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Abstract

A way of counting free parameters in the quark mass matrices of the standard model, including

the constraints coming from weak basis transformations, is presented; this allow to understand

the exact physical meaning of the parallel and non-parallel texture zeros which appear in some

“ansätz” of the 3× 3 quark mass matrices, including the CP violation phenomena in the analysis,

it is shown why the six texture zeros are ruled out. Finally, a five texture zeros “ansätze”which

properly copes with all experimental constrains, including the angles of the unitary triangle, is

presented.

PACS numbers: 12.15.Ff
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I. INTRODUCTION

Although the gauge boson sector of the Standard Model (SM) with the SU(3)c⊗SU(2)L⊗
U(1)Y local symmetry has been very successful [1], its Yukawa sector is still poorly under-

stood. Questions related with this sector as for example: the total number of families in

nature, the hierarchy of charged fermion mass spectra, the smallness of neutrino masses, the

quark and lepton mixing angles, and the origin of the CP violation, remain until today as

open problems in theoretical particle physics.

To date, several approaches have been suggested in the literature in order to understand

the phenomenology of the Yukawa sector; among them: radiative mechanisms [2], horizontal

symmetries; discrete [3], and continuous, global, and local gauge symmetries [4], which may

or may not include the so-called Froggat and Nielsen mechanism [5]. Phenomenologically, a

common approach is to search for simple textures of quark mass matrices that can predict

self-consistent and experimentally favored relations between quark masses and flavor mixing

parameters [6, 7].

In the SM and after the local gauge symmetry has been spontaneously broken, the quark

mass terms are given by

−Lm = Ū0LMuU0R + D̄0LMdD0R + h.c, (1)

where Ū0L = (ū0, c̄0, t̄0)L, D̄0L = (d̄0, s̄0, b̄0)L, UT
0R = (u0, c0, t0)R, DT

0R = (d0, s0, b0)R,

(where the upper T stands for transpose, and the down zero stands for weak basis quark

states). The matrices Mu and Md in (1) are 3 × 3 complex mass matrices. In the most

general case they contain 36 free parameters. In the context of the SM, such a large number

of parameters can be drastically cut by making use of the polar theorem of matrix algebra,

by which, one can always decompose a complex matrix as the product of an Hermitian times

a unitary matrix. Since for the SM the unitary matrix can be absorbed in a redefinition of

the right handed quark components, this immediately brings the number of free parameters

from 36 down to 18 (the other eighteen parameters can be hidden in the right-handed quark

components in the context of the SM and some of its extensions, but not in its left-right

symmetric extensions).

So, as far as the SM is concerned we may treat, without loss of generality, Mu and Md as

two Hermitian quark mass matrices, with 18 parameters in total, out of which 6 are phases.
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Since 5 of those phases can be absorbed in a redefinition of the quark fields [8], the total

number of free parameters we may play with in Mu and Md are 12 real parameters and one

phase; this last one used to explain the CP violation phenomena.

In what follows we are going to present numeric and analytic results for three sets of

SM quark mass matrices, two of them containing six texture zeros, taking special care to

accommodate the latest experimental data available [9], including the CP violation phenom-

ena. In our approach we make use of the so called weak basis transformations technique,

which change the given quark mass matrices and its related mixing matrix into equivalent

ones [10], applying such a technique to place texture zeros at the (1,1) entries of both quark

mass matrices, resembling a kind of see-saw mechanism for the first family of quarks.

This paper is organized as follows: in Sec. II some features of the SM mixing matrix

are presented; in Sec. III the concept of weak basis transformation is review; in Sec. IV

we present our study of the parallel six texture zeros Fritzsch “ansätze” and in Sec. V we

analyze a non parallel six texture zeros “anzätze”. Sec. VI is devoted to the study of a five

texture zeros “anzätze” which works properly. Our conclusions are presented in Sec. VII.

The values of the quark masses used in the numerical studies are quoted at the end of the

paper in an appendix.

II. THE SM MIXING MATRIX

In the SM and for the six flavor case, the Baryon charged weak current is given by

J−
µL = Ū0LγµD0L = ŪLγµVCKMDL, (2)

where VCKM = UuU
†
d is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix, with Uu

and Ud the unitary matrices which diagonalize the Hermitian MuM
†
u and MdM

†
d square mass

matrices respectively, and ŪL = (ū, c̄, t̄)L and DT
L = (d, s, b)L stand for the quark field mass

eigenstates.

