceptive representation. The middle IC integrates this information with afferents from 

sensory cortical areas, the ACC, and the amygdala, then transmits it to the anterior IC, which 

represents the awareness of the internal bodily state and is a key component of emotional 

experience (Zaki et al., 2012). Activation of the left IC has been observed during vagal 

modulation of HRV (Napadow et al., 2008). 

 

The rostral (or ventral) ACC includes a pregenual and subgenual region with strong 

connections to the CeA, hypothalamus, and parabrachial nucleus, playing an important role 

in emotional responses and behaviors. The ventral ACC (subgenual) has projections to 

parasympathetic nuclei and is associated with vagal modulation of HRV (Lane et al., 2009). 

The rostral ACC is part of the default mode network, active when attention is not focused on 

external stimuli but on internal cognitive processes such as memory retrieval, future thinking, 

and mind-wandering. The dorsal ACC, along with the anterior insular cortex, is a central 

component of the salience network, mainly involved during the transition from resting state 

(default network) to tasks requiring cognitive control (Critchley, 2009). Activation of the 

dorsal ACC during these tasks is associated with increased sympathetic drive, which 

increases heart rate (and decreases HRV). 

 

The amygdala assigns emotional valence to sensory stimuli and is involved in fear 

conditioning mechanisms. The medial CeA subdivision projects to the hypothalamus and 

brainstem, triggering autonomic, endocrine, and motor manifestations of fear responses. 

Sympathoexcitatory responses involve excitatory connections with the RVLM and inhibition 
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of barosensitive neurons in the NTS. Functional neuroimaging studies consistently found 

coactivation of the lateral and medial amygdalae with HRV changes during rest and 

emotional content tasks (Lane et al., 2009). 

 

In the PFC, the orbitofrontal and ventromedial PFC areas exert an inhibitory effect on the 

amygdala through GABAergic neurons in the lateral CeA and intercalated nuclei (Motzkin 

et al., 2015). These prefrontal influences are considered the basis of emotional regulation 

mechanisms, including fear extinction (Kraynak et al., 2018). Thus, besides promoting vagal 

stimulation, these prefrontal areas can tonically inhibit sympathoexcitatory responses 

initiated in the amygdala. 

 

Research on the relationship between HRV and brain structures, functions, and networks has 

increased in recent years. Initial functional magnetic resonance imaging (fMRI) studies 

confirmed the existence of a central autonomic network (CAN) that includes these described 

structures and the relationship between functional changes within and between these brain 

areas and HRV changes during rest and specific cognitive tasks (Napadow et al., 2008). This 

relationship is age-dependent, as HRV reduction with age is accompanied by changes in brain 

functional connectivity (Kumral et al., 2019). High HRV is associated with greater functional 

connectivity between the ACC, basal ganglia, thalamus, amygdala, and midbrain; and 

between the amygdala and the ACC, basal ganglia, anterior insula, and dorsolateral PFC 

(Chang et al., 2013a). Within frequency domains, HF HRV fluctuations correlate with the 

functional connectivity strength of the amygdala and ACC with the thalamus and brainstem. 

Conversely, LF HRV fluctuations correlate with greater connectivity between the amygdala 

and ACC with the occipitoparietal cortex. HRV positively correlates with connectivity 

between the medial PFC and ACC, pregenual ACC, and anterior insula, and negatively with 

connectivity between the medial PFC and brainstem. At rest, increased HRV is associated 

with stronger connectivity between the right amygdala and medial PFC. These findings 

support the central role of the PFC in HRV control, generally through its modulatory effect 

on other CAN regions and specifically through inhibitory control over the amygdala. Recent 

research also suggests that brain areas involved in executive functions (mainly within the 

PFC) have inhibitory effects on habitual and reactive responses encoded within subcortical 
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structures (amygdala and basal ganglia to hypothalamus PAG and brainstem) (Mulcahy et 

al., 2019). However, the brain networks related to the autonomic nervous system, particularly 

those involved in HRV control, are much more complex than described so far. Recent studies 

have shown that although conventional structural and functional maps identify regions jointly 

modulated by the sympathetic and parasympathetic systems, only graph theory analysis 

techniques can discriminate between them, revealing that autonomic systems are mediated 

by widely distributed network interactions far more complex than previously described 

(Ruffle et al., 2021). Graph theory has provided a more advanced description of these 

networks. The most recent and comprehensive study of brain autonomic regulation of HRV 

(autonomic connectome) included 518 individuals and constructed an autonomic 

connectome with multiple MRI modalities (volumetry, DTI, and resting-state fMRI). This 

connectome was initially constructed with each neuroimaging modality individually, then a 

multimodal structural and functional model was generated. Unlike previous studies, this 

study discriminates the relationship between HRV and sympathetic and parasympathetic 

networks and found that these are mediated by high-level distributed interactions in the 

central nervous system, offering a new multidimensional generative network representation 

of the autonomic system. It is assumed that HRV could serve as a marker of autonomic 

function in the CNS (Ruffle et al., 2021). This new theoretical framework of the interaction 

between the autonomic connectome and HRV could be used for research related to chronic 

stress. It is important to clarify that despite these significant advances, the cerebral control of 

HRV in humans is not fully understood. 

 

Theoretical models on the interaction between the nervous system, stress and HRV 

Given the central role of the brain in the perception and response to stress and the evidence 

from various approaches (from psychology, neuroscience, neuropsychiatry) linking these 

phenomena to different autonomic functions and especially HRV, different authors have 

developed conceptual models to build a theory to frame the findings so far and future 

research. The most relevant models for our research are mentioned here. These models are 

more complementary than exclusive. 
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According to Porges' polyvagal theory (Porges, 2007), vagal nerves contain specialized 

subsystems that regulate adaptive responses. According to this theory, unmyelinated vagal 

fibers, originating from the DMNV complex, participate in regulating the "freezing 

response," causing immobilization and passive avoidance. On the other hand, myelinated 

fibers, phylogenetically more recent, originating in the NA, are involved in inhibitory control 

or "vagal brake," allowing emotional self-regulation and inhibition of sympathetic flow. As 

humans, we are not limited to basic behavioral responses of fight, flight, or freeze; we can 

self-regulate and initiate prosocial behaviors when exposed to stressors. The theory suggests 

that the capacity for emotional and behavioral self-regulation depends on proper autonomic 

nervous system functioning, specifically the vagal system. This implies that standardized 

assessment of vagal tone could serve as a potential marker of self-regulation capacity (Shaffer 

et al., 2014) and, therefore, as a biomarker of top-down regulation of cognitive, emotional, 

and behavioral processes. 

 

In 2000, Thayer and Lane (Thayer & Lane, 2000) proposed a model called neurovisceral 

integration, integrating the autonomic nervous system, cognitive and affective systems into 

a structural and functional network in the nervous system, playing a fundamental role in 

emotional regulation. This network behaves as an integrated system necessary for cognitive, 

affective, and autonomic control and for regulating neuroendocrine and behavioral responses. 

According to this model, brain inhibitory processes, through negative feedback systems, play 

a necessary role in interrupting ongoing behavior and redistributing resources to other tasks 

(Thayer & Lane, 2000). When these negative feedback mechanisms fail (defective inhibitory 

systems), sympathetic activation occurs, observed in chronic stress states and their related 

conditions, such as anxiety disorders. This network and its neural structures have been 

associated with HRV (Shaffer et al., 2014), and low HRV is associated with 

psychopathological and pathophysiological states related to stress (Thayer & Lane, 2009). 

 

Brosschot, Verkuil, and Thayer, continuing along the same lines of neurovisceral integration, 

proposed a model called the generalized unsafety theory of stress (Brosschot et al., 2017). 

This theory posits that the stress response is a default response, not generated but disinhibited. 

Inhibition is tonically provided by the prefrontal cortex as long as safety is perceived, and 
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this inhibition is reflected in high HRV. Thus, chronic stress responses are due to the 

perception of generalized unsafety, which may or may not depend on exposure to stressors. 

For survival, the disinhibition of the threat response must be as immediate and rapid as 

possible. That is why it is a predetermined response, "always ready," only to be inhibited 

when there is certainty of safety. In this context, low resting HRV ("vagal withdrawal") is an 

index of chronically disinhibited stress response; and it is important to mention that HRV can 

be persistently low even when stressors are not present (Brosschot et al., 2017). 

 

In addition to neural control, several non-neural peripheral factors influence HRV. Stress 

hormones, such as adrenaline and cortisol, as well as thyroid hormones, can also reduce HRV 

(Brusseau et al., 2022). Baroreceptors in the arterial pressure system regulate HRV through 

parasympathetic activity (Lamotte et al., 2021). Glucose levels, as well as lipid profiles and 

chronic inflammatory markers, body temperature, and blood levels of O2 and CO2, also 

influence HRV (Sammito et al., 2024). Finally, HRV tends to decrease with age and shows 

differences between men and women (Koenig & Thayer, 2016; Kvadsheim et al., 2022). All 

these peripheral factors interact with neural control to modulate HRV, and their impact can 

vary according to individual and contextual conditions. 

 

EMPIRICAL EVIDENCE ON THE RELATIONSHIP BETWEEN STRESS 

AND HRV 

 

HRV as a biomarker of emotional and cognitive self-regulation 

Cognitive neuroscience evidence supports the proposition that HRV can be used as a 

biomarker for self-regulation (the ability to regulate behavioral, cognitive, and emotional 

processes). However, research results on the relationship between self-regulation and HRV 

are heterogeneous (Arakaki et al., 2023). A meta-analysis of 123 studies that examined the 

relationships between HRV parameters and various aspects of self-regulation (executive 

functioning, emotional regulation, effortful control) found that higher HRV is associated with 

better self-regulation. The effect size was small but statistically significant. It is important to 

note that the meta-analysis also reported that this correlation was stronger in older individuals 

compared to younger ones. This correlation persisted across all evaluated components 
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(cognitive, behavioral, and emotional self-regulation), suggesting that HRV may serve as a 

global biomarker of self-regulation rather than a specific component. The authors conclude 

that more research is needed to establish this relationship, particularly considering mediating 

and confounding factors (Holzman & Bridgett, 2017).  

 

Heart rate variability (HRV) has also been employed to measure physiological coherence, 

which refers to the degree of synchronization between various oscillatory systems within the 

body (McCraty and Childre, 2010). Elevated physiological coherence has been correlated 

with a positive psychological state and linked to enhanced social, cognitive, and physical 

performance, greater emotional stability, and numerous health benefits (Sarabia-Cobo, 

2015). Empirical evidence suggests that physiological coherence, measured through HRV, 

significantly increases during breathing techniques used in HRV biofeedback exercises 

aimed at managing stress responses. However, that further research is necessary to validate 

its use as a reliable marker of acute stress (Mejia-Mejia et al., 2018). While physiological 

coherence is a valuable tool for assessing autonomic balance, its use for diagnosing and 

treating chronic stress requires more research.  

 

Relationship between stress biomarkers and HRV  

HRV has also been associated with biomarkers that have been clearly linked to chronic stress. 

A study involving 757 healthy adults revealed that all HRV indices inversely relate to levels 

of IL-6 and CRP. In a multivariate model that included factors such as gender, race, age, 

smoking, physical activity, SBP, and BMI, this relationship with inflammatory markers 

remained significant (Sloan et al., 2007). A more recent study with 40 healthy individuals 

aged 21 to 56 found significant correlations between reduced parasympathetic vagal tone 

(evaluated by RMSSD and pNN50) and higher salivary cortisol levels and lower DHEA 

levels (Mazgelyte et al., 2021). Similarly, reduced HRV is also associated with poor recovery 

from cardiovascular, endocrine, and immunological markers after stress and increased 

tendency towards systemic inflammation and HPA axis activation (Mulcahy et al., 2019). 

Some anthropometric parameters have also been associated with HRV. A study involving 43 

healthy university students found a significant correlation between some HRV parameters 
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(LF and the SQ -LF/HF index-) and higher body fat percentage, intramuscular adipose tissue, 

and lower skeletal and bone muscle mass (Liew et al., 2013). 

 

Relationship between psychological stress measurements and HRV  

Regarding the relationship between HRV and stress scales, there are also knowledge gaps. A 

meta-analysis published in 2018 summarizes studies examining the relationship between 

HRV and psychological stress measurement (Kim et al., 2018). This study indicates that, 

generally, low HRV is significantly associated with higher stress levels in various settings 

(work, student, university, medical). The most frequently reported HRV variation factor was 

low parasympathetic activity. However, this review included 21 studies, and only two of 

them included validated stress scales applicable to the general population, and these two 

studies recorded HRV only for 5 minutes. Only four studies included 24-hour Holter 

recordings, two of which used scales to measure work stress, one evaluated stress in a medical 

emergency setting, and another measured exposure to stressful events. Another meta-analysis 

also published in 2018 focused on the relationship between work stress and HRV during 

work and included ten articles meeting their criteria (Järvelin-pasanen et al., 2018). The most 

common methods for assessing work stress were the Job Content Questionnaire (JCQ) and 

the Effort-Reward Imbalance (ERI) questionnaire. HRV was evaluated using 24-hour Holter 

ECG. The main finding was that high occupational stress was associated with reduced HRV, 

specifically with reduced parasympathetic activation. Reduced parasympathetic activation 

was observed as decreases in RMSSD and HF and increases in the LF/HF ratio. There was 

heterogeneity among the studies regarding the methodology for evaluating stress and HRV, 

limiting the comparability of the results (Järvelin-pasanen et al., 2018). 

 

Allostatic load, HRV and morbidity and mortality 

Research on allostatic load has produced several proposals for an Allostatic Load Index 

(ALI), ranging from the original, which includes ten medical variables—some of which are 

difficult to measure routinely in clinical practice—to more recent simplified versions like 

that of Mauss et al., which includes HRV among its variables. Despite these efforts, there is 

still no consensus on the most suitable ALI as an indicator of chronic stress. This lack of 

consensus primarily stems from uncertainty in selecting the ideal number and type of 
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variables to include in the index and the method for calculating the risk score (Carbone et al., 

2022). 

