
Construction and Building Materials 467 (2025) 140376

Available online 12 February 2025
0950-0618/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Modeling an artificial neural network to estimate cement consumption in 
clayey waste-cement mixtures based on curing temperature, mechanical 
strength, and resilient modulus

Liliana Carolina Hernández García a,1, Julián Vidal Valencia b,2, Henry A. Colorado L a,*,3

a CCComposities Laboratory, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
b Engineering Materials Research Group (GME), Universidad Eafit, Medellín, Carrera 49 N◦ 7 Sur-50, Medellín, Colombia

A R T I C L E  I N F O

Keywords:
Artificial network
Artificial Intelligence
Soil cement
Clay waste
Resilient modulus
Clay soil
Waste

A B S T R A C T

Seeking to address large-scale issues faced by many countries today, such as excessive energy consumption, 
global warming, and uncontrolled mining activities, this research repurposes clayey mining and excavation 
waste to design soil-cement mixtures for road construction. A total of 2026 data points from laboratory exper-
imental tests were statistically analyzed using regression models and neural networks to evaluate the effect of 
curing temperature on compressive strength, indirect tensile strength, and resilient modulus. The study focused 
on three types of clayey waste mixed with high early-strength hydraulic cement (Type 1 Portland cement) after 7 
days of curing. The samples were cured in three different chambers, each maintaining a constant temperature of 
10, 28, and 40 ◦C for 7 days, simulating the most common road temperatures in Colombia. Results showed that 
temperature has a positive effect of 18 % on the resilient modulus, which could lead to cement savings in warm 
climates. Additionally, an artificial neural network model was developed, which can contribute to the con-
struction and design of more sustainable and environmentally friendly geothermal pavements. The use of these 
models and networks not only facilitates the study of multiple variables but also optimizes materials and 
methods, aiming to reduce energy consumption and costs.

1. Introduction

The Sustainable Development Goals 2023 Report highlights new 
challenges in terms of infrastructure [1]. In 2022, only 51.6 % of the 
world’s urban population had access to public transport. Particularly in 
developed countries, people have more than one transportation option, 
while in the poorest developed countries people lack access to roads 
despite increasing demand for mobility. On the other hand, global 
consumption of raw materials has increased by 66 % since the 1970s, 
resulting in a per capita material footprint of 95.9 billion metric tons.

To ensure the efficiency and competitiveness of the transport sector, 
greener construction materials are being evaluated. These materials 
reduce the exploitation of virgin aggregates by using construction and 
demolition waste or recycled materials instead [2,3]. The performance 
and durability of pavement structures depend on the quality of the 

subgrade. For this reason, publications focus on the characterization of 
pavement materials, subgrade, granular layers, and asphalt mixtures 
through repeated triaxial load testing [4].

For this reason, research on soil resilience have significantly 
increased over the last 10 years. The publications aimed at establishing 
mathematical models for predicting resilient modulus pavements have 
grown exponentially. As shown in Fig. 1, the last 10 years 3806 publi-
cations research on resilient soil modulus, 607 focus on resilient module 
pavements, and eighty-seven address resilient modulus prediction 
models for subgrades, for a total of 4500 documents in 10 years.

From these documents, 75 % are research articles, 10 % are review 
articles, 10 % are book chapters, 2 % are part of encyclopedias, 2 % are 
short communications, and the remaining 1 % are papers, see Fig. 2. 
These statistical data align with reports from the United Nations, which 
clearly outline the needs regarding the exploitation of non-renewable 
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resources, mobility, and resilient infrastructures. Combined with inno-
vative technologies, the use of artificial intelligence and neural networks 
has led to increased interest within the scientific community in 
designing and testing resilient materials that ensure the quality and 
durability of infrastructure.

From this bibliographic search, publications containing databases 
with results from resilient modulus tests were selected. The minimum, 
maximum, and mean Resilient Modulus (RM) will be determined as 
comparison parameters. The calculation method and the number of 
recorded data were filtered. Materials mixed with asphalt binder, RAP, 
or granular materials were removed, leaving only the resilient modulus 
values of subgrade soils, as shown in Table 1.

Cluster analysis using R Studio results in a three-group classification, 
as shown in Fig. 3. The recorded resilient modules are related to the 
amount of data and the calculation method, using the Hubert index and 
the D index, which are graphical methods to determine the number of 
clusters, measured at the inflection point [33].

Group 3 is the most distinct, with databases that are similar within 
the group. Its range is quite wide, with the lowest modulus at 3 MPa and 
the highest at 360 MPa, and an average of 34 MPa. Meanwhile, Groups 1 
and 2 consist of improved soil tests where the variability of the data is 
due to changes in moisture and confining pressure. The average modulus 
for Group 1 is 100 MPa, while the average modulus for Group 2 is 
223.2 MPa.

