

Título: Automatización de Informes en Power BI

Alejandra Aguirre Monsalve

Informe Semestre de Industria para optar al título de Ingeniera Industrial

Modalidad de Práctica Semestre de Industria o Práctica Empresarial

Orientador

Luis Fernando Córdoba Henao, Magíster (MSc) en Antropología - Ingeniero Electrónico

Universidad de Antioquia Facultad de Ingeniería Ingeniería Industrial Medellín, Antioquia, Colombia 2025

Cita	(Aguirre Monsalve, 2025)
Referencia	Aguirre Monsalve, A. (2025). <i>Automatización de informes en Power BI</i> [Informe de práctica]. Universidad de Antioquia, Medellín, Colombia.
Estilo APA 7 (2020)	
©creative commons CC () S	O SA
UNIVERSIDAD DE ANTIOQUIA Vicerrectoría de Docencia	Sistema de Bibliotecas
Centro de Documentación In	igenieria (CENDOI)

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - <u>www.udea.edu.co</u>

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos de autor y conexos.

Dedicatoria

Dedicado a mi familia que me acompañó durante todos estos años, que ha sido la fuente de inspiración y apoyo constante. En cada latido de mi corazón, en cada sonrisa compartida, en cada momento de unión, ustedes son mi fuerza y mi vida. A mis padres, pilares inquebrantables, que, con amor y sabiduría infinita, forjaron senderos memorables en esta historia tan bonita. Sin su amor y dedicación, no hubiera podido alcanzar mis objetivos. Este logro también es suyo.

Agradecimientos

Mi más sincero y profundo agradecimiento a mi Alma Máter, Universidad de Antioquia, que me ha brindado no solo conocimientos académicos, sino también las herramientas fundamentales para mi desarrollo profesional y personal. Ha sido mucho más que un centro educativo; ha sido un segundo hogar donde he crecido intelectual y personalmente. En sus aulas he forjado no solo mi futuro profesional, sino también valores y principios que llevaré conmigo toda la vida.

Quiero expresar mi especial gratitud al profesor Luis Fernando Córdoba, mi asesor interno, quien ha sido mucho más que un guía académico. Su disposición incondicional, sus sabios consejos y su acompañamiento cercano en todos los aspectos de mi vida han sido fundamentales en mi proceso formativo. Su capacidad para escuchar y aconsejar desde el amor ha dejado una huella imborrable en mi desarrollo personal y profesional.

Mi más sincero agradecimiento al ingeniero Alejandro Berrio Correa, mi asesor externo en ISAGEN, por su excepcional calidad humana y los aprendizajes adquiridos bajo su guía que serán fundamentales en mi carrera profesional. Su liderazgo y experiencia han enriquecido significativamente mi formación práctica.

Extiendo un agradecimiento especial a ISAGEN, empresa que me abrió sus puertas para realizar mi semestre de industria. Esta experiencia ha sido verdaderamente transformadora, permitiéndome aplicar mis conocimientos en un entorno profesional de alto nivel. El ambiente laboral, el profesionalismo y la calidez humana que caracterizan a esta organización han hecho de mi práctica una experiencia maravillosa e inolvidable.

Cada persona que he conocido en este camino, cada experiencia vivida, cada desafío superado ha contribuido a mi crecimiento. Me llevo no solo conocimientos técnicos, sino también valiosas lecciones de vida y relaciones profesionales que atesoraré siempre.

Este periodo de formación práctica ha reafirmado mi vocación profesional y me ha permitido visualizar con claridad el camino que deseo seguir en mi carrera. Los aprendizajes, tanto profesionales como personales, serán la base sobre la cual construiré mi futuro profesional.

Tabla de contenido

Resumen
Abstract
1. Introducción
2. Objetivos
2.1 Objetivo general
2.2 Objetivos específicos
3. Marco teórico
4. Metodología
4.1 Diagnóstico del problema14
4.2 Recopilación de la información14
4.3 Diseño15
4.4 Replicar la experiencia
5. Resultados
5.1. Diagnóstico del proceso actual17
5.2. Recolección de datos
5.3. Diseño Inicial: Tablero SIAGEN
5.4 Replica 1: Termografía23
5.5 Replica 2: Informe diario de operación Plantas Menores
6. Conclusiones y recomendaciones
Referencias
Anexos

Lista de tablas

Tabla 1. Réplicas 25

Lista de figuras

Figura 1. Metodología	13
Figura 2. Mapa conceptual proceso actual	17
Figura 3. Datos encontrados SIAGEN MIEL	
Figura 4. Visualización de Residuos generados	19
Figura 5. Disposición de los residuos generados	20
Figura 6. Aguares	20
Figura 7. Consumo de agua	21
Figura 8. Consumo de energía	21
Figura 9. Educación Ambiental	22
Figura 10. Seguimiento Acueducto	22
Figura 11. Reporte Termografía Miel	23
Figura 12. Termografía Miel	24
Figura 13. Informe diario de operación Plantas Menores	25
Figura 14. Informe general accidentalidad centrales Miel - Amoyá	
Figura 15. Informe SSGT Central Miel	
Figura 16. Informe SSGT Central Amoyá	31
Figura 17. Cromatografía Aceites Dieléctricos	31
Figura 18. Análisis fisicoquímicos de aceites dieléctricos	32
Figura 19. Gestión de contratos	32
Figura 20. Reporte transporte Centrales de Oriente	

Siglas, acrónimos y abreviaturas

ANLA	Autoridad Nacional de Licencias Ambientales
BSC	Balance Scorecard
Ghw	GigaWhats
MSc	Magister Scientia

Resumen

Este trabajo documenta la implementación de tableros de visualización de datos en Power BI para optimizar la gestión de informes en diferentes áreas de ISAGEN. El proyecto surgió de la necesidad de automatizar procesos manuales de generación de informes que consumían tiempo considerable y presentaban riesgos de error humano. A través de una metodología mixta que combinó enfoques cuantitativos y cualitativos, se desarrollaron tableros interactivos para visualizar datos críticos de las áreas ambiental, mantenimiento, seguridad y salud en el trabajo, entre otras. El proceso incluyó cuatro fases principales: diagnóstico de la problemática existente, recopilación de información relevante, diseño de plantillas iniciales en Power BI y replicación de la experiencia en diferentes áreas según sus necesidades específicas. Como resultado, se implementaron 15 tableros que permitieron optimizar el análisis de datos, facilitar el cumplimiento normativo y mejorar la toma de decisiones en la organización.

