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Hierarchical contribution of river–ocean connectivity,
water chemistry, hydraulics, and substrate to the distribution

of diadromous snails in Puerto Rican streams
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San Juan, Puerto Rico 00931-3360 USA

Frederick N. Scatena2
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Abstract. Diadromous faunas dominate most tropical coastal streams and rivers, but the factors
controlling their distribution are not well understood. Our study documents abiotic variables controlling
the distribution and abundance of the diadromous snail Neritina virginea (Gastropoda:Neritidae) in the
Caribbean island of Puerto Rico. An intensive survey of N. virginea density and shell size, and channel
substrate, velocity, and depth was conducted at microhabitat, habitat, and reach scales of a coastal plain
reach of the Rı́o Mameyes between August and December 2000. In addition, the inland extent of
distribution (stream-network scale) and presence (regional scale) of N. virginea were surveyed in 32 coastal
rivers around the island during summer 2001 and 2003. At the microhabitat scale, snail density and
microhabitat electivity were greater in patches consisting of a mix of boulders and cobbles than in other
types of substrate. At the habitat scale, snail density increased with depth. At the reach scale, snail density
increased with fast and turbulent flows (riffle . pools . pond), whereas snail size showed the opposite
pattern. At the regional scale, populations were present in 13 of 32 streams. Populations of N. virginea were
not found in rivers that were disconnected from the ocean for most of the year because of channel
dewatering, formation of sediment bars at their mouths, and low mean monthly discharge (Q¼ 0.69 m3/s).
In contrast, rivers with N. virginea populations had a permanent (Q¼4.04 m3/s) or seasonal (Q¼2.88 m3/s)
connection to the ocean over the year. At the regional scale, the inland distribution of populations was not
correlated with stream gradient, but was negatively correlated with concentrations of SiO2, P, and acid
neutralizing capacity of the water. Populations colonized montane reaches in only 5 rivers, all of which
were forested and protected. Our study highlights the importance of taking a hierarchical approach in
managing tropical coastal rivers, and the usefulness of neritid snails as biological indicators of the physical
and chemical integrity of rivers.

Key words: freshwater gastropods, tropical streams, spatial hierarchies, landscape filters, downstream–
upstream linkages.

Tropical diadromous fauna, including fish, shrimp,
and snails, migrate long distances between marine and
fresh waters and, therefore, their distributions may be
controlled by many factors operating at different

spatial scales. These factors are poorly understood in
spite of the greater abundance and diversity of
diadromous fauna in tropical than temperate streams
(Gross et al. 1988). For instance, diadromous fauna
represent 60% of noninsect species in temperate
streams (McDowall 1998, McDowall and Taylor
2000), but they probably represent 100% of species in
streams of the Caribbean (Fièvet et al. 2001a, b), and
the Pacific (i.e., Hawaii: Ford and Kinzie 1982; French
Polynesia: Resh et al. 1990, 1992). Nonetheless, studies
in Puerto Rico and Hawaii reveal that distributions of
diadromous fish and shrimp along streams are
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influenced by barriers to migration (e.g., waterfalls
and dams), whereas distributions within reaches and
habitats are influenced by pool size, water velocity,
and depth (Ford and Kinzie 1982, Pringle 1996, Covich
et al. 1996, 2006, Scatena and Johnson 2001). Controls
on the distribution of benthic diadromous gastropods
such as neritids are less known. The aim of our study
was to understand the influence of abiotic variables on
the distribution and abundance of tropical diadromous
fauna by looking at the migratory snail Neritina
virginea (Linné, 1758) (Gastropoda:Neritidae) at scales
from microhabitat to regional in the Caribbean island
of Puerto Rico.

We used a hierarchical or multiple-spatial-scale
approach because several studies have highlighted
the need for observations over several spatiotemporal
scales when seeking to understand relationships
between stream flow, habitat, and the distributions of
organisms (Frissel et al. 1986, Poff 1997, Parsons et al.
2004). In particular, we adapted the ‘‘landscape filters’’
concept (Poff 1997) as a means of explaining differ-
ences in community composition across streams.
According to this concept, abiotic and biotic variables
operating at specific spatial scales act as filters by
preventing colonization by some species and facilitat-
ing colonization of others in streams, reaches, or
habitats. Each species must negotiate filters at higher
scales to colonize at lower scales in the landscape
hierarchy. The landscape filters concept may be useful
for understanding how diadromous fauna move
throughout stream networks to complete their life
cycles. For instance, to colonize headwater reaches,
individuals must be able to negotiate barriers along
the stream network and to cross a variety of reaches
and habitats that present both biotic and abiotic
challenges.

Neritid gastropods generally are distributed in
diverse habitats several kilometers inland from the
sea in tropical to temperate coastal rivers (Resh et al.
1990, 1992, Schneider and Lyons 1993, Liu and Resh
1997). We tested scale-specific hypotheses derived
from the literature to explain the influence of abiotic
variables on the distribution and abundance of the
diadromous snail N. virginea (Table 1). At the micro-
habitat scale, neritid densities are greater on hard
surfaces and, therefore, their distribution is related to
substrate size (hypothesis 1). This relationship has been
observed in other gastropods and insects (e.g.,
Herrmann et al. 1993, Holomuzki and Biggs 2000).
At the habitat scale, neritid distribution is related to
water depth (hypothesis 2) because neritids are scarce in
deep pools or shallow areas dominated by sands and
silts. At the reach scale, neritids are more abundant in

riffles than pools, and their distribution is related to
habitat hydraulics (hypothesis 3).

At the stream-network scale, the inland extent of
distribution of adult snails varies from tens of meters
to tens of kilometers (Table 1), even though individuals
migrate long distances in a single day (1–50 m/d;
Schneider and Lyons 1993, Pyron and Covich 2003,
Blanco 2005). Variable inland extent of distribution
suggests that neritid distribution is correlated with
barriers to migration (hypothesis 4a). Waterfalls (Ford
1979) and road culverts (Resh et al. 1992, Resh 2005)
have been identified as barriers to the migration of
neritids. Steep-gradient streams have fewer species
and shorter inland distributions of diadromous fish
than lesser-gradient streams (McDowall 1998, McDo-
wall and Taylor 2000), and these results suggest that
stream gradient controls inland extent of distribution of
neritids (hypothesis 4b).