VCKM is a 3 × 3 unitary matrix, its form is not unique, but the permutation free-

dom between the three generations can be removed by ordering the families such that

(u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b). The complex elements of VCKM are thus
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commonly written as

VCKM =











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











. (3)

The unitary of the CKM mixing matrix leads to relations among the rows and columns of

VCKM , in particular we have for the columns:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (4)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (5)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (6)

Each of these three relations requires the sum of three complex quantities to vanish and so

can be geometrical represented in the complex plane as a triangle. These are the unitary

triangles [11], though the term “unitary triangle is usually reserved for the relation (6) only.

The three angles of the unitary triangle represented by (6), which are physical quanti-

ties and can be independently measured by CP asymmetries in B decays. are defined as

follows [11]:

α ≡ arg

[

− VtdV
∗
tb

VudV
∗
ub

]

(7)

β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

(8)

γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

, (9)

The experimental findings at the B factories, fitted to close the triangle, are [12, 13]

(α, β, γ)fitexp = (91.0± 7.2, 21.8± 2.8, 67.2± 9.1), (10)

with an accuracy in the measurement of sin 2β no less than 20% [14].

The SM mixing matrix VCKM has three mixing angles θij , i < j, i, j = 1, 2, 3, the

mixing angles between the ith and jth families, and only one CP violating phase [8]. It has

been parametrized in the literature in several different ways, but the most important fact

related with this matrix is that most of its entries have been measured with high accuracy,
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with the following experimental bounds [9, 12]:

V (exp) =











0.970 ≤ |Vud| ≤ 0.976 0.222 ≤ |Vus| ≤ 0.226 0.003 ≤ |Vub| ≤ 0.004

0.217 ≤ |Vcd| ≤ 0.237 0.960 ≤ |Vcs| ≤ 0.990 0.039 ≤ |Vcb| ≤ 0.041

0.008 ≤ |Vtd| ≤ 0.009 0.038 ≤ |Vts| ≤ 0.042 0.999 ≤ |Vtb| < 1.000











, (11)

where the experimental numbers quoted above at 95% C.L. are restricted to fit the unitary

conditions of VCKM due to the fact that we are going to confront them with quark mass

matrices which must fit the SM constraints.

III. WEAK BASIS TRANSFORMATIONS

In the context of the SM, the most general weak basis (WB) transformation that leaves

the two 3 × 3 quark mass matrices Hermitian, and do not alter the physics implicit in the

weak currents, is a unitary transformation acting simultaneously in the up and down quark

mass matrices [10]. That is

Mu −→ MR
u = UMuU

†,

Md −→ MR
d = UMdU

†,
(12)

where U is an arbitrary unitary matrix. We say then that the two representations (Mu,Md)

and (MR
u ,M

R
d ) are equivalent in the sense that they are related to the same VCKM mixing

matrix. This kind of transformation plays an important role in the study of the so-called

flavor problem.

That a WB transformation does not change the mixing matrix VCKM can be seen from

its definition. After the WB transformation implicit in Eq. (12) is done, the new mixing

matrix is such that

V R
CKM = UR

u U
R†
d = UuU

†UU †
d = UuU

†
d = VCKM ,

with UR
u and UR

d the unitary matrices which diagonalize the HermitianMR
u M

R†
u andMR

d M
R†
d

square mass matrices respectively.

In the last paper of Ref. [10] it has been shown that it is always possible to perform

a weak basis transformation such that (MR
u )11 = (MR

d )11 = (MR
u )13 = (MR

u )31 = 0; or

equivalently (MR
u )11 = (MR

d )11 = (MR
d )13 = (MR

d )31 = 0 (texture zeros related somehow to

the mass hierarchy mu < mc < mt and md < ms < mb). The meaning of this is that it is

5



always possible to have mass matrices with 3 texture zeros which do not have any physical

meaning. With 3 texture zeros the number of free parameters in MR
u and MR

d reduces from

12 to 9 real plus one phase, just enough to fit the measured values for the 6 quark masses,

the 3 mixing angles, and the CP violation phenomena. Any extra texture zero can only be

a physical assumption and should imply a relationship between the quark masses and the

parameters of the mixing matrix. We will elaborate on this argument in what follows.

