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Abstract

Perovskite solar cells (PSCs) have reached a surprising high performance in the last few

years due to the large research effort. Some of this effort has focused on optimizing

the architecture, selective layer properties, and the interaction between the different

components of the cell. Nevertheless, the effect of the architecture and selective layers

on some physical properties of the perovskite itself, and in the complete cell has not

been completely understood. Moreover the improvement of the carrier dynamics at the

interface and through different surface treatment is one most interesting topic in the

PSCs community.

In this work, I present a study of the influence of the architecture, selective layers, and

interfaces treatments in metal halide PSCs.

In order to analyze the influence of the architecture and different selective contacts, first

it was implemented different hole transporting layers (HTL). To do that, was studied

the influence of nickel oxide (NiOx), copper thiocyanate (CuSCN) and copper oxide

(CuOx) in a planar structure. The PSCs with NiOx presented superior performance

than the PSCs with CuOx and CuSCN. Their performance (solar cells with CuSCN and

CuOx) was similar to the cells without HTL. The low photovoltaic response of the cells

with CuOx CuSCN as HTL was due to poor morphology, bad transport properties, and

deficient band alignment with perovskite. In another way, the band alignment, high

coverage area, and good morphology make the cells fabricated with NiOx superior.

Afterward differences in the band bending and work function of the perovskite as is

grown on NiOx in planar architecture or NiOx-Al2O3 in a mesoporous configuration

were obtained. A facet dependence on the photoluminiscence (PL) and lifetime of the

charges through Scanning Intensity modulated kelvin probe microscopy (IM-KPFM)

was obtained.

The influence of the surface modifications in selective layers in perovskite solar cells were

worked in three cases.

In first instance the role of rhodamine interface between the 61-butyric acid methyl es-

ter (PCBM) and the Ag electrode was carefully studied. Through kelvin Probe force

microscopy (KPFM) was found a flattening of the PCBM surface after rhodamine treat-

ment, and a change in the Ag electrode work function after its interaction with the

rhodamine. As a consequence the fill factor (FF) and the short circuit current (Jsc)

increase and the performance of the cells was improved.
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As another example of interface modification, a nanoparticle-based solution-processed

TiO2 layer (TiO2-NP) was implemented. I studied the influence of TiO2- PCBM treat-

ment in a n-i-p solar cell. Through SKPFM I found a band bending present in an

p-i-n structure without PCBM which means that TiO2-NP layer does not block the

holes in the film due to pinholes in the films, meanwhile after the PCBM treatment

the band bending changes the direction, and the performances of the PSCs is improved

significantly.

Additionally, I analyzed the influence of MACl treatment in a scalable process for per-

ovskite fabrication based on the acetonitrile crystallization route (ACN). Using surface

photovoltage (SPV) was studied the change in morphology and electronic properties of

the ACN perovskite when MACl treatment is implemented. I found that after MACl

treatment, grain size changes, and a passivation of the boundaries under illumination,

moreover the PL response is clearly superior with MACl, proving the increase of the

radiative recombination, and a decrease of trap states assisted recombination. Those re-

sults explain the improvement of all the photovoltaic parameters and performance of the

PSCs when the perovskite is fabricated through the ACN route under MACl treatment.
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Chapter 1

General Introduction

This chapter is divided into three sections. In the first one, an overview of the perovskite

technology in the framework of the photovoltaic generations is presented. Afterward,

is included a brief overview of the metal halide perovskite structure and their physical

properties. Moreover a description of the PSCs, their basic physic operation, and a

description of the different configuration and structures of PSCs is exposed. The last

part of this introduction summarizes the contents of the other chapters of this Thesis.

1.1 Perovskite into the Photovoltaic Technologies

Since the emergence of the first solar cell in 1954 different materials and photovoltaic

technologies have been developed [1]. Due to differences in structure and fabrication

methods the photovoltaic technologies have been divided in generations.

The first generation is related to solar cells made by highly crystalline materials (with

very low density of electronic and crystal defects, which can affect dramatically the

transport properties) as monocrystalline, polycrystalline silicon and the GaAs family.

The processing of these kind of materials requires high temperature, ultra high vacuum

process and specific clean rooms to produce extremely high quality materials. Currently,

most manufactured solar cells are based on multicrystalline silicon where modest effi-

ciencies of around 10-16 % [2] are compensated by a reduction in manufacturing costs.

Contrary multi junctions GaAs based solar cells is the most efficient technology reaching

40 % efficiency, but their high manufacturing cost, make them only useful in satellites

(due to the cost is not comparable with of the launching and working cost) [2].

The second generation is related with devices made basically from thin films deposited on

substrates by high vacuum processing (physical and chemical vapor deposition process

2
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(PVD and CVD)), some of the technologies are III-V / II-VI semiconductor solar cells,

such as Cu(In,Ga)Se2, (CIGS) and amorphous silicon [2], this materials have higher

optical absorption coefficient as compared with crystalline semiconductors [3]. Until

now efficiencies of 22.6% for laboratory cells have been reached (see Figure 1.1).

Figure 1.1: Solar energy conversion efficiencies for bench-
mark solar cells from 1976-2016- data assembled by National
Renewable Energy Lab, the image is modified to take a zoom for
second (Thin film technologies) and third generation (Emerging

PV) solar cells

In another way, the progress in solution processing methods has allowed the develop-

ment of easily processed solar cells (third generation), including, dye-sensitized, small

molecule, quantum dot, polymer, and perovskite solar cell [4]. The third generation has

attracted a massive increase in research effort over the last 27 years, which has led to

tremendous advances in efficiency, reproducibility, and stability, and the first commercial

products are being sold in niche markets to power consumer electronics and low-power

applications in buildings.

Particularly perovskite solar cells have had an unprecedented development. In only 7

years reached performances as high as 22% [5], making them one of the most promising

photovoltaic technologies. The perovskite solar cell technology combines low cost and

high efficiency, as a difference of the other third generation solar cells, which until now

reach modest efficiencies [6, 7]. In the Figure 1.1 is observed the trend of the perovskite

solar cells compared to some second and third generation solar cell. It is very clear the

rapid progress of the perovskite respect the other ones [8, 9].
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1.2 Metal Halide Perovskites, and Perovskite Solar Cells

Organo-lead-halide perovskite has emerged as the most promising material for photo-

voltaic solar cell applications [8–10]. The success of this material in photovoltaic appli-

cations is due a combination of its extraordinary physical, chemical properties and their

easy processing.

Studying their physical properties, and its function in different configuration of solar

cells is highly justified. In this section I described the basic physical properties and the

general configurations and operational mechanism of perovskite solar cells. Appendix C

presents the information about the working principles of a solar cell, and the photovoltaic

parameters used to characterize the performance of a solar cell.

1.2.0.1 Metal Halide Perovskites

Perovskites cover a large family of compounds with the general formula ABX3 [11]. The

most extensively studied hybrid perovskite material is CH3NH3PbI3 and its analogous

mixed-halide formulation CH3NH3PbI1−xClx [8–10, 12, 13]. Initially, the term per-

ovskite was used to refer to a calcium titanium oxide mineral with the chemical formula

CaTiO3, but as many materials can adopt this structure, it is now used for any material

with similar structure [11]. The ideal crystalline structure is cubic, with A and B being

two different cations and X an anion (see Figure 1.2). For the case of metal halide

perovskite, the A component can be a monovalent organic cation. The most explored

until now, have been the Methylammonium CH3NH3 and the formamidium CH5N2. As

the inorganic cation Pb has been more successful than Sn [14–16]. Have been some

efforts to try to replace the Pb by other elements like Ca, Ni and Sr [17]. As the anion

components the halides I, Cl, Br and their mix have been used in order to tune the

band gap in combination with a suitable use of Formamidinium and Methylammonium

[18, 19].

Characteristics of Lead Halide Perovskites The great success of the lead triio-

dide perovskite CH3NH3PbI3, the mix (with chlorine) CH3NH3PbI3−xClx and their Br

counterpart is due their appropriate physical properties. They are direct band gap semi-

conductors which can be tunable (depending of the halide) between 1.5, 1.8 eV. They

have a high absorption coefficient ( 105 cm−1) [20] with a broad spectrum of photo-

energy [21] and low binding energy [22]. Their electron/hole diffusion lengths have been

measured a to be longer than 100 nm [23, 24]. The electron/hole mobilities are in

the order of of 1 - 10 cm2/Vs [25], which enable a large portion of the photo-excited
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Figure 1.2: Crystal structure for CH3NH3PbI3. Gray
spheres represent Pb atoms; purple, I atoms; brown, C atoms;

gray, N atoms; and pink, H atoms.

charge carriers moving to the interfaces between the perovskite and the hole/electron

transporting materials (HTM/ETM) and being extracted efficiently, therefore producing

sufficiently large photocurrent. Also because its band gap, a high open circuit voltage

have been obtained (exceeds 1 eV)[26]. This is particularly interesting because the max-

imum voltage obtained until now is very near to the maximum value equal to the band

gap, but always there is a loss in the voltage as a product of recombination in middle

gap states. In the case of perovskite, the type of recombination allows to reduce this

kind of losses. All these characteristics makes the perovskite an amazing material for

application in photovoltaics.

1.2.0.2 Perovskite Solar Cells

In PSCs different configurations and architectures with similar performances have suc-

cessfully been improved, indicating the versatility of this technology [8, 9, 27].

PSCs generally consists of several layers: the absorber layer (perovskite), the hole-

transporting (HTL), the electron-transporting (ETL), and the electrodes, of which at

least one must be transparent see Figure 1.3 and Figure 1.4.
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Figure 1.3: Band diagram of the perovskite solar cell, left
p-i-n structure and in the right is shown the n-i-p structure.

The absorber material is responsible of harvests the light and produce free charges,

but having an available charge is a necessary condition, but is not enough to generate

photovoltage and photocurrent. A force to carry the charges towards the electrodes is the

other condition, this force can be produced by an electric field or thermodynamic force

by difference in chemical potentials. In order to get a net current, the electrons must

go to one electrode and the holes to the other (in other words should be a direction of

the charier transport). To make possible this internal force in the PSCs, selective layers

should be included in the device (In this case a Thermodynamic force is established).

HTLs should be materials that have electronic properties that allow the transport of

holes in its valence band toward one of the electrodes. Moreover, it should not carry

electrons in its conduction band. To do that, the bands of energy should have an

adequate bands position. In the Figure 1.3 the minimum of the conduction band of the

perovskite should not be higher (in energy terms) that the correspondent of the HTL,

and their valence band should be a little higher than the HTL in order to block electrons

and receive holes. Moreover, the HTL should have available states in the valence band

to transport carriers, and have good mobility to avoid recombination in this layer.

The characteristics of the electron transporting layers should be similar to the HTL,

but the main difference lies in the alignment with the perovskite. This layer should

receive electrons from the conduction band of the perovskite, to do that, the minimum

of the conduction band should be lower that the minimum of the conduction band of

the perovskite, and to avoid carry holes from the perovskite, their valence band should

be higher than the perovskite see Figure 1.3.
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To fabricate PSCs with the layers described above, there have been developed sev-

eral architectures and configurations of PSCs. They can be planar, infiltrated in a

mesostructure, with geometry direct p-i-n, or inverted n-i-p depending of the direction

of the current as shown in Figure 1.3.

Figure 1.4: Characteristic structures of perovskite solar cells.

In a mesostructured architecture, a layer that serves as a scaffold for the perovskite is

implemented. The most common scaffolds have been the mesoporous layer of TiO2 and

Al2O3. The last one is an insulator and does not take part in the carrier transport,

but has an influence in the perovskite growing, electronic properties and help to avoid

shunt paths [25, 28, 29]. Moreover, the influence of this mesoporous layers in local

properties of the perovskite and additional changes in its electronic behavior is still

under development.

