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Chapter 1: Study of fixed bed gasification process 

of torrefied wood biomass under an oxidizing 

atmosphere 

1.1. Introduction 

The study of non-conventional energy sources such as biomass has grown worldwide. 

Global warming and the high dependence of fossil fuels in energy market are the issues that 

have favored the development of new energy conversion technologies [1]. Biomass is the 

non-conventional resource most used for energy production due to its high and 

decentralized availability compared with other sources as solar, wind and hydropower [2]. 

Particularly, wood biomass has a great energy potential in Colombia. The country has 

around 17 million ha of land available for forest commercial projects that can be used for 

energy crops [3]. Energy crops offer great advantages like they can establish in soils that 

are not suitable for agriculture purposes; which makes these crops sustainable [4]. This 

situation promotes an ideal field to promote the energy generation from biomass or to 

produce biofuels or bioproducts.  

For producing chemicals, solid or liquid biofuels from biomass, it is necessary to 

guarantee that biomass has high heating value, low moisture and ash contents. However, in 

most cases, wood biomass does not accomplish with these criteria due to its natural state; 

which is characterized by high moisture content, low bulk and energy densities, and high 

power consumption for milling [5], [6]. These aspects constitute different challenges that 

wood biomass must overcome, such as high transportation costs, short storage periods due 

to fast decomposition by fungal [7]. Several upgrading strategies such as torrefaction have 

been implemented to improve wood biomass properties as a solid fuel.  

Torrefaction is a thermochemical process conducted in inert environments (e.g. 

Nitrogen) at temperatures ranging from 200 to 300 °C [5], [6]. Torrefied biomass has 

higher heating value due to the reduction of moisture content and O/C ratio, better 

grindability properties, and hydrophobic nature compared with the raw material [8]–[13]. 

To conduct the torrefaction process under an inert atmosphere leads to higher operating 

costs because of the production and/or acquisition of the carrier gas [7], [14], [15]. The 
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reduction of operating costs can be achieved using air as a carrier gas and to conduct an 

oxidative torrefaction [7]. On the other hand, one of the thermochemical processes in which 

torrefied wood biomass can be used as feedstock is gasification. Gasification is a process 

that converts a solid feedstock into a gaseous fuel through its partial oxidation with a 

gasifying agent; e.g. air, pure oxygen, or water vapor [16]. The producer gas can be burned 

to generate power in turbines or internal combustion engines, or used for the production of 

value-added chemicals [17].  

In this work, it is studied what the effect of torrefaction conditions under an oxidizing 

atmosphere on wood biomass properties and gasification process is. Chapter 2 presents the 

effect of torrefaction temperature and residence time on physicochemical properties of 

patula pine. Furthermore, several parameters are evaluated in order to determine the 

properties of torrefied pine as solid fuel. In chapter 3, thermal behavior, and changes in 

chemical structure and morphology of torrefied patula pine at different conditions is 

studied. Finally, chapter 4 evaluates the effect of torrefied pine on fixed bed gasification 

process using a model in thermochemical equilibrium.  

This study pretends to give an answer to the following research questions: What is the 

effect of the torrefaction process under an oxidizing atmosphere on gasification process? 

What is the effect of torrefaction temperature on physicochemical properties of patula pine? 

Which is the best torrefaction condition under the experimental conditions of this study? 

And how do the chemical structure and morphology of patula pine change with the 

torrefaction process under an oxidizing atmosphere? 

1.2. Research objectives 

General objective 

To evaluate the effect of torrefaction process under an oxidizing atmosphere on woody 

biomass properties seeking its application in the fixed bed gasification process. 

Specific objectives 

 To evaluate the physicochemical properties of torrefied wood biomass under an 

oxidizing atmosphere as a function of different torrefaction temperatures and residence 

times. 
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 To characterize, by means of a model in thermochemical equilibrium, the fixed bed 

gasification process of torrefied wood biomass under an oxidizing atmosphere from an 

energy point of view. 

1.3. Contribution of this dissertation 

With the development of the present study, it is pretended to contribute to the knowledge 

about the phenomena involved that combines upgrading strategies of biomass as solid 

biofuel and its performance in the fixed bed gasification process. Likewise, it seeks to 

generate impact in the following sectors: 

 Scientific impact 

A Master of Science with solid knowledge in the fields of energy and materials science 

to serve the university and the country is formed. The research line of energy exploitation 

of biomass will be strengthened in the GIMEL group, and scientific capacities of the 

Universidad de Antioquia will be consolidated. 

 Economic impact 

The economic sector would benefit due to more local knowledge about biomass 

upgrading technologies, gasification process, and the different phenomena involved can 

impulse their development in the country. With the research and development of local 

technology, the costs of its implementation would reduce. Likewise, by exploiting the 

forest potential of the country, from the energy-sustainable point of view, it is promoted the 

creation of new jobs for the inhabitants of the rural regions. Moreover, in the case of 

developing a biofuels market, this will contribute to the gross domestic product (GDP) of 

the country. This thesis also contributes to developing new methodologies for recover 

residual biomass from sawmills, giving an added value to this waste and making more 

sustainable the forest industry. 

 Socio-environmental impact 

To contribute the improvement of solid biofuels, this will allow developing strategies for 

sustainable energy crops as part of a global bioenergy market. In this sense, the feedstock 

and its upgrading processing technologies can be developed at national level. Biomass 

production under sustainable criteria will also contribute to the establishment of forest 
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plantations. As a consequence, new employments in rural areas for the inhabitants will be 

created. Furthermore, these crops can be established on degraded lands which are not apt 

for food production and will prevent that the latter be in danger due to planting timber by 

the new growing bioenergy market. 

1.4. Authorship of peer review publications 

Below are presented the research outcomes that have been published after peer review. 

1.4.1. Journal articles 

 S. Ramos-Carmona, J. F. Pérez, M. R. Pelaez-samaniego, R. Barrera, and M. Garcia-

perez, “Effect of torrefaction temperature on properties of Patula Pine,” Maderas. 

Cienc. y Tecnol., 2017. – Accepted 

1.4.2. International congress 

 J. F. Pérez, S. Ramos, and R. Barrera, “Análisis energético y exergético como 

herramienta de selección de biomasa como materia prima para la producción de 

biosyngas para motores de combustión,” in X Congreso Nacional y V Internacional de 

Ciencia y Tecnología del Carbón y Combustibles Alternativos– CONICCA, 2015, pp. 

247–253. 

 S. Ramos-Carmona, M. R. Peláez-Samaniego, and J. F. Pérez, “Characterization of 

pyrolysis products of torrefied biomass with dendroenergy potential in Colombia,” in 

Sixth International Symposium on Energy from Biomass and Waste, 2016. – Accepted 

 J. F. Pérez, S. Ramos-Carmona, and A. Agudelo, “The impact of climate phenomenon 

‘El Niño’ on energy cost and opportunities for bioenergy in Colombia,” in Sixth 

International Symposium on Energy from Biomass and Waste, 2016. – Accepted 

 Y. Lenis, S. Ramos-Carmona, and J. F. Pérez, “Efficiency and flame front velocity in 

function of physical properties of biomass under gasification regimes in fixed bed,” in 

Sixth International Symposium on Energy from Biomass and Waste, 2016. – Accepted 
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Chapter 2: Physicochemical characterization of 

torrefied wood biomass under an oxidizing 

atmosphere – Effect of temperature and residence 

time 

Sergio Ramos Carmona, Sebastián Delgado Balcázar, Juan F. Pérez 

Abstract 

In this work, the effect of torrefaction under an oxidizing atmosphere on physicochemical 

properties of patula pine wood chips is studied. Raw and torrefied pine were characterized 

to evaluate the effect of temperature and residence time on biofuel properties such as bulk 

density, grindability (HGI), ultimate and proximate analyses, heating value, and fuel value 

index (FVI). On the other hand, torrefaction process was characterized by mass and energy 

yields, and by the energy-mass co-benefit index (EMCI). Torrefaction was carried out in a 

rotary kiln at temperatures between 180 and 240 °C during residence times between 30 and 

120 minutes. Torrefaction process under an oxidizing atmosphere tends to increase the 

fixed carbon/volatile matter ratio (from 0.19 to 2.5) while decrease both H/C and O/C 

atomic ratios (from 1.54 to 0.41, from 0.73 to 0.33, respectively). The best properties of 

wood reached in the experimental plan were obtained at 210 °C during 75 minutes. For this 

torrefaction condition, energy yield, FVI, and EMCI are 85.91%, 1.91 kJ/cm3, and 4.41%, 

respectively. Additionally, lower heating value for torrefied pine (18.65 MJ/kg) is higher 

than for raw material (17.76 MJ/kg), and HGI is 17 % greater which results in better 

grindability behavior. 

 

Keywords: Torrefaction, oxidizing atmosphere, Patula pine wood chips, physicochemical 

characterization. 

2.1. Introduction  

The increase in greenhouse gasses emissions have promoted the use of renewable 

energies such as biomass [1]. Forest biomass highlights for its potential due to its great and 
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decentralized availability; and can be used as feedstock to produce bioenergy and/or 

bioproducts (thermochemical biorefinery applications) [2]. Furthermore, forestry crops, by 

means of photosynthesis, mitigate CO2 emissions produced during combustion of biomass. 

This fact aids to achieve the goals proposed during the COP21 – Paris 2015 to face the 

greenhouse emissions issue [1]–[3]. The use of biomass as feedstock for thermochemical or 

manufacture processes produces power, fuels for transport, chemical products, and 

materials that provide an alternative to fossil fuels such as coal, oil, and natural gas [4]. 

Therefore, the use of wood biomass as a renewable energy source contributes to energy 

diversification, besides enabling the production of a great variety of byproducts.  

Biomass shows several disadvantages regarding fossil fuels (e.g. coal) due to its low 

bulk and energy densities [5], [6]. Therefore, large amounts of biomass are needed to 

satisfy a given energy demand. Moreover, wood biomass has high moisture content, which 

difficult its grinding, and storage due to degradation by fungal [7]. As strategies to improve 

and to homogenize wood biomass properties for thermochemical processes (e.g. 

combustion, co-firing with coal, gasification, and pyrolysis), it is feasible to implement 

upgrading processes such as torrefaction [5], [8], [9]. 

Torrefaction is a mild-pyrolysis process at low-middle temperatures (200–300°C) during 

different residence times (commonly less than 1h) under an inert atmosphere [10]. During 

torrefaction process, the heating value of biomass increases due to the reductions in 

moisture content, and H/C and O/C ratios [6]. Furthermore, torrefied biomass becomes 

hydrophobic due to the thermal degradation of hemicellulose. Hydrophobic nature of 

torrefied biomass allows extending storage periods [7]. Thereby, pretreated biomass 

exhibits better properties as biofuel than raw material.  

In the state of the art, it has been reported that after torrefaction, the elemental 

composition of biomass tends to be similar to char composition [11]. Nevertheless, despite 

the advantages that offer a torrefied biomass, torrefaction increases the operation costs due 

to the cost associated with the inert gas supply (e.g. nitrogen) as carrier gas [12]. Among 

the strategies to reduce the costs related to the carrier gas, it is to perform the torrefaction 

under an oxidizing atmosphere using air as carrier gas instead of nitrogen [13].  

Different authors have studied the effect of the use of air as carrier gas on the 

torrefaction process performance. Rousset et al. [14] studied the effect of oxygen 
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concentration in the carrier gas on the torrefaction process. Oxygen concentrations were 2, 

6, 10, and 21 %vol.; with torrefaction temperatures of 240 and 280 °C for 1h of residence 

time. Authors stated that oxygen concentration does not significantly affect the composition 

of the solid by-product for low torrefaction temperatures. Therefore, they recommend to 

use an inert atmosphere for torrefaction temperatures above 280 °C to avoid oxidation of 

volatiles released during the process. Similarly, Wang et al. [15] analyzed the effect of 

temperature and oxygen concentration on torrefaction process. Oxygen increases 

degradation rates of hemicellulose leading to diminishing residence times. Moreover, 

energy consumption during torrefaction decreases due to the heat released as a consequence 

of oxidation reactions of volatiles with the carrier gas. 

Other authors have evaluated the effect of temperature and particle size on torrefied 

biomass properties. Lu et al. [12] studied the effect of carrier gas type (inert and oxidizing) 

and temperature on characterization of oil palm fiber and eucalyptus. Palm fiber is not 

suitable for oxidative torrefaction, since its high surface/volume ratio enhances mass losses 

during upgrading process, which leads to lower energy yields. For eucalyptus, air can be 

used as the carrier gas during torrefaction but at lower temperatures. Uemura et al. [16] 

obtained that particle size does not have a significant effect on mass yield. They stated that 

this parameter depends on hemicellulose content in biomass, which is the wood constituent 

more affected during torrefaction process.  

Chen et al. [13], [17], [18] carried out different studies of torrefaction process varying 

biomass type, carrier gas and its superficial velocity, and temperature. Unlike Uemura et al. 

[16], Chen et al. reported that under an oxidizing atmosphere, thermal degradation of wood 

highly dependent on particle size; i.e. surface area of the treated material. Likewise, as the 

oxygen concentration in the carrier gas increases, H/C ratio decreases due to oxygen reacts 

more readily with hydrogen than with carbon. Oxygen concentration does not affect fixed 

carbon content if torrefaction temperature is below 300 °C. This result agrees with the 

findings reported by Wang et al. [15]. 

Despite the wide research about torrefaction using air as carrier gas described above, 

there is a lack of information about the effect of the oxidizing environment on physical 

properties (e.g. bulk density, grindability) and fuel properties different to heating value of 

wood biomass. The objective of this study is to analyze the effect of torrefaction 
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temperature and residence time under an oxidizing atmosphere (air) on physicochemical 

and fuel properties of patula pine wood chips. Raw and torrefied materials are characterized 

by means of bulk density, hardgrove grindability index (HGI), proximate and ultimate 

analyses, and fuel value index (FVI). Additionally, torrefaction process is characterized by 

mass and energy yields, and energy-mass co-benefit index (EMCI). A complete 

characterization of raw and torrefied material will allow identifying the importance of 

strategies to upgrade the quality of wood biomass as biofuel (e.g. torrefaction) to further 

thermochemical processes applications under a low-cost atmosphere (air). 

2.2. Materials and methods 

2.2.1. Experimental setup 

Experiments were carried out in a batch rotary kiln showed in Figure 2.1. The drum (5) 

is coupled to a variable speed drive system composed of a sprocket-chain system and an 

electrical worm gear reducer (9, 10, and 11). Reactor capacity ranges 2 – 3 kg regarding 

biomass bulk density. Electrical resistors (13) heat the reactor, where the temperature is 

measured by a K-type thermocouple (T1) and adjusted by a PID controller (12). K-type 

thermocouple (T2) measures the temperature outside the reactor to be sure that torrefaction 

temperature is reached. Carrier gas flow (i.e. air) is provided by a reciprocating compressor 

(1) coupled to a plenum (2) to absorb piston oscillations. Pressure and flow are 

regulated/measured by means of a manometer (3) and a rotameter (4), respectively. The 

reactor is isolated with a ceramic wall (7) and an air chamber (8) to avoid high heat transfer 

rates to the surroundings. Biomass samples are fed in a sample holder (6) to control the 

initial and final amount of biomass during the torrefaction process. Sample holder consists 

of a stainless steel tube (internal diameter 82.55 mm and length 170 mm) covered by a 

mesh of 0.149 mm size; the mesh allows to drag the released volatile matter during 

torrefaction by the carrier gas. 
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Figure 2.1. Experimental setup 

2.2.2. Biomass as feedstock 

Nowadays, Colombia produces around 10.4 m
3
 millions of wood for domestic 

consumption exclusively. This wood volume represents the 80% of the national production. 