IV. PARALLEL SIX TEXTURE ZEROS

To explain in the context of the SM the quark mass spectrum and its mixing matrix,

Harald Fritzsch proposed some time ago, the existence of texture zeros in the quark mass

matrices [6]. Let us study his “ansätze”:

According to “Fritzsch” original hypothesis, the up and down quark mass matrices assume

a similar texture, named in the literature as the nearest neighbor interaction form. After

redefining the right-handed quark fields, the up and down quark mass matrices assume the

following particular Hermitian form

M (6)
q =











0 aqe
iαq 0

aqe
−iαq
q 0 bqe

iβq

0 bqe
−iβq cq











, (13)

where q stands for u and d. For this particular “ansätze” there are six real parameters and

four different phases. According to our way of counting the number of parameters, with

the six real parameters we must explain the values for the 6 quark masses and the 3 mixing

angles; as we are going to show, this “ansätze” must predict three relationships between the

quark masses and the parameters of the mixing matrix. Notice by the way that the invariant

detM
(6)
q = −cqa

2
q < 0 for cq > 0.

To start, let us see that the four phases in (13) can be absorbed by redefining new quark

fields as follows:











u0

c0

t0











=











1 0 0

0 e−iαu 0

0 0 e−i(αu+βu)





















u′
0

c′0

t′0











= U †
u











u′
0

c′0

t′0











, (14)
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with the corresponding redefinition for the down sector with the replacement αu, βu → αd, βd.

So, in the primed basis, the algebra reduces to diagonalize the two real symmetric mass

matrices

M (6)′
q =











0 aq 0

aq 0 bq

0 bq cq











, (15)

job that can be achieved by using orthogonal transformations O
(f6)
q (instead of the bi-unitary

transformations required in the most general case). So, we have

Mdiag
q = O(f6)T

q M (6)′
q O(f6)

q = diag(m1,−m2, m3), (16)

where the sub-indices 1,2,3 in the diagonal forms refer respectively to the masses for the

quarks u, c and t for the up sector, as well as d, s and b for the down sector.

Using the invariants tr[M
(6)′
q ], tr[(M

(6)′
q )2], and det[M

(6)′
q ], we may write:

cq = m1 −m2 +m3

a2q =
m1m2m3

m1 −m2 +m3

b2q =
(m3 −m2)(m3 +m1)(m2 −m1)

m1 −m2 +m3
.

(17)

The exact diagonalizing transformation O
(f6)
q for this particular “ansätze” is expressed as

O(f6)
q =













±
√

m2m3(m3−m2)
(m3−m1)(m2+m1)(m1−m2+m3)

±
√

m1(m3−m2)
(m3−m1)(m1+m2)

∓
√

m1(m2−m1)(m1+m3)
(m3−m1)(m1+m2)(m1−m2+m3)

±
√

m1m3(m1+m3)
(m2+m1)(m3+m2)(m1−m2+m3)

∓
√

m2(m1+m3)
(m2+m3)(m1+m2)

±
√

m2(m3−m2)(m2−m1)
(m2+m1)(m3+m2)(m1−m2+m3)

±
√

m1m2(m2−m1)
(m2+m3)(m3−m1)(m1−m2+m3)

±
√

m3(m2−m1)
(m2+m3)(m3−m1)

±
√

m3(m3−m2)(m1+m3)
(m2+m3)(m3−m1)(m1−m2+m3)













,

(18)

where one has the freedom to choose two equivalent possibilities of phases (the up or down

signs).

