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Andrés Felipe Ordóñez-Lasso,1 Juan Carlos Cardona,2 and José Luis Sanz-Vicario1,*
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We have implemented a method based on the Feshbach formalism along with an explicitly correlated
configuration interaction method to perform a systematic study on the behavior of resonance parameters (energies
and lifetimes) of the autoionizing states of plasma-embedded He 1,3Se, 1,3P o, and 1,3De, as a function of the
screening strength. In particular, we study the evolution of the lowest states in the series located below the
He+(N = 2) ionization threshold in the unscreened case. At variance with one-electron atoms (where shape
resonance widths vary monotonically with the screening strength) the evolution of the Auger width with respect
to screening is found to be different for each series represented by (K,T )A pseudoquantum numbers until
resonances merge into the upper electronic continuum, when crossing the He+(2s) threshold. We conclude from
our ab initio calculations that, although resonances pertaining to the same (K,T )A series share a similar tendency
in their widths against the screening strength, general propensity rules for the robustness of lifetimes, based on
the isomorphic series in the (K,T )A classification, cannot be established in plasma-embedded helium.
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I. INTRODUCTION

The interest in the fundamental problem of atoms immersed
in plasmas stems from its potential application in atomic,
plasma, solid-state, and astrophysics. Formally, a plasma is
characterized by a coupling constant γ , which refers to the
ratio between the average Coulomb-interaction energy and
the average kinetic energy [1]. The coupling constant for a
plasma obeying the classical statistics at temperature T and
atomic charge Z is γ = (Ze)2/kBT a, where a = (4πn/3)−1/3

is the radius of a sphere with the characteristic volume 1/n

(ion-sphere radius or Wigner-Seitz radius with the density n)
and kB is the Boltzmann constant. Most of the classical plasmas
are weakly coupled plasmas with γ � 1 [1] (for instance, n =
1011 cm−3 and T = 104 K for a gaseous-discharge plasma,
n = 1016 cm−3 and T = 108 K for a plasma in controlled
thermonuclear fusion, or n = 106 cm−3 and T = 106 K for
a plasma in the solar corona, for which γ ∼ 10−3, 10−5, and
10−7 respectively).

Within the Debye-Hückel model [2] the plasma screening
parameter λ corresponds to the inverse of the Debye charac-
teristic length, D = 1/λ = (kBT /4πe2n)1/2, with the relevant
parameters being the plasma temperature T and the plasma
density n. The parameter D represents the free path length
an electron is able to travel without being disturbed by plasma
effects and it characterizes the strength of the coupling between
the atomic species and the surrounding plasma. Since D is a
function of T and n, a value for D corresponds to a wide
range of plasma conditions. For γ � 1 the Debye-Hückel
model may lose its validity and other models are more
suitable (Debye-Laughton, ion-sphere, etc.). Atomic structure
calculations using both the ion-sphere and the Debye-Hückel
models can be found, for instance, in Ref. [3]. In this work, we
restrict ourselves to the Debye-Hückel model, which is a good
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approximation to deal with static screening in weakly coupled
plasmas near thermal equilibrium.

By using the Debye-Hückel model the effect of the plasma
environment reduces to replace all the Coulomb two-particle
interactions ∼c/rij by an effective screened potential of the
Yukawa type ∼ce−λrij /rij (with screening parameter λ), whose
effect is to shorten the range of the Coulomb potential. It is
also worth noting that at variance with Coulomb potentials,
in systems governed by Yukawa-like potentials the number
of bound and resonant states is finite, thus without infinite
Rydberg series. Atoms and molecules and their respective
ions may show quite different energy spectra and properties
while under the influence of an environment (caged atoms,
plasma embedding, etc.). For instance, the ionization potential
(IP) is strongly modified by the screening parameters, to the
extreme in which the IP may become zero and the system
cannot support bound states at all. At variance with isolated
one-electron atoms, the problem of an electron subject to a
Yukawa potential has no known analytical solution and its
solution is limited to a variational quest. The effect of plasma
screening on the ground state in helium was first approached
by Rogers [4]. Lam and Varshi [5] also performed calculations
for helium atom in a plasma, using a single-term explicitly cor-
related variational wave function and with angular momenta
restricted to (�1,�2,L) = (0,0,0), so that the two-electron
shielded potential e−λr12/r12 was only expanded to lowest
order � = 0. Nevertheless, they obtained a good estimation for
the variation of the IP = E[He+(1s)] − E[He(1s2)] with the
screening parameter to find that for λ ∼ 1.74 the IP becomes
zero. This value was later corrected [6] to be slightly beyond
λ ∼ 2.22. In the present work we find this critical value for He
close to λ ∼ 2.38. Winkler [7] also calculated the detachment
energies (IP) for the negative hydrogen ion in a Debye plasma,
to state that for the screening parameter λ � 1.14 both H− and
H species simultaneously reach a vanishing IP and they do not
support bound states anymore. In fact, the critical λ values for
H− and H are very close but they are not exactly equal. For
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instance, in the He and He+ pair, at λ > 2.38 the He+ ion may
still have a binding potential up to the upper limit established
by Brau and Calogero [8]. In general, the distance between
critical values corresponding to the atom (or ion)A(Z−2)+ and
to the parent ion (or atom) A(Z−1)+ along the Z-isoelectronic
series depends upon the relation λ/Z.

Surprisingly, one-particle shape resonant states in the
spherically symmetric Yukawa potential have not been studied
until recently [9]. In this one-electron atom context, when λ

increases a discrete bound state eventually reaches the ioniza-
tion threshold and then changes its nature to be a resonance
immersed in the electronic continuum; the presence of these
kinds of resonances may notably change the photoabsorption
cross sections near the resonant region. Bylicki et al. [9]
found that the presence of bound states and resonances in
one-electron atoms with nuclear charge Z depends upon only
one parameter p = �(� + 1)λ/2Z. If p < 1/e the Yukawa po-
tential may support both bound and resonant states. For 1/e �
p � 1

2 (ρ2
0 + ρ0)e−ρ0 , where ρ0 = 1+√

5
2 , only resonances exist

and for p > 1
2 (ρ2

0 + ρ0)e−ρ0 neither bound nor resonances
are present in the energy spectrum. Such a clear distinction
in terms of only one parameter p, the latter a function of
the three parameters {�,λ,Z}, is no longer possible in many-
electron atoms and the analysis requires explicit computations.
In one-electron atoms the widths of the shape resonances
always increase dramatically when the screening parameter
λ increases [9].

In two-electron atomic systems, resonant states are usually
classified into shape and Feshbach-Fano resonances, according
to their location above or below a given ionization threshold,
respectively. Below the threshold the autoionization process of
a Feshbach resonance is entirely due to the correlation between
the electrons. Above the threshold, the resonance phenomena
are due to the temporal trapping of one electron when
scattered from the effective potential of the target parent ion,
whose energy corresponds to the given ionization threshold.
Incidentally, increasing the Yukawa screening parameter in
many-electron atoms represents an ideal situation in which one
may expect to find threshold crossovers of bound and Feshbach
resonant states transforming into shape resonances. Focusing
on Feshbach resonances in plasma-embedded He, we show in
this work that their widths notably modify as a function of the λ

parameter, but they do not increase monotonically as a general
rule. Instead, their variation depends on the type of resonance
series corresponding to the labels (K,T )A, according to the
classification proposed by Lin [10], after the pioneering work
of Herrick and Sinanoğlu [11]. Following the latter works,
it is understood that whereas configurational states using
single-electron quantum numbers, i.e., |(n1�1,n2�2);2S+1 Lπ 〉,
are widely employed to label ground and singly excited states,
a general classification of doubly excited states in terms of
them mostly fails. At variance, a description in terms of two
approximated angular quantum numbers (K,T ) that replace
the pair (�1,�2) notably improves the interpretation of the
atomic resonant spectra since resonant properties are better
classified and understood within (K,T ) series. Of course, the
transformation to the new dipolar basis set |n1 (K,T )n2 ;2S+1 Lπ 〉
leaves the total quantum numbers of the atomic state (L, S,
and parity π ) invariant. Lin [10] added the approximate radial

quantum number A to distinguish different radial correlations
in the wave functions; those wave functions with antinodal
structure at r1 = r2 are assigned to A = +1, those with nodal
structure at r1 = r2 have A = −1, and those with no definite
parity at r1 = r2 have A = 0. Accordingly, we better adopt
this complete classification scheme to label resonances within
a given spectroscopical symmetry 2S+1Lπ .