Unfortunately, the majority of these crops come from natural forests which do not meet 

sustainability criteria [19]. On the other hand, the country has a potential of 17 million ha 

with forestry aptitude. Antioquia, Caldas, and Córdoba are the states with the biggest forest 

planted areas for commercial purposes under sustainability criteria. In these planted areas, 

the most common species are pines (Pinus patula and Pinus tecunumanii), and cedar 

(Cupressus lusitánica) [20]. Besides its large planted area, patula pine has a high Mean 

Annual Increment (MAI, ~ 20 m
3
/ha/year) and low harvested time (13 years). Small 

diameter logs were debarked before a chipping process. The wood sample was chipped 

using a Bandit 95XP chipper, then located on the floor (trying to keep a uniform thickness 

layer of chips) and dried at room conditions during two weeks. Then, the wood chips were 

sieved and classified by size between 10 and 20 mm since some thermochemical processing 

technologies (e.g. fixed bed gasification or combustion) operates with this particle size 

range [21]. This particulate size was used to conduct the experimental plan described 

below. 
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2.2.3. Experimental plan 

The torrefaction tests were conducted with 50 g (± 2%) of patula pine wood chips. The 

heating method was programmed with a heating rate of 10 °C/min and the residence time 

started once target temperature was reached. Air flow fixed in the experiment was 1 slpm to 

obtain a superficial velocity of 0.82 cm/min inside the reactor. Low superficial velocities of 

the carrier gas allow to obtaining high mass yields during torrefaction process [17]. 

Torrefaction temperatures were varied from 180 to 240 °C. Joshi et al. [22] reported 

ignition zones of biomass under different oxygen concentrations. For an oxygen 

concentration of 21 %vol. (air), the ignition zone is close to 240 °C. Residence time varied 

from 30 to 120 minutes. Table 2.1 shows the experimental conditions conducted in this 

work. 

Table 2.1. Torrefaction conditions and severity factor (SF) 

Sample Temperature [°C] Residence time [min] SF Test code 

1 

180 

030 3.83 180-300 

2 075 4.23 180-750 

3 120 4.43 180-120 

4 

210 

030 4.72 210-300 

5 075 5.11 210-750 

6 120 5.32 210-120 

7 

240 

030 5.60 240-300 

8 075 6.00 240-750 

9 120 6.20 240-120 

Additionally, a severity factor (SF) is introduced, which quantifies torrefaction severity 

combining temperature and residence time. Eq. 2.1 shows how to determine the severity 

factor of a torrefaction condition, as stated by Na et al. [23]. 

𝑆𝐹 = log {𝑡 × exp (
𝑇𝑡𝑜𝑟𝑟 − 𝑇𝑟

14.75
)} (2.1) 

Where t is the residence time in minutes, Ttorr and Tr are the torrefaction temperature and 

a reference temperature in °C, respectively. Tr is often 100 °C [23]. It is considered that a 

temperature above 100 °C promotes not only moisture evaporation but also the release of 

volatile matter present in the wood. After torrefaction process, pine wood chips were 

ground and sieved using a 35–mesh to further characterization. 
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2.2.4. Torrefaction process characterization 

2.2.4.1. Mass yield 

Mass yield (my) is a measure of the remaining amount of biomass after torrefaction 

process and is determine by Eq. 2.2 [24]. mraw and mtorr are the initial and final mass of 

material after torrefaction process in grams. Torrefaction process was conducted by 

triplicate. 

𝑚𝑦[%] =
𝑚𝑡𝑜𝑟𝑟

𝑚𝑟𝑎𝑤
⋅ 100 (2.2) 

2.2.4.2. Energy yield 

Energy yield (Ey) indicates how much energy conserves the biomass after torrefaction 

process regarding the initial energy content in the material [24]. This parameter involves 

mass and heating value changes as shown in Eq. 2.3. LHVraw and LHVtorr are the initial and 

final lower heating value of biomass after torrefaction process in kJ/kg. 

𝐸𝑦[%] =
𝑚𝑡𝑜𝑟𝑟 ⋅ 𝐿𝐻𝑉𝑡𝑜𝑟𝑟

𝑚𝑟𝑎𝑤 ⋅ 𝐿𝐻𝑉𝑟𝑎𝑤
⋅ 100 = 𝑚𝑦 ⋅

𝐿𝐻𝑉𝑡𝑜𝑟𝑟

𝐿𝐻𝑉𝑟𝑎𝑤
 (2.3) 

2.2.4.3. Energy-mass co-benefit index 

The energy-mass co-benefit index (EMCI) was proposed by Lu et al. [12] to quantify the 

enhancement of energy content of the remaining mass after torrefaction process. EMCI is 

the difference between the energy and mass yields (Eq. 2.4). In other words, the EMCI is 

the product between mass yield and heating value gained with torrefaction process. 

𝐸𝑀𝐶𝐼 = 𝐸𝑦 − 𝑚𝑦 = 𝑚𝑦 (
𝐿𝐻𝑉𝑡𝑜𝑟𝑟

𝐿𝐻𝑉𝑟𝑎𝑤
− 1) (2.4) 

2.2.5. Biomass physicochemical characterization 

In order to determine how the torrefaction under an oxidizing atmosphere affects the 

physicochemical properties of patula pine, the following characterizations were carried out. 

2.2.5.1. Bulk density of biomass 

Bulk density (ρbulk) is defined as the ratio between the mass of a material and its volume, 

including the void volumes of internal pores [25]. To determine this parameter, a vessel 

with known volume (Vvessel) is filled with the biomass, and it is weighted to estimate the 

mass change (mbms). Eq. 2.5 allows calculating the bulk density of the different samples. 

For each condition, the procedure was conducted five times. 
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𝜌𝑏𝑢𝑙𝑘 [
𝑘𝑔

𝑚3
] =

𝑚𝑏𝑚𝑠

𝑉𝑣𝑒𝑠𝑠𝑒𝑙
 (2.5) 

2.2.5.2. Hardgrove grindability index 

Several gasification and combustion technologies (fluidized or entrained reactors) 

require pulverized biomass as feedstock; therefore, it is important to know the effect of 

torrefaction process on biomass grindability behavior [5]. Hardgrove grindability index 

(HGI) is used to classify the grindability of several coals [26]. However, it is performed an 

equivalent adaptation valid to char and biomass as reported by Bridgeman et al. [27] and 

Ibrahim et al. [28]. HGI is estimated by means of correlation in function of biomass 

composition. An analysis of variance (ANOVA) was conducted taking into account 

experimental data of HGI in function of ultimate and proximate analyses [27]–[30]. 

According to the ANOVA, the proximate analysis has a more significant effect than 

ultimate analysis on HGI. Therefore, a correlation to estimate the HGI in function of 

proximate analysis was determined, as shown in Eq. 2.6, with a R
2
=0.93. Volatile matter 

(VM) and ash contents of biomass are in wt. % on a dry basis. 

𝐻𝐺𝐼 = 1147.05 + 0.149 ⋅ 𝑉𝑀2 − 20.775 ⋅ 𝑉𝑀 − 82.213 ⋅ 𝑎𝑠ℎ + 0.931 ⋅ 𝑀𝑉 ⋅ 𝑎𝑠ℎ (2.6) 

2.2.5.3. Proximate analysis 

Proximate analysis of each sample was determined by means of a thermogravimetric 

analyzer TA Instruments Q50. The method to conduct the analysis proposed by Medic et al. 

[31] was modified taking into account the ASTM D 3174-12 standard to determine the ash 

content [32]. The modified TGA method is presented in Table 2.2. 

Table 2.2. TGA method for proximate analysis 

Step Procedure 

0 Start with high purity N2 (100 ml/min) 

1 Ramp 10 °C/min to 105 °C 

2 Isothermal for 15 minutes 

3 Ramp 10 °C/min to 900 °C 

4 Isothermal for 10 minutes 

5 Equilibrate at 750 °C 

6 Change to zero air (100 ml/min) 

7 Isothermal for 20 minutes 

2.2.5.4. Ultimate analysis 

A CHNSO LECO Truspec micro equipment was used to estimate the ultimate analysis 

of samples. Tests were conducted according to the ASTM D 5373-08 standard [33]. 
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Carbon, hydrogen, and nitrogen analyses were carried out in a helium environment at 1050 

°C; whereas oxygen content was determined by difference. Tests were conducted by 

triplicate. 

2.2.5.5. Lower heating value 

Heating value relates the energy release per unit mass of fuel. Higher heating value 

(HHV) of raw and torrefied biomass were determined by the correlation proposed by Friedl 

et al. [34] and shown in Eq. 2.7. Several authors used this correlation in other torrefaction 

studies due to its accuracy (R
2
=0.935) [28], [35], [36]. 

𝐻𝐻𝑉 [
𝑘𝐽

𝑘𝑔
] = 3.55𝐶2 − 232𝐶 − 2230𝐻 + 51.2(𝐶 × 𝐻) + 131𝑁 + 20600 (2.7) 

Where C, H, and N are the carbon, hydrogen, and nitrogen contents from the ultimate 

analysis in wt. % on a dry basis, respectively. In order to observe the effect of torrefaction 

process on the heating value of biomass, lower heating value (LHV) was used in the study. 

To calculate the LHV, enthalpy of vaporization of water produced by hydrogen present in 

biomass is subtracted from the HHV [37]. 

2.2.5.6. Fuel value index 

The fuel quality of biomass torrefied at different temperatures and residence times is 

quantified by means of the fuel value index (FVI). This parameter is a measure of the 

global properties of biomass as solid biofuel. It relates important properties such as heating 

value, bulk density, and ash and moisture contents [38]–[40]. 

𝐹𝑉𝐼 [
𝑘𝐽

𝑐𝑚3
] =

𝐿𝐻𝑉𝑡𝑜𝑟𝑟[𝑘𝐽/𝑘𝑔] ⋅ 𝜌𝑏𝑢𝑙𝑘[𝑘𝑔/𝑐𝑚3]

%𝐻2𝑂 ⋅ %𝑎𝑠ℎ
 (2.8) 

2.3. Results and discussion 

2.3.1. Torrefaction process characterization 

2.3.1.1. Mass yield 

Figure 2.2 shows the mass yield of patula pine for the different torrefaction conditions. 

For torrefied material at 180 °C, the mass yield is around 88% regardless the residence time 

of the experiment. Mass losses associated with these torrefaction conditions are attributed 

mainly to biomass drying and the release of low-molecular-weight volatiles [12]. When 

torrefaction temperature increases to 210 °C, mass losses increase with residence time, 
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being more notable between 30 and 75 minutes. At the most severe temperature condition 

(i.e. 240 °C), mass losses are greater than 60%. This behavior is obtained because, between 

210 and 240 °C, oxidation reactions are activated leading to biomass carbonization [12], 

[9]. When residence time increases from 75 to 120 minutes, there is not have a significant 

effect on mass yield for the different torrefaction temperatures evaluated. Chen et al. [41] 

reported similar behavior for torrefied biomass under an inert atmosphere. By means of 

TGA analysis, they showed that the mass loss during torrefaction process at 240 and 275 

°C is stabilized after 60 minutes of residence time. Lu et al. [12] reported similar results for 

the mass yield for torrefied eucalyptus under an oxidizing atmosphere. However, the 

similar mass yields were reached at a higher temperature (325 °C). It is due to the 

geometries used in their study were blocks of 10x15x20 mm; which have a lower 

surface/volume ratio than wood chips. Greater surface areas improve heat and mass transfer 

during torrefaction process leading to higher mass losses in the torrefied material. Several 

authors have stated that surface oxidation is the dominant phenomenon in torrefaction 

under an oxidizing atmosphere, which leads to higher mass losses in torrefied wood chips 

[15]–[17]. 

 
Figure 2.2. Mass yield 

2.3.1.2. Energy yield 

Figure 2.3 shows the effect of torrefaction process on energy yield. For torrefaction 

conditions of 180 °C during 30 and 75 minutes, it can be seen that energy yield is quite 

similar. This behavior is attributed to the balance between heating value gains and mass 

losses during torrefaction process (see Figure 2.2 and Table 2.3). At 180 °C, increasing 
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residence time up to 120 minutes leads to an increase in the energy yield of torrefied patula 

pine. At this torrefaction temperature, mass yield does not change meaningfully, while 

heating value increases due to changes in chemical composition of pine (see section 2.2.3). 

For torrefied patula pine at 210 °C, energy yield diminishes when residence time increases. 

A higher residence time enhances mass losses that cannot be compensated by the heating 

value increase. The lowest energy yields are reached when torrefaction temperature is 240 

°C due to higher mass losses favored by the degradation of wood biomass by the oxidation 

reactions. Regarding residence time, torrefaction during 30 minutes leads to the highest 

energy yield for 240 °C as torrefaction temperature. This behavior is due to a lower 

residence time avoids high thermal degradation of biomass; therefore, less energy is 

released during torrefaction. 

 
Figure 2.3. Energy yield 

Unlike this study, Chen et al. [13] obtained greater energy yields although they conduct 

torrefaction experiments at higher temperatures than 240 °C (45 °C higher approximately). 

Results reported by these authors can be associated with differences in biomass particle 

sizes and experimental setup. On the other hand, similar results to our work are reported by 

Lu et al. [12], who obtained low energy yields (around 36.5%) for torrefied eucalyptus at 

temperatures that favored carbonization of the material (350 °C). 

2.3.1.3. Energy-mass co-benefit index 

Figure 2.4 shows the relative change of the EMCI for the different torrefaction 

conditions regarding the raw material (baseline). It can be observed that torrefaction at 180 
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°C during 30 and 75 minutes has a negative effect on the EMCI; which is associated with 

the non-significant change in the LHV regarding raw pine. At these torrefaction conditions, 

torrefied pine exhibits small changes in its elemental composition. For the other 

torrefaction conditions (210 ºC and 240 ºC), it is obtained a positive effect on the EMCI. 

Torrefied pine at 210 °C leads to a relative increase in the EMCI values up to 4.5%; which 

can be explained by a more noticeable heating value gain that overcomes the mass losses 

during torrefaction process. The highest relative increase of the EMCI (approximately 16% 

higher regarding raw pine) is reached for torrefied pine at 240 °C during 30 minutes. This 

increase is associated with the higher carbon content for pretreated pine at this condition 

(see section 2.2.2). If residence time increases for this temperature condition, the EMCI 

relative increase is lower due to oxidation reactions favored during torrefaction at 240 °C. 

 
Figure 2.4. Energy-mass co-benefit index 

2.3.2. Physicochemical characterization of torrefied biomass 

2.3.2.1. Physical properties: bulk density and grindability 

Figure 2.5a shows the bulk densities of raw and torrefied patula pine. In general, bulk 

density tends to diminish with increasing torrefaction temperature. Nevertheless, at 180 °C, 

there are not significant differences regarding the raw material when residence time 

increases. At this torrefaction temperature, low mass losses occur (around 10%, see Figure 

2.2) and are mainly associated with biomass drying instead of volatiles release [42]. When 

torrefaction is carried out at 210 °C, the bulk density of torrefied pine tends to decrease (5 

to 10%). At this temperature, mass losses become more considerable (14 and 20%, see 
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Figure 2.2) as a consequence of the thermal degradation of wood constituents (e.g. 

holocellulose) [14]. Additionally, biomass particle size does not change significantly. 

Thereby, the synergy of these phenomena leads to lower bulk densities of pretreated 

material. 

The lowest bulk densities are obtained at 240 °C. The density of pretreated pine reaches 

values around the 30% of the raw material bulk density. This result is attributed to the 

higher mass losses during torrefaction process due to thermal degradation of wood 

constituents and by the carbonization reactions favored at this temperature condition. For 

this torrefaction temperature, it is expected a severe or complete thermal degradation of 

wood constituents; namely hemicellulose and cellulose. Furthermore, fixed carbon of 

torrefied pine decreases with residence time for this torrefaction temperature as described in 

section 2.3.2.2 leading to a reduction of the biomass particle size during torrefaction 

process. Thus, since the particle size decreases at 240 °C with residence time, bulk density 

increases, as can be seen in Figure 2.5a. 

 
a) Bulk density 

 
b) HGI 

Figure 2.5. Physical properties of raw and torrefied patula pine chips 

Figure 2.5b shows the HGI in function of the torrefaction severity factor (Table 2.1) in 

order to show the progressive change in the grindability behavior of the pretreated material. 

An increase in the process severity favors the grindability of pine wood chips, particularly 

in the most severe conditions (240 °C). Ohliger et al. [30] reported that biomass 

grindability increase when mass losses overcome the 30% due to thermal degradation of 

hemicellulose. A higher HGI is associated with lower energy consumption required to grind 

torrefied material [29]. Ibrahim et al. [28] presented values of HGI for different wood 

biomass torrefied at different temperature (270 and 290 °C) and time (30 and 60 minutes) 
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conditions under an inert atmosphere. Their results for torrefied eucalyptus (HGI=38.9–

46.8) are similar to the results obtained in the present study. 