Palabras clave: Automatización de informes, Power BI, visualización de datos, tableros de control, gestión ambiental, toma de decisiones, transformación digital, informes automatizados.

Abstract

This work documents the implementation of Power BI data visualization dashboards to optimize report management across different areas of ISAGEN. The project arose from the need to automate manual report generation processes that consumed considerable time and presented risks of human error. Through a mixed methodology that combined quantitative and qualitative approaches, interactive dashboards were developed to visualize critical data from environmental, maintenance, occupational health and safety areas, among others. The process included four main phases: diagnosis of the existing problem, collection of relevant information, design of initial templates in Power BI, and replication of the experience in different areas according to their specific needs. As a result, 15 dashboards were implemented that allowed for the optimization of data analysis, facilitation of regulatory compliance, and improvement of decision-making in the organization.

Palabras clave: Report automation, Power BI, data visualization, dashboards, environmental management, decision making, digital transformation, automated reporting, data analysis, process optimization, real-time monitoring.

1. Introducción

ISAGEN es una de las principales empresas de generación y comercialización de energía eléctrica en Colombia. Fundada en 1995, la compañía se ha consolidado como un actor estratégico en el sector energético colombiano, operando importantes centrales hidroeléctricas. Su capacidad instalada supera los 3,000 megavatios, lo que la posiciona como una de las mayores generadoras del país. La empresa se destaca por su compromiso con la generación de energía limpia y renovable, así como por su gestión sostenible y responsable con el medio ambiente y las comunidades donde opera.

La gestión eficiente de datos y la generación de informes precisos son aspectos críticos para la toma de decisiones en organizaciones modernas. En ISAGEN, la necesidad de optimizar estos procesos se hizo evidente al identificar que la generación manual de informes consumía tiempo valioso de los colaboradores y presentaba riesgos inherentes de error humano. Este proyecto surge como respuesta a dicha problemática, proponiendo la implementación de tableros de visualización mediante Power BI para automatizar y mejorar la gestión de informes en diferentes áreas de la organización.

La iniciativa se alinea con las tendencias actuales de transformación digital y busca optimizar procesos operativos y proporcionar herramientas que faciliten el análisis de datos y la toma de decisiones informada. El proyecto se enfocó inicialmente en el área ambiental, donde existían requerimientos específicos de la Autoridad Nacional de Licencias Ambientales (ANLA), y posteriormente se extendió a otras áreas como mantenimiento, seguridad y salud en el trabajo, y operaciones.

La implementación de estos tableros representa un paso significativo hacia la modernización de los procesos de gestión de información en la organización, permitiendo un mejor control, seguimiento y análisis de datos críticos para la operación.

2. Objetivos

Se plantearon los siguientes objetivos de acuerdo con el proyecto:

2.1 Objetivo general

Implementar tableros de visualización de datos mediante la clasificación y priorización de los informes que se producen en la organización con el fin de optimizar los tiempos de análisis y facilitar la toma de decisiones garantizando la confiabilidad de la información.

2.2 Objetivos específicos

Para dar cumplimiento al objetivo general, se plantearon los siguientes objetivos:

- Diagnosticar la problemática existente en el manejo de los informes mediante conversaciones con los empleados, con el objetivo de encontrar una solución que permita automatizar y visualizar los informes de manera eficiente.
- Recopilar información relevante para los informes, a través de reuniones con las partes interesadas y la sistematización de datos provenientes de diversas fuentes con el fin de estructurar los informes solicitados que serán validados con los usuarios finales.
- Diseñar una plantilla inicial del tablero mediante la herramienta de visualización Power BI con el fin de generar una propuesta que se adapte a las necesidades de la persona que lo solicita.
- Replicar la experiencia de diseño de tableros utilizando la experiencia acumulada, con el fin de aplicarla a diversas áreas, según el uso y la funcionalidad requerida.

3. Marco teórico

Balanced Scorecard (BSC) / Tableros de Control

Es una metodología gerencial estratégica que permite medir el desempeño empresarial desde múltiples perspectivas. Su importancia radica en:

- Control del cumplimiento de objetivos y metas
- Facilitación de toma de decisiones inmediatas
- Alineación estratégica de niveles organizacionales

Según Fleitman (2010), los tableros deben considerar cuatro perspectivas fundamentales:

- Resultados financieros
- Satisfacción del cliente
- Procesos internos
- Desarrollo y conocimiento organizacional

Power BI

Es una herramienta tecnológica fundamental para la creación de tableros de control. Según Vijay, Bharandidharan, & Krishbnamoorthy (2017), Power BI ofrece:

- Transformación y preparación de datos
- Generación automática de visualizaciones
- Creación de informes interactivos
- Opciones de colaboración y compartición

Criterios para Indicadores Confiables

Los indicadores utilizados en los tableros deben cumplir con:

- Objetividad
- Precisión
- Relevancia para toma de decisiones
- Facilidad de medición e interpretación
- Oportunidad y confiabilidad
- Comparabilidad

Proceso de Implementación

Zhang & Hao (2022) establecen que la implementación requiere:

• Alineamiento horizontal (sincronización de procesos)