Recently, a plethora of papers released by the Y. K. Ho
group have been dedicated to the study of bound and doubly
excited states in two-electron atomic systems immersed in
plasma environments (see [6,12–23] and references therein).
In particular, Kar and Ho first dealt with the 2s2 1Se resonance
state without considering the screening between electrons in
H− [12], then including it for the lowest 1Se resonance in H−
[13], in He [14], and Ps− [15]; they also studied the screening
effect on 1,3P o [16,17] and 1,3De resonances [23]. In these
series of papers, the stabilization procedure [24] is widely used
along with a configuration interaction (CI) method with ex-
plicitly correlated coordinates to uncover the resonances and to
characterize their parameters by fitting the density of resonance
states to a Lorentzian form. Usually, in the works by Ho et al.
a ∼500- to 700-term explicitly correlated CI wave function is
employed, with a scaling parameter ω that makes it possible to
vary the basis in order to obtain the energy stabilization graphs.
The stabilization method is a many-diagonalization procedure
which requires fine-grained grids in the ω value (for instance,
�ω = 0.001 from ω = 0.3 to 1.0); i.e., it amounts to hundreds
of diagonalizations for each value of the screening parameter
λ, which reduces the computational effectiveness of the
stabilization method in these kinds of systematic studies for an
assortment of λ values. In this work, we propose the Feshbach
partitioning projection method, which in practice requires only
two diagonalizations per λ value, one for the resonant Q space
and another for the nonresonant P space, also making use of
explicitly correlated coordinates within a CI method. As a case
study for the methodology, our aim is to analyze the behavior
of energies and autoionizing widths of He 1,3Se, 1,3P o, and 1,3De

resonant states located below the second ionization threshold
He+ (N = 2) for λ = 0, when the screening strength λ is
modified. It has been shown for λ = 0, using hyperspherical
coordinates, that states with different angular momentum L,
spin S, and parity π but identical (K,T )A labels have isomor-
phic correlation patterns [10]. One may wonder whether such
isomorphic correlations partially survive for λ �= 0 and induce
a similar behavior for the lifetimes of resonances with the same
(K,T )A labels against the variation of the screening strength.

The paper is organized as follows. In Sec. II we describe
the theoretical approach, including a short description of the
implementation of the Feshbach approach and the compu-
tational details. In Sec. III we present our results for the
energies, widths, and the interelectronic angle as a function
of the screening parameter. We end up with some conclusions
and perspectives in Sec. IV. Atomic units (a.u.) are used unless
otherwise stated.

II. THEORY

The Hamiltonian for a nonrelativistic two-electron system
embedded in a weakly coupled plasma characterized by the
screening parameter λ and when using trial wave functions that
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depend on coordinates {r1,r2,r12,	1,	2}, with 	i = (θi,φi),
reads

Ĥ = −1

2

2∑
i=1

[
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+ 2
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]

+
[
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(
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r2r12

(
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) ∂
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]

− Zexp(−λr1)

r1
− Zexp(−λr2)

r2
+ exp(−λr12)

r12
, (1)

an expression in which r̂i = ri/ri is a unit vector and ∇̂Y
i =

ri∇Y
i , where ∇Y

i corresponds to the angular part of the gradient
operator. We have previously used a similar Hamiltonian in
our Hylleraas configuration interaction (HyCI) approach to
compute resonances in berylliumlike atoms [25], but where
Coulomb interactions are now replaced with screened Yukawa-
like interactions. In that previous work [25] we built all
ingredients necessary to uncover resonant states in isolated
Be-like atoms by implementing the stabilization procedure.
For the reasons stated in the Introduction we now choose
instead the Feshbach approach.

A. Feshbach projection formalism

The Feshbach projection method [26,27] provides a power-
ful method to deal with resonance phenomena in scattering
processes. Most of the known applications in atomic and
molecular physics are reduced to two-electron (see, for in-
stance, [27] and references therein) and three-electron systems
[28,29]. Additionally, it has shown to be a remarkable method
not only as a time-independent approach but also in the time
domain [30,31]. For the sake of completeness, we give here
a brief review of the Feshbach method as applied to two-
electron atoms. The Feshbach projection operator formalism
introduces two projection operators, P and Q, which satisfy
completeness (P + Q = 1), idempotency (P2 = P ,Q2 = Q),
and orthogonality (PQ = QP = 0) and project the total wave
function onto nonresonant scatteringlike P and boundlike Q
half spaces, respectively. Accordingly, the splitting of the total
continuum wave function reads  = P + Q and it can be
substituted in the Schrödinger equation H = E to obtain
a system of coupled equations,

(E − QHQ)Q = QHP, (2a)

(E − PHP)P = PHQ. (2b)

Q can be extracted formally from Eq. (2a) as Q =
QHP/Q(E − H )Q and then substituted in Eq. (2b) to
obtain the following optical potential Schrödinger equation
for P:

P
[
H + HQ 1

Q(E − H )QQH − E

]
P = 0. (3)

Now the Green’s function forQ space can be expanded in terms
of theQHQ eigenvaluesEn and its eigenfunctions �n ≡ Q�n,

i.e., (QHQ − En)�n = 0, to yield

GQ(E) = 1

Q(E − H )Q =
∑∫

n

|�n〉〈�n|
E − En

. (4)

The nonresonant component of the continuum wave function,
named P0, for an energy E close to the resonance state with
energy Es is obtained by removing the resonant component
n = s from Eq. (4) when substituted in Eq. (3). Then the
Feshbach static working equations for the boundlike and the
nonresonant scatteringlike parts are

(QHQ − En)�n = 0, (5a)

(PH ′P − E)P0 = 0, (5b)

where H ′ is the operator containing the atomic Hamiltonian
plus an optical potential devoid of any resonant contribution
from the state �s with energy Es , i.e., H ′ = H + V

n�=s
opt , where

V
n�=s

opt =
∑∫

n�=s

PHQ |�n〉〈�n|
E − En

QHP. (6)

Within the Feshbach formalism the QHQ eigenvalues
Es must be corrected with an energy shift �s (due to the
surrounding continuum states), readily calculated with a
second-order perturbation formula,

�s =
∑∫

E′ �=Es

dE′ |〈�s |QHP|P0(E′)〉|2
Es − E′ , (7)

so that the resonance energy is actually corrected to be Es =
Es + �s . Also, the Auger width of a resonance with energy Es

is computed by using Fermi’s golden rule,

�s = 2πρ(E = Es)|〈�s |QHP|P0(E = Es)〉|2, (8)

where ρ(E) is the density of continuum states at the resonance
energy. The application of Eq. (8) requires the evaluation of
QHP matrix elements between Q and P wave functions
having the same continuum energy. However, the computa-
tional solution of the PHP problem with a finite basis set
results in a discretized continuum. In general, none of the
discretized continuum energies {Ei} matches any resonance
energy Es . In order to get the energy matching, we use an
inverse interpolation method [29,32].