Information on the regional distribution of neritid
gastropods is limited but suggests that snail presence
in streams within a region is related to freshwater
discharge and, thus, connectivity with the ocean (hy-
pothesis 5) and water chemistry, particularly hardness
and ion concentrations (hypothesis 6) (Table 1). In a
recent study in French Polynesia, Myers et al. (2000)
suggested that larval dispersal does not limit regional
neritid distribution because no population genetic
structure was observed at scales ranging from
‘‘along-stream’’ to ‘‘among-islands.’’ Nevertheless,
neritid distribution is discontinuous at regional and
subregional scales. For instance, neritids are broadly
distributed in streams around several South Pacific
islands, but they are generally absent from streams
intermittently disconnected from the ocean (Ford 1979,
Haynes 1993). Neritids also are absent from streams
draining limestone that have a high concentration of
CaCO3 (Haynes 1993, 2000).

Methods

Neritina virginea

Neritina virginea is the dominant freshwater neritid
in the Caribbean (Humfrey 1975). In Puerto Rico,
N. virginea has been observed in large migrating
aggregations (.3000 ind/m2; Pyron and Covich
2003, Blanco and Scatena 2005), and it is found
.10 km from some river mouths (Pyron and Covich
2003). In Puerto Rico, as elsewhere, N. virginea is
amphidromous (a type of diadromy, sensu McDowall
1988). It has both marine and freshwater life stages
(Ford 1979), and it undergoes significant growth
during upstream migrations. Adults lay egg capsules
on hard substrates and are found from estuaries to
headwaters. Larvae are released from eggs during
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TABLE 1. Patterns of abundance and distribution in neritid gastropods worldwide. Relevant patterns are summarized
hierarchically from microhabitats to regions. H1 to H6 refer to hypotheses developed and tested in our study (see text for details).

Scale Hypotheses and observations
Geographic

area Species Reference

Microhabitat H1: Density increases with substrate size
Hard/stony . muddy/sluggish substrate Hawaii Neritina granosa Ford (1979)
Boulders/large cobbles . small cobbles/granules Japan Clithon retropictus Ohara and Tomiyama (2000)

French
Polynesia

Liu and Resh (1997)

Habitat H2: Density increases with water depth
Absent from pools .2 m deep and heavy

siltation channel areas
Hawaii Neritina granosa Ford (1979)

Crowding on thalwegs during upstream migrations Puerto Rico Neritina virginea Blanco and Scatena (2005)
Reach H3: Density increases with turbulent flow

Riffle . pools Hawaii Neritina granosa Ford (1979)
Costa Rica Neritina latissima Schneider and Lyons (1993)
French

Polynesia
Clithon retropictus Liu and Resh (1997)

Japan Clithon spinosus Ohara and Tomiyama (2000)
Riffle . run Puerto Rico Neritina virginea Blanco and Scatena (2005)

Stream-
network

H4: Inland distribution is blocked by barriers (4a)
and reduced by steep stream gradients (4b).
Indirect evidence of migration:

Mean size increases upstream, mean density
decreases upstream

Hawaii Neritina granosa Ford (1979)
French

Polynesia
Clithon spinosus Resh et al. (1990, 1992),

Resh (2005)
Japan Clithon retropictus Nishiwaki et al. (1991),

Hirata et al. (1992)
Direct evidence of migration:

Movement in aggregations Costa Rica Neritina latissima Schneider and Lyons (1993)
Puerto Rico Neritina virginea Pyron and Covich (2003)

Movements of individuals (mark–recapture) Hawaii Neritina granosa Ford (1979)
Costa Rica Neritina latissima Schneider and Lyons (1993)
Japan Clithon retropictus Nishiwaki et al. (1991)
Puerto Rico Neritina virginea Pyron and Covich (2003)

Upper limit of distribution:
114–400 m asl Hawaii Neritina granosa Ford (1979)
0.5–5 km upstream Japan Clithon retropictus Nishiwaki et al. (1991),

Ohara and Tomiyama (2000),
Shigemiya and Kato (2001)

Vanuatu .20 species Haynes (1993, 2000)
Hundreds of meters to several kilometers French

Polynesia
Neritina turrita,
Neritina canalis,
Septaria porcelana

Resh et al. (1990, 1992),
Resh (2005)

.200 m asl, .10 km upstream Puerto Rico Neritina virginea Pyron and Covich (2003)
4 km upstream Costa Rica Neritina latissima Schneider and Lyons (1993)

Differences in abundances and distribution
related to barriers in 3 streams

French
Polynesia

Clithon spinosus
Neritina turrita,
Neritina canalis,
Septaria porcelana

Liu and Resh (1997)
Resh et al. (1990, 1992),
Resh (2005)

Region H5: Population presence is determined by river–ocean
connectivity
No genetic structure from within-stream

to among-islands
French

Polynesia
Clithon spinosus Myers et al. (2000)

Differences among several streams along
the coastline

Japan Clithon retropictus Nishiwaki et al. (1991),
Hirata et al. (1992),
Shigemiya and Kato (2001)

Broad distribution but populations absent in streams
without continuous discharge to the ocean Hawaii Neritina granosa Ford (1979)

Vanuatu and
Solomon

.20 species Haynes (1993, 2000)

H6: Population presence is determined by water hardness
Snails absent or having heavy accumulations

of CaCO3 on shells in limestone watersheds
Vanuatu and

Solomon
.20 species Haynes (1993, 2000)
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floods and flushed to the ocean, where they probably
spend several months feeding on plankton (Myers et
al. 2000). The pelagic larvae develop into benthic spats
or hard-shelled individuals (;2 mm) that migrate
upstream to complete their life cycle. Spats are
rheophilic and typically have greater density in riffles
and fast-flowing areas during migration (Ford 1979,
Schneider and Lyons 1993, Resh et al. 1990, 1992,
Blanco and Scatena 2005), probably to avoid terrestrial
and aquatic predators (Ford 1979, Pyron and Covich
2003, Blanco 2005).