Studies show that the variables that most influence the calculation of 
the Resilient Modulus are the type of soil, the content of stabilizing 
materials such as cement, lime, and fly ash, as well as the soil’s plasticity 
index, moisture content, and silt content [34]. However, when vehicular 
loads pass through, pavement materials are exposed to cyclic compres-
sive stresses (σc) and tensile stresses (σt) that induce deformations, 
which tend to accumulate depending on the initial stiffness of the ma-
terials. In fact, cracks and deformations can appear at stress levels much 
lower than the material’s strength [35].

For this reason, pavement design methods establish sufficient 
thicknesses to prevent not only excessive permanent deformation but 
also surface cracking. Based on elastic theory for layered systems, it is 
possible to predict the transient deformations of a pavement [36]. Fa-
tigue failures result from instantaneous processes as well as plastic or 

permanent deformations, which can be measured through cyclic labo-
ratory tests.

However, it is important to consider that prediction models are 
affected by material characteristics such as thixotropy, also known as 
the initial loading age. This property was identified by Seed, Chan, and 
Lee (1964) after measuring the resilience in failed samples of different 
ages. The initial resilient stress increases as the time interval between 
compaction and testing increases. In the experimental validation by 
Seed, Chan, and Lee, the sample with the greatest age recorded moduli 
five times higher than those of the samples tested after only 15 min. 
However, after 500 cycles, the resilient modulus curves converged at a 
single point, indicating that the effect of thixotropy had dissipated [37].

Thixotropy is a phenomenon inherent to remolded soils and is based 
on the recovery of strength when the soil is at rest again. In other words, 
the initial resilience records are apparent high values that decrease after 
the application of several loading cycles, as the soil recovers its shape 
memory and initial stress state. Testing standards recommend applying 
between 500 and 1000 loading cycles to condition the sample and thus 
avoid the effects of thixotropy in the result [38].

Other factors that influence the resilience of fine granular soils 
include the number of load applications, chamber pressure, compaction 
method, sample density, and moisture content at the time of testing 
[39]. On the other hand, the factors that affect the resilience of coarse 
granular soils include the nature of the rock, solidity index, maximum 
particle size, angularity, roughness, and gradation [40].

Testing standards establish different magnitudes for chamber pres-
sure, axial stress, and cyclic stresses to measure the resilient modulus in 
fine soils and coarse soils. Likewise, the resilient modulus and deviatoric 
stress diagrams are expected to show different trends, as illustrated in 
Fig. 4(a) where a resilient modulus diagram for a clay and Fig. 4(b) a 
diagram for a granular base are shown. Usually, fine granular soils re-
cord high moduli at low deviatoric stress, but as this stress increases, the 
moduli decrease, converging at a single point.

Fig. 4(a) shows the results of a resilient modulus test where the 
modulus starts at 58 Mpa, but after 60 kPa it is reduced to 45 Mpa. The 
three confining pressures converge at higher deviatoric stress. In 
contrast, coarse granular soils exhibit an opposite behavior, where the 
resilient modulus increases as the deviatoric stress increases, showing an 

Fig. 1. Number of publications per year since 2016 taken from the database ScienceDirect.
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upward trend. Fig. 4(b) shows that with a deviatoric stress of 30 it is 
relatively low compared to a modulus measured with a stress of 150 kPa. 
Thus, indicating that the greater the confinement and the greater the 
deviatoric stress, the greater the resilient modulus.

Based on these trends, various methods for calculating and predict-
ing resilient moduli have been developed, as summarized in Table 2.

The variables analyzed in the models are: σ2 = σ3 = σc = confining 
pressure, θ = bulk normal stress, σdi = deviator stress at which the slope 
of the MR versus σd changes. K1, k2, k3, K6, and K7 are regression 
parameters (k1 ≥ 0, k2 ≥ 0, K6 ≤ 0 and K7 ≥ 1), Pa = atmospheric 
pressure, τoct = octahedral shear stress, τref = reference shear stress, 
Wcopt = optimum water content, Wc = a certain water content, c 
= cohesion, ∅ = internal friction angle in degree, UC = unconfined 
strength, MC = moisture content, Ki, ai, Ai, ci, α1, α2, β1, m = fitting 
parameters. um = matric soil suction in kPa. α, γ, β, and φ are the fitting 
parameters, θr is the reduced normal stress at reference water content in 
MPa, and τr is the reduced octahedral shear stress at reference water 
content in MPa.

Despite advances in predicting the resilient modulus, there are 
limited publications that address the effect of curing temperature. Heat 
transfer in materials, as well as behavior under thermal loads, are 
important parameters in the design of geothermal pavements. The per-
formance of geothermal pavements is affected by ambient temperature, 
the effects of the urban heat island (UHI) [56], location, and the mate-
rials used [57]. However, studies indicate that a thermal performance of 
50 watts per square meter of geothermal pavement can be achieved. 
With an optimal design, this can meet the heating and cooling demands 
of nearby buildings [58].