For the up quark sector, and due to the fact that mt ≫ mc ≫ mu, the orthogonal matrix

(18) can be expanded as

O(f6)
u ≈













±(1−muc/2) ±√
muc(1−mct/2−muc/2) ∓√

mut(1−muc +mct/2)

±√
muc(1−muc/2) ∓(1−mct/2 −muc/2) ±√

mct(1−muc −mct/2)

±mct
√
mut ±√

mct(1−muc/2−mct/2) ±(1−mct/2)













, (19)

where mij ≡ mi/mj , i < j; i, j = 1, 2, 3 = u, c, t respectively, and we have make mut = 0

(but keeping
√
mut ≈ 10−3 6= 0). From the former analysis we can evaluate the mixing
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matrix V
(f6)
CKM = O

(f6)
u UuU

†
dO

(f6)T
d , where Uu and Ud are as defined in (14). Explicitly, the

elements of the CKM mixing matrix can be expressed as:

(V
(f6)
CKM)lm = (O(f6)

u )l1(O
(f6)
d )m1 (20)

+eiφ1(O(f6)
u )l2(O

(f6)
d )m2

+eiφ2(O(f6)
u )l3(O

(f6)
d )m3,

where φ1 = (αu − αd) and φ2 = (αu + βu − αd − βd). Written in the previous form, V
(f6)
CKM

includes two different phases, φ1 and φ2, but since it is a well known fact that the SM mixing

matrix can be parametrized with only one single phase, our analysis makes sense only for

the following three different cases:

• Case 1: φ1 6= 0, φ2 = 0.

• Case 2: φ1 = 0, φ2 6= 0.

• Case 3: φ1 = φ2 6= 0.

The prediction for the Cabibbo angle from this six parallel texture zeros “anzätze” can

be extracted from the following analytic expression:

V (f6)
us = A(mln)− eiφ1B(mln)− eiφ2C(mln), (21)

with l, n = u, c, t, d, s, b, and

A ≈
√

mds

∆+
db

∆+
uc∆

+
ds∆

+
sb(∆

−
sb +mdb)

B ≈
√

muc

∆−
ct∆

+
db

∆+
uc∆

+
sb∆

+
ds

C ≈
√

mutmsb

∆−
uc∆

−
sb∆

−
ds

(∆+
uc −mct)∆

+
ds∆

+
sb(∆

−
sb +mdb)

,

(22)

where ∆±
ln = 1±mln. Since the term proportional to eiφ2 in (21), is three or more orders of

magnitude smaller than the other two terms, we can write for the Cabibbo angle, in a very

crude approximation

V (f6)
us ≈ √

mds − eiφ1
√
muc ≈ sin θ12, (23)

form advocated in some papers dealing with parallel six texture zeros [15]. Equation (23),

or more appropriate (21) and (22) can be used to determine the magnitude of φ1 by fitting
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|Vus| with current data. As a matter of fact, for case 1, φ1 = 1.536 and using the central

values for the quark mass values quoted in the appendix, we get |Vus| ≈ 0.226 (case 2 for

φ1 = 0 does not have solution and case 3 for φ1 = φ2 = 1.527 gives also |Vus| ≈ 0.226).

In a similar way we can find, in the context of this “ansätze”, the analytic expression for

all the other entries of V
(f6)
CKM as functions of the quark masses (and the CP violating phase);

in particular for Vcb we have:

V
(f6)
cb = A′(mij)− eiφ1B′(mij) + eiφ2C ′(mij), (24)

where

A′ ≈ msb

√

mucmdb

∆−
ds

∆+
uc∆

+
sb∆

−
db(∆

−
sb +mdb)

B′ ≈
√

msb

∆−
ds

∆+
ct∆

+
uc∆

+
sb∆

−
db

C ′ ≈
√

mct

∆−
uc∆

−
sb∆

+
db

∆+
uc∆

+
ct∆

+
sb∆

−
db(∆

−
sb +mdb)

,

(25)

where again A′ is 3 or more orders of magnitude smaller than B′ and C ′. So, in a very crude

approximation we may write

V
(f6)
cb ≈ −eiφ1

√
msb + eiφ2

√
mct ≈ sin θ23, (26)

where φi, i = 1, 2 are now fix values obtained from Vus.

Plugging numbers in Eq. (25) we get |Vcb| = 0.1434 for Case 1, and |Vcb| = 0.073 for Case

3. So, the parallel six texture zeros “anzätze” is ruled out because it can not explain the

experimentally measured values for |Vus| and |Vcb| simultaneously.

As anticipated, and in accord with our way of counting parameters, for this “ansätze”

the 3 mixing angles are predicted as functions of the six quark masses and the CP violating

phase.