Study area

Puerto Rico is the smallest island (8900 km2) of the
Greater Antilles. Its maritime tropical climate has
relatively limited seasonal variations in temperature
and rainfall but is influenced by both extratropical cold
fronts and tropical depressions (Garcı́a-Martinó et al.
1996). Minimum air temperature is higher between
June and September (.268C) than between November
and January (,258C). Rainy seasons (.300 mm/mo)
occur in April to May and August to December. The
island is nearly rectangular and has the highest
elevations along the E- to W-trending Central Cordil-
lera (Fig. 1A) that intercepts the northeastern trade
winds and generates a southward and westward
rainfall shadow. The coastal plain geology is domi-
nated by limestone and alluvial sediments in the
northern region, by alluvial and volcanic sediments in
the eastern and western regions, and by limestone,
alluvial, and volcanic deposits in the southern region
(Helmer et al. 2002).

Sampling and data analysis at within-reach scales

Replication.—Within-reach sampling was done in a
low-elevation segment of the Rı́o Mameyes (lat
18822’27’’N, long 65845’50’’W; 5 m asl). This river
drains the Luquillo Mountains in northeastern Puerto
Rico (Fig. 1B) and is the island’s only large river
without dams. It also is the island’s most pristine river.
Closed-canopy forests cover the protected montane
part of the watershed, whereas pastures, secondary
forests, and suburban land use cover the lower
elevations (Ramos 2001, Helmer et al. 2002). In
contrast, low and mid elevations in most coastal
watersheds around the island are extensively covered
by urban and agricultural lands (Helmer et al. 2002).
Therefore, replicate reach and habitat sites could not be
found on different rivers. Likewise, spatial replication
along the Rı́o Mameyes, as elsewhere, is limited
because snail size increases and snail density decreases
with distance from river mouth (Ford 1979, Resh et al.
1990, 1992, Schneider and Lyons 1993, Pyron and

Covich 2003, Blanco 2005). However, temporal repli-
cation is possible because massive migrations occur
every month, and every new cohort of individuals is
sorted into the existing habitat template (Pyron and
Covich 2003, Blanco 2005). Thus, every cohort may be
considered a new trial in a natural experimental
setting.

Sampling.—Twelve weekly samplings were con-
ducted at the Route 3 Bridge over the Rı́o Mameyes
between September and December 2000 (Fig. 2).
Neritina virginea individuals were counted within 50
3 50-cm quadrats (n¼ 10–15) placed on the streambed
in each habitat. Snails were collected by intensively
looking beneath rocks. A random subsample was
collected and preserved in ethanol for shell-size
measurement. Within each quadrat, water depth was
measured and the 3 most dominant substrates (based
on areal coverage) were estimated visually (Statzner et
al. 1988). Substrates were classified as boulder (b,
diameter .256 mm), cobble (c, 256–64 mm), pebble (p,
64–16 mm), and gravel (g, 16–8 mm). Quadrats with
�1 /

3 coverage of Elodea densa were classified as macro-
phyte (m). Quadrats with ,1 /

3 Elodea cover were
classified exclusively according to substrate type
because no significant effect of this level of Elodea
was observed in exploratory analyses (JFB, unpub-
lished data). Sampling was randomly stratified among
a riffle, 2 pools (one in a straight and another in a
meander of the channel), and a marginal high-flow
pond along the 200-m reach (Fig. 2).

Microhabitat availability and electivity.—The micro-
habitat scale was delimited by the sampling quadrat.
Microhabitats were categorized as 1 of 9 readily
identified substrate combinations (b, bc, c, cp, bcp, p,
g, pg, and m). Microhabitat availability was deter-
mined by dividing the number of quadrats having
each combination by the total number of quadrats
sampled. The distribution of substrate combinations
was plotted relative to water depth. Only the data
from the 2 pools were used for microhabitat analyses
because they showed the greatest variability in
substrate combinations and water depth. Moreover,
substrate availability and water depth are not corre-
lated with neritid distribution in riffles (Blanco 2005).
The distribution of neritids on a substrate may be
influenced by substrate availability. Therefore, Ivlev’s
electivity index (I) (Manly et al. 1993) was computed
as:

I ¼ ðri � piÞ=ðri þ piÞ

where ri is the relative snail abundance in the ith

substrate combination, and pi is the relative avail-
ability of the ith substrate combination. I ranges from
þ1 (complete preference) to �1 (complete rejection).
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FIG. 1. A.—Coastal streams and rivers in Puerto Rico. Shaded area shows elevations .100 m. GUA¼Guajataca, CAM¼Camuy,
ARE¼Grande de Arecibo, MAN¼Manatı́, CIB¼Cibuco, PLA¼Grande de La Plata, HON¼Hondo or Bayamón, BLS¼ Blasina,
LOI¼Grande de Loiza, ESP¼ Espı́ritu Santo, MAM¼Mameyes, SAB¼ Sabana, FAJ¼ Fajardo, BLA¼ Blanco, HUM¼Humacao,
GUY ¼ Guayanes, MAU ¼ Maunabo, PAT ¼ Patillas, NIG ¼ Nigua, GUM ¼ Guamanı́, JUE ¼ Jueyes, COA ¼ Coamo, DES ¼
Descalabrado, CAN¼Cañas, JAC¼ Jacaguas, POR¼Portugués, GUN¼Guayanilla, LOC¼Loco, GUJ¼Guanajibo, YAG¼Yaguez,
ANA¼Añasco, CUL¼Culebrinas. * indicates Neritina virginea present in stream. B.—Location of the sampling reach at the Route 3
Bridge (asterisk) over Rı́o Mameyes, draining the Luquillo Experimental Forest (LEF).
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Hydraulic variables.—Habitat hydraulics were char-
acterized by measuring water velocity at 80% and 20%
of instantaneous depth and 2.5 cm above the
streambed across the section of each habitat channel
at rainy-season baseflow (;2 m3/s) using an electro-
magnetic current meter (Flo-MateTM, Marsh–McBir-
ney, Frederick, Maryland). Reynolds (Re) and Froude
(Fr) numbers were computed to characterize the
nearbed flow environment used by the neritids,
according to the following equations (Statzner et al.
1988):

Re ¼ UD=m

Fr ¼ UðgDÞ�0:5

where U is the average of repeated measurements of
near-bed water velocity at each sampling point, D is
measurement depth (2.5 cm), g is acceleration of
gravity (9.8 m/s2), and m is the kinematic viscosity (1
3 10�6 m2/s at 208C). Total water depth, bottom-water
velocity, Re, and Fr were compared among habitats
using a 1-way analysis of variance (ANOVA).