On the other hand, pavements are structures with most of their 
surface exposed to weather conditions. For this reason, their mechanical 
behavior and costs largely depend on ambient temperature [59,60]. The 
effect of a positive temperature gradient (which occurs during the day) 
tends to deform hydraulic concrete pavements into a concave shape, 
while a negative temperature gradient (which occurs during the night) 
deforms pavements into a convex shape. It is known that higher elas-
ticity, greater thermal expansion coefficient, and lower thermal con-
ductivity can lead to greater curvature stresses and movement in 
concrete pavements [61].

For this reason, and unlike previously published research, this study 
aims to provide a neural network model that not only includes tradi-
tionally validated variables but also incorporates others such as thermal 
conductivity, curing temperature, and organic matter content. The goal 
is to serve as a design parameter and quality control tool in the 

construction of geothermal pavements, using excavation waste with 
varying organic matter content installed in different climates.

2. Material and methods

The experimental design was based on a full factorial 3k design, with 
2 factors, each with three level, see Table 3. Three types of soils were 
used, with different plasticity indices (PI: 0; 35 %; 66 %) cured at three 
different temperatures (T = 10; 28; 40◦C), simulating the most common 
climates in the regions of Colombia. In this way, the 3k model is 
completed, with a minimum value, a maximum value, and an average 
value of each variable to analyze. A total of 2026 resilient modulus 
replicates were performed, following the T307–99 AASHTO test meth-
odology. From the same mixture, the dry density, thermal conductivity, 
compressive strength, indirect tensile strength, plasticity index, methy-
lene blue value, and organic matter content by loss on ignition were 
measured.

2.1. Soil

Each soil corresponds to pulverized waste from demolition and 
construction activities. Soil 01 is the byproduct of washing crushed 
gravel for concrete, and its unified classification is fine clayey sand (SC) 
with PI equals zero. Soil 2 is the clayey residue from washing sand ob-
tained from rocks stored in sludge lakes, classified as low- 
compressibility clay (CL), with PI equals 35 %. Soil 3 consists of 
clayey residue from deep foundation excavations, classified as high- 
compressibility clay (CH) with PI equals 66 %. Table 4 presents the 
characterization results for each soil.

As shown in Fig. 5 and Table 4, the clayey residues have different 
compositions and characteristics. Fig. 5(a) Residue 1, SC, is a fine quartz 
sand covered by kaolin-type clay. The image shows the separation be-
tween grains, the formation of quartz and the kaolinite clay covering. 
Fig. 5(b) Residue 2, CL, consists of kaolinite clay. The formation of 
kaolinite sheets with porosities caused by swelling and dehydration is 
seen. Fig. 5(c) Residue 3, CH, is kaolinite clay with a high organic matter 
content, with the SEM image showing diatom remains typical of lake 
deposits.

2.2. Cement soil mix

Twenty-seven samples were prepared using the dosages listed in 
Table 5. The mix design was conducted following the compressive 

Fig. 2. Articles published since 2016, classified according to document type taken from the database ScienceDirect.
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strength procedure described in the Portland Cement Association (PCA) 
guide, Cement-Stabilized Subgrade Soils [62]. High early strength (ART) 
performance cement was used, which also meets the specifications for 
Portland Cement Type I.

2.3. Data description

The data for this study were obtained from laboratory tests con-
ducted with the selected materials. The database includes 2024 resilient 
modulus test results as the response parameter, a categorical variable 
representing the soil type, and 11 intervening variables: dry density, 
moisture content, cement content, compressive strength, indirect tensile 
strength, deviatoric stress, chamber pressure, organic matter content, 
and plasticity index.

2.4. Resilient module

The experimental resilience modulus tests were conducted at the 
Materials Research Group of Eafit University in Medellín, Colombia, 
using a GCTS hydraulic system capable of performing saturated or 
partially saturated triaxial tests. A mold with a height of 100 mm and a 

diameter of 50 mm was used. The samples were mixed by kneading and 
compacted with a monotonic compressive load on both sides (top and 
bottom) [63]. The samples were stored for 7 days in curing cabinets at 
temperatures of 10◦C, 28◦C, and 40◦C, respectively. The resilient 
modulus tests were performed according to the AASHTO T307 standard 
method [64]. Preconditioning of the samples by thixotropy involved 
applying 500 loading cycles, which were not included in the database.

Fig. 6(a) shows the sample extraction method. The compaction and 
extraction process improves the quality of the samples. Fig. 6(b) presents 
a sample without cracks or imperfections. Fig. 6(c) shows the specimen 
in the chamber of the triaxial apparatus, and Fig. 6(d) shows it in the 
unconfined compression press. In both pieces of equipment, the spec-
imen meets the required geometry, surface finish, and homogeneity. To 
validate the reliability of the samples, the effects of porosity on the test 
results were reviewed, revealing that variations in porosity did not 
significantly affect the resilient modulus or compressive strength.