- Alineamiento vertical (conexión entre estrategia y actividades diarias)
- Integración de objetivos organizacionales
- Vinculación de indicadores con metas estratégicas

Consideraciones Tecnológicas

Según Davenport & Short (1990), la selección de herramientas debe considerar:

- Capacidad de integración de fuentes de datos
- Facilidad de uso
- Escalabilidad
- Seguridad de la información
- Opciones de personalización

Desafíos de Implementación

Reungyu & Waiyanet (2022) identifican los siguientes retos:

- Resistencia al cambio cultural
- Necesidad de capacitación
- Selección adecuada de indicadores
- Mantenimiento y actualización continua del sistema

Rol de la Informática

Henao destaca que la automatización de procesos mediante la informática busca:

- Mejorar la eficiencia empresarial
- Proporcionar información en tiempo real
- Aumentar la productividad
- Permitir acceso inmediato a información estratégica

4. Metodología

El enfoque metodológico es mixto, teniendo en cuenta que es importante tener una perspectiva tanto cuantitativa como cualitativa. Por un lado, está el enfoque cuantitativo donde se pueden presentar datos numéricos que permitan medir y analizar de manera precisa y objetiva, ayudando a evaluar el rendimiento y la eficiencia de los informes generados. Mientras que el enfoque cualitativo, nos permite tener un contexto y nos proporciona una comprensión de las experiencias y opiniones de los usuarios. A través, del enfoque mixto permitimos una integralidad ya que se combina la precisión de los datos cuantitativos con la profundidad de los datos cualitativos. Esto, facilita una visión más completa y dinámica del proceso, permitiendo ajustes y un enfoque en la mejora continua. A continuación, se presentan las etapas del proyecto:

Figura 1. Metodología

Nota. Fuente: elaboración propia

4.1 Diagnóstico del problema

Durante algunas reuniones realizadas con los diferentes ingenieros de diversas áreas, se identificó una problemática significativa en el manejo de los informes. En el momento, los informes se entregaban y realizaban de manera manual, lo que resultaba en una eficiencia reducida y un mayor riesgo de errores humanos. Este método manual no solo consume tiempo valioso, sino que también dificulta la capacidad de los equipos para acceder a información precisa y oportuna.

Para abordar esta problemática, se decidió implementar un sistema automatizado para la gestión de informes. La sistematización de los informes permitirá:

- Reducción de Errores: Al automatizar el proceso, se minimizan los errores humanos asociados con la entrada y manejo manual de datos.
- Eficiencia Mejorada: La automatización acelerará la generación y distribución de informes, permitiendo a los equipos acceder a la información de manera más rápida y eficiente.
- Acceso a Información en Tiempo Real: Los informes sistematizados proporcionaron datos actualizados en tiempo real, mejorando la toma de decisiones.
- Ahorro de Tiempo: Los ingenieros y otros miembros del equipo podrán dedicar más tiempo a tareas críticas en lugar de la gestión manual de informes.

La implementación de un sistema automatizado para la gestión de informes representa un paso significativo hacia la mejora de la eficiencia operativa. Este cambio no solo optimizó el flujo de trabajo, sino que también garantizará que los equipos dispongan de información precisa y oportuna para la toma de decisiones estratégicas.

4.2 Recopilación de la información

Para comenzar, se llevó a cabo una identificación exhaustiva de todas las partes interesadas clave. Esto incluyó ingenieros y otros miembros del equipo que proporcionaron información valiosa. Una vez identificadas, se organizaron reuniones con las partes interesadas para discutir los requisitos de los informes y recopilar datos específicos, garantizando así que se cubran todos los aspectos necesarios para la elaboración de los informes.

En paralelo, se procedió a la recolección de datos de múltiples fuentes, incluyendo bases de datos internas, sistemas de gestión de proyectos y otros repositorios de información relevantes. Los

datos recopilados serán integrados en un sistema centralizado para facilitar su análisis y estructuración. Para asegurar la precisión y consistencia de los datos, se utilizarán herramientas de software especializadas. Finalmente, se llevó a cabo un proceso de limpieza y validación de datos para eliminar duplicados, corregir errores y asegurar que la información sea precisa y confiable.

4.3 Diseño

En esta etapa, se procedió al diseño de una plantilla inicial del tablero utilizando Power BI. Este diseño se basó en la información recopilada en las etapas anteriores y se enfocó en crear una propuesta que cumpla con los requisitos y expectativas del solicitante.

Para comenzar, se analizaron los datos recopilados y se identificaron los datos relevantes. A partir de esta información, se diseñó una estructura preliminar del tablero que incluyó las siguientes secciones:

- Se proporcionó una visión general de los datos más importantes, destacando las métricas clave y tendencias principales.
- Se incluyeron gráficos y visualizaciones interactivas que permiten explorar los datos en profundidad. Esto puede incluir gráficos de barras, líneas, mapas y tablas dinámicas.
- Se agregaron filtros y opciones de segmentación para que los usuarios puedan personalizar la visualización de los datos según sus necesidades específicas.

Una vez diseñada la plantilla inicial, se presentó al solicitante para su revisión y retroalimentación. Se recogieron sus comentarios y se realizaron los ajustes necesarios para asegurar que el tablero final cumpla con sus expectativas y necesidades.

4.4 Replicar la experiencia

En esta etapa final, se aprovechó la experiencia adquirida durante el diseño inicial del tablero para replicar y adaptar esta metodología a otras áreas de la organización. El objetivo fue asegurar que cada área pueda beneficiarse de tableros personalizados que respondan a sus necesidades específicas. Inicialmente, se realizó una evaluación de las áreas adicionales que podrían beneficiarse de la implementación de tableros de visualización de datos. Se identificaron las necesidades y requisitos específicos de cada área, asegurando que los tableros diseñados sean relevantes y útiles.