Tests of hypotheses 1–3.—To test hypothesis 1 (micro-
habitat-scale), log-transformed N. virginea density was
compared among substrate combinations using a 2-
way ANOVA (substrate combination 3 sampling

date). To test hypothesis 2 (habitat-scale), analysis of
covariance (ANCOVA) was used to test the relation-
ship between log-transformed snail density and water
depth in straight and meandering pools. To test
hypothesis 3 (reach-scale), nested ANOVA was used
to compare snail density and size among the riffle, the
2 pools, and the marginal high-flow pond. Sampling
date was nested within habitat because not all habitats
were sampled simultaneously on some dates. Mean
snail density was plotted against snail size for each
sampling date and habitat and fitted to a power model
to explore the influence of habitat type on density. All
analyses were done using STATISTICA 6 (Statsoft,
Tulsa, Oklahoma).

Sampling and data analysis at stream-network
to regional scale

Survey.—The distribution of N. virginea was studied
at the island-wide stream-network scale by surveying
56 sites in 32 coastal streams and rivers (Fig. 1A). Most
of the streams visited had US Geological Survey
(USGS) gauging stations. The 1st survey was con-
ducted between June and September 2001, and the 2nd

between June and September 2003. During each
survey, river mouths and upstream areas were visited
to determine the presence and inland extent of
distribution of N. virginea. The river mouth was visited
and local inhabitants were interviewed to assess river
connectivity to ocean. Rivers were classified as
permanently, seasonally, or episodically connected to
the ocean (McDowall 1995). Permanently connected
rivers ran unimpeded to the sea, whereas sandbars
choked the mouths of seasonally connected rivers
during prolonged low-flow periods. Yearly flooding
reopened the mouths of seasonally connected rivers.
Episodically connected rivers had high sand and
gravel bars at their mouths, and long lowland reaches
usually remained dewatered for most of the year
because of dry climate or excessive pumping or
regulation. However, these rivers may be sporadically
reconnected to the ocean during dam water release or
storm flows.

The presence of N. virginea was verified by hiking at
least 200 m upstream from the river mouth and from
sites where bridges crossed each stream or access was
easy from roads or trails. When snails were not
observed, the next site in an upstream direction was
sampled to confirm that populations were absent. The
last site where snails were observed was considered
the upper limit of the inland extent of distribution and
was marked on a topographic map. Based on the
surveys, each river was classified as either ‘‘snails-
present’’ or ‘‘snails-absent’’. Snails-present rivers were

FIG. 2. Habitats sampled at the reach scale in the lower
Rı́o Mameyes. Note that the drawing is not to scale (see scale
bars indicating channel width and length).
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subdivided into ‘‘river mouth populations’’, ‘‘coastal
plain populations’’, and ‘‘montane populations’’ based
on the inland extent of snail distribution.

Tests of hypothesis 4a and 4b.—The gradient of each
river was obtained using ArcView GIS 3.2 (ESRI,
Seattle, Washington) and digital topographic maps
provided by the GIS Laboratory of the International
Institute for Tropical Forestry (Forest Service, US
Department of Agriculture) at San Juan. Only 2
waterfalls and 1 small dam were located in lowland
or mid-montane reaches. To test hypothesis 4a,
contingency tables and binary logistic regressions
were used to compare the presence or absence of N.
virginea above and below each barrier (Sokal and Rohlf
1995). To test hypothesis 4b, a Kruskal–Wallis test was
used to compare river gradient among the snails-
present river classifications (river mouth populations:
n ¼ 5, coastal plain populations: n ¼ 2, and montane
populations: n ¼ 6).

Test of hypothesis 5.—Discharge data for the surveyed
rivers was obtained from coastal plain USGS gauges
(USGS 2004). Mean annual and monthly discharges
were compared among rivers from the 4 climatic
regions of Puerto Rico (north, south, west, and east;
Daly et al. 2003) using a 1-way ANOVA. A 1-way
ANOVA also was used to compare the same variables
among rivers that were permanently, seasonally, and
episodically connected to the ocean. A v2 test was used
to compare neritid snail presence among rivers that
were permanently, seasonally, and episodically con-
nected to the ocean.

Test of hypothesis 6.—Water chemistry data were
obtained from 23 USGS stations (http://nwis.
waterdata.usgs.gov/usa/nwis/qwdata) located in
lowland and montane sites of 18 rivers to evaluate
the importance of river water quality on the regional
distribution of N. virginea. Only post-1990 data were
analyzed because N. virginea life span is probably 8 to
10 y (Pyron and Covich 2003, Blanco 2005). Nineteen
water-chemistry variables were selected on the basis of
the completeness and availability of the historical
record and biological relevance. Discriminant Func-
tions Analysis (DFA, Sokal and Rohlf 1995) was used
to determine the water-chemistry variables most
relevant to snail distribution among and along rivers.
Sampling locations with water-chemistry data were
grouped into 4 categories: snails absent (n¼ 12), snails
present/river mouth (n ¼ 3), snails present/coastal
plain (n ¼ 2), and snails present/montane (n ¼ 5). All
assumptions of homoscedasticity and normality were
tested, and nonnormal data were log-transformed and
retested for normality using Kolmogorov–Smirnoff
tests. A multivariate analysis of variance (MANOVA)
was used to test for differences among these categories

considering all water-chemistry variables simultane-
ously. Multivariate distance among groups was com-
puted as the squared Mahalanobis distance, a
multivariate equivalent of Euclidean distance. The
DFA was done using only those water-chemistry
variables that differed significantly among categories
and were least redundant (i.e., low correlation with
other variables). A multiple-regression-like model
(Fisher’s Linear Discriminant Analysis) based on these
variables was fitted for each group and used to classify
backwards the original river stations into the inland
extent of snail distribution groups. The % match
between observed and computed classification of
rivers was calculated for each group.