2.5. Data description

The R Studio ecosystem was used, including packages for simple 
network models such as ‘Neuralnet’ and for more complex models such 
as ‘H2O’ for deep learning [65]. Neural networks are a deep learning 
algorithm inspired by the structure and function of the human brain. 
They consist of interconnected neurons organized in layers. Each neuron 
receives input from other neurons and produces an output [66]. The 
activation function determines the shape of the neuron’s response; in 
this case, the sigmoid (logistic) function was used. This function trans-
forms values in the range (-∞, +∞) to values in the range (0,1). 

sigmoid(x) =
1

1 + exp( − x)

The weights of the connections between neurons are the parameters 
that the network learns during training and represent their strength. 
Neuron training is accomplished through a process called back-
propagation, where the algorithm adjusts the weights of the connections 
to minimize the error between the predicted output and the actual 
output.

The process is based on four stages: 

1. Understanding the structure of neural networks
2. Training neural networks
3. Designing the architecture of the neural network
4. Performance evaluation

Unlike multivariate trend models, neural network models are non- 
parametric, meaning they do not assume any specific distribution for 
the response variable, and it is not necessary for the variable to follow a 
normal distribution. The best way to evaluate a model is by predicting a 
set of observations that were not included in the training and optimi-
zation process [67].

3. Results and discussion

3.1. Temperature monitoring

After the samples were prepared, thermal conductivity was 
measured, and the internal temperature of the samples was monitored 
using a K-type Datalogger. Data was recorded every 15 min until 128 
readings (32 h) were completed. As shown in Fig. 6, the samples reached 
room temperature after the first 200 min.

After 200 min, the samples generally maintained a constant tem-
perature until they were 7 days old. It is worth noting that in the 40◦C 
environment, the samples absorbed heat, causing their internal tem-
perature to rise by 3–5 degrees. Meanwhile, the samples cured at 10◦C 
reached a minimum temperature of 7.5◦C. The samples cured at 28◦C 
recorded minimum temperatures of 27◦C and maximum temperatures of 

Table 1 
Resilient Modulus (RM) of subgrades, calculation method and amount of data.

Source Calculation 
Method

Year Data RM min 

(MPa)
RM max 

(MPa)
RM mean. 

(MPa)

[5] Regression 1994 5 21 83 45.8
[6] Matrix suction 

dependent model
2011 91 140 360 240

[7] Multivariate 
regression

2019 30 30 180 110

[8] Artificial neural 
network

2019 318 24.1 62.2 40.55

[9] Finite elements 
method (FEM)

2020 50 12 290 120

[10] Artificial neural 
network

2021 190 60 422 178.8

[11] Regression 2020 144 43.4 343.1 179.5
[12] Power Uzan 2021 30 60 460 250
[13] Artificial neural 

network
2021 2103 3 360 34.87

[14] Multivariate 
regression

2022 14 62 316 170.64

[15] Monte Carlo 
Regression

2022 26 37.0 269.4 98.3

[16] Finite elements 
method (FEM)

2022 57 5.08 327.42 83.08

[17] Machine learning 
methods

2022 2816 3 217 33.8084

[18] Finite elements 
method

2023 120 77 340 200

[19] Bulk Stress Model 2023 5 28.1 115.9 55.3
[20] Multivariate 

regression
2023 2 115 175 145

[21] Power model 2023 12 212 330 256
[22] Artificial neural 

network
2023 196 67.6 384.9 215.4

[23] Regression 2024 80 15 124 72.5
[24] Multi expression 

programming
2024 2813 3 217 33.808

[25] Bagging Boosting 2024 2813 3 217 33.808
[26] Finite elements 

method (FEM)
2024 20 160 90 115

[27] Multivariate 
regression

2024 54 80 380 220

[28] Machine Learning 
Models

2024 16 90 280 152.661

[29] Regression 2024 9 73.2 166.42 114.89
[30] Artificial neural 

network
2024 24 47 132 75

[31] Smart Rock 
sensing

2024 36 148 378 268

[32] XG Boost 2024 891 6.4 179.44 54.82

L.C.H. García et al.                                                                                                                                                                                                                             



Construction and Building Materials 467 (2025) 140376

5

31◦C.
By subtracting the minimum recorded temperature value from the 

average temperature during the first 32 h and dividing it by the constant 
ambient temperature, a percentage indicator of temperature or heat 
absorption is obtained. As shown in Fig. 8 the sandy clay sample 
absorbed more heat when cured at 40◦C, but when cured at 10◦C, it 
showed the least absorption. The CL and CH clay samples exhibited 
greater absorption when cured at 28◦C and showed the same increase 
when cured at 10◦C.(Fig. 7)

3.2. Descriptive statistics of data

According to the visual exploration of multicollinearity in Fig. 9, 
from the 2026 data points, a strong correlation (>0.90) can be identified 
between cement content and the loss on ignition or soil organic matter, 

the water content of the mixture, the plasticity index, and the dry unit 
weight.

The methylene blue index is inversely correlated with loss on igni-
tion. Loss on ignition, or organic matter content, is inversely correlated 
with dry unit weight, indirect tensile strength, resilient modulus, and 
compressive strength. This means that the higher the organic matter 
content, the lower the mechanical strength.