V. NON PARALLEL SIX TEXTURE ZEROS

In a similar way, let us study the following non parallel six texture zeros mass matrices,

for which only the up sector is of the nearest neighbor interaction form, and the mixing
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angles θ13 and θ23 between the third family with the first two ones, came only from this

quark sector:

M (np)
u =











0 aue
iαu 0

aue
−iαu 0 bue

iβu

0 bue
−iβu cu











. (27)

M
(np)
d =











0 ade
iαd 0

ade
−iαd bd 0

0 0 cd











, (28)

(a parallel six texture zeros with Mu similar to M
(np)
d implies θ13 = θ23 = 0 which is ruled

out).

In a trivial way, the phases αu, and βu are removed with Uu = Diag(1, eiαu , ei(αu+βu)) as

in (14), and αd is removed with a transformation U ′
d = Diag(1, eiαd, eiαd). For diagonalizing

M
(np)′
u = UuM

(np)
u U †

u, the exact orthogonal matrix O
(f6)
u can be used [or in its defect the ap-

proximate form given in (19)]. For diagonalizing the down quark sector M
(np)′
d = U ′

dM
(np)
u U ′†

d ,

the 3× 3 matrix invariants allow us to write

cd = mb

bd = md −ms < 0

ad =
√
mdms,

(29)

with the exact diagonalizing transformation O
(np)
d given now by

O
(np)
d =











√

ms

md+ms

√

md

md+ms
0

−
√

md

md+ms

√

ms

md+ms
0

0 0 1











. (30)

The mixing matrix is now V
(np)
CKM = O

(f6)
u UuU

′†
d O

(np)T
d with the complex entries coming

from the diagonal matrix UuU
′†
d = Diag(1, eiφ1, eiφ

′

2) where φ1 = αu − αd and φ′
2 = (αu +

βu − αd), but due to the particular form of matrix (30), φ2 does not play any active role in

the mixing matrix.

Calculated as before, the analytic expression for V
(np)
us is now

V (np)
us ≈ −

√

mds

∆+
uc∆

+
ds

+ eiφ1

√

muc∆
−
ct

∆+
ds∆

+
uc

, (31)

10



which again reproduces the approximate form in (23). Taking φ1 = 1.50 in the former

expression produces a value |V (np)
us | ≈ 0.225, in agreement with the experimental value.

In a similar way, analytic expressions for the other elements of the mixing matrix, in the

context of this “anzätze” can be evaluated. In particular we have

V
(np)
cb ≈ eiφ2

√

mct

∆+
uc∆

+
ct

∼ √
mct, (32)

which is too large for the quark mass values quoted in the appendix. Any way, the random

numerical analysis shows that, by plugging for the quark masses the values (in units of

GeV’s) mt = 174, mc = −0.320, mu = 0.002, mb = 2.89, ms = −0.065 and md = 0.0031

in M
(np)
u in (27) and in M

(np)
d in (28), with αu = 1.50 + αd, and βu = αd −αu we obtain the

following absolute values for the mixing matrix

V
(np)
CKM =











0.970 0.226 0.003

0.226 0.973 0.042

0.009 0.042 0.999











, (33)

in good agreement with the experimental measured values presented above.

Also, for φ1 = 1.50 and φ′
2 = 0, and using the definitions for the 3 angles of the unitary

triangle as in equations (4), (5) and (6), the following values of the B decays CP asymmetries,

are obtained:

(α, β, γ)
(np)
th = (89.02, 20.05, 71.2),

numbers which not only close the triangle as they should, but which are in good agreement

with the observed experimental values.

Unfortunately, a close look at the former numerology shows that all the quark masses are

in the experimentally allowed range, but the charm quark mass mc fails too short compared

with the experimental accepted value.

VI. FIVE TEXTURE ZEROS

From the former results, it seems obvious that a set of consistent 3×3 quark mass matrices

should emerge, just by modifying the previous non-parallel six texture zeros “anzätze”, by

introducing an extra parameter in the up quark sector able to take care of the charm quark

mass. With this in mind, let us use for the up quark sector the Hermitian two texture zeros

mass matrix

11



M (4)
u =











0 aue
iαu 0

aue
−iαu
q du bue

iβu

0 bue
−iβu cu











, (34)

with the down quark mass matrix given again by (28). As before, the two phases in (34)

can be absorbed by working with the new quark fields u′
0, c

′
0 and t′0 as defined in (14). Now

there are seven real parameters to explain 6 masses and 3 mixing angles, so there must exist

two physical prediction in the context of this “ansätze”.