Results

Physical features of microhabitats and habitats

At the microhabitat scale in lower Rı́o Mameyes,
dominant substrates were cp (26% of all quadrats), c
(16%), b (15%), and bc (16%) (v2 ¼ 20.57, df ¼ 8, p ,

0.01; Fig. 3A). Finer substrates such as p, g, and pg
were less frequent (,7%). The mixture bcg was scarce
(4%). Macrophyte patches were present in intermedi-
ate frequency (6%). Substrate type varied with depth
(Kruskal–Wallis test, n ¼ 139, df ¼ 8, H ¼ 67.43, p ,

0.0001). In general, coarse substrates (b, bc, and bcg)
and m were more common in deep (50–100 cm) areas,
whereas fine substrates (p and pg) were more common
in pool bars. Intermediate-size substrates (c and cp)
were found at mid depths (;50 cm).

Mean near-bed water velocity ranged between 0 and
115 cm/s in the riffle, between 0 and 20 cm/s in the
pools, and between 0 and 7 cm/s in the marginal high-
flow pond (Table 2). Velocity was more variable in time
and space in the riffle than in other habitats. Near-bed
flow was more turbulent in the riffle (Re , 108) than in
the pools and the pond (Re: 0–106). Near-bed flows
were subcritical or nonerosive (Fr ,, 1) in all 4
habitats. However, some areas in the riffle had
sustained supercritical flows (Fr . 1).

Microhabitat scale

Neritina virginea density was related to substrate
type (hypothesis 1; 1-way ANOVA, F8,140 ¼ 2.26, p ,

0.05). Mean density was highest (.50 ind/m2) in b, bc,
c, and bcg substrates (Fig. 3B). In contrast, low
densities (,50 ind/m2) were observed more frequently
in the finest substrates (cp, pg, g, and p). When density
was corrected by substrate abundance (i.e., electivity
index), well-mixed substrates (bcg) were preferred
over more-uniform substrates (g, m, p, or b; Fig. 3C).
Avoidance or negative electivity was observed for the
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FIG. 3. Number of quadrats with each streambed substrate type (A), Neritina virginea density in each substrate type (B), and N.
virginea electivity for each substrate type (C) at the Route 3 Bridge sampling reach in Rio Mameyes. The horizontal line in B
indicates the median density across all substrate types. In B, bars with the same letters are not significantly different. The horizontal
line in C indicates no electivity. b¼boulder, c¼ cobble, p¼pebble, g¼gravel, and m¼macrophyte (Elodea). Min¼minimum, max¼
maximum.
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most available substrates (cp, c, bc, and pg). Snails
were commonly observed buried in the gravel and
pebbles, among macrophyte stems, and on tops of
cobbles and boulders.

Habitat scale

Neritina virginea density increased linearly with
depth in both pool habitats (hypothesis 2; ANCOVA,
F1,132¼ 5.81, p , 0.05). However, the regression for the
meander pool had the larger correlation index and
steeper slope (meander pool: y ¼ 23.80 þ 0.82x, r2 ¼
0.28; straight pool: y¼ 22.02þ 0.34x, r2¼ 0.13; Fig. 4).
Correlations were greatest in both pools during
massive migrations (migration period: r ¼ 0.62–0.93,
nonmigration period: r ¼ 0.04–0.46), but an in-depth
description of the migration results is beyond the
purpose of this paper. The stronger relationship
between density and depth in the meander pool
apparently was related to an increase in near-bed
water velocity with depth (r ¼ 0.50, F1,77 ¼ 25.13, p ,

0.001) that was not observed in the straight pool (r ¼
0.10, F1,100 ¼ 1.08, p . 0.05).

Reach scale

Neritina virginea was observed in areas with laminar
to turbulent near-bed flows (Re ¼ 101–106) and
subcritical to supercritical flows (Fr ¼ 0–1.36). Large
snails preferred habitats with low Re and Fr numbers,
whereas small snails preferred more turbulent and
erosive habitats. Therefore, snail density was greater in
the riffle than in the pools and marginal high-flow
pond (hypothesis 3; nested ANOVA, habitat: F20,215 ¼
2.47, p , 0.001, time 3 habitat: F3,20¼12.71, p , 0.0001;
median densities ¼ 88, 56, 50, and 20 ind./m2 in the
riffle, 2 pools, and marginal high-flow pond, respec-
tively). Median shell size showed the opposite pattern
and was smallest in the riffle, intermediate in the
pools, and largest in the marginal high-flow pond
(nested ANOVA, habitat: F24,1867¼4.70, p , 0.001, time
within habitat: F3,1867¼77.23, p , 0.0001; median sizes:
5.8, 9.3, 10.0, and 14.0 mm in the riffle, 2 pools, and
marginal high-flow pond, respectively). A power
model indicated that snail density and size were
tightly related (y¼ 4927.5x�2, r2¼ 0.62, F1,28¼ 24.8, p ,

0.001; Fig. 5), suggesting that the relationship between
habitat hydraulics and density is size-dependent.

Stream-network scale

Neritina virginea was present in only 13 of the 32
rivers, and its distribution was similar in the 2001 and
2003 surveys. The inland extent of distribution differed
among the 13 snails-present rivers. Populations were
restricted to a few tens of meters within the river
mouths in 6 rivers. Populations were restricted to
coastal plain segments ,10 m asl in 2 rivers, to low
montane reaches (20–50 m asl) in 3 rivers, and to mid-
montane reaches (.50 m asl) in 2 rivers (Fig. 6).
Further inland distribution was blocked by high
waterfalls in 2 rivers, Sabana (Las Pailas) and Espı́ritu

TABLE 2. Selected physical characteristics (median and range) of 4 habitats in a lower reach in the Rı́o Mameyes. Medians with
the same superscript are not significantly different.

Habitat

Variable Riffle Straight pool Meander pool Marginal high-flow pond Test statistic

Water depth (cm) 30c

(14–42)
84a

(17–110)
73b

(14–105)
58b

(22–97)
F3,651 ¼ 75.42

p , 0.01
Near-bed water velocity (cm/s) 8a

(0–115)
3b

(0–12)
7b

(0–20)
2b

(0–7)
H3,327 ¼ 83.74

p , 0.01
Near-bed Reynolds number 1.8 3 106 a

(0–1.9 3 108)
8.3 3 105 b

(0–8.2 3 106)
7.2 3 105 b

(0–3.1 3 106)
6.9 3 105 b

(0–6.7 3 106)
F3,323 ¼ 27.02

p , 0.01
Near-bed Froude number 0.08a

(0–1.36)
0.02b

(0–0.18)
0.02b

(0–0.25)
0.02b

(0–0.16)
F3,323 ¼ 26.65

p , 0.01

FIG. 4. Variation in Neritina virginea density relative to
water depth in 2 pool types.
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Santo (Quebrada Sonadora) (concordance ¼ 100%,

Kendall’s Tau ¼ 1.00), but was not blocked by a low-

head dam (,3 m) in lower Espı́ritu Santo (hypothesis

4a). Inland extent of distribution tended to be greater

in rivers with narrow coastal plains and steep montane

reaches (i.e., Sabana, Patillas, Guajataca, Espı́ritu

Santo, and Mameyes), but statistical differences were

not observed because of high variability of river

gradient within categories (hypothesis 4b; Kruskal–

Wallis test, n ¼ 13, df ¼ 2, H ¼ 2.60, p ¼ 0.27).