The resilient modulus shows a significant relationship (>0.10) with 
all variables except thermal conductivity. The variables with the highest 
correlation to the resilient modulus (>0.9) are curing temperature, dry 
unit weight, methylene blue index, organic matter content, and 
compressive strength. Thermal conductivity is directly correlated with 
dry unit weight and the methylene blue index, and inversely correlated 
with curing temperature, plasticity index, water content of the mixture, 
and cement content.

Fig. 3. Cluster plot using R Studio, by number source Table 1.

Fig. 4. Resilient modulus diagrams for fine and coarse granular soils, (a) Fine granular soils and (b) Coarse granular soils.
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Where: I: Thermal conductivity in W/mK, C_MPa: Compressive 
strength in MPa, T_MPa: Indirect tensile strength in MPa, Duw: Dry unit 
weight in Ton/m³ , MBI: Methylene blue index, Tem: Curing tempera-
ture, IP: Plasticity index, W_S: Water content of the mix, LOI: Loss on 
ignition or organic matter content, C_S: Cement content in the mix, MR: 
Resilient Modulus in MPa, Cp: Cell pressure in kPa, Sd: Deviatoric stress 
in kPa and, n: Porosity of the sample.

The cement content (C_S) has an inverse relationship with mechan-
ical strength (compression and tension). It is important to note that, for 
this experiment, each soil-cement mixture was prepared using the 
optimal cement dosage to achieve the same compressive strength. 
Therefore, the comparison of this variable should not be considered 
independently.

On the other hand, the box plot shown in Fig. 11 (a) indicates that the 
relationship between the resilient modulus and curing temperature is 
positive, meaning that a higher curing temperature corresponds to a 
higher resilient modulus. In Fig. 11 (b) The three types of soils used 
demonstrate that their physical and chemical characteristics, such as 
silica, kaolin, organic matter, and plasticity content, directly affect the 
resilient modulus. The CH material, characterized by the highest organic 
matter content, methylene blue index, and plasticity, records the lowest 
modulus values, while the SC sample, which is a non-plastic fine sand, 
records the highest modulus values.(Fig.10)

The Fig. 11 (c) shows how dry density increases depending on the 
soil type. It follows that higher silica content in soils increases density, 
while a higher plasticity index reduces the magnitude of dry density. 
These three variables influence the cement content of the mixture to 
some extent. Fig. 11 (d) illustrates that as the average cement content 
decreases, so does the resilient modulus. Finally, the chamber pressure 
observed in Fig. 11 (e) has an independent distribution in relation to the 
Mr results, similar to the dry density seen in Fig. 11 (f).

Checking the normality of the variable MR (Resilient Modulus), 

Table 2 
Studies of applying models in predicting Module Resilient.

MR Model Source

Mr = K1 ∗ Pa ∗
[(σ3
Pa

)K2
]

∗

[(σd
Pa

+ 1
)K3

]

[41]

Mr = K1 ∗
(
SmK2

)

[42]

Mr = K1 ∗
(
σdK2

)

[43]

Mr = K1 ∗
(
σdK2

)
∗
(
σ3K3

)

[44]

Mr = K1 ∗ Pa ∗

[(
(Bulk Stress − 3K6)

Pa

)K2
]

∗

[(
Toct
Pa

+ K7
)K3

]

[45]

MR = K1(σ3)K2 [46]
logMr = C1 + C2 +Wc + C3 × S

[47]

Mr = K1 ∗ Pa ∗
[(σ3
Pa

)K2
]

[48]

Mr = K0

⎛

⎝

σ1 + σ2 + σ3
3
Pa

⎞

⎠

K1(
τoct
τref

)K2 [49]

Mr = K1
(

σ1σ2 + σ2σ3 + σ1σ3
τoct

)K2
[50]

Mr = A0 + Pa + A1c + A2 × σdtan∅ + A3θ + A4 × PaMC + A5UC [51]

Mr = 10

(

a+
b − a

1+ exp
[
β + K2 ×

(
Wc − Wcopt

) ]

)

×

K1Pa
(

θ
Pa

)K2(τoct
Pa

+ 1
)K3

[52]

Mr = K1Pa

[(
θ
Pa

)K2
]

∗

[(τoct
Pa

+ 1
)K3

]

[53]

Mr = K1Pa

[(
σb + 3K4φθ

Pa

)K2
]

∗

[(τoct
Pa

+ 1
)K3

]

[54]

Mr = K1Pa
(

θb
Pa

)K2(
K4 +

τoct
Pa

)K3
+ α1umβ1 [55]
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Fig. 12 (a) shows a normal distribution with a mean of 154.28. The 
median is 143.85, the standard deviation is 54.13, and the coefficient of 
variation is 35 %. The coefficient of skewness is 0.57, indicating that the 
distribution is slightly skewed to the right. This suggests that some 
moduli may be higher than the mean. The kurtosis coefficient is 3.09, 
indicating a leptokurtic distribution. This suggests that the data is 
concentrated around the mean and exhibits relatively low variability.