In practice, one starts by first solving the QHQ problem
(5a), which implies to use the two-electron projector Q = 1 −
P , where P = P1 + P2 − P1P2, with Pi = |φ1s(i)〉〈φ1s(i)| as
the projector for electron i in the 1s orbital. The direct appli-
cation of the projector Q is rather cumbersome and, instead,
one may solve the easier but equivalent eigenvalue problem
associated with the effective Hamiltonian Heff = H + MP ,
where MP represents a Phillips-Kleinman pseudopotential
[33], with M → ∞ (in practice, M is a large positive real
number). The operator MP projects upward in energy all
eigenstates corresponding to the bound plus scatteringlike P

half space, in such a way that the lowest eigenstates of Heff

now correspond to the Rydberg discrete series of resonant
states below the second ionization threshold, if the explicit
Pi expressed above is used. The PH ′P eigenproblem (5b)
is solved by diagonalizing the full Hamiltonian H ′ in a P-
projected basis set of configurations, using the static-exchange
approximation (in which the target He+ is not excited), which
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guarantees the orthogonality with the Q-space wave functions
(see, for instance, [29]).

B. Computational details

We use a HyCI method, where the total wave function is
built up as a linear combination of antisymmetrized correlated
configurations of the form ψi(x1,x2) = A{φi(r1,r2)χ (s1,s2)},
with xi ≡ (ri ,si) for the spatial and spin electron coordinates.
The spatial part of the wave function is built up in terms of
correlated Slater-type orbitals,

φi(r1,r2) = r
n1
1 r

n2
2 r

n12
12 e−αr1−βr2Y(�1,�2),L,M (	1,	2), (9)

where Y(�1,�2),L,M (	1,	2) is a coupled product of spherical
harmonics,

Y(�1,�2),L,M (	1,	2) = (−1)�1−�2+M [L]1/2

×
∑

m1,m2

(
�1 �2 L

m1 m2 −M

)
Y�1,m1 (	1)Y�2,m2 (	2) (10)

and [L] ≡ (2L + 1). In Eq. (9) the index i corresponds to the
full set [(n1,n2,n12,α,β); (�1,�2)] that labels each correlated
configuration entering the CI wave function. A detailed
description to proceed with the (radial and angular) integrals
involved in the general method as well as with the Feshbach
projection may be found in Refs. [25,34], in which integrals
involving screened Coulomb potentials were not considered.
Nevertheless, the only new integral that involves the screened
two-electron interaction term e−λr12/r12 can also be computed
in closed analytical form following the ideas of the seminal
paper by Calais and Löwdin [35] (see also [36,37]). Indeed,
all these integrals can be written in terms of the array [klm]
of Eq. (28) in Ref. [35], which in our implementation are
precomputed and kept in dynamical memory storage, once the
full set of n1, n2, n12, α,β, and λ values are selected for the
basis set.

To construct the basis set we vary the set of powers n1,
n2, n12 as follows: ni = �i + j , with 0 � �i � 3 (s,p,d,f );
0 � j � 3; and n12 � 2. The nonlinear parameters α and
β are varied following an even-tempered sequence of the
form α(k,�) = Z/γ k(� + 1), with γ ∈ [2.0,3.2] to avoid linear
dependencies. Accordingly, the QHQ eigenvalue problem is
solved as follows (for instance, in the case of singlets): 1Se

symmetry is computed with 420 ss, 210 pp, and 83 dd

configurations (from which 210 ss, 84 pp, and 21 dd are
explicitly correlated); the 1De manifold of states is computed
with 390 sd, 255 pp, and 225 pf configurations (180 sd,
120 pp, and 90 pf are explicitly correlated). Computations
in terms of uncorrelated Slater-type orbitals may require
many more configurations and a larger set of coupled angular
configurations (�1,�2). In fact, the expansion of r

n12
12 introduces

additional angular correlation in the configurational basis.
Incidentally, we find that explicitly correlated calculations for
symmetry 1,3P o are much harder to perform due to difficulties
associated to linear dependencies that prevent us from a
rapid saturation of the basis. Then we have chosen instead
uncorrelated configurations for L = 1. For instance, for the
1P oQHQ eigenvalue problem we employed 273 sp, 210 pd,
126 df , and 126 fg uncorrelated configurations.

To build up the P-projected basis we use the static-
exchange approximation, in which one of the electrons is fixed
to the core He+(1s). In practice, we use the same CI code
but avoid correlated configurations (much less important for
the continuum states) by building antisymmetrized configura-
tions in the form A{ϕλ

1s(r1)fi(r2)Y(�1,�2),L,M (	1,	2)χ (s1,s2)},
where ϕλ

1s corresponds to the radial function of the He+ (1s)
state immersed in a plasma with screening parameter λ and
{fi} = rL+ni e−αir is a Slater-type basis set that represents
the scattered electron. At variance with He isolated atoms,
in which the projector P is constructed exactly, in the plasma
immersed He the projector is not exact but the orbital ϕλ

1s

can be obtained accurately from variational calculations for
each value of the screening parameter λ in terms of a
Slater-type basis set; i.e., our one-particle projector is now
Pi = |ϕλ

1s(i)〉〈ϕλ
1s(i)|. To simplify the Feshbach P projection

procedure, we have used a hydrogenlike orbital with a single
nonlinear parameter to model the 1s orbital, ϕλ

1s = Ne−αλr ,
where αλ is optimized variationally and N is the normalization
factor. For the range of screening parameters included in this
work (λ ∈ [0,0.5]) there is an excellent match between this
one-parameter wave function and the one obtained with a
converged variational calculation using a large set of Slater-
type orbitals (STOs). For instance, an uncorrelated calculation
in P-space for the nonresonant continuum in the 1Se symmetry
makes use of 220 ss configurations, which means that a set of
220 STOs with � = 0 is employed to represent the scattered
electron, whereas the target electron remains in the screened
1s orbital.

The implementation of our Feshbach method along with
Hylleraas type coordinates is very efficient computationally.
For instance, a complete computation for any of the 2S+1Lπ

symmetries and for a set of 50 parameters λ ∈ [0,0.5] takes
less than 6 h in a desktop computer with a sequential 3-GHz
processor and 4-Gbyte RAM memory. The software package is
written in C + + language, with a managing control program
elaborated with PYTHON that governs the different steps (basis
construction, Q and P eigenvalue problems, energy shifts
computations, inverse interpolation procedure to obtain the
Auger widths, graphical interface, etc.) plus the drivers for
algebra libraries LAPACK through SciPy [38].

III. RESULTS AND DISCUSSION

In this work we aim to perform systematic computations
with the Feshbach formalism for the lowest doubly excited
states of the helium atom immersed in a weakly coupled
plasma with different screening parameters λ = 1/D. Infor-
mation on the evolution of resonance energies and specially
their Auger widths is quite scattered in the bibliography and
conclusiveness on their behavior against the screening strength
is elusive. To our knowledge, this is the first application of the
Feshbach formalism to study resonance parameters in atoms
embedded in a weakly coupled plasma, using also explicitly
correlated coordinates. The latter choice of Slater-type cor-
related basis avoids the expansion of the screened Coulomb
interelectronic interaction e−λr12/r12 in terms of r> and r< and
all integrals are analytical. On the other hand, CI computations
in terms of explicitly correlated coordinates have some disad-
vantages, concerning (i) the omnipresent linear dependencies
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TABLE I. Plasma-free computations (with λ = 0) for energies and widths of He doubly excited states below the He+ (N = 2) threshold, with
1Se, 1P o, and 1De symmetries. Present computations are compared with results by Chen [39] (an extended comparison with other computations
is included in this reference). Numbers in squared brackets indicate powers of ten.

1Se 1P o 1De

n1 (K,T )An2
−Er (a.u.) � (a.u.) n1 (K,T )An2

−Er (a.u.) � (a.u.) n1 (K,T )An2
−Er (a.u.) � (a.u.)