Either planar or mesostructured perovskite, p-i-n and n-i-p configurations could be de-

signed. p-i-n means that the perovskite is grown on a HTL that usually is a p-type

semiconductor, a n-type semiconductor is grown on the perovskite and to complete the

structure a back contact is used. In another way in the n-i-p configuration the per-

ovskite is grown on the ETL and the hole transporting layer is grown on the perovskite.

However, many groups have developed PSCs without HTLs or ETLs and have obtained

good photovoltaic response. [30].

All these structures have reached high PCE performances [30]. The good performance of

the PSCs depends of the physical-chemical characteristics of the HTL, ETL, perovskite

film, and their interaction. In many cases to get better interaction between the lay-

ers interface treatments should be necessary. In this work we studied the influence of

different layers, structures and their interface treatments in perovskite solar cells.
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1.3 This Work

The main results of this work are presented in the chapters 2 and 3, and there are 3

Appendix of additional and supplementary information that can help to the reader in

the basic concepts treated in this work.

In chapter 2 is analyzed the influence of hole transporting layers and the structure in

the microstructure of the perovskite CH3NH3PbI3 and how this produces different pho-

tovoltaic parameters and performances. As buffer layers we used nickel oxide NiOx,

copper oxide CuOx and copper thiocianate CuSCN. Moreover is showed through func-

tional scanning probe techniques changes in the surface and sub gap recombination

process of the CH3NH3PbI3 in three configurations: Hole-free (perovskite grown on top

of ITO), planar p-i-n with NiOx as a hole transporting layer (HTL) and a mesoporous

p-i-n with two Al2O3 different thickness (100 and 200 nm). Through surface photo volt-

age, intensity-modulated kelvin probe force microscopy and local photoluminescence we

showed the effect of the architecture (configurations) in the surface properties and recom-

bination process. Was found an improve in the stability of the emission with the local

photoluminescence images and a decrease in the intensity modulate rate recombination

times when a mesoporous structure is included.

In chapter 3 was studied in a deep fashion through AFM techniques the influence of

surface in the interface treatment in perovskite solar cells, particularly 3 cases were

analyzed:

• Influence of the rhodamine as PCBM-Ag interface in a p-i-n structure.

• PCBM as a interface treatment of TiO2 layer in a n-i-p structure.

• MACl as a surface treatment in acetonitrile perovskite solar cell.

Next we describe shortly these 3 cases (sections) worked in this chapter.

In the first case was analyzed through AFM, KPFM, SPV and PL measurements the

effective control of the interface between the metal cathode and the electron transport

layer ETL because is critical for achieving high performance p-i-n planar heterojunction

perovskite solar cells PSCs. Systematically were explored the effects of the interface

modification of the Ag/ETL interface on PSCs using rhodamine 101 as a model molecule.

By the insertion of rhodamine 101 as an interlayer between Ag and fullerene derivatives

(PC60BM and PC70BM) ETLs improve the PCE. AFM characterization reveals that

rhodamine passivates the defects at the PCBM layer and reduces the band bending at

the PCBM surface. In consequence, charge transfer from the PCBM towards the Ag
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electrode is enhanced leading to an increased FF resulting in a PCE up to 16.6% (The

devices analyzed in this subsection were fabricated by John Ciro). Additionally, was

found the work function of the metal cathode remains more stable due to the rhodamine

incorporation. Consequently, a better alignment between the quasi-Fermi level of PCBM

and the Ag work function is achieved minimizing the energy barrier for charge extraction.

The second case, fullerene modification of TiO2 layers derived from nanoparticles (NPs)

inks. Atomic force microscopy characterization reveals that the resulting ETL is a net-

work of TiO2-NPs interconnected by fullerenes. Interestingly, this surface modification

enhances the bottom interface of the perovskite by improving the charge transfer as well

as the top perovskite interface by reducing surface trap states enhancing the contact

with the p-type buffer layer. As a result, rigid PSCs reached a 17.2% PCE (The devices

analyzed in this subsection were fabricated by Jhon Ciro).

As the last case were studied the influence of MACl treatment on the film formation

of CH3NH3PbI3 by using acetonitrile (ACN) crystallization method. This method not

require vacuum process neither solvent engineering, which make it one of the most

promising methods to produce large scale perovskite solar cell. To understand in deeper,

the properties of perovskite films grown by the ACN method and the influence of the

MACl on the performance of the perovskite solar cells PSCs, were characterized in detail

perovskite layers by different techniques. By AFM and SKPFM we found differences

in the morphology and the work function of the perovskite with and without MACl

treatment, and how the microstructure present very different behavior, moreover we

found high differences in the photoluminescence emission. The perovskite with MACl

treatment present a larger emission and it is in agree with their superior photovoltaic

parameters. Moreover were made 10x10 cm mini modules and were compared them with

ones by the solvent engineering route showing that the ACN route allow homogenous

perovskite films and as a result better performance in the perovskite solar modules.

In the Appendix A is shown a description of the parameters used for the optimized

films, solutions, and colloidal dispersions. Moreover, I describe shortly the methods for

characterization of the layers and the PSCs and the used parameters.

Because of the importance of the AFM related techniques used in this work, is described

in the Appendix B their fundamentals, and its operation. Moreover, as were used some

novel techniques on perovskite is a mandatory reason to make a section with this topic.

In the Appendix C is presented a summarize of the general photovoltaics characteristics

of a solar cell, and their basic working principles.



Chapter 2

Influence of Device Architecture

and Different Selective Contacts

in Perovskite Solar Cells

In this chapter is analyzed the influence of the buffer layers and architecture in the

morphological and electronic properties of the CH3NH3PbI3 films, and how this can

influence in the performance of the devices.

2.1 Introduction

In spite of this rapid evolution, there is not a total understanding of the perovskite

behavior in each configuration and its interaction with the rest of the other layers in

the cell [31]. To design the cell, the choice of buffer layers, and using either planar

or mesoporous structure with adequate physical properties is an important aspect in

order to be able to approximate to the predicted theoretical efficiency based on detailed

balance limits [32]. Perovskite solar cell optimization has overwhelmingly focused on

improvements in the active layer including approaches to reach radiative efficiency limits

via grain boundary studies [33, 34], understanding diffusion lengths [25, 35, 36], and

crystallization engineering [37, 38]. However, as it is well known, the contacts and

buffer layers have a critical role in reaching efficiency limits regardless of active layer

engineering. For example, in inverted architectures p-i-n, some groups have worked

with many hole transporting layer HTL showing improved performance [37, 39–42].

Particularly for a p-i-n, materials such as PEDOT:PSS, CuO, Cu2O, CuSCN, CuI and

NiOx have been implemented. Additionally, many groups have shown how the surface

modification and doping level can improve the conductivity of films and the performance

10
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of the cells [41, 43, 44], although other papers have demonstrated that very compact and

thin insulators such as SrTiO3 can be used if the band alignment is good enough [45].

The inclusion of the mesoporous scaffold with Al2O3 and TiO2 in n-i-p configuration has

been one of the most studied, and many works have shown that these scaffolds improve

crystallization and reduce shunt paths in that structure [29, 46–48].

While the TiO2 or Al2O3 scaffold induces more crystalline grain formation and thereby

increases the shunt resistance, Leijtens et al [25] used XPS to show a change in the Fermi

level position of the perovskite active layer. In that work, they hypothesized that the

scaffold fills trap states in the boundaries and thereby changes the electronic structure

of the perovskite and its work function. Similarly, Ramirez et al found via Surface Pho-

toVoltage SPV and Transient Photoluminescence (TPL) changes in the surface charge

and in the recombination lifetime due to the Al2O3 scaffold. In other work Sibel et al

[49] showed how the surface electronic behavior is influenced drastically by the facets

in the grains by locally mapping the parameters that determine PV device performance

and showing the facet performance-dependence [49], Dequilletes et al showed the im-

pact of the microstructure in the carrier generation through local PL measurements

[34]. Therefore, local probes that target the interaction of the HTL and the MAPI layer

are necessary to understand how to better engineer the contact in perovskite devices.

In order to understand the influence of the buffer layer and the scaffold in the cell in

this work, were measured different properties of the MAPI films when it is grown on

three different architectures (1) MAPI deposited directly on the glass/ITO substrate as

a âhole freeâ structure (HF) (2) a p-i-n structure comprising MAPI on buffer HTL and

as last was implemented a mesoporous structure with a insulator scaffold for the MAPI

film.

As the buffer layers were implemented CuOx, CuSCN and NiOx. These HTL were

chosen because in previous theoretical and experimental reports [50–52] were described

as promising because their physical properties allow them to have good compatibility

with the lead halide perovskite, particularly with the MAPI. The CuOx inks and films

were made by the route described elsewhere [53]. This CuOx synthesis route was chosen

because is possible have different coppers oxides, from Cu2O to CuO (and in this way can

be differentiated from the previous works [51, 52]) at different annealing temperatures,

but as is difficult to be sure only one phase is present, we called it CuOx. In spite of that,

were got differentiated phases at 210◦C and 270 ◦C. The CuSCN is a ionic material that

dissolves in dipropil-sulfide solvent and beyond their physical properties, is very easy to

obtain, and good quality films make it very attractive to use as a HTL. Additionally

were implemented bilayers of CuOx and CuSCN trying to combine the best properties

of each layer.
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The NiOx, beyond their high band gap (3.6 eV) and transport properties, it was chosen

because it is possible to make colloidal dispersions in water, which allows have films at

low temperature, and is easy to get reproducible results as was reported previously by

our group [54].

In this work, the performances was relatively low, PSCs with CuOx, CuSCN and their

bilayers, contrary to the results obtained by PSCs with NiOx. To understand the differ-

ent performances with the different buffer layers, morphological and surface electronic

properties with the perovskite were analyzed with AFM and KPFM. Those results were

correlated with the different photovoltaic parameters.

In order to analyze the influence of the structure (HF, p-i-n, mesostructured), was chosen

the NiOx as the HTL because it allows us to get an almost ideal buffer layer (and get

good comparative results). In this chapter the p-i-n cells with NiOx as HTL are called

the samples (NO).

MAPI infiltrated in a Al2O3 scaffold structure with two thicknesses (100 and 200 nm,

hereafter AO1 and AO2, respectively) deposited on NiOx were fabricated. In that way

was shown how the architecture of the cell allows different behavior in the MAPI film

itself and how it affected the photovoltaic parameters and their performance. To study

how the local electronic properties affect the resulting device metrics, we use SKPM

techniques including surface photovoltage (SPV) and IMSKPM to explore the kinetics

behavior in the scale of µs and ms that is the scale of the trapping and detrapping

of charge in perovskite. Moreover were combined our AFM methods with spatially-

resolved PL measurements to explore changes in the local emission in the perovskites.

Additionally were used different spectroscopic and structural techniques as UV-VIS,

XRD, and stationary PL measurement to correlated the local behaviors with the macro

properties.

2.2 Results

Figure 2.1: Schematic of the architectures from a hole free
architecture to a mesoporous



Influence of Device Architecture and Different Selective Contacts in Perovskite Solar
Cells 13

In the Figure 2.1 we show an evolution scheme of the architectures discussed here. It

starts with a HF structure follow with a p-i-n structure and finished with an Al2O3

mesoporous one. The Appendix A presents a description of the fabrication methods

for the MAPI, buffer layers (NiOx, CuOx CuSCN), Al2O3, silver electrodes, and their

respective thickness.

But, before getting this performances data with NiOx as the HTLs, were fabricated

devices with another HTL as CuOx, CuSCN and their bilayers.

