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Abstract

Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the
nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our
calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity
position, and the nitrogen and indium concentrations.
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Review
Background
Over the past decade, the GaInNAs-based quantum-well
structures have emerged as a subject of considerable
theoretical and experimental research interest due to
their very unique physical properties and due to a wide
range of possible device applications. GaInNAs exhibits
interesting new properties and differs considerably from
the conventional III to V alloys. Significant changes
occur in the electronic band structure compare with
GaInAs with incorporation of small amounts of nitrogen
into GaInAs. These include a large redshift of the band-
gap, a highly nonlinear pressure dependence of the
bandgap, an increase in the electron effective mass, and
the N-induced formation of new bands [1-10]. This new
material has received considerable attention due to the
growing interest in its basic physical properties. Shan
et al. showed that interaction between the conduction
band and narrow resonant band formed by nitrogen
states in GaInNAs alloys leads to a splitting of conduc-
tion band into sub-bands and a reduction of the funda-
mental bandgap [11]. Fan et al. have investigated the
electronic structures of strained Ga1−xInxNyAs1−y/GaAs
quantum wells [12]. Hetterrich et al. investigated the
electronic states in strained Ga0.62In0.38N0.015As0.985/
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GaAs multiple quantum-well structures [13]. Pan et al.
have investigated the optical transitions in Ga1−xInx-
NyAs1−y/GaAs single and multiple quantum wells using
photovoltaic measurements at room temperature [14].
Several studies have been done on detailed optical
characterization of Ga1−xInxNyAs1−y. These papers in-
clude the temperature dependence of photolumines-
cence, absorption spectrum, and low-temperature
photoluminescence [15-19].
There are many studies associated with the hydro-

genic binding of an electron to a donor impurity which
is confined within low-dimensional heterostructures
[20-25]. The understanding of the electronic and op-
tical properties of impurities in such systems is import-
ant because the optical and transport properties of
devices made from these materials are strongly affected
by the presence of shallow impurities. Also, it is well
known that a magnetic field considerably affects the
optical and electronic properties of semiconductors.
Thus, the effects of magnetic field on the impurity
binding energy are a very important problem [26-28].
However, up to now, to the best of our knowledge, no
theoretical studies have been focused on impurity bind-
ing energies in single GaInNAs/GaAs quantum well
(QW) under the magnetic field.
In this paper, using a variational technique within the

effective mass approximation, we have investigated the
effects of the magnetic field, the impurity position, and
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Table 1 Parameters of the binary compounds used for
the calculation

Material GaAsa InAsa GaNb InNb

Electron effective mass m*(m0) 0.067 0.026 0.15 0.14

Dielectric constant 12.53 14.55 10.69c 7.46d

Energy gap Eg (eV) 1.420 0.417 3.299 1.94
aVurgaftman et al. [33], bVurgaftman and Meyer [34], cChow et al. [35], and
dGavrilenko and Wu [36].
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the nitrogen (N) and indium (In) concentrations on im-
purity binding energy in a Ga1 − xInxNyAs1 − y/GaAs QW.

Theoretical overview
The growth axis is defined to be along the z-axis and
takes the magnetic field to be applied to the z-axis, i.e.,
B = (0, 0, B). We choose a vector potential A in written

form A ¼ 1
2

�By

2 ; Bx
2 ; 0

� �
to describe the applied magnetic

field. Within the framework of the effective mass ap-
proximation, the Hamiltonian of a hydrogenic donor im-
purity in a Ga1 − xInxNyAs1 − y/GaAs quantum well in the
presence of magnetic fields can be written as follows:

H ¼ 1
2m� pe þ

e
c
A reð Þ

h i2
þ V zð Þ � e2

εo∣re � ri∣;
ð1Þ

where m* is the effective mass, e is the elementary
charge, pe is the momentum of the electron, εo is the di-
electric constant of the system, re and ri are the electron
and impurity atom positions, and V(z) is the confine-
ment potential of the electron in the z-direction. Using
cylindrical coordinates (x = ρ cos φ, y = ρ cos φ z = z) , we
obtain the Hamiltonian as follows:

H ¼ � ℏ2

2m�
∂2

∂ρ2
þ 1
ρ

∂
∂ρ

þ 1
ρ2

∂2

∂φ2
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þ e2B2

2m�c2
ρ2 þ V zð Þ � e2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z � zið Þ2
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where the term ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xe � xið Þ2 þ ye � yið Þ2

q
is the dis-

tance between the electron and impurity in the (x and y)
plane. The location of the hydrogenic donor in the
structure is given as (0, 0, zi). The electron confining po-
tential,V(z), is taken as follows:

V zð Þ ¼ 0 ∣z∣≤L=2
V0 elsewhere

;

�
ð3Þ

with L as the well width, and V0 is the conduction band
offset which is taken to be 80% of the total discontinuity
between the bandgap of GaAs and Ga1 − xInxNyAs1 − y

grown on GaAs [13].
The bandgap energy and electron effective mass of

Ga1 − xInxNyAs1 − y/GaAs is calculated using the band
anti-crossing model (BAC). The electron effective mass
of Ga1 − xInxNyAs1 − y/GaAs as predicted by the BAC
model is given by the following [29,30]:

m� Ga1�xInxNyAs1�y
� 	 ¼ 2m� InxGa1�xAsð Þ=

1� EC � ENffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC � ENð Þ2 þ 4V 2

NCy
q

0
B@

1
CA:

ð4Þ
The E in the BAC model is taken to be the fundamen-
tal bandgap energy (EG) for Ga1 − xInxNyAs1 − y:

E ¼ 1
2

EN þ ECð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN � ECð Þ2 þ 4V 2

NCy
q
 �

; ð5Þ

EC ¼ EC0 � 1:55y ð6Þ

EN ¼ 1:65 1� xð Þ þ 1:44x� 0:38x 1� xð Þ ð7Þ

VNC ¼ 2:7
ffiffiffiffi
y;

p ð8Þ

where y is the N composition in Ga1 − xInxNyAs1 − y; EC0
is the energy in the absence of N; EC, EN, and VNC are
the bandgap energies of InGaAs at Г point, the energy of
the isolated N level in the InGaAs host material, and the
coefficient describing the coupling strength between EN
and the InGaAs conduction band, respectively. The band
structure parameters used in this study are listed in
Table 1 [31-36].
Using the variational method, it is possible to associate

a trial wave function, which is an approximated eigen-
function of the Hamiltonian described in Equation 2.
The trial wave function is given by the following:

Ψ rð Þ ¼ ψ zð Þφ ρ; λÞ;ð ð9Þ

where λ is the variational parameter, ψ(z) is the wave
function of the donor electron which is exactly obtained
from the Schrödinger equation in the z-direction with-
out the impurity, and φ(ρ,λ) is the wave function in the
(x and y) plane, and it is given by the following:

φ ρ; λð Þ ¼ 1
λ

2
π

� �1=2
Exp �ρ=λ½ �: ð10Þ

The ground state impurity energy is evaluated by min-
imizing the expectation value of the Hamiltonian in
Equation 2 with respect to λ. The ground state donor
binding energy is calculated using the following equa-
tion:

EB ¼ Ez �min
λ

Ψ∣H∣Ψ; ð11Þ

where Ez is the confinement ground state energy of the
electron.



Figure 2 Variation of impurity binding energy as function of
well width: magnetic-field values and indium concentrations.
This is for different values of the magnetic field and for two different
indium concentrations (x = 0.15 and x = 0.30).
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Results and discussion
In this paper, we have theoretically investigated the
effects of the magnetic field, the impurity position, and
the nitrogen and indium concentrations on impurity
binding energy in a Ga1 − xInxNyAs1 − y/GaAs QW.
The variation of the impurity binding energy as a func-

tion of the well width for different values of the magnetic
field and for two different nitrogen concentrations (y = 0,
y = 0.005, and y = 0.01) is given in Figure 1. As seen in
this figure, when the magnetic field increases, the bind-
ing energy also increases. Magnetic field strength gives
an additional parabolic magnetic confinement term.
Under this additional magnetic confinement, the prob-
ability of the electron and impurity atom being on the
same plane increases, and therefore, the binding energy
increases. In this figure, one sees that when the well
width increases, the impurity binding energies increase
until they reach a maximum value, and they bind to de-
crease. This behavior is related to the change of the elec-
tron and impurity atom confinement in the quantum
well. It should be noted that the donor binding energy
increases with nitrogen concentration. As the nitrogen
concentration increases, both the electron effective mass
and the band discontinuity increase, while dielectric con-
stant decreases. In this case, the coulombic interaction
between the electron and a donor impurity increases,
and therefore, the impurity binding energy increases.
In Figure 2, we have presented the variation of the

binding energy for a donor impurity placed on the cen-
ter of a Ga1−xInxNyAs1−y/GaAs quantum well as a
Figure 1 Variation of impurity binding energy as function of
well width: magnetic-field values and nitrogen concentrations.
This is for some values of the magnetic field (B = 0, 10, and 20 T)
and nitrogen concentrations (y = 0, 0.005, and 0.01).
function of the well width for different values of the
magnetic field and for two different indium concentra-
tions (× = 0.15 and × = 0.30). It is seen that the impurity
binding energy decreases with the well width for the
considered values of the indium concentration. This be-
havior can be explained as follows: the band discontinu-
ity and the dielectric constant increase with the
increasing indium concentration; on the other side, the
electron effective mass decreases. Thus, by increasing
the indium concentration, particles get to be more ener-
getic and they can penetrate into the potential barriers
easily where the wave functions of the particles reflect
their three-dimensional character, and the probability of
finding the electron and hole in the same plane weakens.
This behavior weakens the Coulomb interaction between
the electron and impurity atom, and the binding energy
begins to decrease.
The calculated impurity binding energy for a hydrogenic

donor in Ga1−xInxNyAs1−y/GaAs quantum well as a func-
tion of the magnetic field (B) is given in Figure 3 for differ-
ent impurity positions (zi) and well width (L =100 Å). As
expected, when the magnetic field increases, the binding
energy also increases. It can be clearly seen that the im-
purity binding energy decreases as the position of
the impurity approaches the potential barriers. This is be-
cause the electron impurity distance increases when the
position of the impurity approaches the potential barriers.
This leads to the weakening of the electrostatic inter-
action, therefore to the decreasing in value of impurity
binding energy.



Figure 3 Variation of impurity binding energy as function of
magnetic field and for two different impurity positions.
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Conclusions
As a summary, we have investigated the effects of the
magnetic field, the impurity position, and the nitrogen
and indium concentrations on the impurity binding en-
ergy in a Ga1−xInxNyAs1−y/GaAs quantum well in this
study. The calculations were performed within the ef-
fective mass approximation. We have found the impurity
binding energy on the magnetic field, the impurity pos-
ition, and the nitrogen and indium concentrations. This
case gives a new degree of freedom in device applica-
tions, such as near-infrared electro-absorption modula-
tors and quantum well infrared detectors, and all optical
switches. We hope that our results will stimulate further
investigations of the related physics as well as device
applications of group III nitrides.
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