Posteriormente, la metodología de diseño de tableros se adaptó para cada área, teniendo en cuenta sus particularidades y objetivos. Esto incluyó:

Reuniones con las Partes Interesadas de Cada Área:

Se organizaron reuniones con los responsables de cada área para entender sus necesidades y recopilar datos específicos. Estas reuniones siguieron el mismo enfoque estructurado utilizado en la etapa de recopilación de datos.

Diseño de Plantillas Personalizadas:

Basándose en la experiencia previa, se diseñaron plantillas de tableros que se ajustaran a los requisitos de cada área. Estas plantillas incluyeron visualizaciones y métricas específicas que son relevantes para los usuarios finales.

Implementación y Validación:

Los tableros diseñados se implementaron en cada área y se validaron con los usuarios finales para asegurar que cumplen con sus expectativas. Se recogieron comentarios y se realizarán ajustes necesarios para optimizar la funcionalidad y usabilidad de los tableros.

Para garantizar una adopción exitosa, se explicó a cada uno de los encargados cómo alimentar el tablero y actualizarlo.

5. Resultados

De acuerdo con los objetivos planteados, se obtuvieron los siguientes resultados:

5.1. Diagnóstico del proceso actual

Se dio inicio al proyecto con el área ambiental, donde se encontró que se tenía un Excel con una cantidad considerable de datos, lo cual dificultaba encontrar especialmente datos que eran solicitados por la ANLA (Autoridad Nacional de Licencias Ambientales), estas visitas y supervisiones son extremadamente importantes, ya que de ello depende que la Central Hidroeléctrica pueda continuar en funciones, por ello, se decidió en este caso, crear un Power BI que pudiera dar seguimiento a cada una de las cifras solicitadas por la entidad, además de que permitiera llevar un control del cumplimiento de la mismas, con el fin de que, si se nota algún dato atípico, tomar acciones correctivas a tiempo.

En la figura 2, se presenta el proceso actual de cómo se llevaba a cabo los informes en las centrales Miel – Amoyá, donde inicialmente se recopilan los datos de manera manual, se organiza la información, se verifica que sea correcta y se realiza el informe, para finalmente ser presentado.

Nota. Fuente elaboración propia

5.2. Recolección de datos

Para la realización del informe ambiental, los datos fueron encontrados en el mismo documento, pero en diferentes tablas de gran tamaño (figura 3). Estas tablas contenían información sobre los residuos generados, la disposición de los residuos, el agua captada, el agua consumida, la

energía consumida, y las diferentes capacitaciones que debe cumplir el área ambiental como requerimiento de la ANLA, entre otros datos.

Se organizaron los datos necesarios, convirtiendo la información de las diferentes tablas e incluyendo otras columnas necesarias, como el número del mes, el semestre, el trimestre, entre otros datos relevantes.

Figura 3. Datos encontrados SIAGEN MIEL

Nota. Fuente elaboración propia

5.3. Diseño Inicial: Tablero SIAGEN

Se diseñó un tablero que contenía los datos más relevantes que permiten monitorear el comportamiento los datos, de acuerdo con las siguientes visualizaciones:

En la figura 4, se presenta los residuos que se generan en la Central Miel, se presentan algunos datos relevantes como: Los residuos generados en el año, el promedio de aprovechamiento de los residuos que se generaron durante el año, los residuos generados por mes, el porcentaje de aprovechamiento por mes y los detalles por mes que son necesarios. Además, se presentan los filtros como año, mes, semestre y trimestre para que se puedan visualizar de acuerdo con lo que se requiere.

Nota. Fuente elaboración propia

En la figura 5, se visualiza la disposición de los residuos que generaron por mes. Se muestran los Kilogramos que fueron enviados a incineración, posconsumo, celda de seguridad, refinación y disposición de aprovechamiento. También presentan filtros para visualizar por semestre, trimestre o mes.

Figura 5. Disposición de los residuos generados

En la figura 6, se presenta la visualización del cumplimiento de los parámetros que deben ser medidos en las aguares dentro de la central. Se presentan datos relevantes como el porcentaje de cumplimiento de los parámetros, el promedio de parámetros cumplidos y parámetros cumplidos por mes.

Figura 6. Aguares

Nota. Fuente elaboración propia

Nota. Fuente elaboración propia.

En la figura 7 se muestra el caudal captado y tratado por mes, el consumo promedio per cápita mensual, el consumo total mensual del agua en litros, donde se muestra si se está cumpliendo con el tope exigido por la autoridad ambiental para el consumo promedio de agua por persona.

Nota. Fuente elaboración propia

En la figura 8, se muestra el consumo de energía en los servicios auxiliar en la Central, el consumo total y promedio per cápita, la cantidad de personas que está consumiendo dicha energía y la generación de energía en Gwh.

Figura 8. Consumo de energía

Nota. Fuente elaboración propia

En la figura 9, se muestran las capacitaciones y asistencias de los contratistas, empleados, ejercito u otras personas que asisten a las diferentes charlas ambientales que son obligatorias y están dentro del cumplimiento pactado. También, se encuentra la duración, el tipo de charla entre otras cosas.

	ED. AMB	Año Todas	V Tod	estre 85	Ý	Mes Todas	Y Tema Todas	~
415 Asistencia	36 Suma de Duración (H)	Cantidad	por mes		100	17	77	Contratistas Egérrito Otra
Horas por Central applientre 4	- eners 5 - fedrers 5 - marta 1 - abrt 6	50	17 DRITO	febrero	zbrit	7 Junio	7 Jalio	Suma de Cantrateza AM
Capacitaciones por mes enno tetrato 2 marzo 1 abre mayo 1	à 4	Asistencia	por mes		ontratistas ontratistas AMB ércitio ágen tro	Detalles Ed. Am Dia/mes/año * mitecolis, 24 de enero de jarves, 25 de enero de 20 viennes, 26 de enero de 20 martes, 30 de enero de 20	biental Tema 2004 Manejo Inte 24 Manejo Inte 24 Manejo Inte 24 Manejo Inte	ngral Residuos Sólidos Igral Residuos Sólidos Igral Residuos Sólidos Igral Residuos Sólidos

Figura 9. Educación Ambiental

En la figura 10, se muestra el consumo de uno de los acueductos, en total son 3 acueductos que se usan para las bases militares, al igual que en la figura 6, la diferencia es que estos acueductos están por fuera de la central. Todos tienen la misma estructura.