Fig. 12 (b) shows the normality of the transformed variable with a 
leptokurtic distribution, while Fig. 12 (d) presents a normal distribution 
where only a few data points deviate toward the lower end, indicating 
that some results may be lower than the mean. Fig. 12 (c) demonstrates 
that the variable with the greatest effect on the resilient modulus is the 
curing temperature. Samples stored at 40◦C exhibit the highest resilient 
moduli, whereas those stored at 10◦C show the lowest modulus and the 
greatest variability.

The resilient modulus data expressed in linear models, which include 
the variables of chamber pressure, deviatoric stress, and temperature, 
are shown in Fig. 13. These models indicate that each type of soil, 
despite its physical and chemical differences, exhibits an increasing 
trend between deviatoric stress and temperature. The response surface 
that recorded the highest resistance corresponds to samples cured at 
40◦C, while the response surface that recorded the lowest modulus 
corresponds to samples cured at 10◦C.

Fig. 13 (a) shows that the mixture with CH clay exhibits greater 
variability in the results. The highest Mr value approaches 350 MPa; 
however, under lower chamber pressures, this mixture achieves a lower 
average compared to the other two mixtures shown in Fig. 13 (b) and 
(c). The mixture with SC clearly registers the highest average modulus, 
displaying a steeper slope on the response surfaces in Fig. 13 (c). Indi-
cating a positive effect of up to 18 % on the results of the resilient 
modules of samples cured at 40◦C compared to those cured at temper-
atures of 28 and 10◦C.

3.3. ANN model

After reviewing and cleaning the data using various statistical 
methods, an artificial neural network was created using two R Studio 
tools: Neuralnet and H2O.

Table 4 
Physical and chemical characterization of Soil.

Soil AASTHO PI Gs I.A.M. SiO2 Al2O3 Fe2O3 CaO MgO LOI Σ

SC A− 2–4 NP 2.33 3.40 80.1 8.9 4.4 0.18 2.42 4.0 100
CL A− 7–5 35 % 2.28 8.20 65.1 16.6 7.92 0.09 3.49 6.8 100
CH A− 7–6 66 % 1.76 10.00 62.0 16.7 3.7 0.7 3.2 13.7 100

Fig. 5. SEM images of the clayey waste before mixing with hydraulic cement, a) Residue 1, b) Residue 2 and c) Residue 3.

Table 5 
Mix design soil cement.

Soil Cement/Soil Ratio Water/Soil Ratio Water/Cement Ratio

SC 0.125 0.170 1.36
CL 0.16 0.390 2.438
CH 0.42 0.616 1.467
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Fig. 6. Experimental process of the sample (a) molding, (b) measurement, (c) resilient modulus and (d) compression.

Fig. 7. Temperature variation during curing per minute (0− 800).

Fig. 8. Temperature variation during curing per minute (800–1900).
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3.4. Neural network on neuralnet

This package is used for simple network models with straightforward 
architectures. The database has a distribution of variables that, when 
analyzed using the CA Biplot library, can help in selecting the variables 
involved in the model [68]. As shown in Fig. 14, the plot is asymmetric 
and displays a global pattern of the data. Rows are represented by blue 
points, and columns are represented by red text. The proximity between 
points reflects their similarity. It can be observed that compressive 

strength, density, and humidity are close to the water-cement ratio 
(W_C). Similarly, the indirect tensile strength (T_Mpa) is associated with 
the methylene blue index (MBI).

For this reason, the formula used for the ANN modeling is given as 
follows: 
C_S~Tem+Mr+Sd+Cp+n + IP+LOI+MBI+C_Mpa+T_Mpa+Duw, where 
C_S is the ratio between the cement content of the mixture, and the Mr is 
Resilient Module, Sd is the deviatoric stress in kPa, Cp is the cel pressure 
in kPa, n is the porosity of the sample, IP is the plasticity index, LOI 

Fig. 9. % Heat absorption of the three types of mixtures cured at different temperatures.

Fig. 10. Visual exploration on correlation matrix.
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represents ignition losses or organic matter content, MBI is the methy-
lene blue index, C_Mpa is de strength compression in MPa, T_Mpa is the 
indirect traction in MPa, and Duw is the dry unitary weigh.

The architecture with the lowest margin of error consists of 8 input 
neurons, two hidden layers—where the first hidden layer has 5 neurons 
and the second has 4 neurons. The activation function used was tanh, 
and the propagation algorithm executed was forward propagation with 
‘rprop+ .’

The techniques used to increase the efficiency of the neural network 
in this exercise can be summarized into four key steps. The first and most 
significant is that this research utilized its own dataset, developed with 
an experimental design that involved random, independent, and 
normalized data [69]. To achieve normalization, duplicate entries, re-
dundancies, and noise were eliminated, and statistical techniques for the 
transformation and standardization of numerical data were applied. In 
this case, categorical data, such as soil type, were excluded, while nu-
merical variables, such as the plasticity index, organic matter content, 
and methylene blue index, were included. The application of codes for 
modeling artificial neural networks requires all input variables to be 
rescaled to the same range, so the data were transformed using the 
‘scale’ function.