Present 2(1,0)+2 0.777940 4.60[−3] 2(0,1)+2 0.692927 1.30[−3] 2(1,0)+2 0.702129 2.29[−3]
Ref. [39] 0.77787 4.53[−3] 0.693069 1.372[−3] 0.70183 2.36[−3]
Present 2(−1,0)+2 0.621864 2.43[−4] 2(1,0)−3 0.597074 3.85[−6] 2(1,0)+3 0.569269 5.33[−4]
Ref. [39] 0.62181 2.178[−4] 0.597074 3.84[−6] 0.569193 5.60[−4]
Present 2(1,0)+3 0.589929 1.35[−3] 2(0,1)+3 0.564048 2.85[−4] 2(0,1)0

3 0.556431 1.88[−5]
Ref. [39] 0.589896 1.37[−3] 0.564074 2.998[−4] 0.556417 2.01[−5]
Present 2(−1,0)+3 0.548081 8.82[−5] 2(−1,0)0

3 0.547070 1.82[−8] 2(1,0)+4 0.536747 2.22[−4]
Ref. [39] 0.548070 7.75[−5] 0.547087 1.5[−8] 0.536715 2.34[−4]
Present 2(1,0)+4 0.544891 4.78[−4] 2(1,0)−4 0.546482 2.02[−6] 2(0,1)0

4 0.531513 1.04[−5]
Ref. [39] 0.544882 5.0[−4] 0.546490 2.02[−6] 0.531506 1.12[−5]
Present 2(−1,0)+4 0.527717 5.47[−5] 2(0,1)+4 0.534314 1.22[−4] 2(−1,0)0

4 0.529293 1.12[−8]
Ref. [39] 0.527707 4.9[−5] 0.534358 1.28[−4] 0.529292 1.21[−8]
Present 2(1,0)+5 0.526689 2.09[−4] 2(−1,0)0

4 0.527573 2(1,0)+5 0.522753 1.11[−4]
Ref. [39] 0.526687 2.3[−4] 0.527613 3[−9] 0.522737 1.18[−4]
Present 2(−1,0)+5 0.518105 3.50[−5] 2(0,1)0

5 0.520118 5.93[−6]
Ref. [39] 0.518100 3.2[−5] 0.520114 6.40[−6]
Present 2(1,0)+6 0.517641 1.08[−4] 2(−1,0)0

5 0.519001 1.11[−8]
Ref. [39] 0.517641 1.2[−4] 0.519000
Present 2(−1,0)+6 0.512760 2.25[−5] 2(1,0)+6 0.515460 6.28[−5]
Ref. [39] 0.512762 2.2[−5] 0.515451 6.76[−5]
Present 2(1,0)+7 0.512509 6.29[−5] 2(0,1)0

6 0.513953 3.61[−6]
Ref. [39] 0.512514 6.9[−5] 0.513950 3.82[−6]
Present 2(−1,0)+7 0.509469 1.30[−5] 2(−1,0)0

6 0.513311 8.83[−9]
Ref. [39] 0.513310

when saturating the CI basis for convergence (basis parameters
must be always judiciously chosen) and (ii) the poor long-
range representation of the electronic continuum along with a
low density of states in the energy region of interest. In this
sense, computations in terms of B splines or discrete variable
representation (DVR) basis sets are shown to be far superior
to skip these representation difficulties, but in this case all
screened Coulomb two-electron integrals must be computed
numerically, which increases noticeably the computational
effort. Thus, in this work we want to gauge the capability
of the Feshbach method together with explicitly correlated co-
ordinates to shed light on the variation of resonance parameters
with Yukawa-like screening potentials as a good test case.

First, in order to establish the accuracy of our Feshbach
implementation and the proper selection of the correlated basis
set, we have computed resonance parameters for the isolated
He atom, for the 1,3Se, 1,3P o, and 1,3De symmetries. With the
basis quoted in Sec. II B we are able to obtain 34 1Se and 22 3Se

resonances, 25 1De and 24 3De resonances, and 11 1P o and 12
3P o resonant states below the He+(N = 2) threshold, although
we report energies and widths with converged figures for the
lowest 12 1,3Se resonances, the lowest 12 1,3De resonances
and the lowest 6 in 1,3P o symmetries. In Tables I (singlets)
and II (triplets) we compare our results with the accurate ones
obtained by Chen [39] using the saddle-point complex rotation
method with B-spline functions. In general, the comparison for
both energies and widths is very good. Widths for the triplets
around 10−11 a.u. are very difficult to extract due to their

smallness (Chen [39] does not report these values either). It is
worth noting that the largest differences in energy appear in
the lowest resonances for each symmetry. This may be due to
the approximate representation of the MP Phillips-Kleinman
pseudopotential and the chosen basis. The formal equivalence
between the QHQ eigenproblem and the Heff = H + MP
one, is strictly proven for M → ∞. We have used several
increasing values of M , and our results are reported using
M = 300 since larger values may unbalance the Hamiltonian
matrix elements entering in the numerical diagonalization.
In addition, in the screened case, the approximated (but a
rather good approximation) ϕλ

1s one-parameter wave function
used for the P projector may lead to small differences
in the projection for the most compact resonances in the
configurational space.

As mentioned above, we find the 1,3P o symmetry much
more complicated to compute in terms of finding an optimized
basis set exempt from linear dependencies (keeping our
calculations in double precision). Nevertheless we are able to
extract converged resonance parameters for at least the lowest
six resonances, just enough to have representatives for each
(K,T )A series. The comparison of our 1,3P o results with those
of Chen [39] is rather good. Incidentally, the saddle-point
method used in Ref. [39] is based on a min-max method
and the present method is strictly variational either for the
total Hamiltonian or the Q-space projected Heff. Anyway, we
do not claim that our results are necessarily better, due to
the above-mentioned approximation in the diagonalization of
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TABLE II. Plasma-free computations (with λ = 0) for energies and widths of He doubly excited states below the He+ (N = 2) threshold,
with 3Se, 3P o, and 3De symmetries. Present computations are compared with results by Chen [39] (an extended comparison with other
computations is included in this reference). Numbers in squared brackets indicate powers of ten.

3Se 3P o 3De

n1 (K,T )An2
−Er (a.u.) � (a.u.) n1 (K,T )An2

−Er (a.u.) � (a.u.) n1 (K,T )An2
−Er (a.u.) � (a.u.)

Present 2(1,0)−3 0.602576 6.39[−6] 2(1,0)+2 0.760506 3.12[−4] 2(1,0)−3 0.583776 3.06[−8]
Ref. [39] 0.602577 6.65[−6] 0.760489 2.99[−4] 0.583784 3.12[−8]
Present 2(−1,0)−3 0.559744 2.49[−7] 2(1,0)+3 0.584675 8.56[−5] 2(0,1)0

3 0.560643 7.20[−6]
Ref. [39] 0.559745 2.61[−7] 0.584671 8.24[−5] 0.560684 7.56[−6]
Present 2(1,0)−4 0.548840 2.96[−6] 2(0,1)−3 0.579028 1.80[−6] 2(1,0)−4 0.541675 1.05[−8]
Ref. [39] 0.548841 3.10[−6] 0.579030 1.85[−6] 0.541679 1.0[−8]
Present 2(−1,0)−4 0.532504 1.37[−7] 2(−1,0)−3 0.548838 2.74[−8] 2(0,1)0

4 0.533438 3.66[−6]
Ref. [39] 0.532505 1.43[−7] 0.548841 1.30[−8] 0.533462 3.82[−6]
Present 2(1,0)−5 0.528413 1.47[−6] 2(1,0)+4 0.542834 3.27[−5] 2(−1,0)0

4 0.529308 2.48[−11]
Ref. [39] 0.528414 1.54[−6] 0.542837 3.17[−5] 0.529312 7[−11]
Present 2(−1,0)−5 0.520548 7.85[−8] 2(0,1)−4 0.539532 7.91[−7] 2(1,0)−5 0.525016 4.47[−9]
Ref. [39] 0.520549 8.2[−8] 0.539558 7.90[−7] 0.525018 4.8[−9]
Present 2(1,0)−6 0.518541 8.15[−7] 2(−1,0)−4 0.528165 2(0,1)0

5 0.521109 1.97[−6]
Ref. [39] 0.518546 8.6[−7] 0.528637 6.6[−9] 0.521130 2.08[−6]
Present 2(−1,0)−6 0.514173 4.85[−8] 2(−1,0)0