Figure 2.2: (a) Jsc and Voc statistics of MAPI on CuOx at
220◦C and 270◦C, CuSCN, and their respective bilayers. (b)
FF and η statistics. (c) EQE curves of the best devices on
the different buffer layers. (d) Best photovoltaic response with

CuSCN as HTL

The statistical data for those devices is shown in the Figure 2.2. All the photovoltaic

parameters have poor values, the maximum PCE reached was smaller than 9% Fig-

ure 2.2b, the highest Voc was less than 1 V 9% Figure 2.2a, the FF did not reach 80%

Figure 2.2b and Jsc values were smallest than 15 mA/cm2 (see Figure 2.2a). The EQE

on the different samples are shown on the Figure 2.2c, there, can be observed than any

of the cells with CuOx, CuSCN or their bilayers reach values over 75%, which make a

limit for the Jsc, moreover the CuOx is not transparent in the visible spectrum (it has a

gap less than 2.23 eV, see Figure 2.6a) decreasing the photogenerated current as it can

be observed in the EQE, region below 600nm. In Figure 2.2d are shown a typical I-V

curve for the cells with CuSCN, is presented. The Voc is poor, and the shape does not

allow good FF values which is an indication of shunt and series problems, besides its
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poor photovoltaic parameters this device present a high hysteresis which is a not desired

feature in PSCs. To get more insights of the bad photovoltaic performance when this

buffer layers are implemented, were studied the CuOx and CuSCN films by AFM and

KPFM.

Figure 2.3: (a) AFM 20X20 µm topographic image of CuOx

thin films, (b) AFM topographic image of CuOx 1x1 µm, and
(c) CuSCN 1.5x1.5 µm topographic image

Figure 2.4: (a) Topographic AFM image of the NiOx film,
scale bar 500 nm. (b) IvsV curve for the NiOx film on ITO/glass

substrate.

In the AFM images Figure 2.3 a, b some defects are found for the CuOx films (See

appendix B for details of the technique, and appendix A for the used parameters). Some

white points are visualized between a homogeneous matrix, it is hypothesized that this

points are particle formations from the precursor solution. This particles were possible
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CuO precipitations between a CuOx matrix, which evidently affected the morphology,

but also can affect the electronic properties of the film because its different surface

potential (different work function). These particles, are points of bad contact for the

MAPI films, around them the effect of electron blocking is affected. These defects affect

all the photovoltaic parameters as shown in Figure 2.2, including the Jsc, that in the

first instance must depend on the properties of the perovskite. The CuOx films do not

only decrease the performance of the cells but also affected the perovskite itself. As a

strong prove of this, previous to the growing of the MAPI on the CuOx was necessary an

UV ozone treatment on the CuOx to improve the wettability and can get films of MAPI

on CuOx, this is an indication of non coordinate species in the CuOx (In many reports

have been studied the surface oxygenation in polymers and oxides [55–57]), which which

besides of do not allow the film formation of the MAPI without UV-ozone treatment,

give insights of some chemical reaction of CuOx with the MAPI, this interaction can

produce decrease in the the Voc and the FF (additional work with another techniques

is necessary to prove these hypothesis).

As a contrast, in Figure 2.4a the morphology of NiOx film is shown, grains are composed

by particles, as expected due to the precursor solution composition as a dispersion of

Nanoparticles (NPs) (See Appendix A for precursor preparation details). The agglom-

eration of the particles after drying, and their good coalescence, allow high quality films

with very few pinholes.

In the Figure 2.4b is presented the I-V curve to the ITO/NiOx. From this curve is

calculated the resistivity of the NiOx on ITO. As is expected in a good buffer layer,

the NiOx film have a value of the resistivity that is very close to that one of ITO itself,

which is an indication that the NiOx film does not get an additional series resistance to

the device (see Appendix C for details of the meaning of all photovoltaic parameters,

including series resistance). On the other side in the 4 point resistivity measurements

on CuOx and CuSCN, the compliance of the equipment did not allow take the data, but

let us conclude that the resistivity of those films is higher than 109 , giving an additional

serie resistance to the cell and affecting the FF.

In the Figure 2.5 were observed the difference in the Vcpd between the buffer layers

and the ITO (See appendix B for details of the KPFM technique, and appendix A for

the used parameters). This value is the differences in their work functions (Energetic

difference between the vacuum and Fermi levels). In the Figure 2.5a a difference of 50

meV is found for the CuOx with 210◦C of annealing, in the Figure 2.5b a similar result

of 60 meV was obteined for 270◦C sample, and a difference of 500 meV for CuSCN.

With this relations can be estimated the difference between the the Fermi levels of this

HTLs and the perovskite. There is some position in the Fermi level than allows a perfect
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Figure 2.5: (a) Profile of Vcpd between CuOx with annealing
proces at (a) 210 ◦C (b) 270 ◦C and ITO, and (c) CuSCN and

ITO, (d) NiOx and ITO

band alignment with the MAPI, some deviations gives some energetic losses if after the

equilibrium (alignment of the Fermi levels) the valance band of the buffer layer is higher

than the perovskite, or not blocking electrons if the buffer band is under the perovskite

band. This two possible results will be reflected in the photovoltaics parameters. In the

first case a loss in the Voc is presented, and in the second case, the FF and Jsc will be

affected. In the case of CuOx both at annealing of 220◦C and 270◦C, big losses in the

Voc should be present as is proved in the device statistics, but in the case of CuSCN

there is not a efficient blocking of electrons, which do not allow better performance.

Sample SPV (respect-ITO) meV Eg (eV)

NiOx 150 3.64 [58]

CuOx 210 ◦ 60 2.23

CuOx 270 ◦ 150 1.76

CuSCN 500 3.6

Table 2.1: Surface potential respect ITO and gap of energy of the HTL

In contrast a difference of 150 meV in the work function when the measurement is taken

from the NiOx film to the scratched ITO part was observed Figure 2.5d. This difference

produces a minimum loss of energy which results in a small decrease of the Voc as is

shown in the Figure 2.6b.
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Figure 2.6: (a) Absorption of CuOx with annealing at differ-
ent temperatures. (b) Comparisson of bands and fermi level of
the different buffer layers with the fermi level of the perovskite

As a conclusion the fabricated CuOx and CuSCN did not work as well as was expected

by previous reports. I found several morphological and electronic features that make

them not optimal HTL for the p-i-n configuration. On the other hand was found thar

NiOx has almost the ideal morphological and electronic characteristics as a HTL in a

p-i-n structure.

Figure 2.7: (a) JV curves of the best devices for the sam-
ples HF and NO, the continuous lines are the measurements in
forward and the dashed lines in reverse. (b) Statistics for the
photovoltaic parameters of the planar structures, green points
samples HF and red points samples NO with the mean value s

in the center of the box

Now that were analyzed the possible causes of the better performances of the cells with
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NiOx with respect to the other buffer layers, it is possible to discuss the influence of the

structure (with a good HTL as NiOx) in the PSCs.

The performance of the best HF and NO based devices is presented in the Figure 2.2a,

statistical data for those samples is shown in Figure 2.2b. The results 8% for HF and

17% for NO, are comparable with the best results obtained by other groups [54, 59].

The photovoltaic parameters of the mesoporous structures were taken from a work made

by (Ramirez et al). In the structures were observed differences in the performance due

to changes in the photovoltaic parameters Voc, Jsc and FF when was included a high

quality film of NiOx.

The increase in the Voc when NiOx is include (evolution from a HF structure to a NO)

can be attributed to a misalignment in the bands of the perovskite and the ITO in the

HF configuration as was shown in Figure 2.6, which was confirmed through Kelvin probe

microscopy measurement KPFM (see Figure 2.6d). Moreover the ITO can receive both

electrons and holes from the perovskite and the diode behavior is decreased as is proved

in the FF and Jsc values.

In order to explore morphological changes in MAPI films in different architectures,

topographic images are presented in in Figure 2.8 a-d for the samples HF and AO2,

AO1, NO respectively and the changes in the local work function through KPFM are

presented in the Figure 2.8 e-h for the same samples respectively. A grain structure

is observed both for the planar on NiOx and for the mesostructured film, but a small

increase in the grains for the MAPI film in the mesostructured device is observed, it has

little grains (200nm) than the film on Al2O3 (220 nm) (the diffractograms are shown

in the Figure 2.10 and not significant changes in the Full Width at Half Maximum

(FWHM) or preference growing in some direction are visualized).

To confirm that the KPFM image is not a topographic cross talk, it can be observed how

the potential in different grains (with numbers) does not follow the topography (some

grains with major height present a small potential), this is totally related with different

facets present in the surface, as early analyzed by Sybel et al [49], and discussed by

Eperon and Ginger [60]. As a hypothesis though the diffraction images looks similar

and the morphology only shows a slightly change in the grain size in the different archi-

tectures, these little changes makes a difference in the recombination processes in the

MAPI as is discussed below.

The SPV mean value at different illumination intensities for the perovskite grown on

top of NiOx, and ITO is observed in Figure 2.11a, and KPFM images at all illumination

intensities are presented in Figure 2.9. As was described by Zhang et al [61] the sign is

related with the predominant surface states, and its magnitude is related to its density.
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Figure 2.8: (a-d) Topographic images of MAPI for the sam-
ples HF, AO2, AO1, NO respectively and (e-h) KPFM images

for samples HF, AO2, AO1, NO respectively

A negative SPV is an indication of donor states ionization and the band bending should

looks as depicted schematically in Figure 2.11b. MAPI grown on NiOx showed an

increase of the bending as light intensity increased, similar to that reported by Ramirez

et al for mesostructured cells. However, the HF structure has another behavior. The

SPV decreased until the light intensity is 25% before reaching a plateau. The different

surface voltage of both can be related to the lack of HTL in the HF sample, which

produce a faster saturation of charge in the surface, so this screening do not allow more

accumulation of electron in the interface perovskite-tip, so there is saturation of holes

near to the bottom of the device, near to the MAPI-ITO interface. This screening at

low intensities in the HF architecture means that could be an Schottky potential barrier

in the interface MAPI-ITO, it has implications in the low FF reached. Moreover when

the NiOx is include this effect is reduced and the photovoltaic yield is increased.

Figure 2.9: SPV images for the MAPI on ITO at different
intensities (a) dark, (b) 25%, (c)50%, (d) 100%, and MAPI on

NiOx (e) dark (f) 25%, (g)50%, (h) 100%, scale bar 1 µm
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Figure 2.10: X-Ray diifraction patterns of the perovskite in
hole free and p-i-n structure

Figure 2.11: (a) SPV at different light intensities for the
sample HF black, and green, sample NO. (b) Schematic for the
band bending in the surface for the samples NO in the top and
HF in the bottom, at 25% of the light intensity in the left and

100% in the right

In order to better understand the influence of the architecture in the MAPI non-radiative

recombination process, were used IM-SKPFM measurements (See appendix B for details

of the technique, and appendix A for the used parameters) to explore the recombination

mechanisms present in the order of µs and ms [62–64]. With this technique can be

observed the relaxation time τ of the SPV as a laser is pumping from 1 Hz until 7 MHz.

Because the dynamic of the recombination systems is influenced by initial free charges,

both electrons and holes, we want the device at some particular open voltage circuit
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value. In order to do that, recombination measurements with background illumination

was taken. To fit the curves we use the relationship of the SPV in the frequency domain

[64] (equation 2.1)

SPV (f) =
SPV0

2
+ SPV0f(1− β)(1− e(

1
2fτ) ) (2.1)

Where SPV0 is the surface potential under continuous light illumination, f is the fre-

quency and β is the stretching factor. Times observed in Figure 2.12 are in the order of

µs. This timescale corresponds more probably to carriers entering trap states because

the ion movement is in the order of seconds so it is difficult to see by this technique

[35]. The differences in time between the planar and the mesoporous structure is a

confirmation that the alumina is not only an insulator scaffold for crystal growth of the

perovskite but also changes the electronic structure of the perovskite through gap states.