The second technique is selecting the appropriate architecture. 
Different architectures were modeled, and the one that produced the 
smallest margin of error was selected.

The third technique involves advanced training methods, such as 
transfer learning, data augmentation, and batch training. In this case, 
only batch training was applied, as incorporating a larger dataset could 
have compromised the accuracy of the experiment [70]. However, the 
laboratory test used to estimate the resilient modulus is an efficient 
method for recording larger datasets, preventing the network from 
becoming overly specialized in the training data and struggling to model 
new examples.

The fourth technique refers to regularization methods to reduce 
weights and promote simplicity. In this case, since the architecture was 
simple, the modeling time was fast, and the results showed a low margin 
of error. As a result, no additional penalties were required, apart from 
those included in the code by default.

Fig. 15 (a) illustrates the architecture of the artificial neural network, 
where the thickness and color of the lines indicate the weights of each 
relationship between neurons. Thick black lines represent stronger 
positive weights, while thick gray lines indicate stronger negative 
weights. Fig. 15 (b) presents the numerical values of seven weights 

Fig. 11. Box plot of the intervening variables, (a) Resilient Module by Temperature, (b) Resilient Module by soil type, (c) Dry Unit Weight by soil type, (d) Resilient 
Module by Cement/Soil Ratio, (e) Resilient Module by Cell Pressure and (f) Resilient Module by Dry Unit Weight.
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between each neuron.
On the other hand, the importance of the variables used in the model 

was identified in the training as shown in Fig. 16. The porosity of the 
mixture, the plasticity index, the organic matter content, and the curing 
temperature have an important effect on the calculation of the cement 
dosage.

3.5. ANN on H2O

Using the same data exploration procedures, transformations, pre-
dictor selection, and trend corrections, the database was loaded into the 
modeling using the Neuralnet package. In contrast, H2O has a greater 
capacity to handle millions of records on a single computer. Table 6
shows the numerical description of the variables that are part of the ANN 
model. To start training, it is necessary to exclude the categorical or 
character variables and perform the scaling of the numerical variables. 
(Table 7)

The importance of variables for neural network models is calculated 
using the Gedeon method. As shown in Fig. 17 (a), all variables have an 
importance level greater than 0.5, except for the deviatoric stress (Sd). 
Thermal conductivity (I) is the variable with the greatest effect on the 
neural network, followed by the methylene blue index, the simple 
compressive strength, and the curing temperature. These variables have 
a more direct impact on the cement content in a mixture than the 
resilient modulus. Fig. 17 (b) shows the accuracy of the training and 
model of the neural network, resulting in a very low RMSE, indicating 
high reliability in the model.

The H2O regression model, using deep learning, is set up with the 
following parameters: Neuron Layers status for predicting C_S, 

regression type, Gaussian distribution, quadratic loss, 162 weights/ 
biases, 7.3 KB, and 16,170 training samples with a mini-batch size of 1.

As shown in the model recorded a lower margin of error with the 
following metrics: MSE (Mean Squared Error): 2.608923 × 10− 5, RMSE 
(Root Mean Squared Error): 0.005107762, MAE (Mean Absolute Error): 
0.003892778, RMSLE (Root Mean Squared Logarithmic Error): 
0.004372897, Mean Residual Deviance: 2.608923 × 10− 5, this repre-
sents high precision in the proposed model.

4. Conclusions

The objective of this study was to validate the resilience of mining 
and excavation waste under different curing temperatures. The aim was 
to design a tool to predict the optimal cement content required to 
transform this waste into cement-stabilized soil, achieving the necessary 
strength for pavement construction. A total of 81 samples were 
collected, generating 2026 resilient modulus data points under varying 
chamber pressures and deviatoric stresses. The characteristic variables 
of the mixtures were identified and statistically analyzed, and two R 
Studio codes were applied to predict the cement content with error 
margins below 0.001. The following key findings were identified: 

• The temperature of the samples at time of mix start in 28–32 degrees 
Celsius. However, contrary to the typical exothermic reaction 
observed in hydraulic concretes, soil-cement mixtures absorb ther-
mal energy from their environment through an endothermic process. 
This behavior can have positive effects on the use of mixtures in 
geothermal pavements. As cement-stabilized soil becomes a 

Fig. 12. Graphical description of the transformed variable Mr (Resilient Modulus in MPa), (a) Histogram Resilient Module (MPa), (b) Density Resilient Module 
(MPa), (c) Box plot Resilient Module by Temperature and (d) norm quantiles.
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Fig. 13. Response surfaces of the resilient modules made to the three types of mixtures, (a) Samples Clay High Plasticity, (b) Samples Clay Low Plasticity and (c) 
Samples Sand Clayed.

Fig. 14. Double column and row chart.
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temperature-absorbing material, it can maintain and retaining heat 
for longer periods.

• It was identified that sandy materials, which have a high quartz 
content, have a greater capacity to absorb energy, resulting in sig-
nificant temperature variations in environments with temperatures 
of 40◦C. In contrast, clays absorb more energy at lower temperatures 
(10◦C) and intermediate temperatures (28◦C).