The quark mass matrix in Eq. (34) has been analyzed in some detail in Refs. [16], let

us review the main results: the invariants tr[M
(4)′
u ], det[M

(4)′
u ], and tr[(M

(4)′
u )2] allow us to

write the elements au, bu and du of the mass matrix, in terms of the up quark masses and

of the parameter cu as follows:

du = mu −mc +mt − cu

a2u =
mumcmt

cu

b2u =
(cu −mu)(cu +mc)(mt − cu)

cu
,

(35)

and the exact diagonalizing transformation O
(4)
u can be expressed as [16]













±
√

m2m3(cu−m1)
(m3−m1)(m2+m1)cu

±
√

m1m3(cu+m2)
(m2+m1)(m3+m2)cu

±
√

m1m2(m3−cu)
(m2+m3)(m3−m1)cu

±
√

m1(cu−m1)
(m3−m1)(m1+m2)

∓
√

m2(cu+m2)
(m2+m3)(m1+m2)

±
√

m3(m3−cu)
(m2+m3)(m3−m1)

∓
√

m1(m3−cu)(m2+cu)
(m3−m1)(m1+m2)cu

±
√

m2(m3−cu)(m1−cu)
(m2+m1)(m3+m2)cu

±
√

m3(cu−m1)(cu+m2)
(m2+m3)(m3−m1)cu













T

, (36)

where notice that for du = 0, the expressions in (35) and (36) reduce to expressions (17) and (18)

respectively. The use of (36), combined with (30) and (14), allow us to write the following analytic

mixing matrix for φ2 = 0 [an irrelevant phase due to the particular form of the down quark mass

matrix in (28)].















√
cu−mu(

√
mcmsmt+eiφ1

√
cumdmu)√

cu(md+ms)(mt−mu)(mc+mu)

√
cu−mu(−

√
mcmdmt+eiφ1

√
cumsmu)√

cu(md+ms)(mt−mu)(mc+mu),
−
√

(cu+mc)(−cu+mt)mu√
cu(mt−mu)(mc+mu)

−eiφ1
√

cumcmd(cu+mc)+
√

(cu+mc)msmtmu√
cu(md+ms)(mc+mt)(mc+mu)

− eiφ1
√
cumcms+

√
mdmtmu

√

cu(md+ms)(mc+mt)(mc+mu)

cu+mc

√
mc(−cu+mt)(cu−mu)√
cu(mc+mt)(mc+mu),

√
−cu+mt(eiφ1

√
cumdmt+

√
mcmsmu)√

cu(md+ms)(mc+mt)(mt−mu)

√
−cu+mt(eiφ1

√
cumsmt−

√
mcmdmu)√

cu(md+ms)(mc+mt)(mt−mu)

√
(cu+mc)mt(cu−mu)√
cu(mc+mt)(mt−mu)















.
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From the former mixing matrix we can extract first

Vcb =

√

mc(−cu +mt)(cu −mu)
√

cu(mc +mt)(mc +mu),
(37)

which we use to fix the free parameter cu. Then we have

Vus =

√
cu −mu

(

−√
mcmdmt + eiφ1

√
cumsmu

)

√

cu(md +ms)(mt −mu)(mc +mu),
(38)

which we use to fix the CP violating phase φ1. Now, using for the quark masses and for the cu

parameter the values (given in units of GeV’s): mu = 0.0024, mc = −0.560, mt = 172, md =

0.0029 ms = −0.06 mb = 2.89, and cu = 171.721, we obtain for a value φ1 = 1.6, the following

numeric 3× 3 mixing matrix:













0.97428 0.22532 0.00264

0.22517 0.97349 0.04020

0.00865 0.03934 0.99919













,

which is in quite good agreement with the experimental measured values. Finally, the three angles

of the unitary triangle of the B decays CP asymmetries are calculated to be:

(α, β, γ)
(5t)
th = (90.79, 16.51, 72.68),

which not only close the triangle, but are such that α and γ agree with the measured value at 1σ

and β at 2σ.