Figure 2.12: Average photovoltage at different modulation
frequencies under dark (a) planar samples and (b) mesoporous
structures, circular points are the experimental values and lines
are the fits at the equation 1. (c) Comparison of the pseudo
carrier life time of all the samples with the Jsc and the Voc. (d)
Left, electronic structure for the planar and in the right for the

mesoporous structure

In Figure 2.12c can be observed the relationship between the Voc and the characteristic

time τ and how the Voc decreases when the relaxation time increases. This kind of

behavior is present in systems with high recombination orders (non-monomolecular) and

is related to high carrier dependent mobility previously found in organic semiconductors
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Figure 2.13: SPV change in the frequency domain with
white light as a background. (a) HF, (b) NO, (c) Al 100, (d) Al

200

[63, 65–67]. In hybrid perovskite this dependence is directly related to trap structure

in the sub band gap region [36]. To understand the trap mechanism in the cells is used

the sketch in Figure 2.12d. In that diagram is observed in the left the structure for

the planar cells and in the right for the mesoporous structures. The top schematics

in Figure 2.12d are for the case under dark. In this condition, some traps states in

the mesoporous structure are already filled as was hypothesized by Leijtens et al [25],

so the recombination process is significantly faster with a rapid band-to-band process

involved [35]. In the planar architecture charges first fill the traps and subsequently

decay to the valence band, this process is slower by comparison and also produces more

charges trapped in mid-gap states as reflected in the Voc discussed previously. With

background illumination, the background population of carriers shortens the subsequent

recombination lifetime and exceeds the instrumentation response (see Figure 2.13).

In order to explore the local spatial and temporally changes in the MAPI in the different

structures located PL was used.

In Figure 2.14 is presented the images of the located photoluminescence PL with the

ITO grounded. At the grain structure of the MAPI there is an heterogeneity in the

PL spectrum with grain boundary zones without light emission and grains with more

PL than others as was reported by Eperon et al [68], they found an anticorrelation

between the PL and the conductivity in some grains due to changes in the quenching

of the grains [68] . For the Figure 2.14a, corresponding to planar HF, the image turns
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Figure 2.14: Local PL (a) sample HF, (b) sample NO, (c)
sample AO1, (d) sample AO2, scale bar 2 µm

darkest (lowest PL) with the time under continuous illumination; the PL decreases over

time. This behavior is proved further by measuring the time-dependence of the PL in

the Figure 2.15c and observed a decrease in PL intensity over time. On the other hand,

he PL for the MAPI film on the Al2O3 scaffold does not change with the time as it is

observed in the Figure 2.14 c for the sample AO2, is hypothesized that the change in

time of the PL in the perovskite is due to ion movement because of the seconds-long

timescales observed [35, 69]. Ion movement can explain the improvement of the stability

by the inclusion of the Al2O3 scaffold showed in the work by Ramirez et al, but in order

to a better understanding, is required more experiments on that time scale.

Another characteristic observed in the PL images is that the MAPI on AO2 have a

clearly stronger intensity (average 30 nA, lock in intensity) compared to the rest of

the samples (average 9nA). This highest PL intensity is a product of poor quenching

because of the thickness of the entire sample does not allow a good collection of the

charges by the HTL (NiOx in this case). This result is self-consistent with the low Jsc

and EQE measurements for scaffolds thicker than 200 nm. E. Figure 2.15 a, b shows

EQE, Jsc integrated and the absorption measurements for the planar structures, in the

HF structure a decrease of the EQE in the blue region is observed which is an indication

of worst minority charge collection to the ITO. This is agree with the fact that the

NiOx improve the alignment and charge collection of the cell. Moreover the absorption

measurements shows small difference in the spectrum, probably due to difference in the
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Figure 2.15: (a) EQE for the MAPI grown on ITO and ITO-
NiOx. (b) Absorbance curves for the perovskite grown on the
different structures, (c) PL on time for the MAPI on ITO, and

MAPI on ITO-NiOx

scattering for all the samples which is evident in the apparently offset. These data show

that the change in the photovoltaic parameters is mainly due to recombination process

and charge collection affected by different sub gap states as a result of different grain

surface formation as was proved.

2.3 Conclusions

Was found through AFM and KPFM how the morphological and electronic (Work func-

tion) properties of the HTLs affect drastically the performances of the solar cell. We

show how a very compact NiOx layer allows high performances perovskite solar cells be-

cause its morphology avoids shunt paths and its Fermi level position allow a nice band

alignment with the MAPI, minimizing loses in the Voc. In contrast poor results were

obtained with the HTLs CuOx and CuSCN, due to problems in morphology, possible

chemical reaction with the MAPI and bad band alignment.

Was shown via IM-KPFM, photoluminescence maps and KPFM how the addition of

NiOx as a HTL and Al2O3 scaffold insulator change the surface band bending and the

recombination properties of the MAPI. We interpret this relationship in terms of the

surface structure and conclude by IM-SKPM that in mesoporous architecture the devices
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have different electronic dynamics than in the planar and hole free. These films have

more stable light emission as was proved by PL over time and exhibiting higher PL

intensity.

Future work will focus on particular grains facets to better understand the electronic

mechanism in each particular case, and also look the evolution in time of the performance

to establish if some facets in the surface are likely to changes in recombination process,

degradation and decrease of the performance.



Chapter 3

Influence of Surface Modifications

in Selective Layers in Perovskite

Solar Cells

Three different types of studies are analyzed. In first section, is studied in a the p-i-n

structure, through AFM methods how the a small quantity of Rhodamine modifies the

interface between the ETL PCBM and the electrode Ag, and how this can improve the

transport properties and the solar cells performances. In the second case, in a n-i-p

structure, through photoluminiscence, AFM and KPFM is analized how a TiO2 layer

grown from a nano particle dispersion can be modified by a small quantity of PCBM,

and how this affect amazingly the electronic properties and performances of the PSCs.

In the third work is analyzed through SPV the influence of MACL in the promessing

CH3NH3PbI3 acetonitrile crystallization route. Moreover is proved the superior surface

properties of this perovskite layer for scaling up process in perovskite solar cells.

3.1 Analysis of modification Ag/PCBM interface by Rho-

damine to enhance efficiency of perovskite solar cells

3.1.1 Introduction

Interface engineering in perovskite technology has the potential to lead simultaneously

to highly efficient and long-lasting devices [70–72]. In fact, [73, 74] demonstrated that

controlling the surface recombination at the top and bottom interfaces of the perovskite

26
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results more relevant than controlling the corresponding recombination in bulk and grain

boundaries for reaching high performance devices.

One of the most studied ETLs in p-i-n planar perovskite solar cell (PSC) is PCBM [75–

80] this molecule has suitable properties as ETL such as good electron mobility, proper

energy alignment with the conduction band level of the perovskite and orthogonal-

solvent processability enabling the PCBM film formation on top of the perovskite layer

[78, 81–83]. However, several reports show that p-i-n PSCs with a single PCBM layer

as ETL have poor PCE being necessary additional ETLs [37, 77, 81]. The poor perfor-

mance of single layer PCBM has been attributed to the ineffective control of the prop-

erties at the metal-cathode/organic-semiconductor interface [84]. For instance, metals

of high work function, such as aluminum or silver, present high energy mismatch with

the quasi-Fermi level of PCBM resulting in poor device performance [84]. Although low

WF metals such as Calcium (Ca) form good contact with organic semiconductors, its

instability under environmental conditions hampers its practical application. In gen-

eral, the optimized electron transporting layer (ETL) is composed by a multilayer stack

where each material has a specific function [83, 85–88]. These interlayers must adjust

the WF of the cathode to improve the contact with PCBM and must possess solvent

orthogonality to allow film formation atop the PCBM layer. With this objective, sev-

eral authors have explored different molecules such as Rhodamine [89, 90], C60 [72, 86],

lithium fluoride [72, 83], bathocuproine[91], alcohol soluble titanium chelate TIPD (tita-

nium (diisopropoxide) bis(2,4-pentanedionate) [92] and fullerenes derivatives [54, 72, 93].

Moreover, even polymer isolators have been incorporated as part of the device structure

intended for creating physical barriers against ambient degradation[94, 95]. In partic-

ular, Rhodamine 101 possesses an intrinsic dipole moment and does not diffuse under

electric field enabling a broad tuning of the work function in metals and also in trans-

parent conductive oxides [85, 90]. In addition, its processability in anhydrous alcohols

makes it compatible with PCBM. As a result, [80] 25 % efficiency in p-i-n PSCs has been

demonstrated. However, the physical mechanism behind the improvement associated to

the Rhodamine incorporation has not been yet fully proved.

In this section, is demonstrated the role of Rhodamine in enhancing the PCE in p-i-n

planar PSCs. As demonstrated by a surface photovoltage analysis, Rhodamine modified

the band bending at the PCBM surface and homogenization of of the surface potential

of PCBM leading to a small improvement of Voc. Moreover is shown a change of the

work function of silver electrode as a consequence of its interaction with Rhodamine,

improving the band alignment and the conduction path of electrons, producing a clear

improvement of the FF.
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3.1.2 Results

The ETL/metal interface of a p-i-n planar PSCs was effectively improved by incorporat-

ing Rhodamine 101 in the basic device structure. Were analyzed cells p-i-n planar PSCs

fabricated in the group using NiOx as hole-transporting layer, PC60BM or PC70BM as

electron-transporting layer and Rhodamine as interlayer between the Ag and the PCBM

as shown in Figure 3.1a. In the Appendix A there are the description of fabrication meth-

ods for the MAPI, NiOx-PCBM and Ag electrodes and their respective thickness. The

HOMO and LUMO levels of the Rhodamine are depicted in Figure 3.1b . Moreover the

modification of the WF of the metal electrode produced by the Rhodamine layer was

measured by KPFM. It was found that Rhodamine decreases the WF of silver around

0.18 eV as shown in Table 3.1. Accordingly, Rhodamine is expected to reduce the 0.6

eV energy mismatch between PCBM and the silver cathode Figure 3.1b consequently

enhancing the quality of the interfacial contact and the electron collection. Solar cells

with the Rhodamine interlayer showed a remarkable improvement of all photovoltaic

parameters, in special the FF from 73.03% to 76.16% for PC70BM and from 65.73% to

73.18% for PC60BM, with respect to the devices without it as presented in Figure 3.1c.

Sample ∆V ∆Wf

Glass/Ag (Reference) 0C 0

Glass/Ag/Rhodamine 413 -0.43

Glass/Rhodamine/Ag 307 -0.30

Glass/ITO/NiOx/Perovskite/PC70BM/Ag 26 -0.04

Glass/ITO/NiOx/Perovskite/PC70BM/Rhodamine/Ag 152 -0.18

Table 3.1: Changes in the work function of the Ag

A careful analysis of the topography and surface potential allowed determining the

central role of the Rhodamine in the the PCBM-silver interface. Topography analysis

(Figure 3.2, Figure 3.3 ) show that the perovskite film is composed by large grains of

about 270 nm with clearly delimited boundaries and large height fluctuations (roughness

= 9.1 nm). Similarly, PC70BM layers are formed by well-connected grains of about

220 nm with low height fluctuations (roughness = 2.4 nm). PC70BM layers exhibit

densely packed grains with less differentiated grains and a low roughness remaining

almost unmodified upon the addition of Rhodamine. On the other hand, the surface

potential at the grain boundaries of the perovskite layer shows high fluctuations as shown

in Figure 3.2d. These fluctuations are related to under-coordinate chemical bonds at the

semiconductor surface that in some cases can act as charge trapping states. Therefore,

the perovskite layer can exhibits a high density of surface trap states potentially leading

to non-radiative recombination centers.
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Figure 3.1: Interface engineering of the ETL-cathode inter-
face by employing Rhodamine 101. (a) Studied device config-
uration. (b) Energy diagram for the constituent layers, along
with electron and hole transfer pathways. The WF of silver in
the device with Rhodamine changed by -0.18 eV (pink dashed
line). (c) Box charts associated to the photovoltaic parameters
of the fabricated solar cells, the statistical analysis was per-
formed including both forward and reverse scans (This image

was taken work made by the authors of [96] )

Similarly, the PC70BM films (Figure 3.2e ) present important variations in the surface

potential along the entire layer. Interestingly, the Rhodamine inclusion represented a

strong reduction in the variation of the surface potential as evidenced in Figure 3.2f.