 

HRV, measured by RMSSD, is included in Mauss's ALI. However, as noted in their latest 

study, RMSSD did not negatively correlate with the Perceived Stress Scale (PSS); instead, 

they found a controversial positive correlation (Mauss et al., 2021). Despite this, previous 

evidence leads these authors to recommend using vagally mediated HRV parameters as a 

neurophysiological variable for calculating allostatic load. Some researchers also suggest 

incorporating clinimetric instruments, such as scales or other psychological measures, to 

assess stress (Guidi et al., 2021). 

 

It is important to remember that, similar to the ALI, numerous studies have found 

associations between low HRV and an increased risk of various physical and mental disorders 

(Agorastos et al., 2023; Chesnut et al., 2021), as well as higher mortality rates in both patient 

and healthy populations (X. Gao et al., 2022; M. Jarczok et al., 2022) 
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Abstract 

Objective: This study aims to characterize the evidence for a relationship between allostatic 

load (AL) measured as a multisystemic index and heart rate variability (HRV) in healthy 

individuals. 

Introduction: AL is a term used to describe the cumulative physiological burden that results 

from chronic stress. It is best quantified using a multisystemic assessment approach, which 

integrates multiple stress biomarkers. Elevated AL is correlated with an increased risk of 

adverse physical and mental health outcomes. While HRV has been proposed as a stress 

biomarker, its relationship with AL in healthy individuals remains unclear. 

Inclusion criteria: This review included human studies that examined the relationship 

between AL with a multisystemic assessment and HRV, specifically focusing on participants 

without diagnosed physical or mental disorders. No restrictions were placed based on age or 

sex. 
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Methods: The review followed the Joanna Briggs Institute methodology and adhered to the 

PRISMA extension for scoping review guidelines. Databases searched included PubMed, 

Embase, Google Scholar, Epistemonikos, and LILACS. Two independent reviewers selected 

the studies and extracted the data.  

Results: Two studies met the inclusion criteria. Both studies reported a negative relationship 

between AL and HRV. However, the studies differed in their definitions of the participant's 

health status, methods of measuring AL and HRV, and methods to test the AL-HRV 

relationship.  

Conclusion: Current evidence is insufficient to establish a definitive relationship between 

AL and HRV in healthy individuals. Limited evidence suggests a negative relationship 

between these two, indicating that HRV may serve as a potential biomarker for chronic stress. 

Future studies should use standardized measurements of both AL and HRV in healthy 

populations to further elucidate this relationship and its clinical implications. 

 

Keywords: Heart rate variability, allostatic load, chronic stress, biomarker, healthy.  

 

1. Introduction 

Allostatic load (AL) refers to the wear and tear of the body due to chronic stress (McEwen, 

2007). It has been widely accepted as a framework for research on the relationship between 

chronic stress and human health-disease processes (McEwen, 2017). AL is operationalized 

through the allostatic load index (ALI), a multisystemic approach that assigns an AL score 

to individuals based on stress-related biomarkers (Seeman et al., 1997). Higher AL scores 

are associated with a greater risk of physical and mental disorders (Guidi et al., 2021) and 

mortality (Parker et al., 2022). 

 

Heart rate variability (HRV) is the fluctuation in the duration of heartbeat intervals (Shaffer 

et al., 2014). Reduced HRV indicates dysfunction of chronic stress-related 

psychophysiological mechanisms (Holzman & Bridgett, 2017). It serves as a marker of 

autonomic regulation, an index of psychophysiological well-being (Mather & Thayer, 2018), 

and an all-cause mortality risk marker (Jarczok et al., 2022).  
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While there is evidence of the relationship between stress biomarkers and HRV (Boschiero 

& Ilich, 2022; Sloan et al., 2007), and between the acute stress response and HRV in healthy 

populations (Corrigan et al., 2021; Immanuel et al., 2023; Kim et al., 2018), little research 

has been conducted regarding HRV and its relationship with the multisystemic model of 

chronic stress, specifically within the AL framework.  

 

A recent systematic review summarized the evidence of the relationship between 

occupational stressors and HRV in frontline workers and tactical operators (Corrigan et al., 

2021). The authors found that acute exposure to occupational stressors was correlated with 

reduced HRV. In contrast, they did not find enough evidence to establish HRV as a marker 

of chronic exposure to stressors in this population. It is essential to underline that the studies 

in this review operationalize AL through individual biomarkers or psychometric tools and 

did not apply a multisystemic approach. In addition, the health status of participants was not 

clearly defined. 

 

The main challenges in evaluating the relationship between AL and HRV originate from the 

heterogeneity in their measurement methods. Electrocardiographic recording duration and 

context, HRV metric selection, and interpretation in relation to stress differ among studies 

(Chesnut et al., 2021; Immanuel et al., 2023; Kim et al., 2018; Thielmann et al., 2021). In 

addition, the biomarker selection and calculation methods for the AL scoring across studies 

are inconsistent (Carbone et al., 2022; McCrory et al., 2023). 

 

This scoping review systematically characterizes current research on the relation between 

AL measured in a multisystemic way and HRV in healthy individuals. Given this goal and 

the expected scarcity of research and knowledge on this relationship, a scoping review is 

deemed more appropriate than other evidence synthesis approaches.  

 

Evaluating the relationship between AL and HRV in healthy individuals could provide 

insights into the reliable and standardized use of HRV as a biomarker of chronic stress in 

preventive medicine. Moreover, considering the numerous disorders related to chronic stress 

and the widespread use of wearable devices that can measure HRV in naturalistic situations, 
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establishing HRV as an AL biomarker could significantly impact public health (McEwen, 

2022). 

 

Review question: 

What is the empirical evidence regarding the relationship between AL and HRV in healthy 

individuals? 

 

2. Methods 

This scoping review followed the methodology outlined by the Joanna Briggs Institute (JBI) 

for scoping reviews (Peters et al., 2020) and adhered to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR) 

(Tricco et al., 2018). 

 

2.1. Protocol and registration 

This review protocol was registered and is publicly available on the Open Science 

Framework (https://osf.io/n7ka8/). While there were no deviations from the original protocol, 

updates were made to the review concept, databases, and inclusion criteria 

(https://osf.io/n7ka8/). Initially, the Web of Science and ProQuest databases were planned 

for inclusion but were excluded due to limited access. 

 

2.2.  Eligibility criteria 

 

2.2.1. Participants: 

This review included studies with participants who had no diagnosed physical or mental 

disorders, without restrictions based on age or sex. 

 

2.2.2. Concept:  

Studies exploring the relationship between AL operationalized through a multisystemic 

assessment and HRV in healthy individuals were included. Studies that evaluated individual 

biomarkers or psychological measures of AL were excluded.   

https://osf.io/n7ka8/
https://osf.io/n7ka8/
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2.2.3. Context:  

Studies including healthy individuals from any population, setting, or context were 

considered. Studies based on sex, geographic area, culture, ethnicity, or race were not 

excluded. 

 

2.2.4. Types of studies:  

Quantitative, qualitative, and mixed-methods study designs were considered for inclusion, 

along with systematic reviews, text, and opinion papers. Due to resource limitations for 

translations from other languages, only English, Spanish, and Portuguese studies were 

searched. The inclusion criteria spanned from 1997 to February 2024, chosen because the 

first proposal for operationalizing the AL concept in a multisystemic way was presented in 

1997 (Seeman et al., 1997). 

 

2.3. Information sources  

The search strategy aimed to locate published and unpublished primary studies and reviews. 

Databases searched included PubMed, Embase, Google Scholar, LILACS, and 

Epistemonikos. Reference lists of included studies were screened for additional studies. The 

initial search was conducted on May 5, 2023, and the last on February 05, 2024. 

Corresponding authors of included studies were contacted by e-mail to inquire about needed 

information or possible unpublished research and data.  

 

2.4. Search strategy 

An initial limited search of MEDLINE was conducted to identify relevant articles. Text 

words in titles, abstracts, and index terms were used to develop a comprehensive search 

strategy. This strategy, including all identified keywords and index terms, was adapted for 

each information source. See Supplementary Table 1 for details on the search strategy and 

the total number of records gathered from each database. 

 

2.5. Study selection 

Following the search, all identified citations were collated and uploaded to the online 

systematic review platform Rayyan (Qatar Computing Research Institute, Doha, Qatar) 
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(Ouzzani et al., 2016), and duplicates were removed. Two independent reviewers, the first 

(JMSA) and the last (ALMA) authors screened the titles and abstracts to ensure they were 

relevant to the inclusion criteria. The full text of selected citations was then assessed in detail 

to verify the inclusion criteria. Reasons for excluding studies that did not meet the criteria 

were recorded and reported (Supplementary Table 2). Disagreements between reviewers 

were resolved through discussion. Critical appraisal of selected studies was not conducted, 

as this scoping review aimed to provide an overview of the literature. 

 

2.6. Data extraction 

JMSA and ALMA independently extracted data from the included papers using a data 

extraction tool (Supplementary Table 3) developed based on the JBI guideline (Peters et 

al., 2020). The tool was refined following piloting with a few studies and then applied to the 

included studies. Data extracted included participant details, concepts, context, and critical 

findings relevant to the review question. This encompassed information such as HRV 

measurement methods, specific AL biomarkers and number of biomarkers used, methods for 

calculating AL score, and the primary results regarding the relationship between AL and 

HRV. Any disagreements between reviewers were resolved through discussion. 

 

2.7. Synthesis of results 

The extracted data was presented in a table format, aligning with the aims of this scoping 

review. The table format was pre-defined in the review protocol. A narrative summary with 

relevant tabulated results is provided to address the aim and review question. 

 

3. Results 

3.1. Study inclusion  

Initially, 1662 reference articles were identified, and 1057 remained after removing 

duplicates. Fifty-one articles underwent full-text review after title and abstract screening. 

Finally, two studies met the inclusion criteria (Figure 1). Detailed exclusion reasons are 

presented in Supplementary Table 2. 
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Fig. 1. Flow chart of the studies selection. *These are the references that were retrieved from the 

papers during the full-text screening process. 

 

3.2. Characteristics of the included studies  

The first study, published in 2010, analyzed data from 782 individuals from the USA 

included in the Coronary Artery Risk Development in Young Adults Study (CARDIA) 

(Seeman et al., 2010). The second study, published in 2017, analyzed data from 27 men from 

South Africa (Viljoen & Claassen, 2017). Table 1 presents the characteristics of the two 

included studies, including the variables relevant to this review. 

 

3.3. Review findings and synthesis 

This review found two studies that investigated the correlation between AL and HRV in 

healthy individuals. Both studies recorded electrocardiograms (ECG) to derive HRV metrics. 

Seeman et al. (2010) included the high-frequency band (HF) and low-frequency band (LF) 

in the frequency domain analysis, while Viljoen and Claassen (2017) used total HRV, HF, 

and LF metrics in the frequency domain, as well as the root mean square of successive 

differences (RMSSD) and the standard deviation of all normal-to-normal intervals (SDNN) 

metrics in the time domain analysis, and Poincare (SD1 and SD2) metrics in the nonlinear 

HRV analysis. Viljoen and Claassen (2017) used RMSSD, HF, and SD1 as indicators of 
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vagal activity. Both studies found a statistically significant negative relationship between AL 

and HRV. Table 1 provides more information on each study's main characteristics and 

results. 
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Table 1. Characteristics and main results of the included studies                       

Author, year of 
publication, 

country 

Type of 
source 

Aims Study 
design 

Population Health status Sample 
size 

Age 
range 

Sex ECG 
recording 

environment 

ECG 
recording 
position 

ECG 
recording 
duration 

HRV 
metrics 

Number of 
AL  

biomarkers  

AL biomarkers used Statistical method for AL 
assesment 

Statistical method 
for testing AL and 
HRV relationship  

Results 

Seeman et al. 
2010, USA 

Research 
paper 

1. To test and 
compare alternative 

models of  AL    
2.  To evaluate the 
factorial invariance 

of the final AL model 
across sex and 

ethnicity. 

Cross-
Sectional 

Black (54.7%) 
and white 

(45.3%) from 
the CARDIA 

Cohort (Year 
15 exam): 

Birmingham, 
Chicago, 

Minneapolis, 
and Oakland 

The health 
status of 

participants 
when 

measuring AL 
biomarkers 
and HRV is 

unclear 

782 32-47 Males 
(42.1%) and 
females(57.

9%) 

Controlled 
conditions 

(Laboratory) 

Sitting 10 minutes HF 
LF 

18 HR, HF, LF, SBP, DBP, 
waist circumference, , 

glucose, insulin, HDL, LDL, 
TGC, , interleukin-6, CRP, 

fibrinogen, , 12-hour 
urinary norepinephrine 

and epinephrine, salivary 
cortisol AM rise and PM 

decline 

Structural equation 
modeling was used to 
generate alternative 

models of AL 

Factor loadings 
and path 

coefficients 

1. The best fit to the data was a meta-
factor model of AL as an aggregate 
measure of six biological systems 

represented as latent subfactors (blood 
pressure, metabolic, inflammatory, HRV, 

sympathetic nervous system, and 
hypothalamic-pituitary-adrenal axis).  
2. Metabolic, inflammation, and BP 

subfactors showed the highest factor 
loadings and path coefficients to the AL 

meta-factor.  
3.HRV was the fourth-highest factor 

loading (-0.33, p<0.05) and had showed an 
inverse correlation with the AL meta factor, 
showing the fourth-highest factor loading (-

0.33, p<0.05). 
4. The meta-factor model showed minimal 

variance across sex and ethnicity. 

Viljoen, 
Claassen. 2017, 

South Africa  

Research 
paper 

1. To compare AL 
and HRV as disease 

risk indicators 
2. To evaluate the 
feasibility of HRV 

inclusion into an ALI 

Cross-
Sectional 

Armed 
protection 

subjects 
employed in 

Pretoria 

Employees 
who were not 

taking 
medications 
that affect 
HRV and 

"passed" a 
routine 

evaluation by 
the 

company's 
medical 

consultant. 
No further 

information 
was provided 
on the clinical 
status of the 
participants. 