VII. CONCLUSIONS

In this note we have reported our finding of a simple pattern of quark mass matrices Mu and

Md, which in the context of the SM are self-consistent and predict experimentally favored relations

between quark masses and flavor mixing parameters. Our result points towards a five texture zeros

quark mass matrices, for which the mixing angles θ13 and θ23 between the third family with the

first two ones, came only from the up quark sector

Let us quote a few concluding remarks:

1. In the context of the SM or its extensions which have no flavor-changing right-handed

currents, the quark mass matrices Mu and Md can be taken to be Hermitian without loss of

13



generality. Non Hermitian quark mass matrices are relevant only when physics beyond the SM is

being considered.

2. Three texture zeros or less in the quark mass matrices of the SM can always be obtained

in a trivial way by using weak basis transformations, and do not imply predictions between the

elements of the flavor mixing matrix.

3. Four and five texture zeros imply one and two physical relationships respectively.

4. Six texture zeros imply 3 physical relationships, and allows the writing of the 3 mixing angles

as functions of the six quarks masses and the CP violation phase.

5. More than six texture zeros are not possible because they imply either DetMq = 0 which is

valid only in the chiral limit, or a degenerate quark mass spectrum, both situations incompatible

with the real world.

The 2σ deviation of our calculated β angle can imply one or several of the following possibilities:

• The measured β value points toward physics beyond the SM.

• The controversy about the precise measurement of βfit
exp has not been settled yet [14].

• Our five texture zeros “ansätze” does not work quite properly.

To conclude, let us write the five texture zeros we have found, using the following perturbation

expansion parametrization for the mass matrices

Mu =
ht
2













0 2λ6 0

2λ6 −4λ5 5λ3

0 5λ3 2













, (39)

and

Md = ht













0 1.3λ7 0

1.3λ7 −1.4λ6 0

0 0 λ3













, (40)

for the values ht = 171.72 and λ = 0.25.

Appendix A: Quark Masses

For the inputs used for carrying out the numerical calculations in the main text, we have adopted

the following ranges of quark masses [17] at the MZ energy scale (where the VCKM matrix elements
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in (11) are measured)

Up sector Down sector

mt = 171.7 ± 3.0 GeV mb = 2.89± 0.09 GeV

mc = 0.619 ± 0.084 GeV ms = 55+16
−15 MeV

mu = 1.27+0.5
−0.42 MeV md = 2.90+1.24

−1.19 MeV

The light quark masses mu, md and ms can be further constrained using the mass ratios [18]

mu/md = 0.553 ± 0.043 , ms/md = 18.9± 0.8 . (A1)

Notice also that due to the experimental errors

mt ±mc ±mu ≈ mt.

Note added in proof.

After submission of this manuscript, we became aware of the existence of a paper by H. D. Kim,

S. Raby and L. Schradin [19] in which apparently, a different conclusion to ours was reached, with

a sin(2β) value too small compared with the measured value (3.5σ off).

Two comments:

1. Kim et al use in their analysis quark masses at different scales, most of them pole values.

We use all quark masses at the MZ energy scale were we believe the VCKM matrix elements are

measured. Although the mass quotients should not change much, the error bars are quite different,

and plugging in our numbers in their analytic results (Eq. 4.7 in [19]) we find a β value within a

1σ of the experimental measured value.

2. They use an approximation for |Vus| (see Eq. 4.3 in [19]). We use for |Vus| an exact value (see

Eq. [38 above] where cu is a new free parameter that must be fine tunned to the value cu = 171.721

GeV. in order to get agreement with the VCKM measured values [note that for cu ≡ mt our Eq.

(38) reproduce Eq. (4.3) in [19]].
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(1994).

[8] M.Kobayashi and T.Maskawa, Prog. Theor. Phys. 49, 652 (1973); L.Maiani, Phys. Lett. B62,

183 (1976)

[9] K.Nakamura et al. (Particle Data Group), J. Phys., G37, 075021 (2010); http://pdg.lbl.gov/.

[10] G.C.Branco, L.Lavoura, and F.Mota, Phys.Rev. D39, 3443 (1989); H.Fritzsch and Z.Z.Xing,

Nucl. Phys. B556, 49 (1999); G.C.Branco, D. Emmanuel-Costa and R. González Felipe, Phys.
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