Since the spatial uniformity of the surface potential can be associated to the passivation

of defects in organic semiconductors [97, 98], the Rhodamine interlayer induces a lower

accumulation of defects right before the metal cathode enhancing the charge transfer.

Moreover the surface potential uniformity allows uniformity in in the Fermi Level and

as a result an uniform band alignment, this is particularly evident in the improvement

of the statistics of all photovoltaic parameters.

PL measurements Figure 3.4 show that Rhodamine does not affect the PL emission in-

tensity of perovskite/PCBM layers. Therefore, Rhodamine has no effect on the radiative

recombination of the perovskite. Thus, the improve charge transfer should be attributed

to lower accumulation of defects as discussed before.
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Figure 3.2: (a-c) Topography and (d-f) surface potential
maps of the (a, d) perovskite layer on NiOx (b, e) PC70BM
layer on perovskite and (c, f) PC70BM / Rhodamine layer on
perovskite. The electronic effect of the Rhodamine in stabilizing

the surface potential is apparent

3.1.3 Conclusions

Has been analyzed the role of the Rhodamine interfacial layer on the enhancement of

PCE of p-i-n planar PSCs. On the other hand, AFM characterization allowed us to

explain the effect of Rhodamine on the improvement of the photovoltaic parameters

of PSCs. Despite that Rhodamine has little impact on the topography of the PCBM
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Figure 3.3: Grain size (black squares) and rough-
ness (blue circles) of perovskite (PVKT), PC70BM and

PC70BM/Rhodamine (Rh) surfaces

layers, it induces an important change on its surface electronic properties. Surface poten-

tial measurements demonstrate that Rhodamine passivates surface trap states leading

to reduced non-radiative recombination. Moreover the Rhodamine layer changes the

electrode work function allowing a better mismatch with the ETL. Accordingly, p-i-n

planar PSCs including Rhodamine achieved the highest reported PCE up to 16.8%,

for this type of architecture. This section contributes to a better understanding of the

operational mechanisms of PSCs, specifically about the role of silver-electrode/organic-

semiconductor interface

3.2 Analysis of fullerene surface modification of the ti-

tanium dioxide as electron transport layer in a n-i-p

perovskite solar cell

3.2.1 Introduction

Most efficiency perovskite solar cells PSCs have been reached implementing the regular

n-i-p device structure [99] with TiO2 representing the typical ETL due to its low cost,

phase stability and effective carrier dynamics control when employed as scaffold [100–

104]. However, the advancement towards planar n-i-p devices has not been easy making
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Figure 3.4: Photoluminescence spectra of Perovskite samples
on glass with or without ETL layers

apparently due to the need to accomplish a precise control of the TiO2/perovskite in-

terface. This objective is transversal to all the perovskite photovoltaic research since

Yang et al [73] recently demonstrated that recombination in the top and bottom sur-

faces of the perovskite is more important than even the recombination intra- and inter-

perovskite grains. Two main strategies have been explored for effectively controlling

the TiO2/perovskite interfaces: growing the TiO2 using a more controlled deposition

method or incorporating specific interlayers. In the first approach, TiO2 growing meth-

ods such as sputtering, [103] e-beam [100] or atomic layer deposition [105] led to a good

device performance. Actually PCE ranged from 12.2% to 17.6% but were essentially lim-

ited by the relatively complex deposition methodology. The second strategy, based on

optimizing the interface between TiO2 and the perovskite absorber, [100, 102, 103, 106–

112] has been more successful. Very recently, the designing of chlorine-capped TiO2

nanocrystals demonstrated an unprecedented 20.9% stabilized PCE [110]. A slightly

simpler strategy consists in incorporating interlayers such as ionic-liquids [103, 113] or

fullerene derivatives [101, 102, 106–108, 114–116]. Although this latter case has been

specially studied, it is hard to preserve the integrity of the fullerene layer because of its

partial solubility in the solvents used for perovskite deposition [115]. As a result, several

alternatives including depositing the perovskite by thermal evaporation [101, 107, 108],

chemically modifying the fullerene [102, 114, 115], or depositing additional protective

layer atop the fullerene [106] have been studied. A very complete explanation of the

fullerene effect on the perovskite p-i-n structure was recently reported [117]. Fullerene
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derivatives can act in different ways, firstly suppressing hysteresis, slightly increase the

Voc and improve stability in such configuration. On the other hand, when consider-

ing flexible n-i-p PSC, the polymeric substrate imposes a sub 150◦C restriction on the

processing temperature. In that context, the best reported flexible devices relied on a

sputtered TiO2 layer [118, 119]. Strategies employing solution-processed low temper-

ature TiO2 have reached around 10% PCE [120–122]. In both rigid and flexible n-i-p

devices, the surface engineering of the TiO2 is intended for passivating surface defects

and suppressing ion migration, which is ultimately critical to achieve highly efficient and

hysteresis-free n-i-p devices [110].

In this work, is analized a new method for tratment of the surface of nanoparticle-based

solution-processed TiO2 layer (TiO2-NP) leading to a unique simultaneous passivation

of the top and bottom interfaces of the perovskite n-i-p device structure. Through AFM

techniques, we show that this specific modification simultaneously improves the charge

transfer from the bottom perovskite contact to the TiO2 as well as reduces surface trap

states enhancing the top perovskite contact with the p-type buffer layer. The developed

TiO2-NP:PC70BM layer is a network of TiO2 nanoparticles interconnected by fullerene

clusters. Due to the particular topography of this layer, fullerene is not dissolved by the

perovskite precursor solution [123].

3.2.2 Results

The effective surface modification of a TiO2-NP layer with the fullerene derivative

PC70BM (referred in the following as TiO2-NP:PC70BM) configures a novel ETL en-

abling a champion 18.4% PCE in a planar n-i-p PSC Figure 3.5a (The devices of this

section were fabricated by John Ciro). In the Appendix A there are the description

of fabrication methods for the MAPI, buffer layers TiO2, TiO2-pcbm, Spiro-ometad

and silver electrodes and their respective thickness. Since non-sintered TiO2-NPs were

implemented, the layer on top is expected to infiltrate. Accordingly, when depositing

perovskite directly onto the TiO2-NP, the perovskite layer is likely to have a direct

contact with the ITO semitransparent electrode in detriment of the device photovoltaic

parameters. Such is the case for devices without PC70BM as shown in Figure 3.5b.

The broad distribution in the statistics of the photovoltaic parameters, particularly in

the PCE when the device is fabricated without PC70BM is due to that in some cases,

several cells can be in places without pinholes, reaching values as high as 16.6 %. For

this sample was not possible determine its stabilized power output (SPO) This behavior

has been already reported for devices with severe hysteresis [124, 125]. Incorporating

PC70BM into the TiO2-NP layer strongly enhanced the device.
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Figure 3.5: Enhanced planar perovskite solar cell based on
a TiO2-NP electron transporting layer surface modified with
PC70BM reaching a champion 18.4% efficiency. (a) Planar n-
i-p device structure. (b) Statistical dispersion of the obtained
photovoltaic parameters. (c) EQE and integrated Jsc. (d) Re-
sulting 17.2% stabilized power output.(Image realized by the

group for the paper [123] )

PC70BM provided compactness to the TiO2 layer, which is analyzed thoroughly later,

enabling devices with high external EQE and SPO reaching 17.2% as shown in Fig-

ure 3.5c and Figure 3.5d, respectively. Therefore, the TiO2-NP:PC70BM layer enabled

a significant reduction of hysteresis in the J-V curve of the optimized devices. Previously,

the origin of the hysteresis in planar n-i-p solar cells based on TiO2 was attributed to

a contact resistance for electron transfer between perovskite and TiO2 [124]. Here, we

observed the same phenomena for solar cells based on TiO2 -NPs. However, modification

of TiO2 with PC70BM leaded to solar cells with reduced hysteresis.

The optimal performance of the device using a low concentrated PC70BM (3 mg/mL)

indicates a successful surface modification of the TiO2 -NP layer without using PC70BM

in excess. Conversely, PC70BM was able to cover possible pinholes in the bare TiO2-

NP surface, which results in an improved interface with the perovskite. This result is
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Figure 3.6: Effect of the ETL on the superficial electronic
properties of the perovskite. Photocurrent of the perovskite
deposited on (a) TiO2-NP:PC70BM and (b) TiO2-NP layers,
respectively. c) Dependence of SPV with light intensity for per-
ovskite films grown on different ETLs. d) Schematic of the
band bending at the surface space charge region (SCR) of the

perovskite depending on the underlying ETL

consistent with the report by TiO2-NP Conings et al [126], who state that fullerene is

able to infiltrate a nanoporous SnO2 layer leading to passivation of the metal oxide and

the blockage of possible shunt paths [126].

Besides modifying the surface properties of the TiO2 layer, the PC70BM implementation

also enhances the electronic properties of the perovskite grown atop. In fact, the charge

extraction at the ETL/perovskite interface was enhanced by the TiO2:PC70BM layer

while simultaneously the resulting grown perovskite exhibited surface donor states on its

top interface. As a result, there is a subsequent accumulation of holes at the perovskite

surface facilitating charge transfer towards the atop hole transporting layer (HTL) it was

proved thorough PL measurements Figure 3.8 showing higher quenching of perovskite

PL signal when it is grown over the TiO2-NP:PC70BM layer. Accordingly, the PC70BM

modification of the TiO2 surface contributes to maintaining photocurrent uniformity all

over the perovskite interface.

This result is consistent with results by Wojciechowski et al [102], who found improved

electron extraction from the perovskite as a result of fullerene modification of TiO2 [102].

On the other hand, SPV analysis revealed the changes of the band bending at the surface

of the perovskite. Variation of the SPV with the light intensity is shown in Figure 3.6a.

As described elsewhere[61, 127] the SPV sign is related to the type of surface states while

its magnitude relates to the density of states. A positive SPV corresponds to donor states

(surface downward band bending) which accumulate positively charge surface donors at
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Figure 3.7: Electronic and morphologic properties of the
grown perovskite depending on the underlying ETL. Contact
voltage and retrace amplitude of the perovskite deposited on
(a), (c) TiO2-NP:PC70BM layer and (b), (d) TiO2-NP layer.
(e) Difractogram of the perovskite. (f) Zoom of the overlaid

difractograms

the semiconductor surface, while a negative SPV corresponds to acceptor states (surface

upward band bending) that accumulate electrons, as shown schematically in Figure 3.6b.