Figura 10. Seguimiento Acueducto

Nota. Fuente elaboración propia.

Con el tablero se pueden tomar e identificar diferentes conclusiones, incluso se podrían identificar fugas a tiempo, los picos en los que hay más gente y por ende más consumo para prepararse en futuros escenarios con las compras necesarias ya sea para el tratamiento de agua o los posibles daños que pueda haber. Posteriormente a que el tablero fue aprobado se replicó para otra central Amoyá y los trasvases Manso y Guarinó (implica el desvío artificial de agua desde su curso natural hacia otra ubicación geográfica).

5.4 Replica 1: Termografía

Se construyó un nuevo tablero según lo aprendido con lo anterior, esta vez, para el área de mantenimiento, con el fin de ver los reportes que se hacen de los tableros de control en cada uno de los lugares de la central, se me entregó un Excel con la información donde se encontraban los resultados de la termografía (**figura 11**) con el fin de graficar los equipos, las acciones a realizar y las secciones donde se encontraba el tablero. Además, una con el detalle que permita ver la trazabilidad de las soluciones que fueron dadas a los tableros que requerían acciones inmediates o urgentes.

		REPORTE DE TERMOGRAFÍA CENTRAL MIDRUELECTRICA MIEL		
3		ABRIL 2024		
ŀ	SECCIÓN 💽	EQUIPO 🗾	ACCIÓN 💽	DETALI 🔹
;	Sistema de Aire Acondicionad	Tablero Eléctrico Manejadora de Aire 3. (Nuevo)	Reparar en la próxima parada	ATENDIDO CO
5	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG4-T1TRAFO 75 KVA	Equipo en condición normal	
	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG4-1	Equipo en condición normal	
3	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG4-2	Equipo en condición normal	
3	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG2-1 alimentación Principal .	Equipo en condición normal	
0	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG2-2 alimentación respaldo	Equipo en condición normal	
l.	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG2-3	Equipo en condición normal	
2	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG2-4	Equipo en condición normal	
3	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG2-5 G1 una 3	Equipo en condición normal	
\$	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG2-6(Sin carga)	No inspeccionado	
5	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG2-7(Sin carga)	No inspeccionado	
5	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG1-1 alimentación Principal 480V	Equipo en condición normal	
7	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG1-2 alimentación respaldo 480V	Equipo en condición normal	
3	Cuarto de Servicios Auxiliares	Tablero Eléctrico +SG1-3 Tablero Eléctrico de distribució	Equipo en condición normal	
э	Cuarto de Servicios Auxiliares	Tablero Eléctrico + TE-1	Equipo en condición normal	
0	Cuarto de Servicios Auxiliares	Tablero Eléctrico +TA-1	Equipo en condición normal	
1	Cuarto de Servicios Auxiliares	Tablero Eléctrico +G1CC-1	Equipo en condición normal	
2	Cuarto de Servicios Auxiliares	Tablero Eléctrico +G1CC-2	Equipo en condición normal	
з	Cuarto de Servicios Auxiliares	Tablero Eléctrico +G1CC-3	Equipo en condición normal	
4	Cuarto de Servicios Auxiliares	Tablero Eléctrico +G1CC-4	Equipo en condición normal	
5	Cuarto de Servicios Auxiliares	Tablero Eléctrico +G1CC-5	Reparar en la próxima parada	
6	Piso Principal Generador U2	Tablero Eléctrico +TL1	Equipo en condición normal	
7	Piso Principal Generador U2	Tablero Eléctrico +SG1-3 Q2 TR1 Iluminación	imagen de control	
8	Piso Principal Generador U2	Tablero Eléctrico TR2 lluminación casa de maquinas	Equipo en condición normal	
э	Piso Principal Generador U2	Tablero Eléctrico +TL-2	Equipo en condición normal	
0	Piso Principal Generador U2	Transformador 45 KVA	Equipo en condición normal	
1	Piso Principal Generador U2	Tablero Eléctrico +TA-E	Equipo en condición normal	
2	Piso Principal Generador U2	Tablero Eléctrico +TA-2	Equipo en condición normal	
з	Piso Principal Generador U2	Tablero Eléctrico +TE-2	Equipo en condición normal	
4	Piso Principal Generador U2	Tablero Eléctrico +TE-3(Breaker Q5 reflectores)	Reparar en la próxima parada	
5	Piso Principal Generador U2	Tablero Eléctrico +TA-5	Equipo en condición normal	
6	Piso Principal Generador U2	Tablero Eléctrico +TA-3(Totalizador fase L2)	Reparar en la próxima parada	

Figura 11. Reporte Termografía Miel

Nota. Fuente elaboración propia

Según la base de datos anterior, se graficó para ver cuántos tableros requerían ser reparados inmediatamente, tan pronto como fuera posible, cuáles no habían sido inspeccionados, cuáles requerían ser reparados en la próxima inspección y en qué punto se encontraba o había más tableros revisados.

Además, se generó un cuadro donde se pueda ver el detalle de la revisión y otro donde se refleje de la trazabilidad y se puedan visualizar las observaciones, es decir, como fueron corregidas las fallas que presentaron al momento de la revisión de la tomografía como se refleja en la figura 12.

Nota. Fuente elaboración propia.