     
Raw 180-30 180-75 180-120 210-30 

   
 

 

210-75 210-120 240-30 240-75 240-120 

Figure 2.6. Physical changes occurred during torrefaction of patula pine wood chips 

Figure 2.6 shows physical changes occurred during torrefaction of patula pine wood 

chips at different pretreatment conditions. It can be seen how torrefaction severity affects 

the wood chips color. Torrefied pine at 240 °C has a char-like appearance due to the 

carbonization reactions occurred during the pretreatment. Changes in the color of torrefied 

materials result from the oxidation of phenolic compounds, presence of reduced sugars and 

amino acids, release of formaldehyde, and aromatization and polycondensation reactions 

[43]. 

2.3.2.2. Composition and heating value 

Table 2.3 shows the proximate analyses for raw and torrefied patula pine at different 

pretreatment conditions. All torrefied samples at 180 °C and 210 °C during 30 minutes 

exhibit a slight decrease in their VM contents. At 210 °C, the release of VM increases with 

the residence time. A reduction of VM content leads to a relative increase of fixed carbon 

(FC) content in the torrefied materials. According to Rousset et al. [14], this release of 

volatiles is associated with the thermal degradation of cellulose due to the oxidizing 

environment during torrefaction process. This behavior differs with torrefaction under an 

inert atmosphere where the release of volatiles is mainly related to hemicellulose 

decomposition [41]. In this work it is obtained different results from those reported by Lu 

et al. [12] who also studied wood torrefaction under an oxidizing atmosphere. At 250°C, 
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they reported higher VM content (around 15%) than the concentration reached in this work 

at 240 °C. This difference is attributed to the higher size and shape of biomass studied by 

Lu et al. 

 

Table 2.3. Chemical properties of raw and torrefied patula pine 

Sample 
Proximate analysis [wt.% db] Moisture 

[wt.%] 
LHVdb 

[MJ/kg] Volatile matter Fixed carbon Ash 

Raw 83.83 15.85 0.32 8.35 16.85 

180-30 82.21 17.43 0.35 6.78 15.94 

180-75 81.50 18.15 0.35 5.40 16.30 

180-120 80.78 18.87 0.35 4.86 17.12 

210-30 80.92 18.72 0.36 3.71 17.25 

210-75 78.46 21.16 0.38 3.79 17.76 

210-120 76.08 23.53 0.39 3.45 17.19 

240-30 28.59 70.48 0.93 7.72 23.90 

240-75 32.01 66.78 1.21 9.71 21.08 

240-120 33.90 64.87 1.23 10.01 21.16 

For torrefied pine at 240 °C, there is a considerable decrease of VM; which is associated 

with the severe or complete thermal degradation of the major wood constituents (i.e. 

hemicellulose and cellulose). During torrefaction at this temperature conditions, it is 

evidenced that oxidation reactions appear. Regarding FC content, the pretreated pine 

reaches concentrations about 70%. This composition is close to that of a biochar; thereby, 

these conditions are more associated with a carbonization process than a torrefaction one 

[12], [13]. Biomass carbonization has as result in an improvement in the heating value 

regarding the raw material [18]. Peláez-Samaniego et al. [43] reported a similar char-like 

material for a torrefaction process under an inert atmosphere. In this works, FC content of 

torrefied pine at 240 °C diminishes with increasing residence time. A longer residence time 

favors secondary oxidation reactions in the carbonaceous material, which affects the 

heating value negatively. 

The effect of torrefaction severity on wood elemental composition is shown in Figure 

2.7a. At 180 °C during 30 and 75 minutes, pine composition is quite similar to the raw 

material, since at these conditions the drying is the main subprocess favored. For other 

torrefaction conditions, the carbon content tends to increase (up to 40%) while hydrogen 

and oxygen contents tend to decrease (up to 66% and 37%, respectively) with torrefaction 

severity. At 240 °C, pine composition changes become greater; the highest carbon content 
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is obtained at this temperature for 30 minutes. However, at 240 ºC, the carbon content 

diminishes with residence time due to the oxidation reaction. 

 
a) Ultimate analysis 

 
b) Van Krevelen 

Figure 2.7. Chemical properties and composition of pine under the different torrefaction 

conditions 

Another way to see the effect of torrefaction on patula pine composition is through the 

Van Krevelen diagram (Figure 2.7b). The figure shows the changes in the atomic H/C and 

O/C ratios for the different torrefaction conditions. Both ratios tend to decrease with 

torrefaction severity, especially for the most severe changes reached at 240 °C. The 

reductions of these atomic ratios are associated with the volatiles release due to the thermal 

degradation of wood constituents, that leads to an increase in the heating value of the 

torrefied pine (see Table 2.3) [11]. 

The atomic H/C ratio of torrefied biomass under an inert atmosphere tends to be higher 

than the obtained under an oxidizing atmosphere for the same temperature conditions [12]. 

This result is due to the thermal degradation of elements such as hydrogen and oxygen 

associated with the decomposition of wood constituents. The thermal degradation during 

torrefaction is favored by the oxidizing environment which leads to a relative increase in 

the carbon content of pretreated materials [12]; while for an inert atmosphere, it is required 

higher torrefaction temperatures to reach a reduction in the H/C ratio. For instance, in this 

work at 210 °C during 75 minutes (FS=5.11), it is obtained a reduction in the H/C ratio of 

8%; whereas, under an inert atmosphere to reach a similar H/C reduction with ponderosa 

pine, it was required to pretreat the wood at 275 °C during 30 minutes (SF=15.3 according 

to Eq. 2.1) [43]. 
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2.3.2.3. Biomass properties as solid fuel 

LHV for raw and torrefied biomass is shown in Table 2.3. Torrefied pine at 180 °C 

during 30 and 75 minutes have a lower LHV than raw pine (around 5%). This reduction is 

mainly attributed to the error associated with the correlation used (Eq. 2.7) to estimate the 

HHV. For the other torrefaction conditions, this parameter tends to increase with 

torrefaction severity; this is attributed to the reduction of the H/C and O/C ratios (section 

2.2.2.). The highest LHV was obtained for 240 °C and 30 minutes of residence time (23.9 

MJ/kg). The increase in the heating value of torrefied biomass allows obtaining higher 

efficiencies in further thermochemical processes such as gasification, combustion, and 

pyrolysis [9]. 

Figure 2.8 shows the relative change in the FVI for the torrefied pine regarding the raw 

material (baseline). The most severe conditions (i.e. 240 °C) have a negative effect on pine 

wood chips as solid biofuel. The lower FVI is due to the drastic reduction in the bulk 

density (Figure 2.5a) that cannot be compensated by the higher heating value of these 

materials. Additionally, these samples have higher moisture contents because of the 

oxidation reactions that could produce water vapor during torrefaction process (see Table 

2.3). On the other hand, at 180 °C, the biomass FVI tends to increase. Nevertheless, this 

enhancement is mainly attributed to biomass drying since bulk density, composition and 

heating value do not change meaningfully. Therefore, the best torrefaction conditions to 

obtain high-quality fuel are reached with a torrefaction temperature of 210 °C. These 

torrefaction conditions exhibit a considerable decrease in the moisture content (around 

60%), and an increase in the LHV (around 5%); which compensates the lower bulk density 

and higher ash content regarding raw pine. 
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Figure 2.8. FVI changes for torrefied pine regarding the raw material 

2.3.2.4. Methodology to select the best torrefaction conditions 

In order to find the best torrefaction condition for this study, it is proposed to analyze the 

torrefaction process performance and the fuel quality of torrefied pine. Figure 2.9 shows the 

relation between FVI and EMCI for each torrefaction condition. Moreover, a hypothetical 

linear behavior of the two indices is presented; this ideal line shows that an increase in the 

EMCI leads to a proportional increase in the FVI or vice versa. Torrefaction of patula pine 

at 210 °C during 30 minutes is the condition that better adjust to the straight line, followed 

by torrefaction at 180 and 210 °C during 120 minutes. However, torrefaction at 210 °C 

during 75 minutes is the more suitable mode to upgrade patula pine. Despite this condition 

has a lower FVI (Figure 2.8), its EMCI is much greater than the obtained at 210 °C for 30 

minutes (Figure 2.4). Therefore, according to the experimental plan conducted in this work, 

it is highlighted that to pretreat wood biomass (at 210 ºC for 75 min) under oxidizing an 

atmosphere leads to produce an upgraded biofuel with a FVI= 1.15 kJ/cm3 with a process 

improvement of 4.4%. 
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Figure 2.9. FVI and EMCI for raw and torrefied patula pine 

Conclusions 

Wood biomass torrefaction process conducted under an oxidizing atmosphere (air) 

represents a feasible option to upgrade biomass properties. Under the experimental 

conditions carried out in this work, the following conclusions can be drawn: 

 The mass and energy yields of torrefied patula pine decrease with temperature. Mass 

losses can be above the 70% when torrefaction temperature is 240 °C due to 

hemicellulose and cellulose decomposition and by the oxidation reactions. Likewise, at 

210 and 240 °C, these yields also decrease with residence time. The heating value gain 

due to the reduction of the H/C and O/C ratios does not compensate the higher mass 

losses to increase the energy yield. 

 Physical properties of patula pine are affected by torrefaction severity (temperature and 

residence time). A higher torrefaction severity implies a reduction in the bulk density up 

to 40% regarding raw pine (170 kg/m3). On the other hand, grindability index improves 

considerably with torrefaction process. Torrefied pine at 240 °C has a HGI between 10 

to 15 times greater than HGI for raw pine. 

 To carry out a torrefaction process under an oxidizing atmosphere with severity factors 

below 4.72 (210 °C – 30 min) is not enough to cause significant changes in chemical 

composition of the pretreated material. This is because the volatiles release is not 

favored and hence, fixed carbon content of torrefied wood does not change 
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considerably. Torrefaction process at 240 °C favors the reduction of H/C and O/C ratios 

leading in a higher heating value, around 41% higher regarding the raw material. 

 Torrefaction process at 210 °C during 75 minutes (SF=5.11) is an optimum condition to 

pretreat pine wood since this condition favors the improvement of torrefaction process 

(EMCI=4.41%) and the quality of wood as solid biofuel (FVI=1.15 kJ/cm3). Torrefied 

pine at this condition exhibits an energy yield of 85.91%, a heating value and HGI 

increase of 5% and 17% regarding raw pine, respectively. 
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Chapter 3: Chemical and structural changes in 

torrefied wood biomass under an oxidizing 

atmosphere 

Sergio Ramos Carmona, Juan F. Pérez 

Abstract 

In this work, structure and morphology of patula pine wood chips torrefied under an 

oxidizing atmosphere are studied. Several analytical techniques were conducted to evaluate 

the changes in thermal behavior, chemical structure, surface area, and cell-wall structure of 

wood biomass at different torrefaction conditions. Torrefaction process was carried out in a 

rotary kiln varying the temperature (180, 210, and 240 °C) and residence time (30, 75 and 

120 minutes). Torrefied wood biomass has higher reactivity due to the increase in its pore 

surface area and pore size; which may also improve the grindability behavior of the 

material. Furthermore, pretreated material structure exhibits higher aromaticity by the 

relative increase of lignin content leading to an enhancement in the heating value. 

Therefore, torrefaction under the oxidizing atmosphere improves the quality of pine wood 

as a solid biofuel for further thermochemical processing such as combustion or gasification. 

However, as a consequence of the thermal decomposition of cellulose, pyrolysis behavior 

may be affected. 

 

Keywords: Torrefaction, oxidizing atmosphere, Patula pine chips, wood biomass, 

morphological characterization, FTIR, SEM, BET, TGA. 

3.1. Introduction 

Renewable energy sources have been utilized worldwide to mitigate the impact of global 

warming. Moreover, these resources have been promoted to diminish the high dependence 

of fossil fuels in the energy market [1]. Among several renewable alternatives for energy 

production is biomass, which is the most used due to its higher and decentralized 

availability compared with wind and solar energies [2]. Biomass has high moisture content 

which leads to fast fungal decomposition, low bulk and energy densities, and it requires 
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high power consumption for milling [2]–[4]. These characteristics contribute to decrease 

processing efficiencies and increase storage and transportation costs [5]. Upgrading 

strategies such as torrefaction have been implemented to improve biomass properties as 

solid biofuel. Torrefaction is a thermochemical process conducted in inert environments 

(e.g. Nitrogen) at temperatures ranging from 200 to 300 °C [2]–[4]. Torrefied biomass has 

higher heating value due to the reduction of moisture content and O/C ratio, better 

grindability properties, and hydrophobic nature compared with the raw material [6]–[11]. 

Using an inert atmosphere for torrefaction process implies higher operating costs because 

of the production and/or acquisition of the carrier gas [5], [12], [13]. The reduction of 

torrefaction operating costs can be achieved using air as a carrier gas to conduct an 

oxidative torrefaction [5]. However, an oxidizing atmosphere can promote oxidation 

reactions of the volatile matter released, and to oxidize the surface of the pretreated 

biomass [13], [14]. 

Several studies have been carried out in order to study the effect of the oxidizing 

atmosphere on the torrefaction process. Some of them have reported that oxygen 

concentration in the carrier gas did not affect the biomass composition, and mass and 

energy yields significantly [14], [15]. On the other hand, other authors such as Uemura et 

al. [16] reported that mass yield decreases with increasing torrefaction and oxygen 

concentration. Furthermore, they stated that oxidative torrefaction occurs in two successive 

steps; namely conventional torrefaction and oxidation. During conventional torrefaction, 

thermal degradation of biomass is related to cellulose decomposition instead of 

hemicellulose as occur in torrefaction process under an inert atmosphere [14]. For the 

oxidation stage, the CO2 concentration in volatiles released increases leading to a reduction 

of the heating value of torrefied biomass [15]. This oxidation stage is favored by the carrier 

gas superficial velocity, which intensifies the mass and heat transfer in biomass during 

torrefaction process [13]. Regarding biomass type, authors have reported that oxidative 

torrefaction is a process suitable for lignocellulosic biomass, since its cell wall structure is 

relatively insensitive to the oxidative reaction [5], [17]. Torrefaction under an oxidizing 

atmosphere also improves heating value, hydrophobicity, and grindability behavior of 

pretreated material [18], [19]. Therefore, this process is suitable for upgrading wood 

biomass properties as solid biofuel reducing process operating costs. Nevertheless, despite 
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this process has been studied widely, a deeper study of the morphological and structural 

changes of biomass with oxidative torrefaction was not found in the literature cited as it 

occurs for the torrefaction process under an inert atmosphere [2], [9], [20], [21]. 

The aim of this work is to present a detailed study of the effect of torrefaction process 

under an oxidizing atmosphere (air) on the structure and morphology of a wood biomass. 

Different torrefaction temperatures (180, 210, and 240 °C) and residence times (30, 75, and 

120 minutes) were conducted in a batch rotary kiln to obtain several torrefied materials. 

Raw and torrefied wood biomass were characterized through proximate and ultimate 

analyses, TGA, BET surface area, FTIR, and SEM to evaluate how the wood biomass is 

affected looking to produce an upgraded biofuel for further thermochemical processes. 

3.2. Materials and methods 

3.2.1. Materials 

The raw material is patula pine wood (Pinus patula) obtained from a commercial timber 

sawmill located nearby Medellín, Colombia. The selection of this wood species took into 

account the silvicultural potential that pine offers in Colombian lands such as planted area 

(3849 ha), mean annual increment (MAI, 20 m
3
/ha/year) and harvested time (13 years) 

[22]. Small diameter logs were debarked before a chipping process. The wood sample was 

chipped using a Bandit 95XP chipper, then located on the floor (trying to keep a uniform 

thickness layer of chips) and dried at room conditions during two weeks. Then, the wood 

chips were sieved and classified by size between 10 and 20 mm. This range was selected 

due to it is the typical size of wood chips used in further thermochemical processes such as 

gasification and combustion (fixed bed), which allows obtaining an oxidation stage more 

stable [23], [24]. 