27 28-57 Male Controlled 
conditions 

(Laboratory) 

Supine and 
standing 

4 periods of 
5 minutes 
each (20 
minutes 

total) 

HF 
SDNN 

RMSSD 
SD1 and 

SD2 

13 SBP, DBP, WTH, BMI, HDL, 
LDL, TC, aldosterone, 
albumin, CRP, fasting 
blood glucose, HbA1c, 

overnight (12-hour) 
urinary cortisol excretion. 

The ALI score was 
determined by adding the 

number of parameters 
falling within the highest 
risk quartile, except for 

HDL, which is considered 
high risk if it falls within 
the lowest quartile. The 

risk quartiles were 
determined based on 

normal clinical ranges for 
biochemical parameters.  

Normal ranges for 
anthropometric and blood 

pressure measurements 
were determined using 
international guidelines.   

Spearman´s rank 
correlation 
coefficients 

1. Negative correlations between the ALI 
and SDNN for all periods and positions (r=-
0.65 for Ph0, -0.53 for Ph1, -0.56 for Ph2, 

and -0.48 for Ph3; all p<0.01).  
2. Negative correlation between AL and 

vagal measures of HRV for the supine 
position (r=-0.59, -0.58, -0.59 for RMSSD, 
HF, SD1, respectively) and the 10 minutes 
after standing up (r=-0.41, -0.41, -0.40 for 

RMSSD, HF, SD1, respectively). No 
correlation between ALI and vagal response 

to orthostatic stress (first 5 minutes after 
standing up).  

3.Total and vagal measures of HRV are 
comparable to ALI as health risk indicators. 

AL, allostatic load; ALI, allostatic load index; ECG, electrocardiogram; SBP, systolic blood pressure; DBP, diastolic blood pressure; HRV, heart rate variability; HF, high-frequency band; LF, low-frequency band; RMSSD, root mean square of differences between successive R-R intervals; SDNN, standard deviation of all normal R-R intervals; SD1, 
standard deviation of the immediate or short-term heart rate variability; SD2, standard deviation of the long-term heart rate variability; BMI, body mass index; WTH, waist-to-hip ratio; TC, total cholesterol; HDL, high-density cholesterol; LDL, low-density cholesterol; TGC, triglycerides; CRP, c-reactive protein; HbA1c, glycated hemoglobin. 

 

 

 

 

 

 

 



41 

 

 

4. Discussion 

This scoping review found two studies that evaluated the relationship between AL and 

HRV in healthy individuals. Both studies reported a negative relationship but employed 

different AL calculating methods and statistical approaches to test this relationship. 

  

4.1. There is insufficient evidence of the relationship between AL and HRV in 

healthy individuals. 

 

As hypothesized, the evidence of the relationship between AL and HRV in healthy people 

is scarce. This finding aligns with a recent systematic review by Corrigan et al., who also 

found insufficient evidence for HRV to measure the physiological status of individuals 

under occupational chronic stress (Corrigan et al., 2021). It is essential to note some 

differences between Corrigan's review and our study. Corrigan et al. (2021) focused on 

occupational stress, while our study did not limit the stress type or context. Additionally, 

their study population was limited to first responders and tactical operators, while our 

study focused on individuals in the general population without specifying their 

occupational status. Corrigan et al. (2021) did not clearly define the health status of their 

participants, which may have introduced variability in their findings.  In contrast, our 

study targeted healthy individuals as the population of interest, ensuring a homogeneous 

sample concerning health status. Additionally, Corrigan et al. did not restrict the methods 

used to evaluate AL, including studies that assessed AL through psychological tools or 

with individual biomarkers, potentially limiting its validity as a measure of AL. In our 

review, we focused on studies that utilized a multisystemic approach to measure AL, 

which provides a comprehensive assessment of chronic stress. These differences are 

important when interpreting and applying results and designing future research on this 

topic.  

 

The lack of research on the link between AL and HRV in healthy individuals experiencing 

chronic stress may be in part attributed to the challenges in defining operational 

parameters for AL (Carbone et al., 2022; Mauss & Jarczok, 2021). This is supported by 

the fact that the main reason the papers were excluded from our review was the absence 

of an ALI or other multisystemic assessment in the published studies (Supplementary 

Table 2). 
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4.2. The evidence suggests a negative relationship between AL and HRV 

 

Seeman's study utilized a meta-factor model of AL, which included HRV as a latent 

subfactor, and found a significant negative path coefficient between the AL and the HRV 

subfactor measured with the HRV metrics HF and LF. Viljoen and Claassen's study 

(Viljoen and Claassen, 2017) calculated an AL score using the classical highest-risk 

quartile and found a statistically significant negative Spearman correlation between ALI 

and total HRV. In addition, they also found a correlation between ALI and vagal measures 

of HRV using frequency, time, and nonlinear domain analysis. These findings are 

particularly interesting as they mirror observations in acute experimental and real-life 

stress scenarios, where a negative correlation between acute stress and HRV has been 

noted (Corrigan et al., 2021; Immanuel et al., 2023; Kim et al., 2018; Thielmann et al., 

2021). However, Corrigan et al.'s systematic review reveals that studies conducted on 

populations exposed to repeated stressors have reported varied results in HRV 

measurements, including increases, decreases, and no changes, and they suggest that 

experiencing repeated stressors may result in a more complex HRV response than 

observed in acute stressor settings, emphasizing the need for further research on the use 

of HRV as an appropriate AL monitoring tool (Corrigan et al., 2021). 

  

4.3. Studies apply different methods for measuring AL and HRV as well as for 

testing their relationship 

 

The two studies reviewed have critical methodological differences, making them 

incomparable. The main differences in the approaches for measuring and analyzing AL 

and HRV are the following. Variations in AL biomarkers selection and score calculation: 

both studies used serum, cardiovascular, metabolic, inflammatory, and neuroendocrine 

biomarkers. Seeman et al. (2010) also included markers of autonomic nervous system 

function (HRV and 12-hour overnight urine norepinephrine); however, they included 

more parameters for the metabolic and inflammation systems, resulting in differences in 

the exhaustiveness of assessment across the AL biological systems. In Seeman et al.´s 

study, HRV was one of six latent biological subfactors of the AL meta-factor using a 

structural equation modeling. Viljoen and Claassen also included more metabolic 

parameters than the other AL domains; they used a classical highest-risk quartile method 
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to calculate the AL score. Different approaches to generate the AL score have been 

proposed, with the most used being the sum of the number of parameters falling into the 

highest risk quartile (Carbone et al., 2022). However, a standardized operational 

definition of AL has been a persistent issue, hindering research and clinical applications. 

While substantial progress has recently been made in this direction, further research is 

required to establish the best optimal set of AL biomarkers as well as the method of 

calculating the AL score that can be used across different populations and clinical settings 

(Carbone et al., 2022; McCrory et al., 2023). 

 

HRV metrics: Viljoen and Claassen measured HRV using frequency domain (HF), time 

domain (SDNN and RMSSD), and nonlinear analyses (Poincare SD1 and SD2), while 

Seeman et al. used only frequency domain (HF and LF) analysis. The most appropriate 

HRV metric to measure stress has not been established. The vagal metrics support the 

most significant evidence of the relationship between stress and HRV (Laborde et al., 

2017). For this reason, when conducting psychophysiology research, it is recommended 

to include metrics indicative of cardiovagal function. However, to avoid potential 

measurement bias, it is recommended to include several measurements of this component, 

such as one in the time domain and another in the frequency domain (Laborde et al., 

2017). The physiologic origins of the nonlinear HRV metrics are not clear, and more 

research is required to make recommendations for their use in psychophysiology (Shaffer 

& Ginsberg, 2017). 

 

ECG recording duration and position: In the study by Seeman et al. The ECG 

recording was performed for 10 minutes while the patient rested in a sitting position. For 

their part, Viljoen and Claassen did it in four periods of five minutes each, the first with 

the patient in a supine position followed by three consecutive periods in a standing 

position. Several guidelines have been published for measuring HRV in medical research 

(Laborde et al., 2017; Quintana et al., 2016; Shaffer & Ginsberg, 2017; Task Force of the 

European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology, 1996). It is important to note that long-term recordings (24 hours), 

short-term recordings (5 minutes), and ultra-short recordings (<5 minutes) rely on 

different physiological mechanisms that regulate HRV. Therefore, their values and 

applications are not interchangeable (Shaffer et al., 2014). For clinical contexts, short-

term recordings may lose their predictive capacity in comparison to 24-hour recordings 
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(Shaffer & Ginsberg, 2017). However, in psychophysiological research, a five-minute 

recording under controlled conditions may be preferable to facilitate comparison between 

studies (Laborde et al., 2017). As a result, the duration and analysis method of HRV 

measures will depend on the objective and research question. Given that evaluating the 

individual's autonomic and medical status is crucial for interpreting the relationship 

between stress and HRV (Kim et al., 2018) and that longer records have more predictive 

value for clinical outcomes (Shaffer & Ginsberg, 2017), using 24-hour recordings in real-

life outpatient settings could be more appropriate for evaluating HRV as a potential 

biomarker of chronic stress. At this point, it is worth mentioning that wearable devices 

are currently being used to measure HRV in natural contexts. Many of these devices use 

photoplethysmography to measure pulse rate variability (PRV) as a measure of HRV. 

However, although these devices can indirectly measure HRV and have been used in 

studies with different populations (Chrousos et al., 2022; Mason et al., 2024; Natarajan 

et al., 2020; Singstad et al., 2021), for an adequate interpretation of this measure it is 

important to take into account the physiological circulatory conditions and external 

environmental factors such as temperature (Mejia-Mejia et al., 2020). 

 

Other critical methodological concerns: The results are limited to the age range of these 

studies (28 - 57 years). This is crucial as both AL and HRV vary with age (Koenig et al., 

2021; Upchurch et al., 2015). Viljoen and Claassen included only men in their study, 

which is an essential issue since the regulation of HRV is different for men and women. 

For example, compared to men, women have a more significant parasympathetic 

component of HRV (Koenig & Thayer, 2016). Additionally, the AL also differs between 

the sexes (McCrory et al., 2020). The study by Seeman et al. (2010) included white and 

black Americans, while Viljoen and Claassen did not specify the race/ethnicity of 

participants. Describing race or ethnicity is essential when analyzing HRV and AL, given 

that these variables and their relationship vary according to different ethnicities (Hill et 

al., 2015; Tavares et al., 2022). The participant´s health status was not clearly specified 

in either study. Both studies were conducted with cross-sectional analysis, which limits 

the ability to establish a causal relationship between the AL score and the progressive 

physiological accumulation of wear and tear due to chronic stress (Seeman et al., 2010). 

Finally, these studies did not consider critical confounding factors in the relationship 

between AL and HRV, such as physical activity, smoking, socioeconomic status, 

medications, and educational level (Laborde et al., 2017; McCrory et al., 2023). 
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4.4. Limitations of this review 

The study's limitations include being unable to search some databases, such as Web of 

Science and ProQuest. However, it is unlikely that additional sources meeting the 

inclusion criteria would be found in these databases, as leading journals on the topic are 

indexed in the databases included in this review. Furthermore, authors and experts were 

contacted, and no additional studies on the AL-HRV relationship were identified. Another 

limitation is the exclusion of studies that evaluated the relationship between HRV and 

specific biomarkers related to chronic stress response. The decision was made to limit the 

search to studies that evaluated AL objectively and in a multisystemic way (i.e., through 

ALI or a multisystemic AL construct) according to the conceptual framework of AL and 

our review question. 

 

4.5. Implications for practice and research and next steps 

Although HRV has been proposed as a chronic stress biomarker, and some researchers 

have included it in the operational biomarkers of AL for both healthy people and patients 

(Mauss & Jarczok, 2021), the following are important issues that require addressing: 1) 

More studies in healthy populations are necessary to understand the relationship between 

AL and HRV. This is very relevant for preventive medicine, considering the large number 

of clinical conditions related to chronic stress for which we could implement primary or 

secondary prevention measures. 2) It is essential to clearly define the study population, 

particularly its health status, and describe the methods used to measure HRV and AL. 3) 

Standardized recommendations are necessary for HRV measurement in chronic stress 

research, including ECG recording duration and context and HRV metric selection. 4) 

Determining the optimal number and specific AL biomarkers, ensuring a multisystemic 

assessment for application in different healthy populations, is crucial. 5) Longitudinal 

studies, including relevant clinical outcomes in healthy populations, are needed to define 

the role of HRV as a biomarker of chronic stress and its clinical usefulness. 