A partir de este cuadro, se diseñó uno para la central Amoyá con la misma estructura. Para visualizar exactamente lo mismo, solo fueron modificados los datos.

5.5 Replica 2: Informe diario de operación Plantas Menores

En la figura 13, se muestra el informe diario de operación de Plantas Menores, donde se logró centralizar el reporte de eventos de las 11 centrales que pertenecen a la administración de Plantas Menores, la generación por central, total y su participación porcentual.

Con este informe se logró disminuir la cantidad de informes generados, ya que cada una de las plantas enviaba su reporte diario de eventos vía email, al centralizar el informe en un solo lugar, se logró que se envíe un PDF con el reporte de todas las centrales.

Figura 13. Informe diario de operación Plantas Menores

Toform	o Opponeción D	lantas			San Mi	guel		E -						San Matias
40.000	Menores	nannas	Area	Descripción	Hora inicio del	Hora final del evento	Observaciones	Au	0	Descripción	Hora inidio del evenito	Hora tina eventio	i del Obser	vaciones
			A Controlle	NUK.	25/11/282	25/11/262	Ga Cuentra	- 8 🧎	que de	N/A	25/11/2004	25/11/20	01 Sinev	entos.
					4 120000	4230000		-	un de	N/A	25/11/2004	25/11/20	04 Sin ev	2010
Fecha		~)	Tanque de Carga	NOA	25/11/202	25/11/282	Sin Sventor	Car Mi	a de quinac U1	Unidad 1	25/10/2024 12:00:00 A		Linida	d UI_En mantenimiento mayor. Con ICM # 9106208/3
martes, 26 d	e noviembre de 2	024 🗸	Cara Miquinas	Unidad 1	25/11/202		Todo Bien	Car MS	a de quinais U2	Unidad 2	25/10/2004 12:00:00 A 1	25/11/20 n. 800:00 a	04 Unida .m. princij	d Liž indirponible. Por indirponibilidad de la central Molinor, por falla válvala pal.
			UI .	Unided 3	am.	27.00.000	Co. Co. Co.		ettación	N/A	25/10/2004 12:00:00 A (25/11/20 n. 800:00 a	01 Sinev m	1000
			Milquinas LI2	LIBERT A	4 120000	4230000								
Generación o Central Gen	diaria MWh ereción MWh		Subertación	NUA	25/11/202	25/11/262	Sin Eventor	1						
Berroup	1,000,00				am	p.n.								
Caruquia	1.000,00													Molines Y 53 ····
Guajira 1	1.000,00	11.00						A.	14	Ho	a inidio dell	Hora final de	Descripció	
Guenequites	1.000,00	11,00						Ξ.		00	ata .	rvmta		
Luzma 1	1.000,00	mil						1 9	ptación	25/	11/2024	25/11/2020	N/A	
Molinos	1.000,00								ucue die Can	a 25	11/2024	25/11/2024	NA	
Popal	1.000,00	Generación			Popa	al				12	0000 a.m.	£0000 a.m.		
San Matias	1.000,00	Total (MWh)	Area	Descripci i	iora H	ora Ob	servaciones	- C	nura de val	ula 25/ 12:	11/2024 10:00 a.m.	25/11/2024 800:00 a.m.	NOA	
San Miguel	1.000,00				vento ev	innto		0	ca de Miliqui	nac U1 25/	11/2024		Linidad 1	
WEAPUT	1000,00		Captación	N/A 2	5/11/20 25	5/11/20 Sin	eventes		ra da bilinai	06	2200 a.m.	25/11/20204	Links of 2	
				1	M 2/ 2:00:00 Bri	6 00:00			a ar noqu	12	1000 a.m.	20000 a.m.	CHRISTING &	
Participa	ción porcentual por	central			a a	n.			bertación	25/	11/2024	25/11/20204	NOA	
			Tanque de Carga	N(A 2	5/11/20 25 M 2/ 2:00:00 8/	5/11/20 Sin L 99:00	eventos			12	and and	100007		
		Cantral	Circuta de	N/A 2	5/11/20 25	5/11/20 Sin	eventor	· [`_						
		Barroso	välvula		4 2/ 2/00/00 8/	6 99:00								Luzma 1
		Caruquia			a a	n.		. Le	ar.	Descripe	ián Inidio de	Levento A	tal del evento	Observaciones
9,09%	- 20%	Guajira 1	Casa de Máquinas Ul	Linidad 1 3	5/11/20 51 2:00:00	Sin	eventor	4	tación	N/A	25/11/2	12H 2	5/11/2024 0:00:00 a.m.	Limpia rejac se encuentra bioqueacio e indisponible por fullac en el anclaje que paede causar un volcamiento y dallos en la integridad del Equipo.
		 Guenequites 			.m.			6	sus de	N/A	25/11/2	124 2	5/11/2024	Sin eventor
9,09%	- 9,02%	Luma 1 Luma 2	Milquinas LQ:	1	5/11/20 25 N 2/ 2:00:00 81	6 00:00	eventor		a de quines: Lutre	Linidad 1	25/11/2	APR. 1 324 APR.	0000174	ak
2,09%	- 9,09%	Molinox	Subertación	N/A 2	5/11/20 25	m. 5/11/20 Sin	eventor	i 🗄 🖕		11-14-41	Main			for earliest
9,09%-	2,025	Popel Sen Maties		1	4 21 2:00:00 B1	00:00		1	a de quinas: Luzer	a lined a	00000	AM. 1	5/11/2024 000:00 a 2%	Se megara
		San Miguel							ettación	N/A	25/11/2	21 2	5/11/2024	Sin eventor
		WESP01						8 **			04.04.700			
								E						
								周						
)						~~						

Nota. Fuente elaboración propia.

En la Tabla 1, se presentan las réplicas que se realizaron y las áreas a las que pertenecen. En los Anexos se puede encontrar las demás replicas a detalle.