In the case of the perovskite grown on TiO2-NP:PC70BM, positively charged surface

donors accumulated at the top perovskite surface which is convenient for the subsequent

hole transfer towards the Spiro-MeOTAD HTL because electrons are transferred from the

HTL valence band to the surface donor states and from there to the valence band of the
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Figure 3.8: Steady-state photoluminescence (PL) spectra of
the perovskite on TiO2-NP and TiO2-NP:PC70BM.

perovskite. An opposite behavior was found for the perovskite grown on bare TiO2-NP

where electrons are accumulated in acceptor surface states. Consequently, effective hole

transfer at the Spiro-MeOTAD/perovskite interface is hampered by the accumulation of

negative charge on the perovskite surface. These changes in the perovskite SPV can be

explained by the morphological and superficial differences of the underlying layer. As

shown in Figure 3.6a, perovskite grown on bare TiO2-NP and ITO has negative SPV

values, indicating presumably that pinholes on the TiO2-NP layer allows the contact

of perovskite with the ITO electrode. In contrast, an almost flat SPV response was

found for the perovskite grown on the TiO2-NP:PC70BM layer which also happened

for the perovskite grown on the pin-hole free C-TiO2 layer confirming the influence

of getting compact ETLs. Hence, the TiO2-NP:PC70BM layer effectively blocks the

contact of perovskite with ITO and change the direction of the surface band bending of

the perovskite. Moreover, the lower magnitude of the SPV for the perovskite grown on

TiO2-NP:PC70BM indicated a reduction of surface trap density within the perovskite

absorber. This flattening of the perovskite bands reduce the electrostatic barrier for hole

transfer across the perovskite/HTL interface [102]. These features have been pointed

out as key factors to achieve highly efficient and hysteresis-free PSC [103]. In order to

provide insight into the physical mechanism behind the modifications in the electronic

properties of the perovskite grown on TiO2-NP:PC70BM, the perovskite morphology

and grain boundaries were evaluated. In first place, the resulting perovskite facets

and crystalline structure depended on the underlying ETL, as shown in Figure 3.7.
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Since facets are closely related to the photovoltage mapping [49] modifications in the

perovskite electronic behavior are clearly anticipated. On the other hand in the net

section we verified how the grain boundaries have particular behaviors depending on the

sample conditions.

Accordingly, it is not possible to assign a particular charge accumulation at the grain

boundaries. From the resulting photovoltaic performance, we corroborate the influence

of the TiO2-NP:PC70BM interface in determining a perovskite with higher optoelec-

tronic quality. In summary, the PC70BM incorporation engineered both interfaces of

the perovskite towards enhancing simultaneously the electron and hole extraction, which

explains the achieved good performance of the device.

3.2.3 Consclusions

In summary, was analized the surface modification of a TiO2 layer derived from an ink of

dispersed NPs and processed at low temperature (150◦C). With the AFM measurements

and SPV measurements was showed that fullerene interconnect the TiO2 NPs in the

resulting TiO2-NP:PC70BM composite layer. Since fullerene results physisorbed into a

network of TiO2 NPs, the perovskite precursor solvent does not remove it. To understand

the origin of this high PCE, SPV analysis of the perovskite surface was determinant. We

demonstrate that surface modification of TiO2 not only influence the properties at the

ETL/perovskite interface but determines a proper hole transport layer HTL/perovskite

interface. It was found that PC70BM surface modification change the direction of the

surface band bending within the perovskite semiconductor and reduce its density of

trap-states at the interface with the HTL layer. As a consequence, TiO2 modification

by fullerenes enables better charge transfer towards the n-type and p-type buffer layers

improving the PCEs until PCEs up to 18.4% and SPO of 17.23%.

Planar PSC devices based on the TiO2-NP:PC70BM layer reached PCEs up to 18.4%

and SPO of 17.23%

3.3 MACl treatment in easy processable perovskite solar

cell

3.3.1 Introduction

In recent years, new methods for fabrication of PSCs have been proposed [37, 128–132].

One of the challenge is to produce low-roughness and high quality films, with great
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coverage area and large grains to avoid shunt paths and get better transport and optical

properties. In spite of the success of most of these methods there are still some issues

to be solved. One of the problems, is that due to the grain structure of perovskite

films, their boundaries are a source of defects that work as trap states into the band gap

limiting the performance of the cell [33, 34, 68, 133, 134]. Other issue to be considered,

is that usually these fabrication methods have many difficulties for scaling up and are

useful in proof-of-concept devices [135].

In order to solve the first issue, several groups have used Lewis bases such as pyridine

[136] and thiopheness [133, 136] to passivate the grain boundaries in the perovskite films,

reducing the non-radiative recombination paths leading to increase the open circuit

voltage (Voc). In spite of these good results, passivating compounds as pyridine, are

very toxic [137] and its use in scaling-up processes is very complicated. Moreover, the

thiopheness are usually dissolved in chloro-benzene which difficult the ulterior deposition

of electron transporting layers (ETLs) such as PCBM.

The other problem is to find a suitable method to scaling up. There have been several

alternatives recently reported. Noel et al [128] developed a new film deposition method

based in low boiling point solvents (acetonitrile ACN deposition route). This method

does not require additional solvents nor vacuum flash nor gas annealing. In spite of their

great advantages to get high efficiency and easy fabricated solar cells, this technique

requires the addition of MACl in order to get high performance solar cells.

To explore the influence of the MACl in the bulk and micro-scale properties of the

CH3NH3PbI3 grown by the ACN deposition route, it is combined steady state PL, AFM,

KPFM, and SPV. Based on these measurements, we propose a mechanism of reduction

of electron barriers when the light interact with the MACl modified film. Additionally,

we proved how the ACN route produce very homogeneous perovskite films in comparison

with layers fabricated by the solvent engineering (SE) method. As a result, high-quality

pin-hole free perovskite layers could be deposited in large area substrates opening a new

route for the fabrication of efficient solar cell modules.

3.3.2 Results

In order to see the difference of the solar cell performances due to the MACl treatment

on the CH3NH3PbI3 perovskite, were fabricated PSCs in a p-i-n configuration. Glass-

ITO was used as substrate, nickel oxide (NiOx) as HTL, PCBM as ETL, and silver as

metal electrode (See Appendix C for experimental details).
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Figure 3.9: Enhancement of photovoltaic and optical prop-
erties by MACl treatment of perovskite layers. a) Statistical
dispersion of photovoltaic parameters. Steady-state (b) and (c)
transient photoluminescence of CH3NH3PbI3 perovskite layers

Jsc (mA/cm2) Voc (mV) FF (%) η (%)

Forward (With MACl) 20.17 ±0.2 1048.6 ±6 73.0 ±1.1 15.41 ±0.3

Reverse (With MACl) 20.4 ±0.1 1040.8 ±11 70.5 ±2.8 14.8 ±1.3

Forward (Without MACl) 10.97 ±1.2 965.9 ±21.9 76.7 ±6.27 8.5 ±1.1

Reverse (Without MACl) 10.9 ±1.3 932.5 ±24.3 56.0 ±5.48 5.7 ±1.1

Table 3.2: Photovoltaic parameters of PSC produced by the ACN method with and
without MACl

Figure 3.9a shows the statistical dispersion of the photovoltaic parameters of PSCs

fabricated from the ACN precursor with and without MACl. There are clearly improve-

ments in the short circuit current density (Jsc) and in the open circuit voltage (Voc)

when MACl is added. There is also a slightly enhancement in the fill factor (FF). The

mean and champion values of the fabricated devices are shown in Table 3.2 whereas the

champion device J-V curves are depicted in Figure 3.10a, b. It is notable how the cells

without MACl present significant hysteresis which is significantly suppressed when the

additive is included. The EQE and their respective integrate current density for the

perovskite with and without treatment are shown in the Figure 3.10c. The EQE exhib-

ited an almost flat response along the absorption band of the perovskite resulting in an

integrated 19 mA/cm2 short-circuit current for the perovskite with MACl treatment,

without the MACl treatment the integrated current is 17.9 cm2. This value without

MACl is higher than the Jsc obtained of the J-V measurements. The EQE is taken
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with an lower intensity than the solar simulator, and as was demonstrated with the

SPV measurements, the transport properties of the perovskite changes with the light

intensity. Particularly as the light intensity is increased the perovskite without MACl

decrease their transport properties, but with MACl treatment an increase in the light

intensity improve their transport properties.

Figure 3.10: J-V curves of the champion device under for-
ward and reverse scans (a) with MACl, (b) Without MACl, and
(c) EQE spectra of the devices with and without MACl surface

treatment.

The differences in all the photovoltaic parameters of the perovskite with and without

MACl should be attributed to changes both in the physical or chemical properties of

the perovskite. Chemical changes could be due to stoichiometric changes produced by

the incorporation of the MACl in the perovskite structure as mentioned later in the

XRD analysis. Physical changes should be mainly due to improvements in the optical

or transport properties as consequence of higher crystallinity, enhanced morphology as

well as defects passivation. In the following will be discuss each of these factors.

In order to explore what kind of optical process are improved by the MACl treatment we

performed steady-state and transient PLmeasurements. Figure 3.9b shows PL spectra

of perovskite films with and without MACl. Clearly, the MACl treatment produce a

significant increase in the PL intensity. Thus, perovskite films with MACl have bigger
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radiative recombination than those without MACl, implying that the surface treatment

reduce the non-radiative recombination. This behavior is a consequence of reduction

of trap states which should be reflected in the increase of Voc (Figure 3.9a)[25, 36].

Moreover, it is observed a change in the position of the PL maximum, as the onset in

the absorption spectrum does not have changes [138] (see Figure 3.11)a this indicate

differences in stokes shift of the perovskite. This result can be explained because photo-

generated carriers relax into lower energy states and predominately emit from the lowest

bandgap domains [139]. In Figure 3.9b transient PL is reported. It can be observed that

films without MACl do not reach the PL maximum. Previously, the longer transient

response of PL was assigned to a stabilization of the system as a product of trap state

filling. Hence, the films without MACl do not reached a stabilization which is an indica-

tion that different kinetics and trap states control the process in longer periods of time

[35].

Figure 3.11: Absorption spectra of the perovskite films with
and without MACl treatment

Figure 3.13 shows the morphology and the surface potential of perovskite layers fabri-

cated by the ACN route. It is observed a big change in the morphology of films with

and without MACl treatment. Layers without MACl present similar grain structure to

perovskite films fabricated by the solvent engineering method (SE) (Figure 3.14) with

average grain size of 250 nm. As MACl is added the morphology changes. Interestingly,

the grains are so much bigger and two types of grains were observed; one with a rod

shape and average size of 1 µm and other with more symmetrical extension. In order

to confirm that these images are not tip artifacts, we took SEM micrographs as shown

in Figure 3.14. The effect of grain size on the recombination kinetics was analyzed in

previous articles [75]. It was found that perovskite films with bigger grains have longer

diffusion length leading to improvement in the current density. Moreover, in the XRD

images (Figure 3.11b) is observed an increase in the intensity of the peaks which means

more grade of crystallinity along with the decrease in the PbI2 peak, indicating that
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Figure 3.12: Topography images (2x2) µm of perovskite lay-
ers without (a) or with MACl (c) Surface potential under dark
ACN method. Perovskite films without MACl (b), with MACl

(d)

MACl helps to complete the stoichiometry of the perovskite . Films without MACl

present higher proportion of PbI2, which is reported to be as harmful to the device

performance [140].

The surface photo voltage (Vcpd) of the films with and without MACl treatment are

shown in Figure 3.15. The Vcpd images of the films without MACl treatment before

illumination and after illumination are displayed in Figure 3.15c and Figure 3.15d re-

spectively. The Vcpd images of the films with MACl treatment in dark and under

illumination are shown in Figure Figure 3.15e and Figure 3.15f, respectively.

The average in dark allows to calculate the work function of the films. A potential

difference of around 50 mV was found between the perovskite with and without MACl.