 

5. Conclusion 

There is currently insufficient research to establish the nature of the relationship between 

AL and HRV in healthy individuals. The limited evidence shows a negative relationship 

between these two, which suggests that HRV could be a chronic stress biomarker for 
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healthy populations. Uncovering evidence in this area could significantly impact public 

health, especially in preventive medicine, given the many disorders linked to chronic 

stress and the widespread use of wearable devices that can measure HRV in real-life 

situations. However, research advances in this field require an operational, standardized, 

and valid measurement of AL and HRV, properly defining healthy individuals in different 

populations. Furthermore, longitudinal rather than cross-sectional studies in healthy 

populations will be more informative to understand the complex relationship between AL 

and HRV. 
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Supplements 
 

Supplementary Table 1. Search terms and results of each database 

Database Search terms Results 

Embase 
(allostasis:ab,ti OR 'allostatic load':ab,ti OR 'allostatic 

overload':ab,ti) AND 'heart rate variability':ab,ti OR 'cardiac vagal 
control':ab,ti OR 'cardiac vagal tone':ab,ti 

868 

PubMed 

((("allostasis"[Title/Abstract] OR "allostatic load"[Title/Abstract] 
OR "allostatic overload"[Title/Abstract]) AND "heart rate 

variability"[Title/Abstract]) OR "cardiac vagal 
control"[Title/Abstract] OR "cardiac vagal tone"[Title/Abstract]) 

AND (1999/1/1:2024/2/5[pdat]) 

597 

LILACS 
(allostasis) OR (allostatic load) OR (allostatic overload) AND 
(heart rate variability) OR (cardiac vagal control) OR (cardiac 

vagal tone) 
171 

Google Schollar 
"allostasis" "allostatic load" "allostatic overload" AND "heart rate 

variability" "cardiac vagal control" "cardiac vagal tone" 
15 

Epistemonikos 

(title:((title:(allostasis) OR abstract:(allostasis)) OR 
(title:(allostatic load) OR abstract:(allostatic load)) OR 

(title:(allostatic overload) OR abstract:(allostatic overload)) AND 
(title:(heart rate variability) OR abstract:(heart rate variability)) 

OR (title:(cardiac vagal control) OR abstract:(cardiac vagal 
control)) OR (title:(cardiac vagal tone) OR abstract:(cardiac vagal 
tone))) OR abstract:((title:(allostasis) OR abstract:(allostasis)) OR 

(title:(allostatic load) OR abstract:(allostatic load)) OR 
(title:(allostatic overload) OR abstract:(allostatic overload)) AND 
(title:(heart rate variability) OR abstract:(heart rate variability)) 

OR (title:(cardiac vagal control) OR abstract:(cardiac vagal 
control)) OR (title:(cardiac vagal tone) OR abstract:(cardiac vagal 

tone)))) 

11 

Total   1662 
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Supplementary Table 2. Reasons for exclusion 

Author Title Selection Reasons for exclusion 

Viljoen 
Allostatic load and HRV as health risk 

indicators 
Included  

Seeman 

Modeling multi-system biological risk in 
young adults- the Coronary Artery Risk 

Development in Young Adults Study 
(CARDIA) 

Included  

Causadias 
Culture and Biology Interplay: An 

Introduction 
Excluded 

Measures ICA and HRV but 
not the association between 

them 

Corrigan 
Monitoring Responses to Basic Military 

Training with Heart Rate Variability 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Corrigan 
Monitoring stress and allostatic load in first 

responders and tactical operators using 
heart rate variability- a systematic review 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Corrigan 
Soldier performance management_ The 

utility of heart rate variability to evaluate 
allostatic load 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Friedman 
An autonomic flexibility–neurovisceral 

integration model of anxiety and cardiac 
vagal tone 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Jiryis 

Resting-state heart rate variability (HRV) 
mediates the association between 

perceived chronic stress and ambiguity 
avoidance 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Ketheesan 
Stress  allostatic load and mental health in 

Indigenous Australians 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Macartney 
Overnight sleeping heart rate variability of 

Army recruits during a 12-week basic 
military training course 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Mauss 
A streamlined approach for assessing the 

Allostatic Load Index in industrial 
employees 

Excluded 
Measures ICA and HRV but 

not the association between 
them 

Mauss 
The streamlined Allostatic Load Index  a 

replication of study results 
Excluded 

Measures ICA and HRV but 
not the association between 

them 

Mauss 
The streamlined allostatic load index is 
associated with perceived stress in life   

findings from the MIDUS study 
Excluded 

Measures ICA and HRV but 
not the association between 

them 

Milosevic 
Research Methodology for Real-Time 

Stress Assessment of Nurses 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 
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Porges 
Vagal tone- a physiologic marker of stress 

vulnerability 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Thayer 
Beyond Heart Rate Variability Vagal 

Regulation of Allostatic Systems 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Viljoen Cynicism as subscale of burnout Excluded 
Measures ICA and HRV but 

not the association between 
them 

Visnovcova 
Alterations in Vagal-Immune Pathway in 

Long-Lasting Mental Stress 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Zalli 

Shorter telomeres with high telomerase 
activity are associated with raised allostatic 

load and impoverished psychosocial 
resources 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Andrade 

Heart rate and cardiac autonomic 
responses to concomitant deep breathing, 

hand grip exercise, and circulatory 
occlusion in healthy young adult men and 

women 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Balzarotti 
Cardiac Vagal Control as a Marker of 

Emotion Regulation in Healthy Adults- A 
Review 

Excluded 
Measures ICA and HRV but 

not the association between 
them 

Beckie 
A Systematic Review of Allostatic Load, 

Health, and Health Disparities 
Excluded 

Measures ICA and HRV but 
not the association between 

them 

Kim 
Stress and Heart Rate Variability- A Meta-

Analysis and Review of the Literature 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Low 
The effects of Hong Kong employees 

workplace stress on heart rate variability 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Martin 
Low cardiac vagal control is associated 

with genetic liability for elevated 
triglycerides and risky health behaviors 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Matuz 
Enhanced cardiac vagal tone in mental 

fatigue_ Analysis of heart rate variability in 
Time-on-Task, recovery, and reactivity 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Mohammadi 
The persistent effect of acute psychosocial 

stress on heart rate variability 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Petrowski 

Stress load of emergency service- effects 
on the CAR and HRV of HEMS emergency 

physicians on different working days 
(N=20) 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 
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Pluim 

Correlation of heart rate variability with 
cardiac functional and metabolic variables 

in cyclists with training induced left 
ventricular hypertrophy 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Pulopulos 

Association between changes in heart rate 
variability during the anticipation of a 

stressful situation and the stress-induced 
cortisol response 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Ramos 
Lower cardiac vagal tone in non-obese 

healthy men with unfavorable 
anthropometric characteristics 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Rash 
Maternal cortisol during pregnancy is 
related to infant cardiac vagal control 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Rhudy 

Are Cardiometabolic Markers of Allostatic 
Load Associated With Pronociceptive 

Processes in Native Americans- A 
Structural Equation Modeling Analysis 

From the Oklahoma Study of Native 
American Pain Risk 

Excluded 
Measures ICA and HRV but 

not the association between 
them 

Schmid 
Associations between being overweight, 
variability in heart rate, and well-being in 

the young men 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Smeets 
Autonomic and hypothalamic–pituitary–

adrenal stress resilience- Impact of cardiac 
vagal tone 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Steptoe 
Stress responsivity and socioeconomic 

status- a mechanism for increased 
cardiovascular disease risk 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Su 
Heart Rate Variability Feature Selection 
using Random Forest for Mental Stress 

Quantification 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Thayer 

A meta-analysis of heart rate variability 
and neuroimaging studies- Implications for 
heart rate variability as a marker of stress 

and health 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Tran 

Heart Rate Variability Measurement to 
Assess Acute Work-Content-Related Stress 

of Workers in Industrial Manufacturing 
Environment—A Systematic Scoping 

Review 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Tung 
Cardiac Vagal Control in Response to Acute 
Stress during Pregnancy- Associations with 

Life Stress and Emotional Support 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Valensi 
Insulin- and glucagon-like peptide-1-

induced changes in heart rate and 
vagosympathetic activity- why they matter 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 
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Zhang 
Exploring the Associations Between 

Perceived Stress and Physiological Stress 
Using Heart Rate Variability 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Dina Tell  
Heart Rate Variability and Inflammatory 

Stress Response in Young African American 
Men 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Nelson 
Psychobiological markers of allostatic load 
in depressed and nondepressed mothers 

and their adolescent offspring 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Frasch 
Heart Rate Variability Code - Does It Exist 

and Can We Hack It 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Gruenewald Allostatic load and frailty in older adults Excluded Does not measure HRV 

Kemp 

From Psychological Moments to Mortality- 
A Multidisciplinary Synthesis on Heart Rate 

Variability Spanning the Continuum of 
Time 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Rios 
Heart Rate Variability and Allostasis in 

Individuals with Depression and Anxiety 
Symptoms 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Streeter 

Effects of yoga on the autonomic nervous 
system, gamma-aminobutyric-acid, and 

allostasis in epilepsy, depression, and post-
traumatic stress disorder 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Young 
Heart-rate variability- a biomarker to study 
the influence of nutrition on physiological 

and psychological health 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Kim 
Short Term Analysis of Long Term Patterns 
of Heart Rate Variability in Subjects under 

Mental Stress 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 
    

 Retrieved from references of the selected 
papers 

  

George 

Assessing the effect of long term physical 
training and classification of training status 

using HRV and HRR of female police 
recruits. 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Grant 

The difference between exercise-
induced autonomic and fitness changes 

measured after 12 and 20 weeks of 
medium-to-high intensity military 

training. 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Huovinen 
Relationship between heart rate variability 

and the serum testosterone-to-cortisol 
ratio during military service. 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 
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Jouanin 
Analysis of heart rate variability after a 

ranger training course. 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Jouanin 
Short half-life hypnotics preserve physical 

fitness and altitude tolerance during 
military mountainous training. 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Nikolova 
Psychophysiological assessment of stress 

and screening of health risk in 
peacekeeping operations. 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Head 
Prior mental fatigue impairs marksmanship 

decision performance 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Clemente-Suarez 
Psychophysiological response to acute-

high-stress combat situations in 
professional soldiers. 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Brisinda 
Real-time imaging of stress-induced 

cardiac autonomic adaptation during 
realistic force-on-force police scenarios 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Diaz-manzano 

Higher use of techniques studied and 
performance in melee combat produce a 

higher psychophysiological stress 
response. 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Giessing 

Effects of coping-related traits and 
psychophysiological stress responses on 

police recruits' shooting behavior in 
reality-based scenarios 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Adams 
Ambulatory blood pressure and Holter 

monitoring of emergency physicians 
before, during, and after a night shift 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Clemente-Suarez 
Psychophysiological response and fine 
motor skills in high-altitude parachute 

jumps 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Clemente-Suarez 
Psychophysiological response in an 

automatic parachute jump 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Gnam 
On the relationship between physical 

activity, physical fitness, and stress 
reactivity to a real-life mental stressor 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Hansen 
Relationship between neuroticism, threat 

of shock and heart rate variability 
reactivity 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 
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Souza 
Resting vagal control and resilience as 

predictors of cardiovascular allostasis in 
peacekeepers 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Tornero-Aguilera 
Use of psychophysiological portable 
devices to analyse stress response in 

different experienced soldiers 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Sandvik 

Physical fitness and psychological 
hardiness as predictors of parasympathetic 
control in response to stress: a Norwegian 

police simulator training study 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Sanchez-Molina 
Assessment of psychophysiological 

response and specific fine motor skills in 
combat units 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Hynynen 
Cardiac autonomic responses to standing 

up and cognitive task in overtrained 
athletes 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Michael S 
Submaximal exercise intensity modulates 
acute post-exercise heart rate variability 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Andrew ME 
Police work stressors and cardiac vagal 

control 
Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Matuz 
Enhanced cardiac vagal tone in mental 

fatigue: analysis of heart rate variability in 
time-on-task, recovery, and reactivity 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

Sevre 
Reduced autonomic activity during 
stepwise exposure to high altitude 

Excluded 

The measure does not 
account for the allostatic 
load as a multisystemic 

construct 

    

 

 

Supplementary table 3. Data extraction formulary 

Item Content (include page number) 

Author  

Year of publication  

Title  

Journal  

Type of source (journal, thesis, poster, etc)  

Language   

Sample size  

Gender included  

Race  
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Age range  

Type of population (employees, sports, etc.)   

Health status   

The environment of ECG measurement   

Duration ECG measurement   

HRV metrics    

Number of AL biomarkers   

Method for AL score calculation   

Method to test HRV and AL relationship    

Clinical outcomes (Y/N)  

Comments  
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Abstract 

Introduction: Heart rate variability (HRV) has been suggested as a potential marker of 

allostatic load (AL). However, there is limited available evidence to support this 

assumption, and there is no empirical data on the link between AL and ambulatory-

measured HRV. This study examined the relationship between an allostatic load index 

(ALI) and 24-hour HRV metrics in healthy men. Additionally, we sought to investigate 

how structural and functional central nervous system parameters interact with AL to 

influence HRV. 

Methods: This cross-sectional study included healthy adult men from Medellín, 

Colombia. Exclusion criteria were the presence of diagnosed medical or mental disorders, 

symptoms of physical or mental illnesses, and routine medication use at the time of the 

mailto:ana.miranda@udea.edu.co


60 

 

study. The ALI was developed using the quartile risk summation method. Data from 24-

hour Holter monitoring was used to extract HRV metrics (sympathovagal quotient, SQ; 

the root mean square of the successive difference, RMSSD; the standard deviation of the 

NN intervals, SDNN; the low-frequency band, LF; and high-frequency band, HF). We 

evaluated the ALIs and HRV relationship using multiple linear regression (MLR) models. 

Additionally, we obtained measurements of brain connectivity and structure using 

magnetic resonance imaging., and investigated how ALI interacts with the resting-state 

functional connectivity strengths of three major brain networks (default, salience, and 

control), the cortical thickness of brain structures within these networks, and the volume 

of subcortical areas in their influence on HRV. 

Results: 88 men aged between 21 and 40 years were included. 70% were middle 

socioeconomic. A new ALI composed of seven parameters (waist-to-height ratio, WtHR; 

high-density lipoprotein HDL; glycated hemoglobin, HbA1C; high-sensitivity C-reactive 

protein, hs-CRP; systolic blood pressure; diastolic blood pressure; and 

dehydroepiandrosterone sulfate) was correlated with the SQ after adjusting for potential 

confounders (β=0.093, p=0.004, IC=0.03-0.15). In the exploratory MLR analyses of the 

interaction between ALI-7 and resting-state brain networks and structures, several 

interactions had negative correlations with HRV (SDNN and HF). 

Conclusion: These findings suggest that the SQ is an indicator of AL, highlighting its 

potential as a biomarker for preventing, diagnosing, and managing chronic stress. Our 

exploratory analysis indicates that HRV reflects the interplay of central and peripheral 

physiological processes related to chronic stress. This finding will need validation in 

future research. 

Keywords: Chronic stress, allostatic load, allostatic load index, sympatovagal quotient, 

heart rate variability, central autonomic network. 

1. Introduction 
 

Allostatic load (AL) reflects the cumulative wear and tear on the body due to chronic 

stress, making individuals more susceptible to disease (McEwen & Stellar, 1993). An 

allostatic load index (ALI) is a well-accepted approach for measuring stress, 

incorporating multiple biomarkers that represent various physiological systems involved 

in the stress response (Seeman et al., 2001). Elevated AL levels are linked to a higher risk 
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of physical and mental disorders as well as increased mortality (Guidi et al., 2021; Parker 

et al., 2022). Nonetheless, the measurement of AL faces challenges such as inconsistency 

in selecting biomarkers and methods for calculating the ALI, which restricts its 

application in clinical practice (Carbone et al., 2022). A recent comprehensive meta-

analysis has attempted to establish a consensus and has been published, endorsing the use 

of an ALI comprising five biomarkers associated with mortality risk (McCrory et al., 

2023). This recent publication highlights the need to reproduce these findings in other 

populations. 