Tabla 1. Réplicas

Nombre	Área	Descripción
Tablero SIAGEN Miel	Ambiental	Centralización de la información
		sobre consumos de agua y
		energía. Además de la gestión de
		residuos en la central Miel

T-1.1 CIACENIA	A	
Tablero SIAGEN Amoya	Ambiental	Centralización de la información
		sobre consumos de agua y
		energía. Además de la gestión de
		residuos en la central Amoyá
Tablero SIAGEN Guarinó	Ambiental	Centralización de la información
		sobre consumos de agua y
		energía. Además de la gestión de
		residuos en el trasvase Guarinó
Tablero SIAGEN Manso	Ambiental	Centralización de la información
		sobre consumos de agua y
		energía. Además de la gestión de
		residuos en el trasvase Manso
SSGT	SSGT	Eventos, incidente/accidentes
		sucedidos con detalles como
		días de incapacidad, la empresa
		que tuvo el evento, como se
		comporta mes a mes, la
		severidad, entre otros
Termografía Miel	Mantenimiento	Se visualizan los equipos
C C		revisados, las acciones a realizar
		y las secciones donde se
		encuentran de la Central Miel
Termografía Amová	Mantenimiento	Se visualizan los equipos
		revisados, las acciones a realizar
		v las secciones donde se
		encuentran de la Central Amová
Tablero gases - Amová	Mantenimiento	Permite visualizar la variación
		de los gases, el promedio, su
		comportamiento y la
		clasificación en la central
		Amová
Tablero gases - Miel	Mantenimiento	Permite visualizar la variación
		de los gases el promedio su
		comportamiento y la
		clasificación en la central Miel
Tablero fisicoquímico - Amová	Mantenimiento	Permite visualizar la variación
rabiero fisicoquinico - ranoya	Wantenmiento	el promedio y comportamiento
		además de si se sobrenasa los
		valoras permitidos en la central
Tablero fisicoquímico Miel	Montenimiento	Pormito viguelizer le verieción
rabiero físicoquífico - Mier	Wantenmiento	el promodio y comportamiento
		el promedio y comportamiento,
		además de si se sobrepasa los
		Miel
Reporte Transporte Central	Administrativa	Visualización de la variación por
Oriente		mes en efectivo km y
Onenic		norcentual
		Consultas mas a mas da los
		diferentes indicadores

		relacionados para la revisión del
		transporte
Gestión contratos	Administrativa	Gestión de la ejecución de
		contratos, permite visualizar
		detalles importantes como el
		porcentaje de ejecución general,
		por posición presupuestal y
		central.
Informe Operación Plantas	Operación	Visualización de los eventos de
Menores		cada una de las plantas en
		funcionamientos, además de su
		participación porcentual y
		generación diaria.
Informe Operación Miel-Amoyá	Operación	Mejoramiento del informe ya
		existente donde se pueden ver
		las métricas claves de la
		operación en las centrales Miel -
		Amoyá

Nota. Fuente elaboración propia.

6. Conclusiones y recomendaciones

La implementación de tableros de visualización en Power BI ha demostrado ser una solución efectiva para los desafíos de gestión de información en ISAGEN, llegando a las siguientes conclusiones y recomendaciones:

Conclusiones

Las conclusiones que se obtienen del trabajo son:

- La automatización de informes ha permitido reducir significativamente el tiempo dedicado a la generación manual de reportes, liberando recursos humanos para tareas de mayor valor agregado.
- La implementación de tableros interactivos ha mejorado la capacidad de análisis y seguimiento de datos críticos, especialmente en áreas como la gestión ambiental donde el cumplimiento normativo es fundamental.
- 3. La replicación exitosa del modelo en diferentes áreas (15 tableros implementados) demuestra la escalabilidad y adaptabilidad de la solución.
- 4. La visualización en tiempo real de datos ha facilitado la identificación temprana de anomalías y la toma de decisiones preventivas.

Recomendaciones

Las recomendaciones que pueden hacerse son las siguientes:

- 1. Establecer un programa de capacitación continua para asegurar el máximo aprovechamiento de las herramientas implementadas.
- 2. Desarrollar un protocolo de actualización y mantenimiento regular de los tableros para garantizar su óptimo funcionamiento.
- Implementar un sistema de retroalimentación de usuarios para identificar oportunidades de mejora y nuevas necesidades.
- 4. Considerar la expansión del proyecto a otras áreas de la organización que puedan beneficiarse de la automatización de informes.
- 5. Documentar las mejores prácticas y lecciones aprendidas durante la implementación para facilitar futuras iniciativas similares.

Referencias

- Davenport, T., & Short, J. (1990). *The new industrial engineering: information technology and business process redesign.*
- Fleitman, J. (2010). LA IMPORTANCIA DE LOS TABLEROS DE CONTROL.
- Henao, V. M. (s.f.). La informática y su contribución a la. LUPA empresarial.
- Lacity, M., & Willcocks, L. (2016). A new approach to automating services. *MIT Slow Management Review*.
- Reungyu, N., & Waiyanet, P. (2022). An Exploratory Study on the Impact of RPA (Robotic Process Automation) Implementation on Behavioral Attitudes and Intentions within Organizations.
- Vijay, K., Bharandidharan, S., & Krishbnamoorthy, G. (2017). *Research Data Analysis with Power BI*. T Centre, Gandhinagar, Gujarat: Anna University, Chenna.
- Zhang, Y., & Hao, S. (2022). Development and Application of Financial Analysis Report Robot Based on RPA and VBA Technology., (pág. 11).

Anexos

A continuación, pueden verse los anexos que soportan el presente informe presentado y con más detalle para dar claridad lo mostrado

SSGT

En la figura 14, se puede ver la clasificación del riesgo, la frecuencia de accidentalidad, el número de contratistas que pertenecen a las centrales Miel – Amoyá, los días de incapacidad generados en el evento, el número de incidentes/accidentes por empresa acumulados y por mes.