As the energy is qV, their work functions differences should be 50 meV, this average was

taken on 2x2 µm surface potential images in order to have better statistics Figure 3.12.

Perovskite surface with MACl has less negative potential (small work function), which

means it has more n-type behavior than the perovskite surface without the treatment.

This difference in the character of the perovskite should be an indication of differences
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Figure 3.13: Topography images of perovskite layers with
(a) or without MACl (b) Surface potential and morphology of
perovskite layer deposited by the ACN method. Surface po-
tential images (1x1µm) of perovskite layers with (c), (d) and

without MACl (e), (f)

of the position of defect levels, showing that without the treatment the defects could

be deeper, and after the treatment defects are closer to the band edge, which is in

agreement with the improvement observed in the Voc for the MACl treated perovskite.

Besides this change in the work function, other electronic changes can be analyzed from

the microstructure.

To analyze the influence of the MACl treatment in the microstructure, it is focused on

the interface between two characteristic grains. In darkness, the different grains with and

without MACl treatment present differences in the surface potential (see Figure 3.13c

and Figure 3.13d) as was analyzed in previously reports [49]. Particularly in the MACl

treated samples it is clear how the rod shape grains (grains 1) show more negative

potential than the most symmetrical shape grains (grains 2). These potential difference

between grains can be attributed to different facets of the perovskite structure with

each facet having different energetic distance between the vacuum and Fermi level in

each direction in the reciprocal lattice. It should be noted that although this fact was

analyzed by Sibel et al [49], is more evident in this samples the relation between the

possible facets and the surface potential. Additionally the grain boundary shows a more

negative potential, and consequently the biggest work function of the film (rode shape

grains) show more negative potential than the (symmetric grains) Figure 3.13a and

Figure 3.13b. We attribute this potential difference between grains to different facets of

the perovskite structure with each facet having different band edges in the K space.
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Figure 3.14: SEM images of the perovskite fabricated by the
ACN route without (a) and with MACl (b), and fabricated by

the SE route without (c) and with (d) MACl.

Moreover the work function (WF) of the MACl-treated perovskite is smaller compared

to films without MACl. Additionally both samples with and without MACl, the grain

boundary shows a more negative potential, and consequently (the biggest work function

of the film). This difference in the WF creates an effective electric field between the

grains and their boundaries which could influence the transport of carriers and affect

the Voc and Jsc by trap states located at grain boundaries defects, and potential barriers,

respectively.

So the bigger work function implies a downward band bending of the semiconductor

as a product of negative charge accumulation as was explained in the previous sections

of this chapter. After illumination, the surface voltage of the grains and their bound-

aries with and without MACl present a completely different behavior. Without MACl

the grain boundaries present a bigger potential than the grain bulk which is an indi-

cation of a change in the direction of band bending at the boundaries. In contrast,

films with MACl present less pronounced potential differences between the grain bulk

and boundaries and therefore a continuous surface photovoltage profile is observed (Fig-

ure 3.15b). Thus, MACl surface treatment has a passivating effect of the traps located

at the grain boundaries. In order to model the observed surface voltage behavior at

the grain bulk and their boundaries is schematized in Figure 3.15c and Figure 3.15d a

plausible mechanism of lateral charge transport in the perovskite films. For films with
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Figure 3.15: Spatial variation of surface voltage and pho-
tovoltage for perovskite films with (a) or without (b) MACl
surface treatment black lines before illumination and blue af-
ter illumination. Schematic diagram of charge transfer between
grains for perovskite films with (c) or without (d) MACl treat-

ment

MACl, the electrons can be trapped in a potential well at the grain boundaries in dark

conditions whereas a good potential junction favorable for charge transfer across the

boundaries is formed between the grains under illumination. In contrast, films without

MACl treatment display a potential barrier at the grain boundaries under illumination.

As a hypothesis the passivation of the grain boundaries along with the elimination of

potential barriers in the samples with MACl treatment help to avoid the non-radiative

recombination and facilitate the lateral charge transfer. These results of surface pho-

tovoltage analysis are in agreement with the increase in the PL signal as well as the

improvements of the Voc and Jsc observed in Figure 3.9

After realizing the importance of the MACl treatment in the perovskite by the ACN

route in small solar cells, were fabricated 10x10 cm films and mini-modules as the next

step in the scaling up process, as shown in Figure 3.16. It is compared the morphology

of large area films and performance of the modules with other ones fabricated by the

SE route. To see the advantage of the ACN process, were took AFM images in different

points of the modules, one at the center of the film and other at a radial distance of 4 cm,

to the edges as shown in Figure 3.16c-f. Clearly, films made by the solvent engineering

technique present in some place wave-like forms due to difficulties to generate uniform

films on large areas by this method. This result demonstrates that this technique has

difficulties for scaling up processes. In contrast, the film by the ACN route shows more
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Figure 3.16: Characterization of perovskite films on large
area substrates (10x10 cm). Photographs of perovskite films
deposited by SE (a) and ACN (b) techniques. AFM images
of perovskite films deposited by SE (c and d) and the ACN
techniques (e and f). The AFM images were took at the center
(c and e) and at a distance of 4 cm to the edge of the substrates

(d and f)

homogeneity only with small variations in the coverage area near to the edges of the

films. Moreover, the reproducibility of the photovoltaic parameters and performances of

the modules with the perovskite fabricated by the ACN route is quite superior than the

modulus fabricated by the SE technique. This results together with the passivation with

MACl shows than the ACN route together with a deposition of a passivating material like

MACl are the one of the most promising technique for the scaling up of the CH3NH3PbI3

perovskite.

3.3.3 Conclusions

In this section was proved the importance of the MACl treatment in the perovskite

fabricated by the ACN route. It was analized the change of the morphology of the

perovskite after the MACl treatment, the size increase in the grains, and the passivation

of defects in grain boundaries as a product of the interaction with light.

Through surface voltage was found for films with MACl, the electrons can be trapped

in a potential well at the grain boundaries in dark conditions whereas a good potential

junction favorable for charge transfer across the boundaries is formed between the grains
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under illumination. In contrast, films without MACl treatment display a potential

barrier at the grain boundaries under illumination.

This changes produce more efficient solar cell as a consequence of increases in the Jsc

and the Voc. With this high performance solar cell were fabricated solar cell modules

and compared with another modules fabricated by SE route, showing that the ACN

route is a very promising technique for the perovskite scaling up due to its homogeneity

in the morphology and their passivated grains after their interaction with light.



Chapter 4

Conclusions

4.1 General Conclusion

Was showed through different characterization techniques, particularly by AFM, and

their associated techniques the influences of the properties of different buffer layers,

their surface modifications in the photovoltaic parameters, and performances of PSCs.

Moreover we conclude that the surface and interface interaction between the different

layers of the PSCs play a big role in the design and fabrications of the perovskite devices.

4.2 Specific Conclusions

4.2.1 Influence of selective layers and architecture

• Was found through AFM, and KPFM how the morphological and electronic prop-

erties of the HTL, CuOx, CuSCN and NiOx affect drastically the photovoltaic pa-

rameters and the performances of the PSCs. The CuOx films through the method-

ology worked, did not present good surface to the perovskite growing, either in the

Cu2O or CuO phase. In spite of CuSCN presented and homogeneous morphol-

ogy, high performance devices were not achieved. This results is a consequence

of negative band misalignment which allow transport of electrons in the CuSCN

valence band, and as a consequence decrease in the Jsc and FF. In the other side

the NiOx presented nice morphology, good conductivity, and low band alignment

losses, which allow high an increase of all photovoltaic parameters and as a result

high performance devices.

• Through IMKPFM, photoluminescence maps and KPFM was shown how the ad-

dition of NiOx as a HTL and Al2O3 scaffold insulator change the surface band
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bending and the recombination properties of the MAPI. We interpret this rela-

tionship in terms of the surface structure and conclude by IM-SKPM that meso-

porous structures tend to have more traps. These films are more stable and thus

show a resistance to PL degradation over time as was seen on HF films while

simultaneously exhibiting higher PL intensity.

4.2.2 Surface modification in selective contacts

• Was analyzed the surface modification of a TiO2 layer derived from an ink of

dispersed NPs and processed at low temperature (150◦C). With the Atomic Force

microscopy (AFM) measurements and surface photovoltage measurements we show

that fullerene interconnect the TiO2 NPs in the resulting TiO2-NP:PC70BM com-

posite layer. Since fullerene results physisorbed into a network of TiO2 NPs, the

perovskite precursor solvent does not remove it. To understand the origin of this

high PCE, surface photovoltage (SPV) analysis of the perovskite surface was deter-

minant. We demonstrate that surface modification of TiO2 not only influence the

properties at the ETL/perovskite interface but determines a proper hole transport

layer (HTL)/perovskite interface. It was found that PC70BM surface modification

change the direction of the surface band bending within the perovskite semicon-

ductor and reduce its density of trap-states at the interface with the HTL layer.

In consequence, TiO2 modification by fullerenes enables better charge transfer to-

wards the n-type and p-type buffer layers improoving the PCEs until PCEs up to

18.4% and SPO of 17.23%.

• Was elucidated the role of the Rhodamine interfacial layer on the enhancement

of PCE and operational stability of p-i-n planar PSCs. On the other hand, AFM

characterization allowed us to explain the effect of Rhodamine on the improve-

ment of the photovoltaic parameters of PSCs. Despite that Rhodamine has little

impact on the topography of the PCBM layers, it induces an important change

on its surface electronic properties. Surface potential measurements demonstrate

that Rhodamine passivates surface trap states leading to reduced non-radiative

recombination. Moreover the Rhodamine layer changes the electrode work func-

tion allowing a better miss-match with the ETL. Accordingly, p-i-n planar PSCs

including Rhodamine achieved the highest reported PCE up to 16.8%. This sec-

tion contributes to a better understanding of the operational mechanisms of PSCs,

specifically about the pivotal role of proper interfacial engineering at the metal-

cathode/organic-semiconductor interface.

• We showed the importance of the MACl treatment in the perovskite fabricated by

the ACN route, we proved how the morphology of the perovskite change after the



Influence of Surface Modifications in Selective Layers in Perovskite Solar Cells 51

MACl treatment, the grains increase the size, and there is passivation of defects in

grain boundaries as a product of the interaction with light. This changes produce

more efficient solar cell as a product of increases in the Jsc and the Voc. With

this high performance solar cell we fabricated solar cell modules and we compared

with another modules fabricated by SE route, showing that the CAN route is a

very promising technique for the perovskite scaling up due to its homogeneity in

the morphology and their passivated grains after their interaction with light.



Chapter 5

Perspectives

As a mandatory perspective is the implementation of another CuOx precursor method,

and films fabrication, in order to have better CuOx films and try to grow this material at

low temperatures. Another approximation is a surface modification of this film, similar

to that we used in the TiO2-PCBM treatment, or the rhodamine-PCBM modification

Future work will focus on particular grains facets to better understand the electronic

mechanism in each particular case, and also look the evolution in time of the performance

to establish if some facets in the surface are likely to changes in recombination process,

degradation and decrease of the performance.

As future interesting work is the understanding of the difference in ion movement when

is used different structures and different Buffer layers. Moreover how the structure and

the buffers help or limit this movement when we applied an external electric field. This

can be studied through KPFM and impedance techniques.
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Experimental Methods

In this chapter we describe the different experimental methods to make and characterized

the samples.