5 0.518996 ∼[11]
Ref. [39] 0.514180 4.8[−8] 0.519016
Present 2(1,0)−7 0.513021 5.03[−7] 2(1,0)−6 0.516686 2.33[−9]
Ref. [39] 0.513046 5.2[−7] 0.516687 2.5[−9]
Present 2(−1,0)−7 0.510311 3.75[−8] 2(0,1)0

6 0.514520 1.17[−6]
Ref. [39] 0.510378 3.0[−8] 0.514540 1.2[−6]
Present 2(1,0)−8 0.509586 3.44[−7] 2(−1,0)0

6 0.513278 ∼[11]
Ref. [39] 0.513322
Present 2(−1,0)−8 0.507469 2(1,0)−7 0.511919 1.12[−9]

the effective Hamiltonian Heff and the difficulties to saturate
the configurational space with a correlated basis. However,
our main concern is to work with a basis of configurations
good enough to subsequently provide reliable results for the
screened case. At this point, we should mention that we have
not made an attempt to vary or optimize the basis of correlated
configurations for every single value of λ and the same basis
for λ = 0 is then used for all calculations presented in this
work. This may imply eventually that the virtual representation
of the energy positions of He+(2s,2p) + e− thresholds may
be slightly misplaced in the two-electron calculation, when
compared to the one-particle energies He+(2s) and He+(2p),
computed separately with much higher precision.

Once our correlated basis set and Feshbach procedure is
reasonably tested for λ = 0, we proceed to perform systematic
calculations for energies and widths for the lowest singlet and
triplet resonances located below the He+(N = 2) threshold.
The leading order in λ for the screened potential in the
last row of Eq. (1) [it follows from V (r1,r2,r12) = − Z

r1
−

Z
r2

+ 1
r12

+ λ(2Z − 1) + · · · ] clearly shows that the screening
is an effective repulsive interaction, so that energies must
increase their value (they become less bound) for increasing λ.
According to this simple formula, the states in He increase their
energies faster than the one-electron states of the parent ion
He+, which implies that the energies for bound and quasibound
(resonant) states eventually cross the upper ionic thresholds
for some critical values of the screening parameter λ. This
behavior for the resonance energies is represented in the

top part of plots from Figs. 1 to 6, where for the sake of
clarity we choose to represent the energy difference from the
upper He+(2s) threshold. Here, the values for the threshold
energies He+(2s) and He+(2p) are obtained by diagonalizing
the plasma-embedded He+ Hamiltonian in a variational basis
set of Slater-type orbitals, which compare well with the values
reported in Ref. [16]. We show the variation of resonance
energies and widths against the screening parameter, i.e.,
(Er,�r ) vs λ, in graphical form instead of voluminous tabular
data, which are available from the authors upon request
[40]. Nevertheless, to assess the quality and accuracy of our
numerical data we choose to compare in Table III our results
for the lowest singlet resonances (1Se, 1P o, and 1De) with those
reported by Ho et al. [14,16,17,23], using the stabilization
method. Due to the effectiveness of our computational method,
we can provide values for higher resonances and for a much
finer mesh of λ values, including also the values for λ used
by Ho et al. for the sake of comparison. Accordingly, we also
include in our figures the results reported by Ho et al. for
some states and symmetries, when available. The comparison
is remarkably good [though with noticeable small differences
for the widths of the 1,3De

2(0,1)0
4 states] for energies and

especially for the widths, which are more affected by the
quality of the wave functions.

In the latter works Ho et al. use the stabilization method
in which the nonlinear parameters in the basis may be chosen
so that the energy of the lowest bound state is a minimum
for each value of λ. Resonances are instead high-lying excited
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TABLE III. Resonance energies and widths for the first lowest 1Se, 1P o, and 1De doubly excited states below the second ionization threshold
He+(N = 2) of plasma embedded He for a sequence of screening parameters λ ∈ [0,1/3] (or corresponding Debye lengths D = 1/λ). Present
calculations are compared with data available from different works by Kar and Ho using the stabilization method in Refs. [14,16,17,23].
Numbers in squared brackets indicate powers of ten.

1Se [2(1,0)+2 ] 1P o [2(0,1)+2 ] 1De [2(1,0)+2 ]

λ = 1/D (a.u.) −Er (a.u.) � (a.u.) −Er (a.u.) � (a.u.) −Er (a.u.) � (a.u.)

1/∞ Present 0.77794 4.60[−3] 0.692927 1.30[−3] 0.70213 2.29[−3]
Kar and Ho 0.77783 4.549[−3] 0.69313 1.377[−3] 0.7019477 2.376[−3]

1/100 Present 0.74831 4.59[−3] 0.66336 1.30[−3] 0.67251 2.28[−3]
Kar and Ho 0.74819 4.545[−3] 0.66355 1.376[−3] 0.6723257 2.372[−3]

1/70 Present 0.73584 4.58[−3] 0.65094 1.30[−3] 0.66004 2.27[−3]
Kar and Ho 0.73572 4.540[−3]

1/50 Present 0.71941 4.56[−3] 0.63463 1.29[−3] 0.64363 2.27[−3]
Kar and Ho 0.71929 4.533[−3] 0.63482 1.369[−3] 0.6434478 2.362[−3]

1/40 Present 0.70523 4.55[−3] 0.62057 1.29[−3] 0.62947 2.26[−3]
Kar and Ho 0.70513 4.531[−3]

1/30 Present 0.68198 4.52[−3] 0.59757 1.28[−3] 0.60626 2.24[−3]
Kar and Ho 0.68188 4.496[−3] 0.59777 1.354[−3] 0.6060725 2.338[−3]

1/20 Present 0.63694 4.45[−3] 0.55321 1.27[−3] 0.56130 2.19[−3]
Kar and Ho 0.63683 4.450[−3] 0.55340 1.327[−3] 0.5611172 2.294[−3]

1/15 Present 0.59377 4.36[−3] 0.51096 1.22[−3] 0.51825 2.13[−3]
Kar and Ho 0.51113 1.296[−3] 0.5180639 2.234[−3]

1/12 Present 0.55245 4.25[−3] 0.47069 1.18[−3] 0.47704 2.05[−3]
Kar and Ho 0.4768582 2.161[−3]

1/10 Present 0.51291 4.13[−3] 0.43232 1.13[−3] 0.43763 1.97[−3]
Kar and Ho 0.51279 4.159[−3] 0.43252 1.197[−3] 0.4374521 2.076[−3]

1/8 Present 0.45687 3.92[−3] 0.37829 1.05[−3] 0.38179 1.82[−3]
Kar and Ho 0.37851 1.109[−3] 0.3816262 1.931[−3]

1/7 Present 0.41919 3.75[−3] 0.34219 9.79[−4] 0.34426 1.71[−3]
Kar and Ho 0.41906 3.794[−3]

1/6 Present 0.37188 3.50[−3] 0.29722 8.85[−4] 0.29720 1.54[−3]
Kar and Ho 0.29741 9.41[−4] 0.2970523 1.644[−3]

1/5 Present 0.31114 3.13[−3] 0.23997 7.45[−4] 0.23690 1.30[−3]
Kar and Ho 0.31105 3.191[−3] 0.24016 7.91[−4] 0.2367763 1.388[−3]

1/4 Present 0.23158 2.53[−3] 0.16631 5.22[−4] 0.15845 9.17[−4]
Kar and Ho 0.23151 2.591[−3] 0.16649 5.5[−4] 0.158376 9.86[−4]

1/3 Present 0.12798 1.52[−3] 0.084924 0.085612 1.31[−10]
Kar and Ho 0.12792 1.569[−3]

states immersed in a discretized pseudocontinuum within the
same full diagonalization. An optimized basis for the ground
state may induce a much-too-compact representation of the
resonant wave functions. Consequently, a basis set very well
adapted to compute bound states may provide instead a poorer
representation of the diffuseness linked to doubly excited
states. In our Feshbach method, resonances are instead the
lowest states in the QHQ eigenvalue problem. Then a subtle
compromise must be met to find the adequate basis parameters
better adapted to our Feshbach QHQ eigenvalue problem.