Regional scale

River discharge varied among Puerto Rico’s climatic

regions (Table 3). Monthly discharge was greater in the

west and north compared to the east and south (2-way

ANOVA, F3,296¼ 77.23, p , 0.0001). Variance in mean

monthly discharge was greater in the north, west, and

east than in the south (Levene’s homogeneity of

variance test, F3,296 ¼ 33.61, p , 0.0001). Mean annual

discharge had the same pattern as monthly discharge,

but annual variability was greater than monthly

variability in the south and the north (CVannual ¼ 220
and 172%, respectively).

Discharge also changed with river–ocean connectiv-
ity (2-way ANOVA, connectivity: F3,264 ¼ 12.66, p ,

FIG. 5. Relationship between snail density and snail size 4
habitats in the sampling reach.

FIG. 6. Inland distribution of Neritina virginea relative to
stream gradient in different watersheds. Arrows indicate the
inland extent of distribution (uppermost distance and
elevation at which individuals were recorded). The upper
limit of populations coincides with high waterfalls in Sabana
and Espiritu Santo. See Fig. 1 for river name codes. Locations
of dams and waterfalls are indicated with letters (D and W,
respectively).

TABLE 3. Comparison of mean (range) monthly and annual discharge (m3/s) among rivers in 3 categories defined by temporal
variation in river–ocean connectivity and 4 geographic regions in Puerto Rico. Means with different superscripts are significantly
different (p , 0.05). – ¼ river connectivity category not found in climatic region.

River–ocean connectivity

Climatic region

Island meanNorth East South West

Annual discharge (among streams) 5.50b (1.30–14.37) 2.26c (1.97–2.73) 2.29c (1.43–4.20) 9.34a (6.89–11.14) 4.67 (1.27–11.14)

Monthly discharge (within streams) 3.85b (0.08–22.54) 1.78bc (0.27–8.07) 0.90c (0.06–4.01) 7.51a (1.31–19.23) 3.21 (0.06–22.54)

Permanently connected rivers 3.85 (0.39–22.54) 0.63 (0.27–1.12) 1.43 (0.29–4.01) 7.51 (1.31–19.22) 4.04a (0.27–22.54)
Seasonally connected rivers 3.83 (0.08–20.26) 2.36 (0.47–8.07) 0.67 (0.18–1.74) – 2.88a (0.08–20.26)
Episodically connected rivers – – 0.69 (0.06–3.51) – 0.69b (0.06–3.51)
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0.0001, month: F11,264 ¼ 1.69, p ¼ 0.08; Table 3). Mean
monthly discharge was greater and more variable
throughout the year in permanently connected rivers
than in episodically connected rivers (Table 3). Mean
annual discharge showed greater variation among
episodically connected rivers (245%) than among
permanently or seasonally connected rivers (151 and

165%, respectively). In the north and east, rivers were
permanently or seasonally connected to the ocean. In
the west, all rivers were permanently connected to the
ocean, but in the south, most of rivers were episodi-
cally connected. Nine of the 13 snails-present rivers
were permanently connected to the ocean, whereas 4
were seasonally connected (Fig. 7). Snails were absent

FIG. 7. Presence of populations of Neritina virginea in 32 rivers in 3 river categories defined by temporal variation in river–ocean
connectivity. Permanent ¼ permanently connected river, seasonal ¼ seasonally connected river, episodic ¼ episodically connected
river.

TABLE 4. Mean (61 SD) values for selected water-chemistry variables (data obtained from 23 USGS stations [http://nwis.
waterdata.usgs.gov/usa/nwis/qwdata]) in coastal rivers in Puerto Rico. Multiple analysis of variance (MANOVA) F-test (df 1,17)
results refer to comparisons of snails-present and snails-absent rivers. Some stations were excluded from the MANOVA test because
of missing data. MS (marginally significant) ¼ 0.05 , p , 0.20, NS ¼ p . 0.20.

All rivers (n ¼ 23) Snails-absent rivers
(n ¼ 11)

Mean 6 SD

Snails-present rivers
(n ¼ 8)

Mean 6 SD
MANOVA

test (p)Variable Mean 6 SD Range

Temperature (8C) 26.5 6 1.6 24.1–31.1 26.5 6 1.9 26.4 6 1.2 NS
Discharge (m3/s) 2.6 6 2.8 0.3–26.6 113.4 6 123.6 152.8 6 77.0 NS
Turbidity (NTU) 26.8 6 25.4 1.9–88.9 36.0 6 29.3 14.1 6 10.4 MS
Conductivity (lS/cm) 324.1 6 144.4 9.8–8541 341.3 6 138.1 300.4 6 159.0 NS
Dissolved O2 (mg/L) 7.3 6 1.7 3.2–12.4 7.7 6 2.0 6.6 6 0.9 MS
Dissolved O2 saturation (%) 80.3 6 10.2 34.7–94.2 80.6 6 11.4 79.8 6 9.2 NS
pH 7.5 6 0.3 7.0–7.9 7.6 6 0.3 7.4 6 0.2 MS
Acid neutralizing capacity