3.2.2. Experimental setup and torrefaction process 

Torrefaction process was carried out in a batch rotary kiln of 2 kg capacity. A PID 

controller is used to adjust the temperature and heat rate according to the different 

torrefaction conditions. A detailed description of torrefaction facility is explained in chapter 

2. Heat rate was fixed to 10 °C/min due to the objective of the study is not to evaluate the 

effect of this parameter on the torrefaction performance. The air flow was set at 1 slpm to 

obtain a low air superficial velocity. According to Chen et al. [13], higher mass yields in 
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the torrefaction process were reached with low air superficial velocities. Three levels of 

torrefaction temperatures (180, 210, and 240 °C) and three levels of residence time (30, 75, 

and 120 minutes) were evaluated. After torrefaction process, the materials were ground and 

sieved using a 35–mesh to perform its characterization. The experimental tests were coded 

as temperature-time, i.e. a code 180-30 corresponds to a test conducted at 180 ºC for 30 

minutes as residence time (section 3.3.3). 

3.2.3. Proximate and ultimate analyses 

Proximate and ultimate analyses were conducted to follow the changes in patula pine 

composition for the different torrefaction conditions. Proximate analysis procedure was 

based on the modification of the method proposed by Medic et al. [25]. On the other hand, 

ultimate analysis procedure followed the ASTM D 5373-08 standard [26]. A detailed 

description of the equipment and methodology utilized in the study is found in chapter 2. 

3.2.4. Analytical techniques 

Several instrumental techniques were performed to get a deeper insight of the changes in 

torrefied wood biomass under the oxidizing atmosphere. Among these techniques are TGA 

and FTIR analyses, BET surface area, and SEM images. 

3.2.4.1. Thermogravimetric analysis (TGA) 

TGA analysis was conducted in order to study the thermal behavior of raw and torrefied 

biomass. Analyses were carried out in a thermogravimetric analyzer TA Instruments Q50. 

The heating rate was 10 °C/min and the temperature varied from room conditions to 600 °C 

with a nitrogen flow of 100 ml/min. Approximately 10 mg (±2%) of material was 

employed in each case, and tests were conducted in duplicate to verify results. From DTG 

curves, two parameters were determined to describe the devolatilization temperature and 

reactivity of pretreated materials. The parameters are the base temperature and the 

reactivity factor, which are determined following the procedures described by Barrera et al. 

[27] and Ghetti [28], respectively. 

The base temperature of material is defined as the temperature in which the DTG curve 

is equal to 1 %/min in the devolatilization stage [27]. Materials with higher base 

temperature are considered more thermally stables. The reactivity (Ra, min-1) is defined 
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according to Eq. 3.1, where m0 is the initial mass in the thermogravimetric test in mg, and 

DTGmax is the highest value of the DTG curve in mg/min [28]. 

𝑅𝑎 =
1

𝑚0
⋅ 𝐷𝑇𝐺𝑚𝑎𝑥 (3.1) 

3.2.4.2. Infrared spectroscopy characterization (FTIR) 

The changes in chemical structure of pine wood for the different torrefaction conditions 

were followed by FTIR analysis. For qualitative FTIR a KBr pellet was prepared at 2 wt.% 

of wood. A Shimadzu IRAffinity-1 spectrometer was used with a detector operated in a 

wavenumber range of 4000-400 cm
-1

. Three measurements of each sample were taken to 

estimate the method repeatability. 

3.2.4.3. Brunauer–Emmett–Teller (BET) surface area 

The pore surface areas of the raw and torrefied patula pine were determined by gas 

adsorption isotherms using N2 at -196 °C as adsorptive with a Micrometrics ASAP 2020 

equipment. Samples were outgassed to 10 µmHg at 80 °C during 8 h. The Brunauer–

Emmett–Teller (BET) theory was applied to the N2 adsorption data in the interval of 

relative pressure (P/P0) 0.06–0.3 at 77 K. This analysis aims to determine the mesoporous 

surface area evolution for the different torrefaction conditions. 

3.2.4.4. Scanning electron microscopy (SEM) 

Changes in morphology of cell wall structure of raw and torrefied biomass were 

observed with SEM micrographs. A small amount of ground material for each torrefaction 

condition was previously covered with a gold film. Then, covered samples were placed in a 

JEOL JSM-6490 microscope operated at an accelerating voltage of 30 kV with a 40, 150 

and 500 magnifications. 

3.3. Results and discussion 

3.3.1. Proximate and ultimate analyses 

Table 3.1 shows the compositions and mass yields for the raw and torrefied patula pine. 

Mass yield is a measure of the remaining solid after torrefaction process, as explained in 

chapter 2. This parameter decreases when torrefaction temperature and residence time 

increases. Nevertheless, temperature has more effect than residence time. Indeed, the mass 
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yield does not change meaningfully when residence time increases from 75 to 120 minutes. 

Volatile matter content for pretreated material decreases with increasing torrefaction 

temperature up to 210 °C regardless residence time. This behavior is associated with the 

progressive thermal degradation of wood constituents (cellulose, hemicellulose); which 

decompose in a wide temperature range [14], [29]. Volatiles released have high O/C and 

H/C ratios; thereby, the hydrogen and oxygen contents of pretreated biomass decrease [5]. 

Therefore, for these torrefaction conditions (up to 210 °C) is obtained a relative increase in 

both fixed carbon and elemental carbon contents. For torrefied pine at 240 °C, its 

composition is quite similar to char composition. This is a consequence of the oxidation 

that patula pine suffers at this torrefaction temperature [5], [17]. When residence time 

increases, oxidation reactions prevail leading to a decrease in the fixed carbon and 

elemental carbon contents. Materials with high fixed carbon and elemental carbon contents 

have a better heating value favoring their quality as feedstock for further thermochemical 

processing (e.g. combustion, gasification) [23]. Chapter 2 presents a detailed study of the 

effect of torrefaction process under an oxidizing atmosphere on fuel properties of patula 

pine. 

Table 3.1. Chemical composition of raw and torrefied patula pine 

Torrefaction 

condition 

Mass 

yield 

[%] 

Ultimate analysis [wt. % daf 
a
] Proximate analysis [wt. % db

b
] 

C H N O 
Volatile 

matter 

Fixed 

carbon 
Ash 

Raw - 55.70 7.14 0.19 36.97 83.83 15.85 0.32 

180-300 89.47 55.15 7.20 0.15 37.50 82.22 17.43 0.35 

180-750 87.79 55.40 6.96 0.00 37.64 81.49 18.15 0.36 

180-120 87.55 56.45 6.60 0.48 36.47 80.78 18.87 0.35 

210-300 86.07 56.91 6.74 0.44 35.91 80.92 18.72 0.36 

210-750 80.30 58.15 6.59 0.22 35.04 78.46 21.16 0.38 

210-120 78.36 57.68 6.51 0.00 35.81 76.08 23.53 0.39 

240-300 34.19 76.03 3.75 0.35 19.87 28.59 70.48 0.93 

240-750 27.04 72.58 2.49 0.02 24.91 32.01 66.78 1.21 

240-120 26.56 71.17 2.65 0.08 26.10 33.90 64.87 1.23 
a
 dry ash free, 

b 
dry basis 

3.3.2. Thermogravimetric analysis 

Figure 3.1 shows the DTG of raw and torrefied pine wood to study their thermal 

behaviors. The curves for torrefied samples were multiplied by their respective mass yield 

(see Table 3.1) to establish a standard basis (i.e. raw basis) for comparison purposes, and to 
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follow the thermal degradation of wood constituents with torrefaction severity. This 

procedure followed the methodology that Pelaez-Samaniego et al. [30] used for a similar 

biomass (ponderosa pine) torrefied under an inert atmosphere (N2). Raw pine exhibits a 

shoulder corresponding to hemicellulose decomposition at approximately 320 °C, and a 

peak related to cellulose degradation at 360 °C [29], [30]. Hemicellulose is the wood 

constituent mainly affected when torrefaction process is carried out under an inert 

atmosphere due to its thermal decomposition occurs between 150 and 350 °C [29]. On the 

other hand, when is present in the carrier gas during a torrefaction process, cellulose is the 

wood constituent that starts to decompose due to the enhancement of its thermal reactivity 

which accelerates the mass loss in the first stage of the process [14]. This behavior can be 

seen in the DTG curves of torrefied material where in the temperature range related to 

hemicellulose decomposition (150–350 °C), devolatilization of material still occurs [29]. 

For torrefied pine up to 210 °C during 120 minutes, if the torrefaction severity increases, 

the peaks associated with cellulose decrease and move towards lower temperatures. Peak 

shifting to lower temperatures implies changes in the structural characteristics of cellulose 

in torrefied patula pine due to depolymerization reactions that occur during torrefaction 

process [31]. Therefore, cellulose becomes a more reactive constituent due to these 

structural changes; i.e. its thermal decomposition occurs at lower temperatures. 

Hemicellulose is not affected severely with increasing torrefaction severity; this leads to a 

relative increase of this constituent in the pretreated materials. On the other hand, torrefied 

pine at 240 °C shows a different thermal behavior. At these torrefaction conditions, DTG 

curves are almost straight lines. A complete degradation of hemicellulose and cellulose 

occur at these conditions; which leads to obtaining a char-like material. Therefore, for this 

temperature condition is better to talk about a partial combustion process than a torrefaction 

one. A partially oxidized material is characterized by high fixed carbon and element carbon 

contents [17], which agrees with proximate and ultimate analyses of material treated at 240 

°C (Table 1). For these materials, element carbon and fixed carbon range from 71–76% and 

64–70 %, respectively. Pelaez-Samaniego et al. [30] obtained a similar thermal behavior 

when torrefied ponderosa pine under an inert atmosphere at 350 °C during 30 minutes. 

Thereby, it can be concluded that oxygen accelerates oxidation of the material during 

torrefaction process when the air is used as the carrier gas. 
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Figure 3.1. DTG curves for raw and torrefied patula pine 

Figure 3.2a shows the base temperature, which is a measure of the start of the 

devolatilization stage for samples analyzed by the TGA; i.e. a higher base temperature is 

associated with a higher thermal stability. Volatile matter (VM) plays a key role in the 

devolatilization process of raw and torrefied biomass. For torrefied material at 180 °C, VM 

contents do not change at these torrefaction conditions meaningfully. As torrefaction 

severity increases from 210 °C and 30 minutes to 210 °C and 120 minutes, the base 

temperature increases while VM content decreases (Table 3.1). Therefore, the thermal 

stability of torrefied samples increases implying that a higher temperature is needed to start 

the devolatilization of a pretreated material at these conditions. Regarding torrefied biomass 

at 240 °C, base temperature tends to decrease with a residence time beyond 75 minutes. 

This behavior occurs because at this temperature condition, volatile matter increases with 

increasing residence time as explained before (see section 3.3.1.). Nevertheless, even 

though the devolatilization stage is delayed, its duration becomes shorter for torrefied 

material (i.e. treated material up to 210 °C during 120 minutes). Figure 3.1 shows how the 

temperature range in which devolatilization occurs becomes shorter with increasing 

torrefaction severity. This behavior is associated with the increase in the reactivity of 

torrefied material and the structural changes in wood constituents.  

Figure 3.2b shows the relation between the reactivity and the VM:FC ratio of each 

sample. For torrefied material, reactivity tends to increase with severity degree despite VM 

content decreases. The release of volatile matter during torrefaction process leads to 

increase the porosity of torrefied wood, and hence their surface area (see sections 3.3.4. and 
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3.3.5.). A higher surface area increases the heat and mass transfer areas that favor a faster 

devolatilization process [32], [33]. For materials treated at 240 °C, reactivity decreases 

considerably due to the increase of fixed carbon regarding raw material (see Table 3.1). The 

increase of reactivity, with residence time for this temperature condition is associated with 

the higher VM contents and surface areas of samples treated during more time. As stated 

above, the increase of the VM content with the residence time of char-like material 

obtained at 240 °C is due to the oxidation reaction of fixed carbon with oxygen in the 

carrier gas. In general, reactivity for torrefied material during 180 and 210 °C does not 

change significantly regarding raw pine; which is suitable for the biofuel since a delayed 

volatiles release would reduce its reaction velocity in thermochemical processes such as 

gasification and/or combustion [23]. 

Since torrefaction under the oxidizing atmosphere decomposes cellulose structure 

instead of hemicellulose, it is expected that the behavior of pretreated material changes if 

they are used as feedstock in a thermochemical process such as pyrolysis. The main 

pyrolysis products from hemicellulose, cellulose, and lignin decomposition are acetic acid, 

levoglucosan, and phenolic compounds, respectively [34]–[37]. Then, it is expected that a 

bio-oil obtained from the pyrolysis of torrefied pine at low and medium temperatures (i.e. 

180 and 210 °C) will have higher acetic acid and lower levoglucosan concentrations. This 

behavior is due to the relative increase of hemicellulose with torrefaction severity, which 

has acetyl groups that produce the acid [38]. Furthermore, the decomposition of cellulose 

and structural changes of this constituent with torrefaction would affect the production of 

the levoglucosan. Thereby, bio-oil will not have a good quality for bioethanol production, 

which needs high concentrations of levoglucosan, but can be used as feedstock to produce 

multiple high-value chemicals in few conversion steps [36], [37]. For a bio-oil from 

torrefied biomass under an inert atmosphere, several authors have reported an opposite 

behavior; i.e. pyrolysis bio-oil has higher levoglucosan and lower acetic acid concentrations 

due to the thermal decomposition of hemicellulose during torrefaction process [36]–[38]. 
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a) Base temperature b) Reactivity  

Figure 3.2. TG parameters of different torrefaction conditions 

3.3.3. Infrared spectroscopy characterization (FTIR) 

The analysis of FTIR was conducted by overlapping the spectra in the same baseline for 

comparison purposes. Figure 3.3 shows all FTIR spectra for raw and torrefied patula pine. 

This figure shows materials that are considered as torrefied (labeled as “Torrefaction” 

below raw spectrum) and partially oxidized (labeled as “Partial oxidation” above raw 

spectrum). In the range of 4000–2400 cm
-1

, the OH stretching band (3450–3400 cm
-1

) do 

not present significant changes in torrefied biomass at 180 °C during 30 minutes 

concerning raw material; which is in agreement with the proximate analysis of these 

materials where moisture, hydrogen, and oxygen contents change slightly (Table 3.1). 

When residence time increases to 75 and 120 minutes with torrefaction temperature of 180 

°C, the OH bands diminish in intensity. This trend is attributed mainly to loss of water due 

to drying of biomass instead chemical reactions during torrefaction process. For torrefied 

materials at 210 °C, OH stretching band does not change almost in intensity but it does in 

shape. This band becomes broader since intramolecular hydrogen bondings and hydroxyl 

groups from phenols are detectable around 3300 cm
-1

 [39]. Phenolic compounds are related 

to lignin content present in biomass [30]. As mentioned before, biomass torrefied at 240 °C 

is subjected to greater oxidation reactions which result in a char-like material due to 

complete degradation of cellulose and hemicellulose [29], [30]. For these materials, it can 

be seen that the OH bands do not have a defined shape and show higher intensity regarding 

the raw pine. Oxidation of the pretreated material implies aromatization reactions that are 

identified in a wavenumber around 3050 cm
-1

 [21]. The occurrence of the new signal leads 

to the superposition of these peaks and hence, a straight line in the spectra of torrefied 
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samples at 240 °C is seen between 3300 and 3050 cm
-1

. Increase in intensity of the OH 

bands at these torrefaction conditions may be due to a relative increase in lignin content 

and/or oxidation reactions presented under the experimental conditions; which could 

produce water on the surface of treated materials. Hydroxyl groups in biomass structure are 

related to its hydrophobic nature [2]. However, FTIR spectra do not give precise 

information about the loss or gain of these groups during these torrefaction conditions. 

 
Figure 3.3. FTIR spectra for raw and torrefied patula pine 

The range of 2950–2850 cm
-1

 corresponds to CH stretching vibrations assigned to 

aliphatic groups [21]. For torrefaction temperatures of 180 and 240 °C, this band tends to 

diminish with torrefaction severity, i.e. the bands decrease with increasing residence time. 

Reduction in peak intensities is due to the volatiles released during torrefaction process. 