Our main concern here is the systematic behavior of the
resonance widths (Auger lifetimes) against the increasing λ

parameter, which indicates the robustness of their survival
in a plasma environment. We find that the general behavior
for the widths follows a similar pattern for those resonances
classified within the same series of (K,T )A numbers under the
same L, S, and π symmetries. For L = 0 states, there are only
two (K,T )A series for both 1Se and 3Se symmetries, 2(1,0)+n
and 2(−1,0)+n for the singlets and 2(1,0)−n and 2(−1,0)−n for

the triplets. In Fig. 1 we plot the widths for the lowest 12
1Se resonances, 6 resonances within the 2(1,0)+n series, and
6 resonances within the 2(−1,0)+n series, with N = 2 and
n varying from 2 to 7. We have made computations for a
dense grid of λ values up to λ = 0.35 and only the lowest
resonance crosses the upper threshold beyond that value (not
shown in the figure). It is noticeable that resonances within
the same series show a similar behavior against the variation
with λ. Those in the 2(1,0)+n series decrease monotonically
their widths as λ increases. At variance, the resonances in the
2(−1,0)+n series increase their widths to reach a maximum
before the critical value of λ at which the resonance crosses
the He+(2s) threshold and then decrease abruptly in the
neighborhood of the threshold. A similar behavior is found
in Fig. 2 for the triplets, which share the same (K,T ) numbers
but differ in the A label ( + for the singlets and − for the
triplets). Note that in the 3Se the behavior of the state 2(−1,0)−7
departs from the precedent states in the same series, and its
width always decreases for increasing λ. This may be due
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FIG. 1. (Color online) (Top) Plot of �E = E − ETh [energy
difference between those of the twelve lowest He 1Se doubly excited
states and the upper He+(2s) threshold energy] against the screening
parameter λ. The dot indicates the critical value of λ at which each
Feshbach resonance reaches the threshold (i.e., �E = 0). Six 1Se

resonances pertaining to the 2(1,0)+n series are plotted with solid
lines and those 6 of the 2(−1,0)+n series with dashed lines. (Bottom)
Evolution of the resonance widths for the lowest 12 He 1Se doubly
excited states below the He+(2s) threshold as a function of the
screening parameter λ. The same scheme of colors and lines used
for the resonance energies is employed for the widths. The largest
width within a series correspond to the lowest values of n in 2(K,T )An
for λ = 0. Vertical lines connect energies and widths at the critical
λ value for which the widths can be computed below the He+(2s)
threshold. Numerical labels in the widths indicate the excitation index
n that identifies each resonance. The symbols + indicate the values
calculated with the stabilization method reported in Ref. [14].

to the closer proximity of the upper threshold. Unfortunately,
we cannot infer whether this decreasing behavior follows for
higher resonances 2(−1,0)−n>7 at small values of λ since the
calculation of widths is not numerically reliable.

The behavior of resonance widths against increasing λ

has been analyzed in the past by Ho et al. [19,22] in terms
of the different geometrical arrangement adopted by the
two electrons with respect to the nucleus in “ + ” and “–”
states, which refer to the Cooper-Fano-Pratts classification of
resonance series [41], or to the A values ±1, respectively, in the
Lin classification [10]. The explanation given by Ho follows
the following reasoning. In the “ + ” states [with antinodal
behavior at r1 = r2 in the two-electron radial density ρ(r1,r2)]
the two electrons are located on opposite sides of the nuclei
and they move “in phase” (anticorrelated motion) toward the
nucleus. Autoionization proceeds when one of the electrons is
“knocked out” by the other via the nucleus. Then the effect
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FIG. 2. (Color online) (Top) The same as in Fig. 1 (top) but for
the lowest 11 He 3Se resonances. Here, the first 6 resonances from the
2(1,0)−n series are plotted with solid lines and the first 5 resonances
within the 2(−1,0)−n series with dashed lines. (Bottom) Same as in
Fig. 1 for the widths.

of screening is to slow down the stretching motion of both
electrons, the lifetime being then prolonged and the width is
smaller when the screening increases. In the “−” states (with a
nodal behavior at r1 = r2 in the two-electron radial density) the
most probable radial geometry implies that one of the electrons
remains closer to the nucleus than the other. The outer electron
feels the (He+,e−) pair through a charge plus dipole potential,
whose strength diminishes as the screening increases, leading
to a more rapid autoionization of the outer electron; i.e., the
width tends to increase its value. According to our calculations
(even only for the L = 0 states), we find this explanation not
general. Indeed, the behavior of the widths in this case seems
to be mostly ruled by the angular correlation given by the
label K; i.e., the widths decrease their value for K = +1 and
increase for K = −1, without an explicit role played by the
radial correlation number A = ±1.

However, this dependence on the K number for the L = 0
states is no longer fully supported for resonance states with
L = 1 (singlets and triplets). In Figs. 3 and 4 we include
the variation of resonance energies and widths against the
screening parameter λ. Energies and widths are plotted up to
the value of λ at which each resonance energy crosses the upper
He+(2s) threshold. The resonant states in the series 2(0,1)+n
for the 1P o and in the series 2(1,0)+n for the 3P o reduce their
widths monotonically with respect to λ (the plasma screening
increase their lifetime). These two series showing similar
behavior have different angular correlation numbers (K,T ) but
the same radial correlation pseudoquantum number A = +1.
The next series is 2(1,0)−n for 1P o and 2(0,1)−n for 3P o, again
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FIG. 3. (Color online) (Top) The same as in Fig. 1 (top) but for the
lowest six He 1P o resonances. Here, three resonances from the 2(0,1)+n
series are plotted with solid lines; two resonances from the 2(1,0)−n
series with dashed lines and the resonance 2(−1,0)0

3 with dot-dashed
line. (Bottom) Same as in Fig. 1 for the widths. The symbols +
indicate the values calculated with the stabilization method reported
in Ref. [17].

with different (K,T ) numbers but the same number A = −1. In
spite of this, their tendency against λ is different: The former
series in the singlets first decrease for small λ values, then
increasing for larger values, and the latter in the triplets show
the opposite behavior, they slightly increase to finally decrease
abruptly before crossing the threshold. Incidentally, the sudden
increase of the 2(0,1)−3

3P o after the sharp minimum in the
widths before reaching the He+(2s) threshold may be due to the
shifted position of this threshold in the two-electron calculation
against the energy obtained in the one-electron calculation for
the He+(2s) state in the one-electron Yukawa potential (which
is much more accurate than the two-electron calculation in
that energy region). Most probably, the minimum in the width
in Fig. 4 at λ = 0.112 for the 2(0,1)−3

3P o corresponds to
the threshold crossing in the two-electron calculation, and
the sudden increase can be attributed to its behavior after
the crossing (a region in which the Feshbach partitioning is
no longer valid). We further comment on this issue below,
regarding the conversion of the Feshbach resonances below
the threshold into shape resonances above it. Intuitively, a
shape resonance confined by a potential should increase its
width as the screening augments, since the height of the
barrier reduces its value when the energy increases, leading
to a shorter lifetime [9]. Finally, the only representative in the
series 2(−1,0)0

n for the singlet 1P o and 2(−1,0)−n for the triplet
3P o share the same (K,T ) numbers but different A number
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FIG. 4. (Color online) (Top) The same as in Fig. 1 (top) but
for the lowest six He 3P o resonances. Here, three resonances from
the 2(1,0)+n series are plotted with solid lines, two resonances from
the 2(0,1)−n series with dashed lines, and the resonance 2(−1,0)−3
with dot-dashed line. (Bottom) Same as in Fig. 1 for the widths.
The symbols + indicate the values calculated with the stabilization
method reported in Ref. [17].