(mg CaCO3/L)
122.4 6 55.6 32.8–215.9 132.4 6 49.6 108.7 6 63.8 MS

Total suspended solids (mg/L) 42.9 6 42.8 4.6–167.8 57.7 6 49.9 22.4 6 18.4 ,0.05
NH4 (mg/L) 0.4 6 1.0 ,0.1–4.4 0.2 6 0.2 0.6 6 1.5 NS
NO2 þ NO3 (mg/L) 0.9 6 0.7 ,0.2–2.7 1.0 6 0.5 0.9 6 0.9 NS
Total P (mg/L) 0.3 6 0.5 ,0.1–2.16 0.2 6 0.2 0.3 6 0.7 NS
Ca (mg/L) 33.00 6 17.8 7.2–66.8 33.6 6 12.8 32.1 6 24.1 NS
Mg (mg/L) 9.5 6 7.7 3.5–106.4 11.6 6 9.5 6.7 6 2.8 MS
Na (mg/L) 17.3 6 8.7 5.5–732.9 17.2 6 8.2 17.4 6 10.0 NS
K (mg/L) 2.4 6 1.0 ,1.0–28.4 2.4 6 0.6 2.4 6 1.5 NS
Cl (mg/L) 20.1 6 10.7 7.6–1591.2 18.6 6 10.9 22.2 6 10.7 NS
SO4 (mg/L) 12.9 6 8.4 ,4.0–233.6 14.6 6 9.2 10.5 6 7.0 MS
SiO2 (mg/L) 24.6 6 6.8 5.6–35.8 28.4 6 4.6 19.4 6 6.0 ,0.05
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from all episodically connected rivers (hypothesis 5).
Half (10) of the rivers permanently connected to the
ocean lacked populations of N. virginea (Fig. 7).

The presence of snails in a river was related to
hardness and ion concentrations (hypothesis 6). Snails-
absent rivers had greater total suspended solids and
SiO2 concentrations than snails-present rivers (Table 4).
In addition, water turbidity, dissolved O2, pH, water
acid neutralizing capacity (ANC), Mg, and SO4 were
marginally greater in snails-absent rivers than in
snails-present rivers. When these 8 water chemistry
variables were considered together, snails-absent and
snails-present rivers were marginally different (MAN-
OVA, Wilks’ Lambda ¼ 0.33, F8,11 ¼ 2.82, p , 0.057),
but after excluding dissolved O2 and pH, the
significance of the model increased (MANOVA, Wilks’
Lambda ¼ 0.37, F6,13 ¼ 3.74, p , 0.022).

The best discriminant function for predicting inland
extent of distribution included SiO2, ANC, and P
(Wilks’ Lambda¼ 0.052, F9,31¼ 8.33, p , 0.0001; Table
5). The squared Mahalanobis distance computed using
these 3 variables showed that water chemistry was
significantly different among most of the categories of
inland extent of distribution of N. virginea (Table 6).
SiO2, ANC, and P were significantly lower in snails-
present rivers with montane populations than in
snails-present rivers with river mouth or coastal plain
populations. Backwards classification of rivers into
inland extent of distribution categories using the
discriminant function was 95.4% accurate. Although
not included in the discriminant function, river
discharge, water turbidity, and concentration of total
suspended solids were significantly lower in montane
reaches colonized by N. virginea (Table 5). NH4 was
marginally higher in snails-absent rivers.

Discussion

Scale-specific controls

At the within-reach scale, our results agreed with
the existing literature on abiotic controls of inverte-
brate distributions. At the microhabitat scale, hypoth-
esis 1 was supported: neritids preferred large
substrates. Similar results have been obtained in
laboratory experiments on French Polynesian neritids
(Liu and Resh 1997) and on other lotic species (Moore
1964, Crowl and Schnell 1990, Herrmann et al. 1993,
Holomuzki and Biggs 2000). In addition, the greater

TABLE 5. Mean (61 SE) values of water-chemistry variables used for forward stepwise Discriminant Function Analysis of rivers
with different inland distributions of Neritina virginea. Additional variables showing significant or marginal differences among river
categories are reported but were not included in the model because of intolerance. F-values in bold font are statistically significant
(p , 0.05). ANC ¼ acid neutralizing capacity, P¼ total P, TSS ¼ total suspended solids.

Inland distribution of N. virginea

Wilks’ lambda
F-value

(df ¼ 3,13)Variable Absent River mouth Coastal plain Mountains

% of rivers correctly
classified by the model

100 100 100 80

Included in model:

SiO2 (mg/L) 28.4 6 4.6 18.4 6 0.8 23.3 6 1.4 17.8 6 10.2 0.55 41.1
ANC (mg CaCO3/L) 132.4 6 49.6 152.2 6 30.5 42.4 6 7.1 109.3 6 77.8 0.31 21.3
P (mg/L) 0.18 6 0.18 0.16 6 0.07 0.03 6 0.01 0.03 6 0.01 0.26 17.0

Not included in model:

Discharge (m3/s) 113.4 6 123.6 130.4 6 109.2 50.8 6 4.8 28.2 6 20.2 0.02 4.9
Turbidity (NTU) 36.0 6 29.3 21.8 6 14.5 8.8 6 0.1 9.8 6 5.1 0.02 6.8
Conductivity (lS/cm) 341.3 6 138.0 382.7 6 88.9 135.6 6 19.6 328.0 6 204.7 0.03 4.0
TSS (mg/L) 57.7 6 49.9 35.3 6 24.9 14.0 6 7.4 15.3 6 11.8 0.02 9.6
NH4 (mg/L) 0.2 6 0.2 0.1 6 0.1 0.1 6 0.1 0.1 6 0.1 0.03 3.3
Na (mg/L) 17.2 6 8.2 16.5 6 5.8 12.0 6 1.3 21.9 6 16.0 0.03 4.2
SO4 (mg/L) 14.6 6 9.2 13.9 6 4.6 4.1 6 0.7 11.2 6 9.7 0.03 2.7

TABLE 6. Squared Mahalanobis distances between catego-
ries of rivers relative to inland distribution of Neritina virginea.
Distances were computed using water-chemistry variables
included in the discriminant function model (Table 5). Values
in parentheses are F-values associated with differences in
water-chemistry values between categories. Bold font indi-
cates significant differences (p , 0.05).

Inland extent of distribution of N. virginea

River mouth Coastal plain Montane
Absent 21.0 (10.1) 23.3 (6.1) 72.8 (35.1)
River mouth 10.3 (2.0) 17.3 (5.0)
Coastal plain 23.8 (4.6)
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preferences of N. virginea for heterogeneous patches
agree with existing theory regarding the role of
microhabitat complexity as flow refugia (Lake 2000).