 

Heart rate variability (HRV) refers to the fluctuation in the duration of intervals between 

heartbeats (Shaffer et al., 2014). It integrates the intrinsic heart nervous system with 

central nervous system (CNS) regulation and the sympathetic and parasympathetic 

innervation of the heart (Shaffer & Ginsberg, 2017). HRV has also been proposed as a 

marker of neurophysiological processes of emotional self-regulation (Holzman & 

Bridgett, 2017). Additionally, there is evidence of the relationship between biomarkers 

related to the stress response and HRV (Boschiero & Ilich, 2022; Sloan et al., 2007). In 

patients and healthy populations, HRV has been considered a marker of acute stress 

(Chesnut et al., 2021; Corrigan et al., 2021; Immanuel et al., 2023; Kim et al., 2018). 

Consistent with this, low HRV has been associated with a higher risk of morbidity and 

all-cause mortality (Jarczok et al., 2022). 

 

Based on the above information and its ability to represent the interaction between central 

and peripheral physiological processes, HRV has been suggested as a potential indicator 

of mental well-being, chronic stress, and related psychiatric disorders (Agorastos et al., 

2023; Bandelow et al., 2017; Chesnut et al., 2021). However, a systematic review 

published in 2021 reported insufficient empirical evidence to support the use of HRV as 

an indicator of chronic stress (Corrigan et al., 2021). A more recent scoping review 

(Solano-Atehortua et al., 2024) reported only two studies that assessed the relationship 

between chronic stress measured in the AL framework and HRV. The main concern with 

these two studies is that they focused on measuring HRV in experimental laboratory 

settings using short-duration recordings with the patient at rest rather than employing 

long-term ambulatory recording in natural and clinical contexts, as recommended for 

clinical practice (Shaffer & Ginsberg, 2017; Task Force of the European Society of 
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Cardiology and the North American Society of Pacing and Electrophysiology. 

Circulation., 1996)  

 

The Central Autonomic Network (CAN) is a pivotal group of brain structures that regulate 

the body's autonomic function. This network integrates signals from the central and 

peripheral nervous systems to maintain balance in the body and coordinate the stress 

response (Lamotte et al., 2021). The CAN, which includes the anterior cingulate cortex 

(ACC), prefrontal cortex, amygdala, hypothalamus, insula, nucleus accumbens, and 

brainstem nuclei, among other structures (Quadt et al., 2022), plays a crucial role in 

balancing sympathetic and parasympathetic activity, a key factor in generating and 

regulating HRV. Resting-state networks (RSNs) have also been shown to modulate both 

chronic stress and HRV (Chang et al., 2013; Valenza et al., 2019). Despite these findings, 

no studies have evaluated the interaction between ALI, the CAN structures, and the RSNs 

to modulate HRV. 

 

This study examines the relationship between AL and HRV. In addition, we explored 

how the AL interacts with the structural and functional parameters of the CNS to 

modulate HRV. 

 

2. Methods 
 

2.1. Ethical Considerations 

This study was conceived and designed within the framework of international agreements 

on research involving human subjects. Specifically, it adheres to the Declaration of 

Helsinki of the World Medical Association, in its seventh revision 

(https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/), and the 

International Ethical Guidelines for Health-Related Research Involving Humans 

(CIOMS-WHO Guidelines) 2016-2017. The project was approved by the Bioethics 

Committee of the Faculty of Medicine of the University of Antioquia (Approval Act 007 

of May 11, 2017) and by all participating institutions. Individuals who participated in this 

research signed an informed consent form after a detailed explanation and clarification of 

any doubts (Approval Act 007 of May 11, 2017). 

https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/
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2.2. Study population selection 

 

This cross-sectional study included healthy adult men aged 21 to 40 years. Exclusion 

criteria were the presence of diagnosed medical illnesses or mental disorders, symptoms 

of physical or mental illnesses, drug abuse, routine medication use at the time of the study, 

use of cardiac devices or prostheses, and contraindications for magnetic resonance 

imaging. Participants were recruited through printed notices and e-mail at the University 

of Antioquia, radio and television announcements, and personal recommendations among 

research group members. All subjects underwent physical examination to obtain 

anthropometric and blood pressure measurements. Biological samples, 24-hour Holter, 

and structural and resting-state functional magnetic resonance imaging (rsfMRI) data 

were collected within 4 weeks. All measurements performed on the volunteers were 

completed within a maximum period of 4 weeks from study enrollment. 

 

2.3. Health parameters  

2.3.1. Anthropometric and blood pressure measurements 

Blood pressure was measured three consecutive times using a calibrated 

sphygmomanometer with the participant seated and left arm supported. The average of 

the three readings was calculated. Waist and hip circumference were measured twice 

using an anthropometric measuring tape, and the averages were calculated. Height was 

measured using a stadiometer, and weight was measured using a calibrated electronic 

scale. Body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-height ratio 

(WHtR) were calculated accordingly. 

 

2.3.2. Biochemical parameters 

Fresh serum obtained from peripheral blood was used for all measurements. C-reactive 

protein (CRP), high-density lipoprotein (HDL), total cholesterol (TC), glycated 

hemoglobin (HbA1c), and dehydroepiandrosterone sulfate (DHEAS) were measured in a 

specialized clinical laboratory using Dimension® Flex ® DF34, DF48B, DF27, and 

DF105A reagent cartridges and Architect 8K27, respectively. 
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2.3.3. Electrocardiographic recording and analyses 

Electrocardiographic (ECG) recordings were performed using a Custo Flash 510V model 

monitor installed in volunteers between 7 am and 10 am, and it was removed the 

following day around the same time to ensure a minimum ECG recording of 21 hours. 

The monitor performed recordings in three channels every 2.5 ms ± 0.1% per channel, 

with a quantification amplitude of 5.6 μV/Bit ± 1% of 10 bit, a response frequency range 

of 0.05-45 Hz, and a resistance ≥ 10 MΩ filtered at 50 Hz 80 dB. Volunteers were asked 

to perform their usual life activities during recording but were instructed to avoid physical 

exercise. They were also asked to log their daily activities. HRV time- and frequency-

domain metric calculations were performed using the ANS diagnostic module of the 

Custo diagnostics Holter ECG (Customed Inc., Germany). The HRV metrics used for the 

analyses were SDNN, the root mean square of successive differences between normal 

heartbeats (RMSSD), the natural logarithms of LF and HF (ln LF and ln HF), and SQ as 

ln (LF/HF). 

 

2.3.4. Neuroimaging processing and analyses 

Scanning was performed using an Ingenia 3T Philips MRI scanner with a 16-channel 

phased-array rigid head coil. The neuroimaging acquisition was done as previously 

described (Miranda-Angulo AL. et al. 2024). We measured the resting-state functional 

connectivity strength (FCS) of RSNs using the node strength connectivity metric (Stg) 

derived from the graph theory approach. This metric provides information about the 

weight of the correlation between a node and the rest of the cortex. Using the Brain 

Connectivity Toolbox, Stg was computed as the sum of the link weights connected to a 

node (Rubinov et al., O. 2010). Afterward, the average Stg was calculated by dividing it 

by the number of connected nodes in each network (Fornito et al., 2016). Volumetric 

parameters and cortical thickness were measured using the segmentation of 453 regions 

with the freely available and extensively validated FreeSurfer software based on the basic 

recon-all Freesurfer routine (400 regions based on Schaefer's cortical parcellation and 53 

subcortical regions). The volume measurements were normalized using each subject's 

intracranial volume (ICV). We used default parameters for cortical thickness to create a 

3‐dimensional cortical surface model. The steps include automated Talairach 

transformation, intensity normalization, and nonbrain tissue removal. Hemispheres are 

separated, and the cerebellum and brain stem are excluded. A tessellation of the gray and 

white matter boundary and topology correction follows this. Cortical thickness was 
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calculated as the distance between the white and pial surface, and surface deformation 

enabled the detection of tissue boundaries. Cortical thickness of 400 regions based on 

Schaefer's cortical parcellation to Yeo 17 networks were extracted. 

 

2.3.5. Stress, depression, and anxiety evaluation   

We assessed exposure to stressors and perceived stress using the following three scales: 

The Daily Hassles Scale (DHS) interview to assess exposure to daily stressors in the last 

month (Hannan et al., 2015). The Revised Checklist of Stressful Life Events (LSC-R) 

was used to identify stressful and potentially traumatic events throughout life and their 

impact in the last year, calculating scores for perception, severity, and number of post-

traumatic stress disorder symptoms (Humphreys et al., 2011). We also applied the 10-

item Perceived Stress Scale (PSS) to evaluate perceived stress in the last month (Campo-

Arias et al., 2014). These three scales do not have cut-off points, but higher scores indicate 

greater exposure to stressors or higher perceived stress according to the scale. To assess 

anxiety symptoms, we used the following two screening scales: The State-Trait Anxiety 

Inventory (STAI) (Spielberger et al, 1970), which detects anxiety as a state (STAI-S) and 

trait (STAI-T), with scores ranging from 20 to 80 points, using 41 as the cut-off point for 

STAI-S and 44 for STAI-T (Guillén-Riquelme & Buela-Casal, 2011). Finally, we used 

the Zung Depression Scale (Zung, 1965) to evaluate the presence of depressive 

symptoms. Scores range from 20 to 80 points, with a score equal to or higher than 50 

indicating depression (Campo-Arias et al., 2005). These instruments are validated in 

Spanish and for the Colombian population. 

 

2.3.6. Physical activity, habitual diet, and sleep patterns 

The short Spanish version of the International Physical Activity Questionnaire (IPAQ) 

(Craig et al., 2003) was used to assess physical activity habits. This questionnaire 

categorizes physical activity into three levels: light, moderate, and vigorous (Craig et al., 

2003). Usual dietary intake over twelve months was assessed using an electronic 

adaptation of a self-administered semi-quantitative food frequency questionnaire (FFQ) 

developed locally (Monsalve-Álvarez and González-Zapata, 2011). The determination of 

nutritional energy and macronutrient content from this questionnaire was performed using 

an in-house developed R script. To evaluate sleep quality, participants were asked to rate 

their sleep in one of three categories: good, average, and bad. For sleep quantity 
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assessment, participants were asked to define the amount of sleep they had each night 

recently on most days in one of three categories: less than 4 hours, between 4 and 6 hours, 

and more than 6 hours. 

 

2.4.  Statistic al analysis 

2.4.1. Sample size and power analysis 

A published study found a correlation between ALI and RMSSD between 0.296 and 0.6 

(Viljoen & Claassen, 2017). Assuming a correlation of 0.3, a type 1 error of 0.05, and a 

power of 80%, a sample of 85 individuals is required. This was calculated using Epidat 

software version 4.2. 

 

2.4.2. Descriptive analyses 

The variables were analyzed according to their nature (quantitative or qualitative). 

Qualitative variables were presented as absolute values and percentages in the descriptive 

analyses. Based on their distribution, quantitative variables were grouped using central 

tendency and dispersion measurements (means with standard deviations or medians with 

interquartile ranges). To conduct multivariate linear regression analyses (MLR), SDNN 

and RMSSD were transformed using natural logarithms in the SPSS software version 25. 

 

2.4.3. Development of ALI  

Parameters were selected based on physiological and conceptual criteria of AL as a 

multisystemic construct (Seeman et al., 2001), along with the most robust and most recent 

scientific evidence of each parameter's ability to mediate AL within an ICA (McCrory et 

al., 2023). Based on the 5 biomarkers recommended by McCrory et al. (WHtR, HbA1C, 

CRP, HDL, HR), considering that our objective was to evaluate the relationship of ALI 

with HRV, we decided to exclude resting HR from the ICA parameters. In this way, to 

these 4 initial biomarkers, ICT, HbA1C, HDL, and CRP, we decided to add parameters 

of the cardiovascular system, i.e. systolic and diastolic blood pressure, considering the 

robust evidence of the relationship between AL and blood pressure (Chiger et al., 2022; 

Feres et al., 2019), and the relationship of the latter with relevant clinical outcomes with 

morbidity and mortality in healthy men (Volpe et al., 2019). Finally, to measure the 

neuroendocrine system, another fundamental system in the theory of chronic stress and 

AL, and also because DHEA-S was one of the 9 biomarkers related to clinical outcomes 
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in the McCrory metanalysis, we included the DHEA-S as another ALI biomarker. Thus, 

our developed ALI comprises the following 7 parameters (ALI-7): WHtR, HbA1C, HDL, 

CRP, SP, DP, and DHEA-S. The ALI scores were calculated using a summation method 

involving several steps. First, the distribution of biomarker values for the population was 

determined. Second, the risk quartile for each biomarker was calculated, with the upper 

quartile defined as the risk quartile for WHtR, SBP, DBP, HDL, HbA1C, and CRP, and 

the lower quartile defined as the risk quartile for HDL and DHEA-S. Third, the total score 

of the ALI was then calculated for each individual by assigning one point for each 

biomarker falling within the risk quartile, resulting in a total ALI score. This score reflects 

the number of biomarkers in the highest risk levels. 

 

2.4.4. Evaluation of the relationship between ALI and HRV 

First, simple linear regression analyses (SLR) were conducted between the developed 

ALI (ALI-7) and each HRV metric SQ, HF, LF, RMSSD, and SDNN. Then, we 

performed MLR analyses using ALI as the independent variable and the HRV metrics 

that showed statistically significant results in the SLR as dependent variables. We chose 

the confounding variables based on biological plausibility, published evidence, and data 

analysis using the stepwise backward method in Stata software. The following 

confounding variables were included: age, physical activity, daily cholesterol 

consumption, and the LSC-R perception score.  