(0 and −1, respectively) and they have the most dramatic
changes in the widths, mostly increasing their value by orders
of magnitude. In this case, in contrast to the above-mentioned
2(0,1)−3

3P o resonance, the sharp minimum in the width
located at λ = 0.028 for the 2(−1,0)−3

3P o resonance cannot
be attributable to the threshold crossing (it is still quite far
from the threshold position) and it might be due to a sudden
transformation of the resonant wave function at this value
of λ.

Finally, the energies and widths for L = 2 are included in
Fig. 5 for the 1De and Fig. 6 for the 3De. The Rydberg series
of resonances for the 3De lie much closer to the He+(N = 2)
threshold in comparison to the other symmetries, so that for
a screening parameter λ ∼ 0.13 all resonances have already
crossed the upper He+(2s) threshold. The series with the
largest widths in the figures [note here that the lowest 3De

resonance 2(1,0)−3 does not have the largest width for λ = 0,
and this symmetry then represents a peculiar case in He],
i.e., 2(1,0)+n for the singlets (solid lines) and 2(0,1)0

n for the
triplets (dashed lines) show a similar smooth decreasing trend
for the widths against λ. One may even compare the widths
for the 2(0,1)0

n
1De (dashed lines) and the 2(1,0)−n

3De (solid
lines) series and conclude that for small values of λ their
behavior is analogous, to strongly depart for larger values.
Finally, the series starting with the smallest widths for λ = 0,
2(−1,0)0

n
1De, and 2(−1,0)0

n
3De (dot-dashed lines in both
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FIG. 5. (Color online) (Top) The same as in Fig. 1 (top) but for the
lowest 12 He 1De resonances. Here, 5 resonances from the 2(1,0)+n
series are plotted with solid lines, 4 resonances from the 2(0,1)0

n

series with dashed lines, and 3 resonances from the 2(−1,0)0
n series

with dot-dashed line. (Bottom) Same as in Fig. 1 for the widths.
The symbols + indicate the values calculated with the stabilization
method reported in Ref. [23].

cases) have a different behavior against λ in spite of sharing the
same (K,T )A numbers. However, their tendency is to reduce
their lifetimes (increase their widths) by several orders of
magnitude, similar to the trend of the series 2(−1,0)−n

3P o and
2(−1,0)0

n
1P o (dot-dashed lines in Figs. 4 and 3), respectively.

Some of these partial analogies could indicate a sort of
equivalence in terms of the isomorphic series (those states
having identical (K,T )A numbers [42]) but, in general, we
have shown from ab initio calculations that this variety of
behaviors of the widths seems to preclude clear propensity
rules in terms of the (K,T )A labels alone (referred to λ = 0),
with no regard for the L, S, and π labels, to elucidate the
stability of resonances against the variation of the plasma
screening. This may indicate a noticeable breakup of the
degeneracy associated to the isomorphic molecular curves in
hyperspherical coordinates [42] and therefore different trans-
formations of the resonance wave functions when augmenting
the screening strength. Then we have computed the averaged
interelectronic angle for each resonance [in this case 〈cos θ12〉,
which can be performed readily with correlated configurations
since cos θ12 = (r2

1 + r2
2 − r2

12)/2r1r2]. For instance, in Fig. 7
we include the variation of the interelectronic angle with the
screening parameter for the singlet resonances with labels
N (K,T )An (at λ = 0). The angular electronic correlation is
given by the label K , in such a way that it gives the leading
order for the averaged cosine of the interelectronic angle,
i.e., 〈cos θ12〉∼ −K/N and it may be regarded as a bending
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FIG. 6. (Color online) (Top) The same as in Fig. 1 (top) but for the
lowest ten He 3De resonances. Here, five resonances from the 2(1,0)−n
series are plotted with solid lines, four resonances from the 2(0,1)0

n

series with dashed lines, and one resonance from the 2(−1,0)0
n series

with a dot-dashed line. (Bottom) Same as in Fig. 1 for the widths.
The symbols + indicate the values calculated with the stabilization
method reported in Ref. [23].

vibrational quantum number in the molecular arrangement
(e−, He2+, e−). For 1Se, it is clear from Fig. 7 that resonances
within the series 2(1,0)+n , with K = +1, have two electrons
mostly located on opposite sides of the nucleus, whereas
resonances in the 2(−1,0)+n series with K = −1 have the
electron pair located on the same side of the nucleus. These
structures are well established for λ = 0. From the latter figure
we learn that the molecular structure of the lowest resonances
within each series is more robust against the variation of λ, only
to change abruptly when approaching the crossing with the
upper threshold, a limit in which the average angle tends to 90◦,
indicating that in the electronic continuum above the threshold
the electron correlation is mostly lost and the averaged angle
representing this situation is any angle between 0◦ and 180◦,
i.e., 90◦. The proximity of the upper He+(2s) threshold for
the higher resonances makes them to rapidly change their
geometry against the variation of λ. An explanatory remark
here is mandatory. Strictly speaking, within the Feshbach
method, we can follow the behavior of Feshbach resonances
in He only as long as they lie below the ionization threshold.
Due to our explicit Q − P partitioning, the Q space does
not only contain a pure resonant space due to doubly excited
states. In Q half space remains everything that does not
belong to the (1s,n�) and (1s,ε�) configurations of our P
space. Consequently, the continua (2s,ε�) and (2p,ε�) are
also represented by the Q configurations and incidentally
the Feshbach resonances mix up with the latter continuum
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FIG. 7. (Color online) Evolution of the average mean interelec-
tronic angle (calculated as cos−1[〈cos θ12〉]) for the resonant states 1Se,
1P o, and 1De as a function of the screening parameter λ. The same
scheme of colors and lines used in Fig. 1 (1Se), 3 (1P o), and 5 (1De) is
employed here. Quasimolecular pictures of the angular geometry of
two electrons bound to the nucleus are included to indicate regions
with θ12 > 90◦, <90◦, or ∼90◦. The thick dots on top of the lines
indicate the values of λ at which the resonance states cross the upper
He+(2s) threshold.

states once they cross the corresponding thresholds since they
become open channels. This limitation in the Feshbach method
does not allow us to keep track of individual resonances across
thresholds in a smooth topological way.

In the 1P o symmetry, the resonances in the first series
2(0,1)+n=2,3,4 show a more stable geometrical structure, varying
its interelectronic angle smoothly with respect to λ, in
agreement with the smooth variation of the widths in Fig. 3. At
variance, although the lowest resonance in the series 2(1,0)−n
has a smooth variation, the second one, 2(1,0)−4 , changes
its angular structure more abruptly against λ in the interval
[0,0.07], which partially explains the irregular behavior of its
width in Fig. 3. The most dramatic behavior in the symmetry
1P o corresponds to the 2(−1,0)0

3 resonance, with a rapidly
increasing width against λ. This value for the width must be
accompanied by a more abrupt rearrangement in the electronic
structure of the resonance wave function. In fact, the averaged
interelectronic angle in Fig. 7 has an oscillating behavior as a
function of λ before crossing the threshold.

In the 1De symmetry, the resonances in the first and second
series, 2(1,0)+n and 2(0,1)0

n have a smooth variation of widths.