According to the proximate analysis, the VM/FC ratio decreases with torrefaction severity 

(Table 3.1). For torrefied biomass at 210 °C, the peak related to asymmetrical stretching of 

methylene groups –CH2 (~2936 cm
-1

) is not shown defined as in the raw spectrum due to 

the increase in the intensity of the symmetrical stretching of methylene –CH2 and methyl –

CH3 groups (~2860 cm
-1

). Despite the release of volatiles, this band (CH stretching) does 

not diminish with residence time for this torrefaction temperature. Partial depolymerization 

of cellulose, which occurs at this torrefaction temperature, changes the structural 

characteristics of this constituent and increases the aliphatic groups in the torrefied material 

[40], [41]. 
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The OH and CH bands are related to all wood constituents, i.e. cellulose, hemicellulose, 

and lignin [31]. Thereby, it is not possible to associate changes in these bands to a 

particular constituent. Modifications in the wood constituents due to torrefaction process 

can be seen in the bands ranged from 400 to 2000 cm
-1

 [31], [40]. Bands at about 1710–

1740 cm
-1

 are related to the stretching vibrations of the C=O groups attributed to oxygen 

functionalities in non-conjugated and conjugated systems (carbonyl/carboxyl groups) of 

hemicelluloses [2], [21]. For torrefied biomass at 180 °C, peak intensity does not change 

significantly with increasing residence time. According to proximate and ultimate analyses, 

torrefied samples at this temperature show a quite similar composition to raw biomass. At 

210 °C, torrefied materials at this temperature show higher intensity in the C=O band with 

increasing residence time. The increase in the intensity of this peak indicates a relative 

increase of the hemicellulose content in the torrefied material under the oxidizing 

atmosphere. This result is consistent with the DTG curves (Figure 3.1), where it is shown 

that the oxidizing atmosphere enhances cellulose decomposition instead of hemicellulose 

degradation during torrefaction process. For torrefaction process using inert atmosphere, 

different authors report that this signal tends to disappear due to the thermal degradation of 

hemicellulose caused by deacetylation during thermal treatment [2], [31], [42]. For biomass 

torrefied at 240 °C, the C=O signal increase in intensity with residence time and it is shifted 

to smaller wavenumbers. This behavior may be attributed to the increase of carbonyl or 

carboxyl groups in lignin by oxidation reactions [42]. 

The band at 1595 cm
-1

 corresponds to vibrations in the aromatic ring of lignin (C=C) 

plus C=O stretching [2], [42]. This peak increases with torrefaction severity (i.e. increasing 

temperature and residence time) which implies the higher aromaticity of torrefied biomass 

under oxidizing atmosphere due to the presence of more condensed guaiacyl units than 

etherified ones [31]. Torrefied materials at 240 °C show the highest intensities for this 

signal, which is in agreement with the behavior mentioned above related to the peak 

detected around 3050 cm
-1

 (aromatization reactions). Furthermore, this signal becomes 

broader suggesting an increase of structural diversity around the aromatic rings due to 

condensation reactions [42]. As well as the band at 1595 cm
-1

; the bands at 1508, 1430, and 

1269 cm
-1

 are related to the lignin content of raw and torrefied materials. These signals 

correspond to C=C aromatic ring vibrations, C–H deformation in lignin and carbohydrates, 
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and C–O stretching and linkage in guaiacyl aromatic methoxyl group, respectively [2], 

[21], [31], [42]. In general, these signals tend to diminish and become broader with 

torrefaction severity; except for torrefied biomass at 240 °C where the band around 1260 

cm
-1

 which increases markedly due to biomass partial oxidation. Therefore, torrefaction 

process under oxidizing atmosphere tends to modify lignin structure and increase its 

content, especially at higher temperatures where partial oxidation of the material occurs.  

The bands at 1376, 1160, 1050, and 898 cm
-1

 are related to cellulose and hemicellulose 

content in biomass. They represent C–H deformation, C–O–C asymmetric stretching, C–O 

stretching vibrations, and C–H deformation in polysaccharides, respectively [21], [31], 

[42]. For torrefied biomass at 180 °C, no major changes are observed with the increase in 

residence time which agrees with proximate, ultimate and TGA analyses. C–H deformation 

and C–O stretching vibrations bands decrease slightly, whereas C–O–C asymmetric 

stretching and C–H deformations in polysaccharides bands do not change with residence 

time. When torrefaction temperature increases to 210 °C, FTIR spectra show great changes 

in the 1160 and 1050 cm
-1

 wavenumbers. The peak intensities are higher when residence 

time increases, especially for the peak at 1050 cm
-1

 as a consequence of the relative 

increase of hemicellulose. Peaks at 1376 and 898 cm
-1

 do not show major changes in these 

torrefaction conditions. Regarding torrefied biomass at 240 °C, these bands (1376, 1160, 

1050, and 898 cm
-1

) do not appear due to complete degradation of the constituents during 

torrefaction process. The peak that is seen around 1200 cm
-1

 is related to C–O stretching 

and linkage in guaiacyl aromatic methoxyl group as stated above. The band at 670 cm
-1

 is 

characteristic for cellulose and, it is associated with O–H torsional vibrations [43]. Peak 

intensity tends to diminish with torrefaction severity. This behavior aids to support the idea 

that torrefaction at 210 °C under an oxidizing atmosphere decomposes cellulose structure 

of biomass instead of hemicellulose [14]. 

Another way to verify the structural changes in torrefied biomass is through the infrared 

indices. These indices are described and used by Pohlmann et al. with the purpose of 

following the wood decay in function of torrefaction severity [21]. Torrefaction severity 

factor is determined as described in chapter 2. Table 3.2 shows the infrared indices 

calculated for the different torrefaction conditions. Iar/Ial and IC=Clig ratios determine the 

aromaticity and lignin maturity of torrefied biomass, respectively. On the other hand, 
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IC=C/IC=O and ILIG/ICHY indicate the relative abundance of carbohydrates in the samples. The 

values of the different indices for the pretreated samples are used to compare with the raw 

material and determine changes in the fraction of the different wood constituents. 

Table 3.2. Infrared indices 

Torrefaction 

condition 

Severity 

factor 
Iar/Ial IC=Clig IC=C/IC=O ILIG/ICHY 

Raw 0.00 0.874 1.461 1.341 0.918 

180-300 3.83 0.909 1.521 1.381 0.908 

180-750 4.23 0.963 1.051 1.039 0.989 

180-120 4.43 0.923 1.070 1.040 0.972 

210-300 4.72 0.910 1.035 1.045 1.009 

210-750 5.11 0.969 1.068 1.031 0.965 

210-120 5.32 0.975 1.066 1.017 0.955 

240-300 5.60 1.139 2.091 1.837 0.878 

240-750 6.00 1.857 1.732 1.494 0.863 

240-120 6.20 1.586 1.866 1.443 0.773 

As expected, Iar/Ial index confirms the slight increase of aromaticity in torrefied biomass 

up to 210 °C and a greater increase when torrefaction temperature is 240 °C due to partial 

oxidation of pretreated material. However, this index decreases for the torrefaction 

condition of 240 °C during 120 minutes due to oxidation reactions, which are favored with 

the residence time. IC=Clig and IC=C/IC=O show similar behavior with torrefaction severity, i.e. 

the indices tend to diminish for torrefied material at 180 °C during 75 and 120 minutes and 

at 210 °C for all residence times. For torrefaction temperature of 240 °C, the indices are 

higher than those for raw biomass, but they decrease with the residence time that may 

enhance secondary reactions. On the other hand, ILIG/ICHY tends to increase slightly up to 

210 °C and 30 minutes, and then diminish with higher torrefaction severity. These 

behaviors are associated with modifications in lignin structure and thermal decomposition 

of cellulose and hemicellulose during torrefaction process. 

From an energy point of view, torrefaction process under an oxidizing atmosphere 

improves the quality of wood as feedstock for further thermochemical processes such as 

gasification or combustion. The reason is that thermal pretreatment enhances the abundance 

of C–O–C and C=C linkages in biomass structure due to the relative increase of 

hemicellulose and lignin. C–O–C and C=C linkages can release higher energy than other 

functional groups in biomass structure (e.g. C–O or C–H bonds); which implies the 

increase in energy density (i.e. heating value) of torrefied biomass [4], [44]. A higher 
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heating value in torrefied biomass allows reaching higher efficiencies in combustion and 

gasification processes [17]. The effect of torrefied wood on gasification process is 

presented in the chapter 4. 

3.3.4. Brunauer–Emmett–Teller surface area (BET)  

The aim of the BET analysis using N2 as the adsorption gas is to follow the mesopore 

surface area with increasing torrefaction severity [21]. Table 3.3 shows the specific surface 

areas as well as pore volumes and pore sizes for the different torrefaction conditions. It can 

be seen that for raw and treated material up to 210 °C during 120 minutes (Severity factor 

between 0 and 5.32), the specific surface area and pore volume range from 3.0 to 7.0 m
2
/g 

and from 0.001 to 0.003 m
3
/g, respectively. These values are in agreement with those 

obtained by Pohlmann et al. [21], Ibrahim et al. [2], and Park et al. [45] for raw and 

torrefied biomass under an inert atmosphere. Therefore, oxygen present in the carrier gas 

during torrefaction process at low-middle temperatures do not have a significant effect on 

the porous structure of treated materials. For material treated at 240 °C, the specific surface 

areas are bigger due to the oxidation reactions that occur at this temperature condition. 

Table 3.3. BET analysis for raw and torrefied patula pine. 

Torrefaction 

condition 

Severity 

factor 

BET surface  

area [m
2
/g]

a
 

Pore volume 

[m
3
/g] 

Pore size 

[Å] 

Raw 0.00 4.66 (0.19) 0.0017 14.17 

180-300 3.83 6.01 (0.12) 0.0020 13.23 

180-750 4.23 6.62 (0.22) 0.0023 14.04 

180-120 4.43 3.47 (0.23) 0.0012 13.76 

210-300 4.72 6.54 (0.15) 0.0024 14.60 

210-750 5.11 6.74 (0.14) 0.0023 13.92 

210-120 5.32 4.01 (0.18) 0.0016 15.80 

240-300 5.60 29.21 (0.57) 0.0144 19.72 

240-750 6.00 174.94 (4.88) 0.0878 20.07 

240-120 6.20 5.76 (0.11) 0.0020 14.22 
a
 Values in parenthesis are the corresponding standard deviations 

Torrefaction processes at the different temperatures tend to increase the surface area (up 

to 44%) of treated materials when their residence time does not exceed 75 minutes. This 

behavior is attributed to the release of volatiles that occurs at these temperatures, which are 

mainly composed by H2O and CO2 [21], [46]. Furthermore, when increasing torrefaction 

severity (time from 30 to 75 minutes), volatiles with higher molecular weights start to 

release and may plug some pores forming new ones. This plugging complicates the porous 
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structure leading to increasing the surface area of the torrefied material [46]. The increase 

in the surface area leads to the enhancement in the reactivity of the torrefied material as 

shown in the TGA analysis (section 3.3.2). 

On the other hand, once the residence time reaches 120 minutes, the surface area of the 

pretreated material decreases no matter the torrefaction temperature. As explained before 

(section 3.3.1), mass losses of treated material do not increase considerably when the 

residence time of torrefaction process increase from 75 to 120 minutes (see Table 3.1). 

Thereby, changes in surface area for this time conditions may be associated with secondary 

reactions between the oxygen, the volatiles released, and biomass during the torrefaction 

process (namely oxidation or depolymerization reactions). These reactions lead to the 

closure and restructuration of some mesopores, which results in a reduction of the specific 

surface area of the material. Chen et al. [46] reported similar behavior in the specific 

surface area of torrefied sawdust under an inert atmosphere. Likewise, treated materials 

(torrefied and oxidized) also have a microporous structure that can be enhanced due to the 

restructuration of the mesoporous one. The increase in microporous structure increases the 

surface area of the material. Pohlmann et al. [21] show that microporous surface areas for 

torrefied and carbonized pine are higher (around 20 and two times, respectively) than 

mesoporous ones. This behavior explains the higher reactivity of the material treated at 180 

and 210 °C during 120 minutes regarding same temperature conditions during shorter 

residence times (section 3.3.2); even when the mesoporous surface area decreases (Table 

3.3). 

3.3.5. Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) was carried out to study the changes in 

morphology of patula pine in function of torrefaction severity. Figure 3.4 shows SEM 

images of raw and torrefied materials. It can be seen that morphology of patula pine does 

not change considerably with torrefaction severity up to 210 °C during 30 minutes. 

Materials have fibrous nature and particle sizes around 400 µm. Additionally, the pits in 

pine structure are similar and have a tend slightly to increase in size with torrefaction 

severity and becoming in one (white circles) obtaining bigger pores in the structure. 

Furthermore, the mass losses that occur at these torrefaction conditions aid to create new 

pores, which improve the specific surface area of treated material (see section 3.3.4). 
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a) Raw b) Raw c) Raw 

   
d) 180-30 e) 180-75 f) 180-120 

   
g) 210-30 h) 210-75 i) 210-120 

   
j) 240-30 k) 240-75 l) 240-120 

Figure 3.4. SEM images of raw and torrefied patula pine. 

When the torrefaction severity reaches the 210 °C during 75 minutes and more severe 

conditions, the changes in morphology of the treated material start to be more evident. For 

torrefied pine at 210 °C during 75 and 120 minutes, cell walls exhibit structures with bigger 

and some destroyed pores regarding raw material due to the higher volatile matter released 

during torrefaction process. Likewise, pores of material torrefied during 120 minutes have 

suffered plastic deformation in the process leading to a collapse of the cell wall (see bold 
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arrows) due to secondary reactions that occur in the process. Furthermore, this torrefaction 

temperature is higher than the glass temperature of the hemicellulose and lignin which 

leads to softening of the cell wall of the material [47]. As a consequence of the collapse of 

the porous structure, the specific surface area of the material decreases; this is in agreement 

with the results obtained in relation to the surface area (section 3.3.4). Despite these 

structural changes, torrefied pine still shows a fibrous nature in the cell walls, which 

correspond to the presence of holocellulose after torrefaction process as described in 

section 3.3.2. When torrefaction temperature increases up to 240 °C, treated material has a 

more defined structure due to partial oxidation reactions that lead to a material rich in 

lignin. The fibrous nature of cell walls disappears implying the complete thermal 

degradation of hemicellulose and cellulose which agrees with the TGA analysis (section 

3.3.2.). Since this torrefaction temperature is the most severe, porosity is enhanced, and 

pore destruction becomes more evident as seen in Figure 3.4. 

The increase in porosity of torrefied material can be related to an enhancement in its 

thermal behavior and its grindability. The thermal behavior improves due to the higher 

porosity of the material; which leads to obtain higher heat and mass transfer areas in solid-

gas reactions associated with pyrolysis, gasification, or combustion processes. Additionally, 

the structure of a porous material is more fragile implying less energy power consumption 

by grinding. Therefore, torrefaction process under an oxidizing atmosphere is a feasible 

process to be conducted to improve the physicochemical properties of wood biomass. 

Conclusions 

Changes in chemical structure and morphology of patula pine torrefied under an 

oxidizing atmosphere were studied. Wood biomass composition is affected by temperature 

and residence time. Volatile matter content tends to decrease when torrefaction is 

conducted at low temperatures. However, for the most severe temperature condition (i.e. 

240 °C) it increases with residence time; since oxidation reactions on biomass surface are 

favored by the duration of torrefaction process. Carbon content of torrefied pine also 

increases with torrefaction severity. Due to severe thermal degradation of the wood 

constituents at the highest temperature (240 °C), it can be stated that biomass was subjected 

to partial combustion instead to a torrefaction process. Carbon contents for this torrefaction 

temperature reach values around 70%. This result agrees with the TGA analysis where no 
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devolatilization of hemicellulose and cellulose is observed. For low-temperature conditions 

(180 and 210 °C), the wood constituent that is mainly decomposed in the presence of 

oxygen is the cellulose. Moreover, the remaining cellulose in torrefied biomass suffers 

structural changes associated with depolymerization reactions. As a result, torrefied 

biomass at these temperature conditions exhibits higher thermal stability. Nevertheless, the 

thermal degradation of cellulose during torrefaction process may affect the behavior of the 

pretreated material if it is used as feedstock in a thermochemical process such as pyrolysis. 