 

2.4.5. Evaluation of the relationship between ALI, the structural and functional 

parameters of brain regions, and HRV 

We used RLM analyses to evaluate the effect of the interaction between ALI and resting-

state functional connectivity and brain structures on HRV. For the analysis of interactions 

between ALI and functional connectivity of brain networks, the independent variables 

were ALI and the resting-state FCS of the subnetworks belonging to the executive control 

network (Control A, Control B, and Control C), default mode network, DMN, (DMN A, 

DMN B, and DMN C), and salience network (Salience A and Salience B). The dependent 

variables were SQ, SDNN, RMSSD, and HF, and the interaction term was ALI multiplied 

by the FCS of each subnetwork. To assess the interactions between ALI and cortical 

structures, the independent variables used in the functional analyses were ALI and the 

average cortical thickness of the brain areas belonging to the same subnetworks used for 
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the functional analyses. The dependent variables were SDNN, SQ, and HF. The 

interaction term was ALI multiplied by the cortical thickness of each subnetwork. Finally, 

to evaluate interactions between ALI and subcortical structures, the independent variables 

were ALI and the volume of subcortical structures belonging to the CAN (hippocampus, 

anterior cingulate cortex, accumbens, and amygdala) in both sides of the brain. The 

dependent variables were SDNN and SQ and the interaction term was ALI multiplied by 

the subcortical structure volume. In all the RLM models, interaction variables were 

centered by subtracting their respective means, and the interaction term was obtained by 

multiplying the centered variables. Confounding variables included age, mean arterial 

pressure, and LSC-R stress perception score. These confounders were selected using the 

stepwise backward selection in Stata version 16, considering biological plausibility and 

literature evidence (Laborde et al., 2017; Shaffer & Ginsberg, 2017). 

 

2.4.6. Other statistical considerations 

For all multiple linear regressions (MLR), we checked the assumptions of normality of 

residuals using the Shapiro-Wilk test (p>0.05), absence of multicollinearity by calculating 

the variance inflation factor (VIF<5.0), absence of autocorrelation with the Durbin-

Watson test (d=1.5–2.5), and homoscedasticity with the Breusch-Pagan test (p>0.05). The 

quality of the models was verified using the Akaike Information Criterion (AIC), R², and 

adjusted R². Statistical significance was defined for all analyses by a p-value less than or 

equal to 0.05. All MLR analyses were performed using the STATA software, version 16. 

Additionally, to verify the robustness of the relationship found between the ALI-7 and 

HRV, we conducted a sensitivity analysis testing the model with other confounding 

variables. Finally, we compared the ALI-7 to an ALI (ALI-4) composed of four out of 

the five biomarkers recommended by McCrory et al. (excluding the FC for the reasons 

already stated) with respect to its relationship with the HRV. 

3. Results 
 

3.1 Descriptive Data 

Out of 402 volunteers who completed the online pre-selection questionnaire, 299 were 

excluded because they did not meet the inclusion criteria. Of the remaining 103 subjects, 

15 were withdrawn for various reasons, leaving 88 participants for analyses 
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(Supplementary Figure 1). Table 1 describes the study population's demographic, 

psychological, physiological, biochemical, and anthropometric characteristics.  

The median age was 30 years; most participants had a bachelor's degree or were pursuing 

one, and most belonged to a middle socioeconomic level. Anthropometric and 

cardiovascular parameters were within normal ranges for their age and sex. Although 

participants were screened for mental disorder diagnoses and psychiatric medication use 

during the pre-selection process, some scored above the cutoff points for these scales: 

Zung scale (n=15, 17.04%), STAI-T (n=14, 15.9%), STAI-S (n=3, 3.4%), and both Zung 

and STAI (n=13, 14.8%). 

Table 1. Demographic and clinical characteristics of study population 

Variables  n=88 

Sociodemographic   

Age (years), median (IQR) 30 (25.3-34.0) 

Level of education, total (%)   

Bachelor 2 (2.3) 

Undergraduate  68 (77.3) 

Postgraduate  18 20.5) 

Socioeconomic status, total (%)   

Low 17(19.3) 

Middle 61(69.3) 

High 10(11.3) 

Anthropometrics   

BMI (kg/m2), mean (SD) 24.2 (±2.6) 

WHR (cm), median (IQR) 0.86 (0.8-0.9) 

WHTR (cm), mean (SD) 0.48 (±0.04) 

Cardiovascular   

Heart rate (beats/min), mean (SD)  70.1 (±7.8) 

SBP (mmHg), mean (SD)  114.3 (±9.4) 

DBP (mmHg), mean (SD)  70.3 (±7.0) 

SDNN (ms), median (IQR) 84.3 (71.6-98.6) 

RMSSD (ms), median (IQR) 55 (45.4-73.7) 

Ln LF (ln ms²), mean (SD) 7.5 (±0.5) 

Ln HF(ln ms²), mean (SD) 6.6 (±0.8) 

SQ (Ln (LF/HF), mean (SD) 0.9 (±0.4) 

Biochemical   

HbA1c (%), median (IQR) 5.3 (5.1-5.6) 

HDL (mg/dL), median (IQR) 46.0 (40.1-52.1) 
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TC (mg/dL), mean (SD) 180.5 (±34) 

TC/HDL (mg/dL), median (IQR) 3.8 (3.1-4.6) 

hs-CRP (mg/L) median (IQR) 1.0 (0.1-1.4) 

DHEA-S (µg/dL), mean (SD) 313 (±104) 

Habitual diet     

Caloric intake (Kcal), median (IQR) 2350 (1775-2888) 

Protein (gr), median (IQR) 83.6 (64.8-102.2) 

Total fats (gr), median (IQR)  79.8 (58.9-103.6) 

Carbohydrates (gr), median (IQR) 304.3 (224.8-396.3) 

Fiber intake (gr), median (IQR) 17.9 (12.6-25.1) 

Stress, anxiety and depression scales   

Perceived stress scale, mean (SD) 20 (±9) 

DHS - Frequency, mean (SD) 22.4 (±11.5) 

DHS - Severity, median (IQR) 40 (23-63) 

LSC-R - Affirmative, median (IQR) 6 (4-9) 

LSC-R - Perception, median (IQR) 9 (6-15) 

Zung scale score >50, total (%) 15 (17.0) 

STAI-T score >44, total (%) 14 (15.9) 

STAI-S score >41, total (%) 3 (3.4) 

Hours of sleep per day, total (%) 
 

≤6 hours 52 (59) 

>6 hours 36 (41) 

Values are expressed in percentages (%), mean (SD, standard deviation), or median (IQR, interquartile 

range). BMI, body mass index; WHR, waist to hip ratio; WHTR, waist to height ratio; HbA1c, glycated 

hemoglobin; HDL, high density lipoprotein; TC, total cholesterol; hs-CRP, high sensitivity C-reactive 

protein; SBP, systolic blood pressure; DBP, diastolic blood pressure; SDNN, standard deviation of the NN 

intervals; RMSSD, root mean square of successive differences between normal heartbeats; Ln LF, natural 

logarithm of low frequency power; Ln HF, natural logarithm high frequency power; SQ, natural logarithm 

of the LF /HF ratio; DHEA-S, dehydroepiandrosterone sulfate; DHS, daily hassles scale; LSC-R, life 

stressot checklist; STAI-T, trait subscale of the STAI (State-Trait Anxiety Inventory); STAI-S, state 

subscale of the STAI. 

 

3.2 ALI is positively related to the SQ 

The ALI had a minimum score of 0 and a maximum of 5, with a median of 2 and an 

interquartile range of 1-3 (Supplementary table 1). 

1-3 (Supplementary Table 1). In bivariate analyses, the ALI-7 was correlated with all 

HRV metrics (Supplementary Table 2). However, in multivariate analyses adjusted for 
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confounding variables, ALI-7 was related only to the SQ (β=0.093, 95% CI=0.03 - 0.15, 

p=0.004) (Table 2).  

3.3. Sensitivity analyses  

The correlation between the ALI-7 and SQ remained despite adjusting for the other 

confounding variables. The alternative ALI-4 was not correlated with any HRV parameter 

in the MLR analysis (Supplementary table 3) 

 

Table 2. Multivariate linear regression between ALI and SQ       

                

Dependent 

variable 

Independent 

variables  

      Model  

β 

p-

value 95% CI 

Prob. 

F R2 

Adjusted 

R2 

SQ ALI 0.093 0.004 0.03 to 0.15 <0.01 0.27 0.22 

  Age 0.011 0.148 -0.004 to 0.026       

  Chol_mg 0.0002 0.032 2.3e-5 to 5.1e-4       

  LSC-R -0.01 0.013 -0.018 to -0.002       

  PA             

  Low 0.078 0.41 -0.11 to 0.266       

  Moderate -0.14 0.14 -0.33 to 0.049       

SQ, the natural logarithm of the LF/HF ratio; ALI, allostatic load index; PA, physical activity; Chol_mg, 

cholesterol consumption per day in milligrams; LSC-R_per, life stress checklist revised perception score. 

 

3.4 Interaction between ALI and resting-state default mode network FCF is 

related to HRV 

We found a significant interaction between the Default Mode Network B FCF and the 

ALI-7 using HF as the dependent variable (β= = -0.028, 95% CI= -0.057 to -0.0004, 

p=0.047) and between the Default Mode Network C FCF and the ALI-7 using SDNN as 

the dependent variable (β= -0.008, 95% CI= -0.015 to -0.001, p=0.022), with both 

interaction terms showing a negative correlation with HRV (Table 3 and 

Supplementary Figure 2). 
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Table 3. MLR of the interaction between ALI and FCS of Default B and Default C brain networks 

Depende

nt 

variable 

Interaction model 
Independent 

variables  

      Model 

β 
p-

value 
95% CI 

Prob. 

F 
R2 Adjusted R2 

HF ALI*FCS_DMNB ALI -0.417 0.047 -0.185 to 0.103 <0.001 0.4 0.36 

  FCS_DMNB -0.019 0.272 -0.052 to 0.015       

  ALI*FCS_DMNB -0.028 0.047 -0.057 to -0.004       

  Age -0.952 <0.001 -0.125 to -0.065       

  MAP -0.013 0.302 -0.038 to 0.012       

  LSC_per 0.002 0.018 -0.014 to 0.018       

SDNN ALI*FCS_DMNC ALI -0.004 0.863 -0.0537 to 0.045 <0.001 0.4 0.30 

  FCS_DMNC 0,003 0.525 -0.006 to 0.012       

  ALI*FCS_DMNC -0.008 0.022 -0.015 to -0.001       

  Age -0.025 <0.001 -0.035 to -0.015       

  MAP -0.006 0.155 -0.015 to -0.002       

  LSC_per 0.003 0.249 -0.008 to 0.003       

HF, natural logarithm high-frequency power; SDNN, standard deviation of the NN intervals; ALI, allostatic 

load index; MAP, medial arterial pressure; LSC-R_per, life stress checklist revised perception score; FCS, 

functional connectivity strength; DMNB, default mode network B; DMNC, default mode network C. 

3.5 Interaction between ALI and cortical thickness of default mode, salience, and 

control networks has a negative correlation with HRV 

ALI-7 interacted with the average thickness of networks control B (β= -0.51, 95% CI= -

0.970 to -0.050, p=0.030), DMN A (β= -0.473, 95% CI= -0.923 to -0.022, p=0.040), and 

salience A (β= -0.478, 95% CI= -0.927 to -0.029, p=0.037) when SDNN was the 

dependent variable. Also, ALI-7 showed an interaction with control B (β= -154, 95% CI= 

--2.875 to -0.204, p=0.024) and DMN A (β= -1.35, 95% CI= -2.669 to -0.046, p=0.043) 

when HF was the dependent variable. All β coefficients of these interaction terms were 

negative (Table 4 and Supplementary Figure 2). 
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Table 4. MLR of the interaction between ALI and cortical thickness of Salience A, Control B, and Default A brain 

networks 

Dependen

t variable 

Interaction 

model 

Independent 

variables  

      Model      

β p-value 
95% CI 

Prob. 

F R2 

Adjusted 

R2 

HF ALI*ContB_th ALI -0.028 0.702 -2.875 to -0.204 <0.001 0.41 0.37 

    ContB_th -0.214 0.821 -2.093 to 1.66       

    ALI*ContB_th -1.539 0.024 -2.875 to -0.204       

    Age -0.948 <0.001 -0.127 to -0.063       

    MAP -0.012 0.358 -0.037 to 0.0134       

    LSC_per 0.006 0.502 -0.011 to 0.022       

HF ALI*DMNA_th ALI -0.041 0.579 -0.187 to 0.1052 <0.001 0.40 0.36 

    DMNA_th  -0.168 0.852 -1.944 to 1.609       

    ALI*DMNA_th -1.357 0.043 -2.669 to -0.046       

    Age -0.092 <0.001 -0.123 to -0.060       

    MAP -0.013 0.318 -0.038 to 0.012       

    LSC_per 0.004 0.602 -0.012 to 0.021        

SDNN ALI*SalA_th ALI 0.018 0.482 -0.033 to 0.069 <0.001 0.33 0.29 

    SalA_th -0.308 0.317 -0.916 to 0.3001       

    ALI*SalA_th -0.478 0.037 -0.927 to -0.029       

    Age -0.029 0.037 -0.040 to -0.018       

    MAP -0.005 0.263 -0.0134 to 0.004       

    LSC_per -0.002 0.476 -0.008 to 0.004       

SDNN ALI*ContB_th ALI 0.007 0.775 -0.042 to 0.057 <0.001 0.33 0.28 

    ContB_th 0.106 0.745 -0.542 to 0.754       

    ALI*ContB_th -0.51 0.030 -0.970 to -0.050       

    Age -0.027 <0.001 -0.038 to -0.016       

    MAP -0.005 0.264 -0.014 to 0.004       

    LSC_per -0.002 0.464 -0.008 to 0.004       

SDNN ALI*DMNA_th ALI 0.003 0.911 -0.047 to 0.053 <0.001 0.33 0.28 

    DMNA_th 0.076 0.805 -0.534 to 0.686       

    ALI*DMNA_th -0.473 0.040 -0.923 to -0.022       

    Age -0.026 <0.001 -0.037 to -0.015       

    MAP -0.005 0.244 -0.014 to 0.004       

    LSC_per -0.002 0.389 -0.008to 0.003       

HF, natural logarithm high-frequency power; SDNN, standard deviation of the NN intervals; ALI, allostatic 

load index; MAP, medial arterial pressure; LSC-R_per, life stress checklist revised perception score; 

ContB_th, mean cortical thickness of the control B network; DMNA_th, mean cortical thickness of the 

default mode network A; SalA_th, mean cortical thickness of the salience A network. 