Noticeably, the angular geometry (see Fig. 7) for the former
series 2(1,0)+n barely changes against λ, to change abruptly
only in the close vicinity of the He+ (2s) threshold. At
variance with the other series in the singlets, that in general
approach the angle 90◦ monotonically, the 2(0,1)0

n series
separates from 90◦, reducing their angle, to finally collapse
to 90◦ in a sudden manner close to the threshold crossing.
Finally, the 2(−1,0)0

n series increases the interelectronic angle
monotonically against λ, in spite of the irregular behavior of the
widths shown in Fig. 5, indicating that in some series the radial
correlation rearrangement may dominate over the angular
correlations. Plots of the two-particle radial density ρ(r1,r2)
are more involved to obtain using computational schemes with
correlated coordinates containing terms with r12 than with
uncorrelated configuration interaction wave functions, and we
have not built up the two-particle radial density distributions
as a function of λ, which eventually could indicate the change
in the radial correlations with the screening strength. Anyway,
this work indicates that resonance wave functions ultimately
may transform in different ways (both radial and angular
correlations) as a function of the screening according to the
(K,T )A series. Some series and some resonances within the
same series show more robustness in their electronic structure
against the screening than others. However, in general, no
general trend [according to isomorphic groups sharing the
same (K,T )A labels] can be extrapolated from the resonance
classification valid for λ = 0.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we have implemented a Feshbach formalism
within a configuration interaction method based on explicitly
correlated configurations to study the variation of resonance
parameters (energy positions and widths) of doubly excited
states in plasma-embedded He as a function of the screening
parameter in the Debye-Hückel model of the plasma. The
method here proposed is accurate and more efficient computa-
tionally than other methods previously adapted to this kind of
plasma studies, like the stabilization method. To illustrate the
fine working of our methodology, we have comprehensively
computed and compiled in this work the resonance parameters
for many He 1,3Se, 1,3P o, and 1,3De doubly excited states,
located below the second ionization threshold He+(N = 2)
in the unscreened He, and their evolution against the variation
of the screening parameter. Our results for the unscreened
case are given in the form of tables to compare with many
existing data. For the screened case, we provide in tabular
form resonance parameters for the lowest resonance in the
singlets (1Se, 1P o, and 1De for an assortment of Debye lengths),
for which some previous data are available to compare with.
Our main results are given in graphical form, from Figs. 1 to
6, which include energies and widths for the resonant states
against the screening parameter before crossing the upper
He+(2s) threshold.

Our study with the Feshbach method cannot disentangle
the behavior of the Feshbach resonances once they cross the
He+(2s,2p) thresholds when embedded in a plasma. A reso-
nance state with energy value located above the He+(2s,2p)
thresholds may manifest itself as a shape resonance. This
crossover of Feshbach resonances to shape resonances has
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already been pointed out in Ref. [43] by analyzing the effect of
the Coulomb screening in electron-hydrogen scattering around
the N = 2 threshold, using the R-matrix method and fitting
the eigenphase sum in the vicinity of the threshold. Their
widths show a steady decreasing trend for small values of
λ, they fall very rapidly before crossing the lowest threshold
H(2s), then increasing abruptly after the crossover as expected
for shape resonances. These results have been more recently
questioned by a recent work by Ho and Kar [44], who
have used here the complex scaling method and reported
discrepancies in the behavior of the 2s3s 1Se resonance
in H− (quoted 1Se(2) in Ref. [43]). Most probably, the
implementation of the complex scaling with larger basis sets
may shed more light to this particular question in a more
quantitative way. In fact, we have also used the complex
scaling (CS) method during the proceedings of this work,
using the same correlated basis. Again, all integrals appearing
in the complex rotation procedure can be arranged in closed
form and CS calculations may be performed straightforwardly.
Nevertheless, our CS calculations in terms of our finite basis of

correlated Slater-type orbitals do not provide enough density
of states in the vicinity of the two involved thresholds (complex
values in the continuum branch) to clearly visualize that
sharp Feshbach resonances approaching the continuum as
λ increases eventually emerge as shape resonances between
the two continuum branches He+(2s) and He+(2p) or above
He+(2p). To increase notably such continuum density in the
complex plane in that energy region is cumbersome with
correlated configurations and one must resort to piecewise
basis like B splines or DVR sets. Steps along these lines are
under consideration in our group.
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63, 93 (1997).
[37] S.-T. Dai, A. Solovyova, and P. Winkler, Phys. Rev. E 64, 016408

(2001).
[38] Webpage: http://www.scipy.org (open-source software for math-

ematics, science, and engineering).
[39] M.-K. Chen, Phys. Rev. A 56, 4537 (1997).
[40] Search in our group’s web page http://gfam.udea.edu.co.
[41] J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett. 10, 518

(1963).
[42] C. D. Lin, Phys. Rev. A 29, 1019 (1984).
[43] S. B. Zhang, J. G. Wang, and R. K. Janev, Phys. Rev. Lett. 104,

023203 (2010); Phys. Rev. A 81, 032707 (2010).
[44] Y. K. Ho and S. Kar, Few-Body Syst. 53, 445 (2012).

012702-12

http://dx.doi.org/10.1140/epjd/e2009-00258-6
http://dx.doi.org/10.1103/PhysRevA.10.2441
http://dx.doi.org/10.1103/PhysRevA.27.418
http://dx.doi.org/10.1002/qua.20822
http://dx.doi.org/10.1103/PhysRevE.53.5517
http://dx.doi.org/10.1063/1.1532107
http://dx.doi.org/10.1016/j.chemphys.2006.11.003
http://dx.doi.org/10.1103/PhysRevLett.51.1348
http://dx.doi.org/10.1103/PhysRevA.11.97
http://dx.doi.org/10.1103/PhysRevE.70.066411
http://dx.doi.org/10.1088/1367-2630/7/1/141
http://dx.doi.org/10.1016/j.cplett.2004.12.099
http://dx.doi.org/10.1103/PhysRevA.71.052503
http://dx.doi.org/10.1103/PhysRevA.72.010703
http://dx.doi.org/10.1088/0953-4075/39/11/010
http://dx.doi.org/10.1088/0953-4075/39/11/010
http://dx.doi.org/10.1007/s00601-006-0167-x
http://dx.doi.org/10.1103/PhysRevA.73.032502
http://dx.doi.org/10.1002/qua.21104
http://dx.doi.org/10.1002/qua.21104
http://dx.doi.org/10.1140/epjd/e2007-00141-6
http://dx.doi.org/10.1088/0953-4075/42/4/044007
http://dx.doi.org/10.1088/0953-4075/42/4/044007
http://dx.doi.org/10.1002/qua.22074
http://dx.doi.org/10.1103/PhysRevA.1.1109
http://dx.doi.org/10.1103/PhysRevLett.70.1932
http://dx.doi.org/10.1103/PhysRevLett.70.1932
http://dx.doi.org/10.1088/0953-4075/41/5/055003
http://dx.doi.org/10.1088/0953-4075/41/5/055003
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1103/PhysRevA.31.1259
http://dx.doi.org/10.1103/PhysRevA.82.022501
http://dx.doi.org/10.1103/PhysRevA.82.022501
http://dx.doi.org/10.1103/PhysRevA.73.033410
http://dx.doi.org/10.1103/PhysRevA.73.033410
http://dx.doi.org/10.1088/0953-4075/46/5/055601
http://dx.doi.org/10.1088/0953-4075/46/5/055601
http://dx.doi.org/10.1103/PhysRevA.36.4179
http://dx.doi.org/10.1103/PhysRevA.36.4179
http://dx.doi.org/10.1209/0295-5075/4/7/007
http://dx.doi.org/10.1209/0295-5075/4/7/007
http://dx.doi.org/10.1088/0022-3700/5/4/015
http://dx.doi.org/10.1016/0022-2852(62)90021-8
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)63:1<93::AID-QUA12>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)63:1<93::AID-QUA12>3.0.CO;2-7
http://dx.doi.org/10.1103/PhysRevE.64.016408
http://dx.doi.org/10.1103/PhysRevE.64.016408
http://www.scipy.org
http://dx.doi.org/10.1103/PhysRevA.56.4537
http://gfam.udea.edu.co
http://dx.doi.org/10.1103/PhysRevLett.10.518
http://dx.doi.org/10.1103/PhysRevLett.10.518
http://dx.doi.org/10.1103/PhysRevA.29.1019
http://dx.doi.org/10.1103/PhysRevLett.104.023203
http://dx.doi.org/10.1103/PhysRevLett.104.023203
http://dx.doi.org/10.1103/PhysRevA.81.032707
http://dx.doi.org/10.1007/s00601-012-0467-2