At the habitat scale, hypothesis 2 was supported:
N. virginea density increased with water depth. A
similar relationship has been reported for freshwater
snails in irrigation channels in southern England
(Watson and Ormerod 2004) and for fish and shrimp
in neotropical streams (Power 1984, Pringle 1996). This
pattern seems to be linked to avoidance of shallow
areas where terrestrial predators are present (Power
1984, Pringle 1996). Direct evidence is lacking, but
predator avoidance also may be also responsible for
the presence of adults and the absence of juveniles of
N. virginea in shallow margins in our study pools (JFB,
personal observations).

At the reach scale, hypothesis 3 was supported:
habitat hydraulics controlled the distribution of N.
virginea. This type of control on density and size of
diverse snails and insects has been documented
extensively (e.g., Holomuzki and Messier 1993, John-
son and Brown 1997), and it is apparently related to
predators and competitors (Hart and Finelli 1999),
food availability (e.g., Johnson and Brown 1997), and
drag force (e.g., Statzner and Holm 1989). Uncovering
the mechanism explaining the spatial arrangement of
N. virginea at the different habitats was not the aim of
our study, but the mechanism seems to be mediated by
individual size.

At the stream-network scale, hypothesis 4a was
partially supported: physical barriers blocked snail
movement depending on barrier height. Physical
barriers are undoubtedly important for diadromous
fauna worldwide, but only 2 waterfalls and 1 low-
head dam blocked the upriver migration of N. virginea
in the rivers we surveyed. Waterfalls and dams in
Puerto Rico and elsewhere are more common in
montane reaches and apparently have greater influ-
ence in blocking the upstream migrations of long-
distance swimmers such as fish and shrimp (Pringle
1997). Studies in the Caribbean have documented
reductions of large-bodied diadromous fish and
shrimp in unaltered headwaters above dams (Puerto
Rico: Holmquist et al. 1998, Guadeloupe: Fièvet et al.
2001b). Hypothesis 4b was not supported: N. virginea
was found in montane reaches of the steepest streams.
Other studies have shown that the abundances of
diadromous fauna decline upstream because of steep
gradients and barriers (Ford 1979, Liu and Resh 1997,
McDowall 1998, Joy and Death 2001, Resh 2005).

At the regional and stream-network scales, water
quantity and quality were the best predictors of the
extent of inland distribution of N. virginea. At the
regional scale, hypothesis 5 was supported: snails were

absent from episodically connected rivers. This ab-
sence may be related to both natural and anthropo-
genic causes. Several rivers from dry southern Puerto
Rico have low discharge and become naturally
disconnected from the ocean during the dry season.
However, many of those rivers also are dammed for
agricultural irrigation, and their coastal-plain reaches
are permanently dewatered and disconnected from the
ocean supply of N. virginea larvae. McDowall (1995)
recently warned that diadromous fauna such as New
Zealand fishes may eventually be extirpated from
rivers if the timing of river-mouth closure coincides
with periods of larval upstream migration.

At the regional scale, hypothesis 6 was supported:
water chemistry had a larger influence than stream
gradient (hypothesis 4b) on N. virginea distribution.
Neritina virginea was limited to the river mouth
(estuary) or the coastal plain in all urban, lesser-
gradient rivers in the northern region of the island,
even though those rivers were permanently connected
to the ocean. However, N. virginea was present in
montane reaches of adjacent streams that drained
forested and protected areas. A similar situation occurs
in Guadeloupe, where the upstream distribution and
composition of diadromous assemblages were con-
trolled by land use in the estuaries and the watershed
(Fièvet et al. 2001a). Accelerated downstream degra-
dation of water quality is common in the tropics
because landuse change is typically greater in the
lowland reaches of tropical streams (Ometo et al. 2000,
Santos-Román et al. 2003, Soldner et al. 2004). In
Puerto Rico, urbanization increases conductivity, P,
and Na concentrations in streams (Santos-Román et al.
2003), and deforestation increases fine sediments and
decreases leaf litter and dissolved O2 (Heartstill-
Scalley and Aide 2003). Similar effects have been
observed in Madagascar (Benstead et al. 2003), Borneo
(Iwata et al. 2003), and New Zealand (Townsend et al.
1997, 2003). In addition, high turbidity and high
nutrient loads induced by deforestation and urban-
ization may further accelerate extirpation of N. virginea
by reducing food resources such as periphyton and
biofilm (March and Pringle 2003) and promoting
invasion by alien snails, as has been observed in
southern Australia (Schreiber et al. 2003). Last, N.
virginea was naturally absent from limestone water-
sheds in dry southern Puerto Rico, probably because of
the elevated conductivity and high concentrations of
dissolved ions (Na, Cl, K, Mg, and SO4) in water
draining limestone. Absence of snails from limestone
watersheds has been also reported for neritids from
several Southern Pacific islands (Haynes 1993, 2000).
Our results at the regional and stream-network scales
provide support for the idea that disturbances in
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lowland reaches may propagate upstream by prevent-
ing diadromous fauna from colonizing pristine head-
water reaches (sensu Pringle 1997).

Hierarchical approach for the management and conservation
of diadromous fauna

The analyses presented here indicate that the
distribution of N. virginea in coastal rivers of Puerto
Rico can be explained by a combination of abiotic
variables that operate in a descending hierarchical
fashion from the regional to the microhabitat scales
(Fig. 8). At the regional scale, upriver migration is
affected by the river’s connectivity with the ocean.
Once juveniles enter a particular river that has
sufficient connectivity, they must negotiate physical
and chemical barriers within the stream network. At
the scales of reaches, habitats, and microhabitats
within stream networks, hydraulics, water depth,
and substrate heterogeneity provide additional influ-
ences on their spatial arrangement. At these scales, the
abiotic variables controlling neritid snail distribution
appear to be environmental clues to other correlated
biotic and abiotic factors that deserve further inves-
tigation. We are unaware of studies similar to ours that
have been done with other benthic organisms, but our
hierarchical-scale model based on environmental
filters (Fig. 8) presumably is applicable to other
diadromous species and geographic locations and

can be used to assess and to manage the overall biotic
integrity of coastal rivers. Stream managers should
consider using N. virginea and other freshwater
neritids as bioindicators of river connectivity and
water quality in lowland reaches because these snails
are probably the diadromous fauna most sensitive to
physical and chemical landscape filters.
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