 

3.6 Interaction between ALI and volume of subcortical structures is negatively 

correlated with HRV 

When SDNN was the dependent variable, ALI-7 interacted with the volumes of the left 

nucleus accumbens (β= -11447, 95% CI= -21372 to -1521, p=0.024), left amygdala (β= 

10832, 95% CI= -21251 to -413, p=0.042), and ACC (β= -5086, 95% CI= -10135 to -

36.666, p=0.048) with the ALI. Additionally, ALI interacted with the nucleus accumbens 

(β= -30474, 95% CI= -59328 to -1619, p=0.039) volume when HF was the dependent 

variable. All β coefficients of the interaction terms between the ALI and subcortical 

volumes were negative (Table 5, Supplementary Figure 2). 
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Table 5. MLR of the interaction between ALI and volumes of subcortical brain structures 

Dependent 

variable 

Interaction 

model 

Independent 

variables  

      Model  

β p-value 
95% CI 

Prob. F R2 

Adjusted 

R2 

HF ALI*L_Accumb ALI -0,082 0.27 -0.230 to 0.065 <0.001 0.4 0.37 

    L_Accumbens 29327,24 0.11 -6783 to 65438        

    ALI*L_Accumb -30474 0.039 -59328 to 1619       

    Age -0,086 <0.001 -0.116 to -0.056        

    MAP -0,014 0.26 -0.0390 to 0.011       

    LSC_per 0,003 0.746 -0.013 to 0.019        

SDNN ALI*L_Accumb ALI -0,011 0.664 -0.062 to 0.040 <0.001 0.3 0.29 

    L_Accumbens 7734,96 0.219 -4686 to 20156       

    ALI*L_Accumb -11447 0.024 -21372 to -1521       

    Age -0,025 <0.001 -0.035 to -0.014       

    MAP -0,006 0.206 -0.014 to 0.003       

    LSC_per -0,003 0.291 -0.008 to 0.003       

SDNN ALI*L_Amygdala ALI -0,004 0.864 -0.055 to 0.046 <0.001 0.3 0.3 

    L_Amydala 11381.17 0.117 -2912 to 25675       

    ALI*L_Amygdala -10832 0.042 -21251 to -413       

    Age -0,026 <0.001 -0.036 to -0.015       

    MAP -0,006 0.187 -0.014 to 0.003       

    LSC_per -0,003 0.262 -0.009 to 0.002        

SDNN ALI*ACC ALI -0,005 0.841 -0.056 to 0.045 <0.001 0.3 0.28 

    ACC 2603.57 0.463 -4416 to 9623       

    ALI*ACC -5086 0.048 -10135 to -36.666       

    Age -0,025 <0.001 -0.036 to -0.015       

    MAP -0,006 0.181 -0.014 to 0.023       

    LSC_per -0,003 0.257 -0.009 to 0.002        

HF, natural logarithm high-frequency power; SDNN, standard deviation of the NN intervals; ALI, allostatic 

load index; MAP, medial arterial pressure; LSC-R_per, life stress checklist revised perception 

score;.L_Accumb, volume of the left nucleus accumbens; L_Amydala, volume of the left amygdala; ACC, 

anterior cingulate cortex. 

 

4. Discussion 

In this research, we developed the first ALI to measure chronic stress using a 

multisystemic approach in a Colombian population. This index can be used for future 

research and, eventually, in clinical practice. To our knowledge, no other study has 

simultaneously evaluated the three components in a single individual: AL (via the ALI), 

HRV (with 24-hour Holter monitoring), and the functional and structural parameters of 

the CNS. Unlike most studies evaluating HRV and AL, we accounted for confounding 

factors related to HRV in all analyses. 

4.1 The developed ALI improves the current proposal for multisystemic 

measurement of chronic stress  

An ALI consisting of seven biomarkers is positively correlated with SQ. This ALI 

included biomarkers from multiple physiological systems according to expert consensus 

recommendations and a recent meta-analysis that included over 67,000 individuals from 
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13 different cohorts worldwide, aiming to reach a consensus on the biomarkers and 

methodology for measuring IAL (Carbone et al., 2022; Mauss & Jarczok, 2021; McCrory 

et al., 2023). The meta-analysis identified nine biomarkers that individually belong to 

twelve physiological systems (DHEA-S, LF-HRV, CRP, RHR, PEF, HDL, HbA1C, 

cystatin C, WHtR) and were reliably related to three relevant health indicators: grip 

strength, walking speed, and subjective health assessment. Additionally, an index 

composed of a subset of five biomarkers (WHtR, HbA1C, CRP, RHR, and HDL) was 

associated with mortality risk better or equal to indices with a larger number of 

biomarkers (McCrory et al., 2023).  

Given the substantial evidence supporting the use of HRV alone as an indicator of 

morbidity and mortality, we used HRV as a surrogate outcome. Our seven-biomarker ALI 

differs from McCrory's five-biomarker ALI in that we excluded resting heart rate and 

added systolic and diastolic blood pressures. We decided to add these parameters, 

considering the robust evidence of the relationship between AL and blood pressure 

(Chiger et al., 2022; Feres et al., 2019) and the relationship of the latter with relevant 

clinical outcomes with morbidity and mortality in healthy men (Volpe et al., 2019). 

Another difference is that we included DHEAS. We included this biomarker to assess the 

neuroendocrine system, another fundamental system involved in the stress response and 

adrenal fatigue (McCrory et al., 2023) because it was one of the 9 biomarkers related to 

clinical outcomes in the McCrory meta-analysis. It's worth noting that DHEAS has been 

proposed as a biomarker of chronic stress (Noushad et al., 2021) and has been linked to 

cardiovascular outcomes (Zhang et al., 2022). Our comparative analysis of ALI-4 and 

ALI-7 (sensitivity analysis) revealed a positive correlation between the ALI-7 and the 

SQ, but not between ALI-4, suggesting that ALI-7 better measures AL-related to HRV 

changes compared to ALI-4. 

Another widely discussed aspect is the methodology for calculating the ALI (Carbone et 

al., 2022). The risk quartiles method, used to calculate the ALI score in our study, presents 

several significant advantages. The main advantage is that it allows for a clear and direct 

classification of risk levels based on the population distribution of each biomarker, 

facilitating the interpretation of the ALI score for each individual, something that is not 

always easy with other methodologies (Carbone et al., 2022; Mauss & Jarczok, 2021). 

However, the main disadvantage is that this method can be susceptible to the variability 
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of the studied population; what is considered a high-risk quartile in one population may 

not be so in another. This can affect the generalizability of the results and requires 

calibration of the quartiles specifically for each population before applying the index 

(Carbone et al., 2022). Despite this disadvantage, this method was used in McCrory et 

al.'s meta-analysis, suggesting that the advantages of its use outweigh the limitations. 

The SQ is an HRV metric in the frequency domain. Although its interpretation is still 

controversial, it is clear that it contains components of the sympathetic and 

parasympathetic effects on the heart (Catai et al., 2020). It is associated with various 

physical and mental health outcomes. A high SQ is linked to disorders like obesity and 

stress-related mental illnesses (Costa et al., 2019; Schneider & Schwerdtfeger, 2020), 

while a low SQ is associated with psychological well-being (Shiga et al. 2021). 

We identified only two studies (Viljoen & Claassen, 2017; Seeman et al., 2014) in a 

systematic and exhaustive literature search on the relationship between AL and HRV 

(Solano-Atehortua et al., 2024). Seeman et al. used an 18-biomarker ALI and a meta-

factor model of AL and found a negative path coefficient between AL and the HRV 

subfactor measured with HF and LF. On the other hand, Viljoen and Claassen calculated 

a 13-biomarkers ALI using the classic high-risk quartile method and found a significant 

negative correlation between ALI and SDNN, RMSSD, and HF.  

Our study used 24-hour Holter recordings in an ambulatory setting, a more 

comprehensive approach than the short-duration recordings used in the two mentioned 

studies. Long-duration recordings better capture physiological variations during daily 

activities and sleep-wake states (Chesnut et al., 2021; Kim et al., 2018). They are more 

predictive of clinical outcomes (Shaffer & Ginsberg, 2017) and could be more appropriate 

for evaluating the relationship between AL and HRV in clinical medicine. Additionally, 

unlike Viljoen and Seeman's studies, we considered and included confounding factors 

such as physical activity, smoking, socioeconomic status, medication use, and education 

level, which are recommended to be adjusted for in HRV research (Laborde et al., 2017). 

Despite the differences between previous studies and ours, our findings reinforce the 

observation that as AL increases, there is an imbalance in the heart's autonomic regulation 

related to chronic stress (Agorastos et al., 2023). 
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4.2 Resting-State Default Mode Network FCS and ALI Interact to Modulate HRV 

The interaction between the ALI and the resting-state FCS of Default Mode Network B 

and C negatively influences HF and SDNN. In other words, the combination of higher 

AL with higher FCS of the default mode network contributes to lower HRV (SDNN and 

HF). HRV is considered a measurement that reflects the integration of processes in the 

central nervous system (CNS) and peripheral factors (Agorastos et al., 2023; Shaffer et 

al., 2014). This could explain why we found that the interaction between ALI (peripheral 

factors) and the FCS of functional brain networks (CNS processes) is related to HRV, but 

each independently does not achieve a significant relationship. 

No previous studies have evaluated the interaction of AL with FCS of resting-state 

networks in relation to HRV. However, several studies have reported a relationship 

between resting-state network connectivity, including the default mode network, and 

HRV (Matusik et al., 2023). Additionally, there are reports on the relationship between 

AL and HRV (Corrigan et al., 2021; Viljoen & Claassen, 2017). Moreover, it is important 

to highlight that resting-state network connectivity, particularly the default mode 

network, has been related to stress-related disorders. The default mode network plays a 

crucial role in internal processes such as introspection, reflection, autobiographical 

memory, and future planning (Luo et al., 2024). Additionally, this network is involved in 

emotional self-regulation and adaptive behaviors to stress (Winkelman et al, 2017). 

Recent studies suggest that the phenomenon of hyperconnectivity, specifically in the 

default mode network (DMN), may indicate an overload of the regulatory system (Doucet 

et al., 2020). This can lead to ineffective emotional regulation and contribute to the onset 

of anxiety and chronic stress symptoms. Additionally, hyperconnectivity in the DMN has 

been linked to major depression and post-traumatic stress disorder (PTSD), both of which 

are related to chronic stress and, consequently, high AL. This high allostatic load, in turn, 

is linked to autonomic dysregulation and low HRV (Galindo et al., 2018).  

Interestingly, when evaluating the interaction between ALI and resting-state connectivity 

with HRV, a relationship with HF and SDNN emerged that was not found in the 

regression models adjusted for confounding variables. Physiologically, SQ is analogous 

to SDNN since both derive from a combination of sympathetic and parasympathetic 

activity (Shaffer et al., 2014). SDNN is considered the gold standard for cardiovascular 

risk stratification and is considered a predictor of morbidity and mortality (Shaffer et al., 
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2017; Gao et al., 2022; Jarczok et al., 2022). On the other hand, HF (an indicator of 

cardiac vagal tone) is the most reported parameter correlated with resting-state functional 

connectivity (Matusik et al., 2023). Additionally, both HRV parameters have been 

independently related with higher AL (Viljoen & Claassen, 2017). 

In summary, our findings support HRV's capability to represent the interaction of central 

and peripheral physiological processes, highlighting it as an excellent candidate for a 

comprehensive biomarker of chronic stress. 

4.3 Brain structures related to stress interact with ALI to modulate HRV 

In this study, we found that HRV parameters, SDNN and HF, are modulated by the 

interaction of IAL with the cortical thickness of Control Network B, Default Mode 

Network A, and Salience Network A sub-networks, and with the volumes of subcortical 

structures such as the left nucleus accumbens, left amygdala, and ACC. This finding 

suggests that higher chronic stress combined with greater cortical thickness and the 

volume of the described subcortical structures is related to lower HRV. Cortical thickness 

in multiple areas has been related to chronic stress (Matusik et al., 2023). Studies have 

reported positive (Winkelmann et al., 2017), negative (Wei et al., 2018a), or no significant 

correlation (Fridman et al., 2021). This can be explained by factors such as age, which 

influences this correlation´s magnitude and direction (positive or negative). However, no 

studies have reported relationship between the average thickness of networks or sub-

networks and HRV. 

The negative correlation between the amygdala's and ALI's combined effects on HRV 

may indicate that a larger amygdala volume is correlated with greater sympathetic system 

activation, leading to reduced vagal activity and, consequently, lower HRV. Prolonged 

exposure to chronic stress can also cause amygdala hypertrophy due to its constant 

hyperactivation (Sakaki et al., 2016; Wei et al., 2018a), generating parasympathetic 

system inhibition with a consequent decrease in HRV. These findings are supported by 

existing evidence on the role of amygdala-related neural circuits in HRV modulation and 

emotional regulation (Wei et al., 2018b). 

In combat veterans, the volume of the ACC correlated positively with the magnitude of 

respiratory sinus arrhythmia (RSA), indicating a possible relationship between ACC size 

and HRV (Woodward et al. 2008). In our study, we found a negative effect of the 
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interaction between ACC volume and IAL on HRV. This may reflect the inefficiency of 

this structure related to central autonomic control in individuals with high AL. However, 

it is worth noting that in our case, we used long-term SDNN, unlike the cited study that 

used short-term RSA, parameters that represent different physiological phenomena and 

should not be interpreted in the same way. Other studies have found a positive relationship 

between caudal ACC thickness and HF (Winkelmann et al., 2017). These findings, and 

generally the results of other studies (Matusik et al., 2023), corroborate a relationship 

between the ACC and HRV. 

No published studies have shown a relationship between the nucleus accumbens and 

HRV. However, our results suggest that a larger nucleus accumbens volume combined 

with high AL is correlated with a significant decrease in HRV. This finding suggests that 

individuals with these characteristics may have less efficient autonomic regulation (and 

consequently lower HRV), possibly related to the accumulation of repeated stress 

responses and, therefore, high AL and low HRV. 