It is expected that bio-oil obtained from pyrolysis of torrefied pine under the oxidizing 

atmosphere has lower levoglucosan and higher acetic acid contents. 

Torrefaction under the oxidizing atmosphere upgrade wood biomass properties as solid 

biofuel due to the increase of C–O–C and C=C bonds in its chemical structure. These 

linkages can release higher energy than others in pine structure, which results in an increase 

in the heating value of the torrefied material. Likewise, torrefaction at low temperatures 

enhances the porosity of the material which improves its reactivity. At higher temperatures 

(240 °C), pore structure is destroyed, and material has char-like properties caused by the 

greater oxidation reactions that occur in the process. This behavior may also improve the 

grindability behavior of the pretreated material. According to the final application of the 

solid material, torrefaction under the oxidizing atmosphere may be a suitable process to 

upgrade wood biomass properties as feedstock. 
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Chapter 4: Effect of torrefied wood biomass under 

an oxidizing atmosphere on downdraft gasification 

process 

Sergio Ramos-Carmona, Juan F. Pérez 

Abstract 

The performance of downdraft gasification process under autothermal conditions using 

torrefied biomass under an oxidizing atmosphere is studied in this work. An extended 

model in thermochemical equilibrium is used to evaluate the effect of torrefaction 

conditions, fuel/air equivalence ratio, and biochar production as a byproduct on producer 

gas composition, reaction temperature, cold gas efficiency, and the quality of the producer 

gas for internal combustion engine applications. The model was validated with a global 

relative error of 8.5% without considering methane concentration. Gasification of torrefied 

wood biomass at 180, 210, and 240 °C during 30, 75, and 120 minutes was simulated with 

the model. Biochar production affects the gasification performance due to the modification 

in the actual fuel/air ratio which leads to that the process tends to combustion regimes. 

Increasing fuel/air equivalence ratio allows to obtaining higher cold gas efficiencies (up to 

80%) and improve the quality of the syngas for engine applications (up to 2.5 MJ/kg). 

Regarding torrefaction conditions, an increase in process efficiency (from 77 to 82%) and 

quality of the producer gas (from 2.2 to 2.5 MJ/kg) can be achieved. This result is related to 

the increase of the autothermal zones in the gasification process and feedstock heating 

value with torrefaction severity (biomass with lower O/C and H/C ratios). Therefore, 

torrefaction under the oxidizing atmosphere to upgrade biomass prior its gasification is a 

suitable process to improve process performance, especially for internal combustion engine 

applications of the producer gas. Likewise, considering the biochar production during 

gasification in the extended model is a useful tool to simulate with more accuracy this 

thermochemical process. 

 

Keywords: Downdraft gasification, thermochemical equilibrium, torrefaction, oxidizing 

atmosphere, Patula pine wood. 
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4.1. Introduction 

Biomass is a renewable energy with a great potential to substitute partially and to reduce 

the fossil fuels dependence, mainly due to its high and decentralized availability, and 

versatility [1]. From biomass, it can be obtained solid, liquid, and gaseous products useful 

to further thermochemical or industrial processes [2]. Moreover, the use of biomass as 

energy source aids to mitigate environmental issues by pollutant emissions and to 

contribute to the goals proposed in the climate change conference COP 21 [3]. However, 

biomass as feedstock has several disadvantages such as high moisture content, low energy 

content, and hydrophilic nature resulting in high cost of transportation and storage [4]. 

Several strategies have been studied in order to upgrade biomass properties such as 

torrefaction. Torrefaction is considered as a mild pyrolysis process (200–300 °C) conducted 

under inert atmospheres during times less than 1h commonly [5]–[7]. A torrefied biomass 

exhibits better properties than the raw material due to the reduction in the moisture content 

and O/C ratio by thermal decomposition of hemicellulose [5], [8], [9]. Thereby, a pretreated 

biomass has higher heating value, better grindability behavior which reduces power 

consumption by grinding, and it acquires hydrophobic nature [10], [11].  

The supply of an inert gas during torrefaction process increases the operation costs of 

the process. An alternative way to reduce the production cost is using air as carrier gas to 

conduct an oxidative torrefaction process [12]. The effect of changing the torrefaction 

atmosphere on biomass properties has been studied widely [13]–[16]. It has been reported 

that torrefaction under an oxidizing atmosphere favors oxidation reactions on the biomass 

surface and of the volatile matter released during the process [16]. The main constituent 

thermally degraded during the pretreatment is the cellulose instead of hemicellulose [13]. 

Additionally, authors stated that the change of atmosphere is suitable for torrefaction of 

lignocellulosic biomass since its cell wall structure is relatively insensitive to the oxidizing 

environment [12], [15]. 

Torrefied biomass is often used in co-firing with coal and gasification applications. For 

co-firing conditions, several studies reported that the electrical efficiency decreases when 

increasing torrefaction temperature or biomass substitution ratio. Moreover, severe 

torrefaction temperatures were not suitable since the power consumption saved during 

grinding does not compensate the heat consumed during the pretreatment [17]. On the other 
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hand, NOx and SOx emissions diminish when torrefied biomass is co-fired with coal, due 

to the lower sulfur and nitrogen contents of biomass. Likewise, SO2 emissions decrease as a 

result of sulfur in ash due to this inert matter is mainly constituted by calcium, magnesium, 

and potassium [18].  

Gasification is a process that converts a solid feedstock into a gaseous fuel through its 

partial oxidation with a gasifying agent; e.g. air, pure oxygen, water vapor, or mixtures [1]. 

The producer gas can be burned in turbines or internal combustion engines for power 

generation, or used for the production of value-added chemicals [19]. The process using 

torrefied biomass as feedstock has been studied for all gasification technologies. For 

entrained flow gasifiers, torrefied biomass tended to produce more syngas with higher H2 

and CO concentration; therefore higher gasification efficiencies were achieved [7], [20], 

[21]. Also, depending on the torrefaction severity, higher carbon conversion efficiencies 

were reached [22]. Higher gas yield, gasification temperatures, producer gas heating value, 

and overall efficiencies were obtained in fluidized bed reactors [4], [6], [23]. Furthermore, 

lower tars yield and lower exergy efficiencies were achieved with this technology if the 

volatiles released during torrefaction are not exploited [4], [6].  

For fixed bed gasifiers, authors stated that torrefied biomass also led to higher syngas 

yield, H2 and CO concentrations, cold gas efficiencies, and lower tars yield regarding the 

raw material [24]–[26]. Nevertheless, these findings were obtained under non-autothermal 

conditions because the reaction temperature was fixed either in the experimental [26] or 

simulated [24], [25] studies. For an autothermal process, the reaction temperature is 

affected by the feedstock (heating value) and the fuel/air equivalence ratio [27].  

The aim of this work is to study the effect of torrefied biomass under an oxidizing 

atmosphere on downdraft gasification performance under autothermal conditions. An 

extended model in thermochemical equilibrium is used to evaluate the effect of changes in 

chemical composition (ultimate analysis) of biomass subjected to different torrefaction 

conditions, fuel/air equivalence ratio, and biochar production as a by-product of the 

gasification process. Biochar production is a measure of the fraction of initial biomass feed 

into the gasifier that does not become into syngas; which makes the gasification process 

inefficient [1]. The response variables analyzed are the syngas composition, reaction 

temperature, and other thermodynamic parameters of the gasification process such as 
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producer gas heating value and cold gas efficiency are studied. Additionally, quality of 

producer gas to fuel internal combustion engines is also evaluated by means of the engine 

fuel quality. 

4.2. Materials and methods 

4.2.1. Model description 

The model used in this work is an extended version of the approach presented by Melgar 

et al. [27]. It combines chemical and thermodynamic equilibrium of the global gasification 

reaction. This model is a helpful tool to predict producer gas (PG) composition and the 

reaction temperature of the gasification process. Furthermore, from PG composition, it is 

possible to determine other important parameters such as lower heating value (LHVpg), 

cold gas efficiency (CGE), and engine fuel quality (EFQ) [19], [27]. These parameters 

relate the quality as a fuel of the PG for direct combustion or for spark ignition engines 

applications. Therefore, the model approach is useful to study the gasification performance 

in function of biomass composition, biomass moisture content, and fuel/air equivalence 

ratio (Fr) [27]. 

The modifications carried out to the thermochemical equilibrium model take into 

account other gasification products by sulfur present in biomass, and a remaining solid 

fraction at the end of the gasification process (i.e. biochar). PG is modeled as an ideal gas 

mixture, and reactor operates at atmospheric pressure [27]. Therefore, the new global 

reaction of the gasification process used in the extended model is: 

𝐶𝐻𝑚𝑂𝑛𝑁𝑞𝑆𝑟 + 𝑤𝐻2𝑂 + 𝑥(𝑂2 + 3.76𝑁2)

→ (1 − 𝑖) ⋅ [𝑎𝐶𝑂 + 𝑏𝐶𝑂2 + 𝑑𝐶𝐻4] + 𝑐𝐻2 + 𝑒𝐻2𝑂 + 𝑓𝑁2

+ 𝑔𝑂2 + 𝑙𝑆𝑂2 + 𝑗𝐻2𝑆 + 𝑘𝐶𝑂𝑆 + 𝑖𝐶ℎ𝑎𝑟 

(4.1)  

The gasification products added to the model associated with biomass sulfur are H2S and 

COS. According to Álvarez-Rodríguez and Clemente-Jul [28], these are the main product 

from the thermochemical conversion of sulfur in lean-oxygen environments (i.e. 

gasification regimes). Since two compounds are introduced into the model, two new 

reaction is equilibrium are required. Martínez et al. [29] used these reactions in their work 

about the syngas production from volatiles released in waste tire pyrolysis (Eq. 4.5 and 
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4.6). Additionally, it is considered the biochar (modeled as pure carbon) production (Eq. 

4.7), which is a byproduct of a real gasification process [30], [31]. Table 4.1 shows the 

main model equations (4.2-4.7). 

 

Table 4.1. Equations and equilibrium reaction of the thermodynamic model 

Thermochemical equilibrium model Equation 

𝑥 =
1

𝐹𝑟𝐹𝑠𝑡𝑞,𝑏𝑚𝑠
 

(4.2) 

𝐶 + 2𝐻2 ↔ 𝐶𝐻4 
(4.3) 

∴ 𝐾1 =
(𝑃𝐶𝐻4

/𝑃0)

(𝑃𝐻2
/𝑃0)

=
𝑑𝑛𝑇

𝑐2
 

 

𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 
(4.4) 

∴ 𝐾2 =
(𝑃𝐶𝑂2

/𝑃0)(𝑃𝐻2
/𝑃0)

(𝑃𝐶𝑂/𝑃0)(𝑃𝐻2𝑂/𝑃0)
=

𝑏𝑐

𝑎𝑒
 

 

𝐶𝑂 + 𝐻2𝑆 ↔ 𝐶𝑂𝑆 + 𝐻2 
(4.5) 

∴ 𝐾3 =
(𝑃𝐶𝑂𝑆/𝑃0)(𝑃𝐻2

/𝑃0)

(𝑃𝐶𝑂/𝑃0)(𝑃𝐻2𝑆/𝑃0)
=

𝑘𝑐

𝑎𝑗
 

 

𝐶𝑂𝑆 + 2𝐶𝑂2 ↔ 3𝐶𝑂 + 𝑆𝑂2 
(4.6) 

∴ 𝐾4 =
(𝑃𝐶𝑂/𝑃0)(𝑃𝑆𝑂2

/𝑃0)

(𝑃𝐶𝑂𝑆/𝑃0)(𝑃𝐶𝑂2
/𝑃0)

=
𝑎𝑙

𝑘𝑏
 

 

𝑖 =
𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑 𝑐𝑎𝑟𝑏𝑜𝑛 𝑚𝑜𝑙𝑒𝑠

𝑐𝑎𝑟𝑏𝑜𝑛 𝑚𝑜𝑙𝑒𝑠 𝑖𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
     ∴   0 ≤ 𝑖 < 1 

(4.7) 

From the ultimate analysis of biomass and the moisture content is calculated the 

substitution formula of biomass (CHmOnNqSr) and the molar quantity of water [27]. With 

this formula, fuel/air ratio under stoichiometric conditions is determined. Thereby, from 

this parameter and fuel/air equivalence ratio, the real air molar quantity is calculated (Eq. 

4.2). Moreover, the enthalpy of reactants is estimated. 

An iterative process in function of the reaction temperature is conducted. With an initial 

reaction temperature, PG composition is determined by solving the nonlinear system 

equations using the Newton-Raphson method. Subsequently, the reaction temperature is 

calculated from the energy balance between reactants (biomass, moisture, and air) and 
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products (PG, biochar). The calculated temperature is used in the next iterative step until 

chemical and thermal equilibrium are reached. A detailed procedure for solving the model 

and auxiliary equations are reported by Pérez et al. [19]. 

4.2.2. Model validation 

The purpose of the present study is to evaluate the gasification performance using 

torrefied biomass as feedstock under autothermal conditions. Therefore, experimental data 

reported in the master thesis by Bibens [32] have been used to validate the accuracy of the 

extended model under downdraft gasification conditions using torrefied wood biomass as 

biofuel. Bibens [32] evaluated the effect of torrefied pine chips on gasification performance 

by measuring yields, efficiency, and tar production during the process. The gasification 

facility used in his work is a two-stage downdraft fixed bed gasifier. Pine torrefaction was 

conducted under an inert atmosphere in a batch rotary kiln at different temperature and 

residence time conditions. Table 4.2 shows the different composition and heating value for 

raw and torrefied biomass evaluated by Bibens. Torrefaction conditions are coded as 

temperature-time (e.g. 250-30 means a torrefaction temperature of 250 °C for 30 minutes of 

residence time). Moreover, gasification parameters such as fuel/air equivalence ratio and 

char yield are shown. These values were used as input data in the model. 

Table 4.2. Experimental data used for model validation, adapted from [32]. 

Sample 
Ultimate analysis [wt. % daf

a
] Moisture 

[wt. %] 

LHVbms 

[kJ/kg] 
Fr 

Char yield 

[wt. %] C H N O 

Raw 49.14 5.59 0.16 45.11 4.43 17470 3.13 1.02 

Raw 49.14 5.59 0.16 45.11 9.35 17470 3.03 0.53 

250-30 54.83 5.77 1.03 38.37 1.83 20960 2.94 0.30 

250-60 55.23 5.94 0.81 38.02 2.15 21410 2.94 3.69 

275-30 59.39 5.53 0.21 34.87 3.33 22660 2.70 0.30 

275-60 60.78 5.60 0.23 33.39 3.08 23380 2.56 0.34 

300-30 68.85 5.26 0.52 25.36 2.01 26670 2.78 3.71 

300-60 73.04 5.06 0.29 21.61 1.18 28350 1.69 1.10 
a
dry ash free 

Gasification runs carried out by Bibens were conducted controlling input parameters 

such as fuel/air equivalence ratio and gasification zone temperature at approximately 800 

°C to maintain consistency [32]. The steady state of the process was considered when 

output PG temperature reached 400 °C. PG composition was determined by gas 
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chromatography, and biochar collection was conducted at two hours interval of operation. 

The detailed description of the experimental study is presented by Bibens [32]. 

4.2.3. Wood analyzed 

Patula pine wood was selected due to its silvicultural potential in Colombian lands. This 

fast growing wood exhibits great characteristics such as high planted areas (3849 ha), high 

mean annual increment (MAI, 20 m
3
/ha/year), and low harvested time (13 years). 

Properties of pine as wood biofuel have been upgraded by means of torrefaction process 

under an oxidizing atmosphere (air) in a rotary kiln. Table 4.3 shows the different 

torrefaction conditions and its effect on the chemical composition and heating value of the 

pretreated material. Heating values of the different samples are estimates through the 

correlation reported by Friedl et al. [33] in function of ultimate analysis of biomass, sulfur 

in patula pine was not found. A detailed study of the effect of torrefaction under an 

oxidizing atmosphere on pine wood properties is found in chapters 2 and 3. 