Figura 14. Informe general accidentalidad centrales Miel - Amoyá

Nota. Fuente elaboración propia

En la figura 15, es decir, la segunda página del informe se muestran datos únicamente de la central Miel que fueron mencionados anteriormente.

Figura 15. Informe SSGT Central Miel

Nota. Fuente elaboración propia

En la figura 16, se muestra la tercer página del informe, esta vez con los datos de la central Amoyá.

Figura 16. Informe SSGT Central Amoyá

Nota. Fuente elaboración propia

Tablero Gases

En la figura 17, se muestra el comportamiento de los gases, la clasificación del tablero, el promedio de los gases y sus variaciones respecto al último valor y las últimas seis mediciones. Este informe contiene cuatro páginas. Este tablero fue implementado en las centrales Miel y Amoyá.

Figura 17. Cromatografía Aceites Dieléctricos

		ACEN		6	CLASIFICACIÓN
				TRANSFORMADOR	UMDAD 1
	100	-		AND DE FABRICACIÓN	2000
CDC	MATO	GDAE		EDAD	24
CNC	JANA TOO	URAI .		ESTADO	ESTADO 3
ACET	TES DT	ELÉCT	RTCOS	FABRICANTE	ARR
				AL STRUC	10.100
				N. SERVE	27(0) 47 7 M/A
ARIACION	IES			RECOMPACIÓN (SECUN NORMA)	-egy mys. Las franciscos das Estado 2.006 en consistena anticipionante consectoreas.
Sin .	PROMEDIO (uttima uttima medicidin)	VARIACIÓN Gifterse N medicioneg	RECOMENDACIÓN (SEGUN NORMA)	Los transminacións con stato o suna se consistena probabilmente sogiechosos. Se recominical una mayor vigilacióna y pruebas activicanais de transformadores. Si después de una rexistión completa de la información disponible, la condición del transformadore se considera acoptable para el huncionamiento contínuo, estencies es sugelido simplemente mantenor la vigilancia típica de un
Acettieno	0,00	0,00	0,00	SAGA GALLS	estatus más bajo de la DGA.
C2H2 [ppH]	4.70	- 0.041	10 mm	VOLTAJE	230/13,8
CD2/CO	10/10	0,00	0.35	VOLUMEN ACEITE	36200 1
Latorio Loz Ipemi	1.014,02	4,414	5.13		
lano JHB (ppm)	1,05	0,08	-0,19	Acetileno C2H2 [ppm]	
tileno	7,0.3	0,70	-0.78	2	
2944 [ppm]	4.04.0	0.11		4 0	
12 (spen)	2.94	24,12	-92.52	the state of the s	
Vietumoi	5.05	0,10	-0.28	- ng	
214 (ppm)				30 -50 -50 -50 -50 -50 -	ז, רע
Aonásido de Jebono	176,31	0,00	-0.12	100 101 100 100 100 100 100 100 100 100	
D (ppm)					Fecha
Attrigence 42 mmni	22,203,67	0,33	-8.1.3	Nitrógeno N2 (ppm)	
12,012	0.35	-20.11	0.10		
Jaigens	329131	0,01	0.14		
12				2 0.2 mill	A
aparta (N	
stal gasan smbustibles	577,5B	0,08	-8.43	et runn	- mm
otal gases G	27.795,41	0,70	-0,11	9-0.0 mill.	
hthread [***************************************
[hbut]					Fecha

Nota. Fuente elaboración propia

Tablero fisicoquímico

En la figura 18, se muestra el análisis físico químico de los aceites dieléctricos, con el comportamiento y se cumple con los parámetros establecidos. Además, el promedio, la variación

respecto a la última medición y respecto a las seis últimas mediciones. Este tablero fue implementado en las centrales Miel y Amoyá.

Figura 18. Análisis fisicoquímicos de aceites dieléctricos

	DIELE	CTRICOS	ISAGEN	
VARIACIONES				
isicoquímico	PROMEDIO VARIACIO	ON (último valor) VARIACIÓN	(últimos 6 valores)	
contenido de Humedad Ipm	5,33	-0,20	0,07	
actor de potencia 100°C	0.30	-0,19	0,19	
ictor de potencia 25°C	0,01	-0,12	0,26	€ 40
ravedad Especifica	0,89	-0,01	0,01	e de la companya de la compa
lúmero de Neutralización 19 KOH/9	0,01	0,00	-0,41	2002 2003 2008 2008 2009 2001 2001 2001 2001 2001 2001 2001
igidez Dielėctrica V	60,17	-0,18	0,06	1/10 80/1 90/1 90/1 90/1 90/1 90/1 90/1 90/1 9
ension Interfacial linas/cm	43,18	0,00	0,00	Fecha
actor de potencia Suma de Factor de pater 0,5	25°C xia 25°C ●Sunta de Li	imite6		Contenido de Humedad ppm • Sarra de Contenido de Humedadgpm • Sarra de Limite2 • Sarra de Contenido de Humedadgpm • Sarra de Limite2 • Sarra de Limite2

Nota. Fuente elaboración propia.

Gestión contratos

En la figura 19, se presenta el informe de gestión de contratos, el cual contiene dos páginas, allí se puede visualizar el valor de contrato, las facturas, el valor proyectado de las facturas, el porcentaje de ejecución por posición presupuestal, año, central, entre otros datos relevantes para la correcta gestión de la contratación.

Nota. Fuente elaboración propia.

Reporte transporte centrales de Oriente

En la figura 20, se muestra el tablero donde se logra visualizar datos relevantes para la revisión de la facturación, cuanto aumentó o disminuyó respecto al mes anterior, los recorridos que más generaron inversión, el costo de los peajes, horas extra, entre otros.