Our findings can be interpreted in the Central Autonomic Network (CAN) context. The 

CAN includes key structures such as the prefrontal cortex, anterior cingulate cortex, 

amygdala, nucleus accumbens, and other subcortical and cortical regions that regulate 

autonomic responses (Quadt et al., 2022). This network integrates autonomic and 

emotional signals to maintain body homeostasis and respond adequately to stress 

(Agorastos et al., 2023). Dysfunction or overload of these structures with high AL can 

lead to inefficient autonomic regulation, which is consistent with our results. Overall, 

based on the interaction analyses, we can propose that, on one hand, the effect of AL on 

HRV depends on the functional and structural parameters of the nervous system, and on 

the other hand, the effect of the nervous system on HRV is modified by IAL. While the 

neuronal control of HRV is essentially carried out through the ANS, primarily by the 

PNS, HRV is also influenced by other peripheral physiological factors (cardiovascular, 

metabolic, etc.).  

While our findings support existing theories on the neuroscience of stress and align with 

empirical evidence, it's crucial to note that our conclusions about the interaction of brain 

structures and networks with the ALI are based on exploratory analyses and need to be 

validated in future studies. In particular, the issue of multiple hypothesis tests, considering 



80 

 

the number of relationships assessed in the models, is something that should be 

considered to confirm these findings in future research. 

4.4 Limitations and future directions 

Our study has important limitations. First, it is a cross-sectional study, which limits the 

ability to establish causal relationships for the correlations found. Second, we included 

only men from a specific area of Colombia, so the results are not generalizable to other 

population groups. It is worth noting the greater challenges and resources required for 

HRV and allostatic load research in female populations. Third, the method for calculating 

the IAL score is based on risk quartiles for each biomarker instead of clinical cut-off 

points. This generates population-specific values that are not extrapolatable to other 

populations. We did not use clinical cut-off points because we focused on a healthy 

population, and very few individuals would show biomarker values that reach those 

clinical cut-offs. The evaluation of sleep parameters, an important factor related with both 

HRV and allostatic load, was not conducted with validated instruments, which may 

introduce measurement bias. Additionally, the methods for measuring structural and 

functional parameters of brain networks used in this study differ from those in other 

studies, making direct comparisons challenging. Finally, as mentioned earlier, the 

findings regarding the interaction between brain structures, connectivity parameters, and 

ALI are only the results of exploratory analysis. The issue of multiple tests being 

conducted does not allow for the establishment of these interactions. Despite these 

limitations, we believe this study significantly contributes to the knowledge of chronic 

stress, AL, and their relationship with HRV. To progress in this field, we suggest the 

following: i) Conducting longitudinal studies to establish causal relationships between 

ALI and HRV. ii) Replicating and validating the ALI-7 in other populations. iii) 

Incorporating clinical cut-off points in future studies, especially in populations with 

higher clinical risk levels, to facilitate comparability and clinical applicability of the 

results. iv) Continuing studies on the relationship between structural and brain 

connectivity parameters, AL, and HRV, especially in the interactions suggested in this 

study. 

5. Conclusion 

Chronic stress, measured through an ALI composed of seven biomarkers, is positively 

correlated to HRV in healthy adult men. Additionally, HRV parameters in both the time 
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domain (SDNN) and frequency domain (HF) are modulated by the interaction between 

the IAL and the FCS of the default mode network, the average cortical thickness of the 

three major resting-state networks (default mode, salience, and control), and the volumes 

of subcortical areas involved in the CAN. According to these results, HRV can be 

considered a measure representing the combination of central and peripheral 

physiological processes related to chronic stress. Furthermore, the findings suggest that 

SQ is an indicator of allostatic load, while SDNN and HF behave more like indicators of 

the interaction between AL and the CAN. Considering that a decrease in HRV is 

associated with higher morbidity and mortality, can be easily measured in natural 

environments with available technological tools, and can be modified by multiple 

therapeutic strategies, our findings are highly relevant for preventing, diagnosing, and 

managing chronic stress and related disorders. Additional research will help clarify the 

complex interaction between brain processes and allostatic load and validate the role of 

HRV as a biomarker of chronic stress in clinical practice. 
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Supplements: 

 

 

Supplementary Table 1 ALI biomarkers distribution in the study population 

  WHtR DBP SBP hs-CRP TC/HDL HbA1c DHEA-S ALI score 

Median 0.47 70 114 1.02 3.76 5.3 294.75 2 

Minimum 0.39 55 94 0 2.34 4.1 117.8 0 

Maximum 0.59 92 143 26 8.08 6.89 656.7 5 

P25 0.45 65 107 0.1 3.13 5.12 243.45 1 

P50 0.47 70 114 1.02 3.76 5.3 294.75 2 

P75 0.51 75 120 1.4 4.58 5.6 368.38 3 

WHtR, waist-to-height ratio; HbA1c, glycated hemoglobin; TC/HDL, total cholesterol-high-density 

lipoprotein ratio; hs-CRP, high sensitivity C-reactive protein; SBP, systolic blood pressure; DBP, diastolic 

blood pressure; DHEA-S, dehydroepiandrosterone sulfate; ALI, allostatic load index. 
 

 

Supplementary Table 2: Summary of SLRs using ALI as a predictor and 

HRV metrics as outcomes 

  R2 Adjusted R2 Sig model (p) Beta Sig beta (p) 

SQ_all 0.12 0.11 0.001 0.1 0.001 

ln_HF 0.1 0.09 0.002 -0.22 0.002 

RMSSD_ln 0.06 0.05 0.01 -0.08 0.015 

SDNN_ln 0.06 0.05 0.02 -0.05 0.024 

ln_LF 0.01 0.001 0.28 -0.05 0.28 

SDNN, standard deviation of the NN intervals; RMSSD, root mean square of successive differences 

between normal heartbeats; Ln LF, natural logarithm of low frequency power; Ln VLF, natural logarithm 

of very low frequency power; Ln HF, natural logarithm high frequency power; SQ, natural logarithm of the 

LF /HF ratio; ALI, allostatic load index. 

 

 

 

 

 

 

 

 



92 

 

Table 3. Multivariate linear regression between SQ and ALI_4 

                

Dependent 

variable 

Independent 

variables  

      Model      

β 

P-

value 95% CI 

Prob. 

F R2 Adjusted R2 

SQ ALI_4 0.058 0.191 -0.029 to 0.147 <0.01 0.21 0.15 

  Age 0.015 0.06 -0.0006 to 0.3067       

  Chol_mg 0.0002 0.026 0.00003 to 0.0005       

  LSC-R_per -0.01 0.017 -0.019 to -0.0019       

  PA             

  1 0.132 0.175 -0.059 to 0.324       

  2 -0.108 0.282 -0.307 to 0.802       
SQ, the natural logarithm of the LF/HF ratio; ALI, allostatic load index; PA, physical activity; Chol_mg, 

cholesterol consumption per day in milligrams; LSC-R_per, life stress checklist revised perception score. 
 

 

 

SUPPLEMENTARY Fig 1 
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SUPPLEMENTARY Fig 2 
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CHAPTER 5: GENERAL DISCUSSION AND 

CONCLUSIONS 

This thesis contributes valuable new insights into the relationship between chronic stress, 

AL, and HRV, as well as some of the biological mechanisms underlying this interaction. 

Through a combination of theoretical review and original research, we advanced our 

understanding of how these variables are interrelated, with important implications for 

clinical medicine and preventive health. 

The first part of the research, a scoping review, highlighted that although HRV has been 

proposed as a stress biomarker (Agorastos et al., 2023; Mulcahy et al., 2019; Quadt et al., 

2022), there are still significant gaps in the literature that prevent drawing definitive 

conclusions, especially for chronic stress. We underscore the need for further studies, 

particularly in healthy populations, to better define HRV's role as a clinical biomarker of 

chronic stress. In addition, we emphasize the necessity for standardized recommendations 

regarding the measurement of HRV and AL, including aspects such as the duration of 

ECG recordings and the selection of HRV parameters in chronic stress research. Such 

standardization would facilitate more valid comparisons across studies and populations, 

with potential applications in preventive medicine. 

To address these knowledge gaps, the second research in this thesis explored the 

relationship between AL (using a multisystemic approach) and HRV, measured over a 

24-hour period in healthy men. We also investigated how brain structures and 

connectivity and AL interact to influence HRV. In this study, we proposed a novel ALI 

consisting of seven biomarkers, which was found to correlate with the 24-hour SQ, a 

global frequency domain HRV metric that has been linked to stress-related mental 

illnesses (Costa et al., 2019; Schneider & Schwerdtfeger, 2020) and psychological well-

being (Shiga et al. 2021). This multisystemic ALI includes key biomarkers from 

physiological systems involved in the stress response, including the cardiovascular, 

metabolic, and neuroendocrine systems. We built upon the largest consensus of ALI to 

date (McCrory et al., 2023), while adding SP, DP, and DHEAS to our index, given their 

well-established roles as risk factors linked to chronic stress, AL and clinical outcomes 

(Chiger et al., 2022; Feres et al., 2019; Noushad et al., 2021; Zhang et al., 2022). Our ALI 

showed significant associations with HRV, improving upon the McCrory et al. proposal. 
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Furthermore, our research revealed that interactions between functional and structural 

parameters of the central nervous system (CNS) and ALI significantly modulate HRV 

across both time and frequency domains (SDNN and HF). Specifically, we found that 

functional connectivity within the default mode network (DMN), the average cortical 

thickness across major resting-state networks (DMN, salience network, and control 

network), and the volumes of subcortical regions involved in the central autonomic 

network (CAN) play critical roles in this modulation. To our knowledge, these findings 

are novel and support the concept that HRV reflects an integration of central and 

peripheral processes involved in the chronic stress response. This interaction between AL 

and brain functional and structural connectivity significantly influences HRV, reinforcing 

the notion that HRV can serve as a comprehensive biomarker of chronic stress. 

Our results underscore the importance of the CAN in modulating HRV and highlight its 

role in the autonomic dysfunction observed in individuals experiencing chronic stress and 

related disorders (Lamotte et al., 2021; Quadt et al., 2022). This has major clinical 

implications, particularly given the availability of neuromodulation techniques that could 

be leveraged for the preventive and therapeutic management of chronic stress (Cirillo et 

al., 2019; Mather & Thayer, 2018; Subhani et al., 2018). 

Unlike findings related to acute stress, where parasympathetic components are most often 

associated with the stress response (Fridman et al., 2021; Matusik et al., 2023; Thayer et 

al., 2012) our study suggests that chronic stress may be more accurately reflected by HRV 

parameters that include both sympathetic and parasympathetic components (e.g., SQ and 

SDNN). While our results indicate that 24-hour measurements of SQ, SDNN, and HF are 

strong candidates for chronic stress biomarkers, additional research is needed to further 

validate their utility and accuracy in different clinical contexts. 

Considering the profound societal and economic burden posed by chronic stress and its 

associated disorders (Desmond, 2017; Kalia, 2002), identifying reliable biomarkers for 

assessing and managing these conditions is imperative. Our findings suggest that HRV is 

a practical and effective biomarker to address these challenges, offering both accessibility 

and utility through real-world measurements enabled by wearable technologies (Chrousos 

et al., 2022; Mason et al., 2024; Natarajan et al., 2020; Singstad et al., 2021). 
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HRV fulfills several criteria of an ideal biomarker for chronic stress. By capturing the 

dynamic interactions between the sympathetic and parasympathetic systems, it provides 

a real-time and integrative perspective of autonomic regulation, essential for assessing 

the cumulative burden of chronic stress. Unlike static biomarkers, HRV reflects temporal 

variations and systemic responses, making it particularly suited for monitoring 

physiological dysregulation over time. 

Nonetheless, standardizing HRV measurement protocols remains a critical challenge. 

Key aspects such as recording duration, context (e.g., rest or sleep), and metric selection 

(e.g., SDNN, RMSSD, LF/HF ratio) must be harmonized to ensure reliability and 

reproducibility across studies. Moreover, future research should explore HRV's predictive 

capacity for clinical outcomes across diverse populations, addressing confounding factors 

such as age, sex, and lifestyle. The integration of machine learning and advanced analytics 

could further enhance HRV’s utility by combining it with other stress-related biomarkers. 

Given the widespread impact of chronic stress and the availability of evidence-based 

interventions (Kejriwal, 2023; Subhani et al., 2018), incorporating HRV into clinical 

workflows represents a transformative opportunity. Beyond its role in public health and 

preventive medicine, HRV offers potential in personalized care, enabling the 

quantification of treatment efficacy and monitoring of stress-related health trajectories. 

Leveraging HRV as a biomarker could significantly reduce the societal burden of stress-

related disorders while advancing precision medicine approaches. 

Certain limitations of this study must be considered. First, the cross-sectional nature of 

our design prevents the inference of causal relationships. Second, the study population 

consisted only of men from a specific region, limiting the generalizability of the results. 

Third, the methodology used to calculate the ALI, based on risk quartiles, has drawbacks 

in terms of applicability to other populations. Despite these limitations, this study 

provides a solid foundation for future research on the use of HRV as a biomarker of 

chronic stress and its eventual application in clinical practice. 

This research proposes a novel framework with the potential to significantly impact 

preventive medicine and public health. However, given the limitations outlined and those 

of other studies in the field, we recommend the following future directions: 
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6. Replicate the findings in other populations, including women, to validate and 

generalize these results. 

7. Conduct longitudinal studies to better understand the causal relationships between 

chronic stress, allostatic load, HRV, and relevant clinical outcomes. 

8. Continue research to confirm the interactions between allostatic load and brain 

processes and their effect on HRV, which will allow the development of novel 

and effective therapeutic strategies. 

9. Encourage international collaboration to conduct studies in large populations and 

obtain more robust and generalizable results. 

In conclusion, our findings demonstrate that HRV, modulated by the interaction between 

AL and structural and functional brain parameters, can serve as an integral biomarker of 

chronic stress. These results also emphasize the importance of multisystemic approaches 

in assessing the impact of chronic stress on health and underscore the need for continued 

investigation into these interactions to establish more effective preventive and therapeutic 

measures for managing chronic stress. 
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