Table 4.3. Chemical composition and heating value of raw and torrefied patula pine 

Sample 
Ultimate analysis [wt. % daf 

a
] 

O/C H/C 
LHVbms 

[MJ/kg] 

Fstq,bms 

[kgbms/kgair] C H N O 

Raw 55.70 (0.21) 7.14 (0.07) 0.19 (0.01) 36.97 (0.28) 0.664 0.128 16.85 0.180 

180-300 55.15 (0.24) 7.20 (0.07) 0.15 (0.15) 37.50 (0.21) 0.680 0.131 15.94 0.194 

180-750 55.40 (0.46) 6.96 (0.24) 0.00 (0.00) 37.64 (0.22) 0.679 0.126 16.30 0.192 

180-120 56.45 (0.19) 6.60 (0.03) 0.48 (0.03) 36.47 (0.25) 0.646 0.117 17.12 0.184 

210-300 56.91 (0.02) 6.74 (0.19) 0.44 (0.02) 35.91 (0.19) 0.631 0.118 17.25 0.181 

210-750 58.15 (0.06) 6.59 (0.01) 0.22 (0.01) 35.04 (0.07) 0.603 0.113 17.76 0.176 

210-120 57.68 (0.51) 6.51 (0.06) 0.00 (0.00) 35.81 (0.57) 0.621 0.113 17.19 0.185 

240-300 76.03 (0.05) 3.75 (0.06) 0.35 (0.04) 19.87 (0.06) 0.261 0.049 23.90 0.133 

240-750 72.58 (0.23) 2.49 (0.02) 0.02 (0.02) 24.91 (0.23) 0.343 0.034 21.08 0.159 

240-120 71.17 (0.17) 2.65 (0.19) 0.08 (0.01) 26.10 (0.01) 0.367 0.037 21.16 0.158 

*Values in parenthesis correspond to standard deviations 
a
dry ash free

 

As it can be seen, torrefaction process tends to increase carbon content while decrease 

hydrogen and oxygen contents. For 180-30 and 180-75 their chemical composition is 

similar to raw pine and changes are associated with the equipment variability used to 

conduct these analyses. For a temperature of 240 °C, the chemical composition of torrefied 

pine is similar to a biochar obtained by carbonization instead of a wood biomass as a 

consequence of the oxidation reactions that occur during the pretreatment [15]. The heating 

value of the pretreated material increases with torrefaction severity. Several authors have 
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reported similar results for torrefied biomass under inert and oxidizing atmospheres [12], 

[15], [34]. Changes in biomass composition are related to the thermal degradation of main 

wood constituents (cellulose and hemicellulose) during torrefaction process [9], [13]. 

4.3. Results and discussion 

The model validation with experimental data, a sensitivity analysis of biochar 

production and fuel/air equivalence ratio, and the effect of torrefaction conditions on 

gasification performance is presented. The main parameters of the thermochemical process 

analyzed are PG composition and LHV, reaction temperature, CGE, and EFQ. 

4.3.1. Model validation 

Figure 4.1 shows a comparison between experimental data and model response 

variables. Results for PG composition, heating value, and CGE exhibit a good agreement 

between model and experimental data. Numerical results tend to overestimate CO 

concentration and underestimate CO2 concentration slightly, while H2 and CH4 

concentrations are also underestimated; therefore, due to the higher CO concentration 

estimated by the model, the LHVpg is slightly overestimated. 

The torrefaction conditions where the model does not show a good agreement are the 

most severe pretreatment conditions (i.e. torrefaction at 300 °C). The chemical composition 

of torrefied biomass at this temperature has higher carbon content (see Table 4.2). Thereby, 

it is expected that CO and CO2 concentrations in the PG increase when torrefied biomass at 

300 °C is used as feedstock. Nevertheless, Bibens [32] reported lower CO and CO2 

concentrations (15% and 4.12% in average, respectively) using the pretreated biomass as 

feedstock regarding the concentration obtained with the raw material (CO: 23.84% and 

CO2: 10.73% in average). However, Yang et al. [35] reported experimental and simulated 

data for air gasification of char. They reported higher CO concentration with respect to H2 

for all gasification conditions. This behavior agrees with the results of the present model. 
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Figure 4.1. Model validation using torrefied wood gasification data reported by Bibens [32] 

Table 4.4 shows the root mean square error (RMSE) and the relative error (RE) of the 

different response variables. Two columns (named “All conditions”) correspond to the 

errors including all torrefaction conditions (global average relative error of 24.8%, and 

without CH4, 16%), and the other two (named “Except 300  C”) correspond to the errors 

excluding the torrefaction conditions at 300 °C (global average relative error of 17.6%, and 

without CH4, 8.5%). The experimental data associated with the gasification process using 

torrefied biomass at 300 °C increase both RMSE and RE for all variables. The exclusion of 

these torrefaction conditions leads to diminish the errors. Except for the CH4, due to the 

lower concentration of this gaseous species. The accuracy of the response variables shows a 

good model behavior to simulate gasification process with torrefied biomass. Therefore, the 

model can be used as a useful tool to study the effect of torrefied wood biomass under an 

oxidizing atmosphere on the gasification performance considering the biochar production 

as byproduct. 

Table 4.4. RMSE values for model validation. 

Response variable 
 All conditions Except 300°C 

 RMSE [± units] RE [%] RMSE [± units] RE [%] 

CO [%vol]  06.21 27.88 2.94 09.96 

CO2 [%vol]  01.90 23.41 1.33 13.06 

H2 [%vol]  03.71 15.24 1.78 09.45 

N2 [%vol]  04.26 05.48 2.33 04.36 

CH4 [%vol]  01.84 77.95 1.28 71.78 

LHVpg [MJ/Nm
3
]  00.67 12.29 0.41 07.12 

CGE [%]  14.79 11.30 9.11 07.31 

 

 
a) Producer gas (PG) composition 

 
b) LHVpg and CGE 
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4.3.2. Effect of biochar production and fuel/air equivalence ratio 

The model has been validated with good agreement for gasification process using 

torrefied biomass. Therefore, it can be used to study the effect of biochar production as a 

byproduct of the process and fuel/air equivalence ratio on gasification performance using 

torrefied wood as feedstock. Carbon conversion efficiencies may reach values from 70–

95% and common fuel/air equivalence ratios for gasification processes are between 2 to 4 

[19], [36], [37]. Therefore, factor “i” in the model was varied from 0 to 30% in order to 

consider the ideal thermodynamic behavior; i.e. when all carbon in biomass is converted to 

gas (i=0). The fuel/air equivalence ratio (Fr) was varied from 2 to 4. 

Figure 4.2 shows the model results for the reaction temperature parametrized in function 

of torrefaction temperature conditions. Only results for 75 minutes as residence time are 

shown due to the similarities reached for the response variables with the different residence 

times analyzed (30, 75, and 120 minutes). The reaction temperature increases with 

increasing biochar production and decreasing fuel/air equivalence ratio. For these 

conditions, the actual fuel/air ratio of the process tends to diminish; thereby, the 

thermochemical process tends to combustion regimes leading to an increase in the reaction 

temperature. This behavior is associated with the model considerations, where all input air 

model reacts with the remaining biomass. From an experimental fixed bed gasification 

point of view, when the biochar production increases, the reaction temperature diminishes 

since the process occurs faster resulting in less time to favor the gasification stages [31]. 

For high fuel/air equivalence ratios and low biochar production, the model shows reaction 

temperatures around 400–600 °C; however, these temperatures do not allow achieving 

autothermal conditions in a real gasification facility. For lower temperatures, there is not 

enough energy in the reaction front to favor the endothermic stages of gasification process; 

such as drying, pyrolysis, and reduction [27], [38]. Therefore, a limit to describe 

autothermal process conditions must be established [38]. 
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a) Raw b) 180-75 

  
c) 210-75 d) 240-75 

Figure 4.2. Reaction temperature of gasification [°C] for raw and torrefied pine in function 

of biochar production (Factor “i”) and Fr. 

According to the lower temperatures reached for low biochar production and higher Fr 

(Figure 4.2), the Figure 4.3 shows the autothermal zones of the gasification process 

according to the reaction temperature calculated by the model. The limit for the autothermal 

zone is defined when the reaction temperature is equal to 650 °C [38]. Increasing 

torrefaction severity, temperature and/or residence time, the autothermal zone tends to 

become wider; i.e. the gasification process is stable at a greater Fr range and higher carbon 

conversion (or lower unreacted carbon fraction). This behavior is associated with the 

increase in the heating value of torrefied pine caused by the thermal degradation of wood 
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constituents [12]. Thereby, more energy is available in the gasification process resulting in 

a higher reaction temperature for a determined fuel/air equivalence ratio (Figure 4.2). These 

limits are taken into account to analyze the other response variables of the model 

considering the autothermal behavior. 

 
Figure 4.3. Autothermal zones in gasification process. 

Figure 4.4 and Figure 4.5 show the CGE and the CO/CO2 ratio in the producer gas in 

function of biochar production (factor “i”) and fuel/air equivalence ratio (Fr), respectively. 

The results are shown under autothermal conditions of the process for the different 

torrefaction conditions. CGE provides information about the energy conversion of biomass 

during gasification process; i.e. energy content of PG regarding the energy supplied by 

biomass [27]. 

For raw and torrefied pine, CGE decreases with increasing biochar production and 

decreasing the fuel/air equivalence ratio (Figure 4.4). As stated above, this behavior leads 

to the gasification process approaches combustion regimes; therefore, the production of 

CO2 during the gasification increases (see Figure 4.5). Thereby, CO2 and N2 concentrations 

in the PG increase resulting in a reduction in its heating value. This finding agrees with the 

experimental results reported by Lenis et al. [31] in a fixed bed facility where a higher 

biochar production leads to decrease the CGE 
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a)  

 
b)  

 
c)  

 
d)  

Figure 4.4. CGE [%] for raw and torrefied pine in function of biochar production (Factor 

“i”) and Fr. 

Regarding Fr, CGE increases with Fr due to higher fuel-rich conditions are reached. A 

higher amount of carbon monoxide is produced as can be seen in Figure 4.5. Carbon 

monoxide is the gas with energy content more abundant in the PG (25–40%); thereby, the 

heating value of the PG increases with Fr resulting in higher CGE. Since torrefaction 

process increases the gasification autothermal zone; it is possible to achieve higher 

efficiencies regarding the raw material if the process is conducted at higher Fr. Tapasvi et 

al. [24] reported similar results for torrefied biomass under an inert atmosphere using a 

two-stage gasification model. 
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Figure 4.5. CO/CO2 ratio for raw and torrefied pine in function of biochar production 

(Factor “i”) and Fr 

As the torrefaction severity, the gasification process reaches autothermal conditions at 

higher Fr, but it is required to involve higher amount of biochar in the reaction, i.e., lower 

production of solid byproduct in the gasification process (lower factor “i”). Under this 

operating conditions, the CGE and reaction temperature increase due to the higher heating 

value of torrefied biomass (see Table 4.3). Therefore, the higher gasification temperature 

favors the auxiliary reactions (Eq. 4.3) to produce higher concentrations of gaseous fuels, 

which leads to higher efficiency under stable conditions. 
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4.3.3. Effect of torrefaction under an oxidizing atmosphere 

In order to evaluate the effect of the torrefaction process under an oxidizing atmosphere 

on the gasification performance, the main thermodynamic parameters that characterize the 

process have been studied using the model. Thereby, the moisture content of raw and 

torrefied wood was not considered during simulations. With the aim to study the process 

thermodynamic limit, all simulations were conducted with no biochar production (i.e. factor 

“i” equals to zero) [6], and varying the fuel/air equivalence ratio from 2 to 3.2 [19], [36], 

[37]. For the torrefaction conditions, their response variables reach different Fr values; this 

is due to the differences in the autothermal zones for these materials as stated in the 

previous section. The analysis is conducted for all torrefaction conditions but for practical 

purposes, the torrefaction at 240 °C is not suitable due to the partial oxidation of biomass 

during the process. 

4.3.3.1. Reaction temperature 

Figure 4.6 shows the reaction temperature for raw and torrefied pine wood in function of 

Fr. For all samples, temperature decreases with increasing Fr in the gasification process; 

which is due to the lower amount of air in the global reaction. Therefore, if less air is 

involved in the gasification process, the energy released decreases resulting in a lower 

reaction temperature [27]. 

Regarding torrefaction process, reaction temperature depends on two biomass 

properties; namely heating value and fuel/air stoichiometric ratio. Higher torrefaction 

severity implies higher heating value; therefore, the energy released during gasification 

process is higher leading to an increase in the reaction temperature. However, the torrefied 

biomass with the highest heating value (240-30, see Table 4.3) does not reach the highest 

reaction temperature. The highest temperature condition is reached for a gasification 

process using torrefied pine at 240 °C for 75 minutes. This behavior is due to torrefied pine 

at 240-30 has higher carbon content, and lower fuel/air stoichiometric ratio than torrefied 

pine at 240-75 (see Table 4.3). Therefore, this feedstock (240-30) requires a larger amount 

of air to reach a given Fr in the gasification process; which leads to increase the nitrogen 

content in the global reaction. This inert gas is heated by a fraction of the energy released 

during the gasification resulting in a decrease of the process reaction temperature [19]. 

Prins et al. [6] also reported an increase in the reaction temperature when torrefied biomass 
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is used as feedstock in gasification processes. Reaction temperatures for torrefied pine at 

210 °C during 30 and 75 minutes are lower than the temperature for 180-120 due to their 

lower fuel/air stoichiometric ratios by the increase in their carbon contents after 

torrefaction. 

 
Figure 4.6. Reaction temperature 

4.3.3.2. PG composition and heating value 

Figure 4.7 shows the PG composition and heating value in function of pretreatment 

conditions used as feedstock. As mentioned before (section 4.3.2), increasing Fr leads to 

higher fuel-rich conditions in the gasification process; therefore, a higher amount of gasses 

with energy content (CO, H2, and CH4) are produced resulting in an increase of the PG 

heating value. Pérez et al. [19] stated that equilibrium constants of hydrogen reduction with 

char (Eq. 4.3) and water-gas shift reaction (Eq. 4.4) increase with lower reaction 

temperature favoring the production of H2 and CH4. 

CO concentration tends to increase while H2 and CH4 decrease with torrefaction severity 

due to the reduction in H/C and O/C ratios (see Table 4.3). As expected, torrefied biomass 

at 240 °C has the highest concentration of CO in the PG. This behavior is related to the 

high carbon content of these materials. However, despite the difference in PG compositions 

of the different materials, PG heating value is similar for raw and torrefied pine up to 210-

120 (variation of 2% regardless the Fr). Moreover, PG heating value from torrefied pine at 

240 °C is higher and decreases slightly regarding torrefaction residence time. Material 

pretreated at this temperature exhibits higher carbon content and decreases with residence 

time due to oxidation reactions that occur during the process [15]. Studies about 
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gasification processes using torrefied biomass reported a similar behavior to the findings of 

the present work [6], [20]. Furthermore, it has also indicated that gas yield in a gasification 

process using torrefied biomass as feedstock increases [7], [25]. 

 
a) CO dry base 

 
b) H2 dry base 

 
c) CH4 dry base 

 
d) LHVpg 

 
Figure 4.7. PG composition and heating value for raw and torrefied pine wood 

4.3.3.3. Cold gas efficiency and engine fuel quality 

Figure 4.8 shows the CGE for raw and torrefied pine wood. Increasing Fr results in an 

increase of CGE for all feedstock studied in the gasification process. As mentioned before 

(sections 4.3.3.2), gasses with energy content such as CO, CH4, and H2 increase their 

concentrations in the PG with increasing Fr. The combined effect of the concentrations of 

these gasses on the PG enhances its heating value (Figure 4.7) resulting in the increase of 

the CGE. 

Regarding torrefaction process, CGE tends to decrease with torrefaction severity for a 

given Fr, except for 240-30. The heating value of the PG tends to increase slightly for 

torrefied pine up to 210-120 (around 3%). However, the input energy using torrefied 
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biomass is higher since the changes in its heating value are greater with respect to the raw 

material (around 5%). Therefore, a lower CGE is reached for torrefied biomass used as 

feedstock in the gasification process. The CGE for torrefied pine at 240-30 is similar to the 

CGE of the raw material because this condition reaches the maximum heating value in the 

PG regardless the Fr of the process (Figure 4.7d). For achieving higher CGE using torrefied 

biomass, it is necessary to move towards more fuel-rich conditions (i.e. higher Fr) in the 

gasification process with lower amount of solid byproduct (see section 4.3.2). Kuo et al. 