• It was identified that the thermal conductivity of the samples is 
directly proportional to the dry density and inversely proportional to 

the plasticity index, humidity, and ignition losses or organic matter 
content.

• The resilient modulus is directly proportional to the curing temper-
ature, meaning that at higher temperatures, the resilient modulus 
measured at 7 days of curing is higher. Conversely, at lower tem-
peratures, the resilient modulus is significantly lower. The effect of 
temperature must be considered when drafting standards and regu-
lations for road construction. Since designs are based on laboratory 
tests conducted under controlled temperatures, replicating the 

Fig. 15. Artificial Neural Network Architecture using Neuralnet, R Studio (a) model architecture and (b) model weights.
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mixtures in different environmental conditions, particularly in cold 
climates, may not achieve the specified resilience outlined in the 
designs. For this reason, it should also be evaluated whether it is 
prudent to open roads to traffic at ages other than 7 days in areas 
with cold climates, where strength can be up to 18 % lower 
compared to those constructed in warm climates.

• In addition to curing temperature, variables that are related to 
resilient modulus are dry unit weight, compressive strength, cham-
ber pressure and porosity. Unlike curing temperature, these variables 
can be controlled during the construction stage. For this reason, 

control measures must be implemented to ensure optimal compac-
tion percentages. Regarding chamber pressure, it is a variable closely 
associated with the depth of the layer and its level of confinement. A 
confined pavement exhibits greater strength and durability 
compared to an unconfined pavement.

• Artificial neural network models not only facilitate the analysis 
involving many variables in the response but also provide useful 
predictions. The model created with Neuralnet recorded a margin of 
error of 0.0045. Although this error is not significant, it aids in 
developing the prediction model. On the other hand, the model using 
the H2O application was more efficient and faster, achieving an MSE 
of 0.000026.

• Modeling was performed using the response variable C_S (Cement 
content), as it is intended to be applied in mixture designs involving 
clayey waste with organic matter, cured at various temperatures. The 
values of resilient modulus and compressive strength serve as input 
data that can be utilized in pavement design.

• For a multivariate model to be efficient and statistically valid, the 
independence of the data, the normality of the data set, must be 
confirmed. In this case, H2O is more accurate than Neuralnet, 
however Neuralnet provides more information on weights between 
neurons and layers. This makes the analysis of the network easier for 
the designer, since it clearly identifies the neurons that can be 
replaced or eliminated from the model to make it cleaner and 
simpler.

Some of the limitations in applying this method include the 
requirement to account for all input variables during the experimental 
stage, such as compaction data, empty ratio, density, moisture, tem-
perature, thermal conductivity, organic matter content, methylene blue 
index, among others. This forces the designer to determine all these 
inputs, which are of fixed size. The neural network architecture has a 
fixed number of input layers, meaning it can only accept one input and 

Fig. 16. Importance graph of input variables in the ANN, Neuralnet.

Table 6 
Numerical description of the ANN model variables.

Code Min. Median Mean Max.

Soil Soil character character character character
Tem Temperature ◦C 10 28 26.01 40
Mr Resilient Module 

(MPa)
13.98 143.85 154.29 328

Sd Stress deviator (kPa) 9.991 36.958 37.313 67.19
Cp Cell Pressure (kPa) 10.92 28.24 27.67 41.89
T_Mpa Traction Stress 

(Mpa)
0.8553 2.6087 2.9941 5.874

C_Mpa Compression Stress 
(Mpa)

2.434 2.865 2.957 3.788

Duw Dry Unitary weight 1.123 1.497 1.436 1.648
n Porosity 0.2361 0.3291 0.3227 0.3639
IP Plasticity Index 0 0.35 0.3368 0.66
LOI Loss on ignition 4 6.8 8.169 13.7
MBI Methylene Blue 

Index
3.8 8.2 7.332 10

I Thermal 
Conductivity

0.8953 1.4619 1.3764 1.6421

W_S Water/Soil Ratio 0.17 0.39 0.3921 0.616
C_S Cement/Soil Ratio 0.125 0.16 0.2351 0.42
W_C Water/Cement Ratio 1.36 1.467 1.755 2.438

Table 7 
Model ANN, H2O R Studio.

layer units l1 l2 Mean rate Rate rms Mean weight Weight rms Mean bias Bias rms

13 Input
7 Rectifier 0 0 0.059211 0.033703 0.032746 0.294721 0.571969 0.095199
7 Rectifier 0 0 0.024918 0.017407 − 0.04042 0.379233 1.014523 0.064902
1 Linear 0 0.00851 0.004233 0.05621 0.392236 − 0.05428 0
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one output of fixed size for any given task. This becomes a limiting factor 
for many pattern recognition tasks.

Although the 3k experimental design is known to be suitable for non- 
linear models, the variability of the waste can affect the accuracy of the 
model. It is also important to note that this approach is applicable only 
to fine clayey waste and does not account for particle sizes larger than 
sieve No. 40 (0.425 mm).
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