[25] reported lower CGE for torrefied biomass at high temperatures (300 °C) due to 

similarities in the heating value of the PG regarding the raw material. 

 
Figure 4.8. CGE for raw and torrefied pine wood 

PG from gasification process can be used for heat or power generation in internal 

combustion engines [1]. Therefore, it is necessary to study its behavior in these 

applications. The effective power (Ne) of an engine is estimated by Eq. 4.8 [39]. 

�̇�𝑒 = 𝐾𝐷 ⋅ 𝐾𝑜 ⋅ 𝐸𝐹𝑄 (4.8)  

KD and Ko are parameters that related engine design and operating conditions, 

respectively. The engine fuel quality (EFQ) relates PG heating value (LHVpg), its fuel/air 

stoichiometric ratio (Fstq,pg), and air mole fraction in the PG-air mixture (Yair). This 

parameter is calculated according to Eq. 4.9 [39]. 

𝐸𝐹𝑄 = 𝐿𝐻𝑉𝑝𝑔 ⋅ 𝑌𝑎𝑖𝑟 ⋅ 𝐹𝑠𝑡𝑞,𝑝𝑔 (4.9)  
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For a stationary engine in a power plant, KD and Ko are constants; therefore, the 

effective power depends on PG composition and its heating value. Figure 4.9a shows the 

EFQ for raw and torrefied pine wood in function of Fr. Higher Fr in the gasification process 

leads to increase the EFQ for all materials; this is due to the higher concentration of 

gaseous fuel in PG with Fr which increases the PG heating value favoring the EFQ (Eq. 

4.9). Likewise, Fstq,pg tends to decrease because more air is needed to burn the PG under 

stoichiometric conditions; hence, air fraction in the mixture also increase with Fr. 

Therefore, higher air fraction in the mixture and higher PG heating value result in an 

increase in the energy density of the stoichiometric mixture PG-air; i.e. higher EFQ values 

[19]. Pérez et al. [19] obtained lower EFQ values for gasification of different Colombian 

wood species. However, they reported similar trend to the found in this work; i.e. 

increasing EFQ with Fr. This result shows that torrefaction under an oxidizing atmosphere 

is suitable to produce gaseous fuels with acceptable quality for internal combustion engine 

applications. 

 
a)  

 
b)  

 
Figure 4.9. EFQ and fuel/air stoichiometric ratio of PG for raw and torrefied pine wood 

For a given value of Fr, EFQ is similar for raw and torrefied material, except for 240-30. 

There is a slight trend to increase with torrefaction severity; i.e. lower O/C ratio. The share 

of heating value and air fraction in PG-air mixture prevail over the reduction in the fuel/air 

stoichiometric ratio. The highest EFQ values are reached for a PG from torrefied pine wood 

at 240-30; this is due to this feedstock has the highest heating value (see Table 4.3). This 
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result also supports the idea that torrefaction is a suitable process to upgrade biomass 

properties for gasification processes coupled to internal combustion engines. 

Conclusions 

Gasification performance of torrefied biomass under an oxidizing atmosphere using a 

model under thermochemical equilibrium is studied. Model was extended from previous 

versions to take into account new products from associated with biomass sulfur gasification 

and the biochar production as a byproduct of the process. Furthermore, the model was 

validated using experimental data of a gasification process using torrefied biomass. 

According to validation results, the errors for the different response variables exhibit good 

agreement between model and the experimental data, especially for heating value of the 

producer gas and for cold gas efficiency. The global relative error of the model is 8.5%. 

Therefore, the model in thermochemical equilibrium is a useful tool to study the 

gasification performance using upgraded biomass by torrefaction as feedstock. 

Regarding the gasification process using torrefied biomass under an oxidizing 

atmosphere, several conclusions can be highlighted under the simulation conditions of the 

present work. Biochar production has a direct influence on the gasification performance 

due to it modifies the actual fuel/air equivalence ratio. Higher biochar production conducts 

to the higher availability of air to react with the biomass; hence, fuel/air ratio tends to 

combustion conditions reducing the concentration of gasses with energy content such as 

CO, H2, and CH4 and increasing the concentration of others such as CO2 and H2O in the 

PG. The complete combustion of the biomass leads to increasing the reaction temperature 

of the process. Using torrefied biomass allows to obtaining higher reaction temperatures for 

a given fuel/air equivalence ratio regarding the raw material. Therefore, higher process 

efficiencies can be achieved using upgraded biomass as feedstock. 

Thermodynamic parameters of the gasification process are enhanced with increasing 

fuel/air equivalence ratio of the process. Higher equivalence ratios increase the amounts of 

gasses with energy content (e.g. CO, H2, and CH4) in the producer gas; therefore, higher 

heating value, cold gas efficiency, and EFQ are obtained. Regarding torrefaction 

conditions, process efficiencies decrease slightly with torrefaction severity; this result is 

due to PG heating value does not change significantly regarding the raw material. However, 

there is a trend to increase the heating value with torrefaction severity, especially for the 
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highest temperature analyzed (240 °C). This behavior allows improving the quality of the 

PG for internal combustion engine applications. Thereby, torrefaction under an oxidizing 

atmosphere to upgrade biomass prior its gasification is a suitable process to improve 

process performance, especially for internal combustion engine applications of the producer 

gas. 
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Recommendations for future study 

Torrefaction process under an oxidizing atmosphere is a suitable process to upgrade 

biomass properties for further thermochemical processes such as fixed bed gasification. 

However, for a better understanding of the phenomena involved in the pretreatment 

process, the following studies deserves further investigation. 

 To evaluate the effect of torrefaction conditions under an oxidizing atmosphere on the 

devolatilization kinetics in order to study with more detail the changes in reactivity of 

pretreated material. 

 

 To study the volatiles released during the torrefaction process to determine the effect of 

oxygen in the carrier gas on its composition. 

 

 To determine the efficiency of the torrefaction process integrated to a further 

thermochemical process, e.g. gasification to evaluate the technical and economic 

feasibility of the thermal pretreatment. 

 

 To evaluate the pyrolysis behavior of torrefied biomass to determine the composition 

and possible application of the producer bio-oil. 

 

 To conduct gasification process experimentally to verify the finding obtained with the 

model in thermochemical equilibrium. Additionally, to characterize the biochar 

obtained during the gasification process to find possible applications of the byproduct 

and give it an added value. 
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Appendix A. Correlation to estimate the hardgrove 

grindability index (HGI) 

In order to find an equation that aids to predict the grindability behavior (HGI index) of 

a torrefied biomass, it was calculated a correlation of the HGI in function of the chemical 

composition of biomass; namely proximate analysis. Experimental data used in the study 

were the reported by Ibrahim et al. [1], Williams et al. [2], and Ohliger et al. [3]. From 

these works, 27 experimental HGI, and proximate analysis were obtained for different 

kinds of biomass (see Table 1). Torrefaction conditions were coded as temperature-

residence time; e.g. 200-30 means a torrefaction conditions of 200 °C and 30 minutes. 

Table A.1. Experimental data reported in literature 

Authors Species 
Torrefaction 

condition 

Proximate analysis [wt.% db
a
] 

HGI 
VM FC Ash 

Williams 

et al. 

Wood 

pellets 
Raw 82.6 13.3 4.1 18 

Sunflower 

pellets 
Raw 78.5 15.7 5.8 20 

Eucalyptus 

pellets 
Raw 85.2 11.6 3.2 22 

Steam 

exploded 

pellets 

Raw 78.5 17.3 4.3 29 

Olive cake Raw 71.4 18.4 10.3 14 

Ibrahim et 

al. 

Willow Raw 84.8 15.2 0.5 32 

Willow 270-30 73.8 26.2 0.5 64.6 

Willow 290-30 63.2 36.8 1.1 86.4 

Eucalyptus Raw 80.4 19.6 1.6 32 

Eucalyptus 270-30 67.9 32.1 1.6 38.9 

Eucalyptus 270-60 71.2 28.8 2 46.8 

Eucalyptus 290-30 60.3 39.7 2.2 79.7 

Softwood Raw 83 17 0.1 32 

Softwood 270-30 79.7 20.3 0.1 41.5 

Softwood 270-60 78.3 21.7 0.3 46.4 

Softwood 290-30 71.8 28.2 0.4 69.2 

Hardwood Raw 83.2 16.9 0.7 32 

Hardwood 270-30 72.2 27.8 1 43.3 

Hardwood 270-60 72 28 1.6 41.8 

Hardwood 290-30 64.6 35.4 2.1 63.3 

Ohliger et 

al. 

Beechwood 280-40 71.2 28.07 0.88 50 

Beechwood 270-40 76.43 22.8 0.99 36 

Beechwood 290-40 66.81 32.46 0.92 74 
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Beechwood 300-40 56.82 42.03 1.49 122 

Beechwood 280-20 74.72 24.58 0.9 38 

Beechwood 280-60 68.43 30.84 0.95 68 

Beechwood 280-40 68.4 30.83 0.96 63 

Beechwood 280-40 72.76 26.5 0.85 40 
a 
dry basis 

An analysis of variance (ANOVA) was conducted to establish if volatile matter, fixed 

carbon, ash, and their interactions have a significant effect on the HGI. Table 2 shows the 

results of the ANOVA. It can be see that fixed carbon and its interaction do not have a 

significant effect on the HGI since this parameter is calculated by the difference in the 

proximate analysis. 

Table A.2. Results of the ANOVA 

Source Sum of squares Df Mean square F-Ratio p-Value 

Ash^2 662.479 1 662.479 20.90 0.0004 

VM 7855.67 1 7855.67 247.83 0.0000 

FC 44.1417 1 44.1417 1.39 0.2563 

Ash 293.858 1 293.858 9.27 0.0082 

FC*VM 940.839 1 940.839 29.68 0.0100 

MV*Ash 629.741 1 629.741 19.87 0.0005 

FC*Ash 24.0812 1 24.0812 0.76 0.3972 

Model 10450.8 7    

The correlation to estimate the HGI in function of proximate analysis was determined 

with a R
2
=0.93. Volatile matter (VM) and ash contents of biomass are in wt. % on a dry 

basis. 

𝐻𝐺𝐼 = 1147.05 + 0.149 ⋅ 𝑉𝑀2 − 20.775 ⋅ 𝑉𝑀 − 82.213 ⋅ 𝑎𝑠ℎ + 0.931 ⋅ 𝑀𝑉 ⋅ 𝑎𝑠ℎ 
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[2] O. Williams, C. Eastwick, S. Kingman, D. Giddings, S. Lormor, and E. Lester, 

“Investigation into the applicability of Bond Work Index (BWI) and Hardgrove 
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coal,” Fuel, vol. 158, pp. 379–387, 2015. 
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Appendix B. Engine fuel quality (EFQ) deduction 

According to Tinaut et al. [1], the effective efficiency of an engine in defined by 

𝜂𝑒 =
�̇�𝑒

�̇�𝑓𝐿𝐻𝑉𝑝𝑔
 (B.1) 

Where Ṅe (kW) is the effective power, ṁf (kg/s) and LHVpg (kJ/kg) are the mass flow 

and the heating value of the producer gas. Reordering the equation, the effective power of 

an engine is 

�̇�𝑒 = 𝜂𝑒�̇�𝑓𝐿𝐻𝑉𝑝𝑔 (B.2) 

From the fuel/air equivalence ratio (Fr), the actual mass flow of the producer gas can be 

estimated as 

𝐹𝑟 =
𝐹𝑎𝑐𝑡

𝐹𝑠𝑡𝑞
=

(
�̇�𝑓

�̇�𝑎
)

𝑎𝑐𝑡

(
�̇�𝑓

�̇�𝑎
)

𝑠𝑡𝑞

 (B.3) 

 

�̇�𝑓,𝑎𝑐𝑡 = �̇�𝑎,𝑎𝑐𝑡𝐹𝑠𝑡𝑞𝐹𝑟 (B.4) 

Where Fstq is the fuel/air stoichiometric ratio (kgfuel/kgair) and ṁa,act (kg/s) is the actual air 

mass flow in the gasification process. Furthermore, according to Heywood [2], the 

volumetric efficiency of an engine is 

𝜂𝑣 =
�̇�𝑚

�̇�𝑚,𝑟𝑒𝑓
=

�̇�𝑓,𝑎𝑐𝑡 + �̇�𝑎,𝑎𝑐𝑡

𝑉𝑇𝜌𝑚,𝑟𝑒𝑓𝑛𝑖
 (B.5) 

Where VT is the engine displacement (m
3
), ρm,ref is the reference mixture density 

(kgm/m
3
) for the intake manifold pressure and temperature, n is the number of engine 

revolutions per second (rev/s), and i is an index that depends on the engine type (1 for 2-

stroke engines and 1/2 for 4-stroke). Due to it is very difficult to measure the mixture 

density, this density is estimated from air density. According to Amagat’s law 

𝑉𝑎𝑖𝑟

𝑉𝑚
=

𝑁𝑎𝑖𝑟

𝑁𝑚
= 𝑌𝑎𝑖𝑟 (B.6) 
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Where Yair is the air molar fraction (moleair/molem), Vair and Vm are the partial air 

volume and mixture volume (m
3
), respectively. The mixture density is then 

𝜌𝑚,𝑟𝑒𝑓 =
�̇�𝑚

�̇�𝑚,𝑟𝑒𝑓

=
�̇�𝑓 + �̇�𝑎

�̇�𝑚,𝑟𝑒𝑓

 (B.7) 

Replacing Eq. B.6 into Eq. B.7 

𝜌𝑚,𝑟𝑒𝑓 =
(�̇�𝑓,𝑎𝑐𝑡 + �̇�𝑎,𝑎𝑐𝑡)𝑌𝑎𝑖𝑟𝜌𝑎𝑖𝑟,𝑟𝑒𝑓

�̇�𝑎,𝑎𝑐𝑡
 (B.8) 

Where ρair,ref is the reference air density (kgair/m
3
). Therefore, the volumetric efficiency 

of the engine is 

𝜂𝑣 =
�̇�𝑎,𝑎𝑐𝑡

𝑉𝑇𝑌𝑎𝑖𝑟𝜌𝑎,𝑟𝑒𝑓𝑛𝑖
 (B.9) 

The actual air mass flow is 

�̇�𝑎,𝑎𝑐𝑡 = 𝜂𝑣𝑉𝑇𝑌𝑎𝑖𝑟𝜌𝑎,𝑟𝑒𝑓𝑛𝑖 (B.10) 

The molar air fraction is 

𝑌𝑎𝑖𝑟 =
𝑁𝑎𝑖𝑟

𝑁𝑚
=

�̇�𝑎/𝑀𝑎𝑖𝑟

�̇�𝑎/𝑀𝑎𝑖𝑟 + �̇�𝑓/𝑀𝑓
=

1/𝑀𝑎𝑖𝑟

1/𝑀𝑎𝑖𝑟 + 𝐹𝑟𝐹𝑠𝑡𝑞/𝑀𝑓
 (B.11) 

Replacing Eqs. B.4 and B.10 into Eq. B.2, the effective power is 

�̇�𝑒 = 𝜂𝑒𝜂𝑣𝑉𝑇𝑌𝑎𝑖𝑟𝜌𝑎,𝑟𝑒𝑓𝑛𝑖𝐹𝑠𝑡𝑞𝐹𝑟𝐿𝐻𝑉𝑝𝑔 (12) 

�̇�𝑒 = 𝐾𝑂 ⋅ 𝐾𝐷 ⋅ 𝐸𝐹𝑄 

𝐾𝑂 = 𝑛𝜌𝑎,𝑟𝑒𝑓 𝐹𝑟 

𝐾𝐷 = 𝜂𝑒𝜂𝑣𝑉𝑇𝑖 

𝐸𝐹𝑄 = 𝑌𝑎𝑖𝑟𝐹𝑠𝑡𝑞𝐿𝐻𝑉𝑝𝑔 

KO (kg rev/m
3
s) and KD (m

3
/rev) are parameters that depends on the engine operation 

and engine design, respectively; and the EFQ (kJ/kg) is the engine fuel quality and depends 

on producer gas composition. 
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