A.1 Solutions and Films deposition

The perovskite technology as a 3 generation solar cells, fundamentally requires that

almost all the layers that conform the cell should be fabricated by solution processing

methods. Particularly, in this work almost all the layers were fabricated by spin coating

process that is on of the best technique to prove concepts previous to a scaling up

process. As a advantage of this work, the fabrication of all the layers did not require

the use of glove-box camera (in spite that we have it ) and the cells are fabricated in air

with a control of humidity with a dehumidifier system. The home made chamber with

the humidity control is shown in the Figure A.1. Moreover in the Figure A.2 is shown

the most used characterization devices used in this work as the AFM, Solar simulator,

semiconductor Keithley device, UV-VIS and PL system, EQE and profile-meter system.

The photograph of our standard device composed by 8 subcells of 9 mm2 is presented

in the Figure A.3

Below we describe in a list, the parameters used for the preparation of the precursor

solutions or colloidal dispersions, fabrication of the films, and parameters used in char-

acterization of the materials and films.

• Clean substrate and treatment process

The substrates for the P-I-N structure were ITO coated glass from (Naranjo Com-

pany). The substrates were washed in the usually 3 steps ultrasonic bath of 5
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Figure A.1: Spin coater device and home made chamber for
the humidity control

Figure A.2: The most used device system for characteriza-
tion of solar cells and films

minutes with the solvent (water, acetone, isopropanol). Then, ultraviolet ozone

(UVO) treatment was done for 5 min at 100◦C.

• NiOx films

The NiOx hole transporting material was synthesized by using the precipitation

method, previously reported by the group [58].

Ni(NO3)2·6H2O (1.4g, Merck) was dispersed in 1 mL deionized water to obtain

a dark green solution. The pH of the solution was adjusted to 10 by adding a

NaOH solution (10 M, Sigma Aldrich). The colloidal precipitation was thoroughly

washed with deionized water twice, and dried at 80◦C for 12 h. The obtained green

powder was then annealed at different temperatures for 3 h to obtain a dark-black
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Figure A.3: Standard device fabricated in all the work, 8
sub-cells are arranged in one substrete of 1x1 inch

powder.The resulting NiOx powder was dispersed in deionized (DI) water to a 23

mg/mL and spin coated at 3000 rpm for 30 s with a 3 s ramp.

• CuOx films A mix of 0.02 molar copper acetate monohidrated Cu(CO2CH3)2

· H2O and 0.04 molar glucose C6H12O6 in 50/50 water 2 propanol is shaked 20

minutes. The films are deposited at 4000 RPM 30 s. The films were annealed at

220, 260 or 280 oC for 5 min. The obtained films were around 20 nm measured by

profile-meter.

• CuSCN films

To make the precursor solution of Copper thiocyanate CuSCN, 15 mg/ml and 10

mg/ml of CuSCN sigma is prepared dispersing the powders in dipropil-sulfide.

The solution is left stirring 24 hours. The layers were fabricated by spin coating

at 4000 rpm for 30 s. The films obteined were around 8 and 15 nm of thickness.

• TiO2 films

The electron-transporting layer was fabricated by spin coating an aqueous 25

mg/mL nanoparticles dispersion (Anatase TiO2, average diameter of 5 nm pur-

chased from NanoAmor Inc.) at 3000 rpm for 30 s with a 3 s ramp and drying at

100 ◦C for 20 min.

• Al2O3 films

The mesoporous Al2O3 layers were deposited by spin-coating solutions of com-

mercial alumina nanoparticles dispersion (50 nm Sigma Aldrich) diluted at 1:5,
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1:3 volume ratio of dispersion:isopropanol to give 100 nm and 200 nm films. These

films were then dried overnight under ambient conditions.

• CH3NH3PbI3 films

To obtain a 400± 10 nm perovskite layer, a precursor solution of methylammonium

iodide (Dyesol) CH6IN and lead iodide PbI2 (Alfa Aesar; 1:1 molar ratio; 55%

wt.) in N,N-dimethylformamide (DMF) was deposited by spin-coating at 4000

rpm for 25 s. During spinning, 500 µL of Diethyleter (Aldrich) were dropped on

the substrate after 10 seconds and the films were annealed at 65 ◦C for 1 min and

100 ◦C for 10 min.

• ACN perovskite films

For the deposition of the perovskite layer with ACN perovskite a 0.5 M solution of

1:1.06 MAI (Dyesol) to PbI2 (99% purity) in the ACN/MA solvent was spincoated

onto the substrate at 2000 rpm for 45 s, in dry air, resulting in the formation of a

smooth, dense, perovskite layer. A post treatment of methylammonium chloride

(MACl) was then carried out by dynamically spincoating 100 ml of MACl (Alfa

Aesar, 5 mg
ml in isopropanol). The substrate was then heated at 100 C for 60 mins.

• PCBM films

The phenyl-C61-butyric acid methyl ester (PCBM) (1-Material) was deposited via

spin-coating a 20 mg/mL solution in chlorobenzene (CB) at 2000 rpm for 30 s.

• Rhodamine treatment

Rodhamine 101 was deposited on top of the PCBM layer by spin coating a 0.5 mg
L

solution at 4000 rpm for 30s

• Silver electrodes

100 nm silver electrodes were thermally evaporated under vacuum (6x10−6 mbar)

at a deposition rate around 0.1 nm/s .

A.2 Films characterization

• Atomic Force Microscopy- characterization

AFM, KPFM, SPV and IMKPFM measurements.The SPV and topographic 5X5

µm measurements where performed in a MFP-3D AFM (Asylum Research) with

the tips used were Silicon Ti-Ir coated (Asyelec-01) with nominal spring constant of

2.89 N/m and resonance frequency of 71.7 KHz. IM-KPFM data were taken with

mapped using tapping mode MFP-3D-BIO with Pt 300 KHz resonance frequency
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tips. For the local PL and IM-KPFM measurements, were realized by keeping the

sample in a flow cell continuously purged with nitrogen gas, a laser of wavelength

488 nm was used. The flow cell sits on a XY piezo stage placed on a Nikon

Eclipse T2000-U inverted confocal microscope (MFP-3D-BIO) . The piezo stage is

controlled by an Asylum Research MFP-3D AFM controller and software. For PL

measurements, a 488nm laser is pulsed at 400 Hz and attenuated using a variable

ND filter wheel and then coupled into the confocal microscope using a single mode

fiber. While the laser raster scans the sample, a fraction of the fluorescence is

collected by the objective and goes through the same beam splitter, the light is

then filtered by two 500 nm long pass filters and is collected by a 200 µm diameter

fiber connected to a Hammamatsu photosensor module (PMT, H7422P-40). A

Stanford Research SR830 lock-in amplifier with current gain of 106 A/V then

measures the magnitude of the PMT current signal at the laser reference chopping

frequency.

• UV-Absortion and Photoluminiscence measurements

The UV-vis absorption spectrum was taken at room temperature on a UV-vis

spectrophotometer (Cary 100 from Varian Inc.) between 300 and 800 nm. The

stationary PL and transient spectrum was taken in a Cary 100 eclipse with ex-

citation wavelength of 300 and 500 nm. To take the transient spectrum, first we

found the emission peak and subsequently took the data at this point.

• Current Voltage, and External quantum efficiency measurements

Electrical characterization of the devices was performed using a 4200SCS Keithley

system at a voltage sweep speed of around 400 mV/s in combination with an Oriel

sol3A sun simulator, which was calibrated to AM1.5G standard conditions using

an Oriel 91150 V reference cell. The J-V curves were recorded from forward bias

(FB) to the short-circuit (SC) condition and vice versa. Devices were masked with

a metal aperture of 9 mm2 to define the active area. No device preconditioning was

applied before starting the measurement. An Oriel IQE 200 was used to determine

the external quantum efficiency

• X-Ray diffraction measurements

X-ray diffractogram was collected from the obtained powders in a PANalytical

diffractometer. The samples were scanned from 2θ= 10◦ to 60◦ in a Bragg-

Brentano geometry, using Cu-K (1.5408 Å) radiation with a step size of 0.04◦

and a speed of 5◦· min−1
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AFM techniques

In this chapter will be illustrated in detail the fundamentals of the KPFM, SPV and

IMKPFM, that was used as the meaning tool to understand the different properties

analyzed in this work

B.1 Atomic Force Microscopy (AFM) and Kelvin Probe

Force microscopy (KPFM)

A force microscope detects forces (attractive o repulsive forces) acting between a sample

surface and a sharp tip which is mounted on a soft leaf spring called cantilever (see

Figure). feedback system which controls the vertical z-position of the tip on the sample

surface keeps the deflection of the cantilever (and thus the force between the tip and

sample) constant. Moving the tip relative to the sample in the (x,y) plane of the surface

by means of piezoelectric drives, the actual z-position of the tip can be recorded as a

function of the lateral (x, y ) position. The obtained three-dimensional data represent

a map of equal forces [141].

With the concept described above, it is possible to detect any kind of force as long as

the tip is sensitive enough to the interaction, that is, the interaction causes a measurable

deflection of the cantilever on which the tip is mounted. Therefore, not only interatomic

forces but also long-range forces such as magnetic or electrostatic forces can be detected

and mapped. Particularly in the case of detecting the difference of work function of

the tip φtip and samples φsample, the kelvin Probe Force Microscopy (KPFM) has been

developed. As is described below.
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Figure B.1: Sketch of a tip scanning a Real 3d MAPI image
while is illuminated by a led or laser source

Due to the capacitance between the tip and the sample is produced a net force is in

the region near to the contact of the two materials, in the equation below is shown the

terms that make part of this force

F = −1

2

∂C

∂z
[Vdc + VCPD + Vac sin(ωact)]

2 (B.1)

where

VCPD =
φsample − φtip

e
(B.2)

the equation can be written as the addition of different components

FDC = −∂C
∂z

[
1

2
(Vdc − VCPD)2 +

(Vac)
2

4
] (B.3)

Fω = −∂C
∂z

[
1

2
(Vdc − VCPD)Vac sin(ωact)] (B.4)

F2ω =
∂C

∂z

V 2
ac

4
sin 2(ωact) (B.5)

The first one FDC is the contribution to the topography, Fω gives information about the

Vcpd and F2ω is used for capacitance microscopy.
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[142]

There are two ways of take the measurements of the Vcpd, AM-KPFM and FM-KPFM,

because in this work we used the first one, we will describe the mechanism of working

in that way.

Basically in AM mode, is detected the change in the amplitude of cantilever oscillation

at some frequency ωac of the ac force, Recording Vdc while scanning the topography,

an image of the CPD is obtained. Many KPFM systems use this technique with ac-

frequencies of several kHz to several tens of kHz.

In our case we use a two steps mode. In the first pass the scan line topography is

recorded, and to the second pass the tip is lifted up a a small distance (delta high -

around tens of nm)relative from the first pass. Then a ac-voltage atωr is applied with

a amplitude necessary to minimize the force as was describe in the equations, detecting

in this way the Vcpd. So the KPFM use a system to compensate the electrostatic force

between the AFM-tip and sample, using a dc-bias which should match with the Vcpd.

As this signal is very small a lock-in amplifier is necessary.

B.2 Surface Photovoltage (SPV)

Due to a incident illumination in a some sample or device (Metal-semiconductor or

insulator) is produced the photovoltaic. Usually the result is some charge transfer and/or

redistribution within the device. A specific variant of the photovoltaic effect is the surface

photovoltaic effect [143]. The surface photovoltage (SPV) is defined as the illumination-

induced change in the Vcpd. This effect, observed at at first in Si and Ge surfaces,

was reported in a short note by Brattain, and later used in many materials including

inorganic organic and perovskites [144–147].

We concentrate on the SPV induced at the free surface of a semiconductor sample with

a grounded Ohmic back contact. In many SPV theories it is (explicitly or implicitly)

assumed that no appreciable voltage drop develops on the quasi-neutral bulk even under

illumination, as depicted schematically in for the case of depletion. In the absence of an

external field, the charge neutrality rule, must remain valid regardless of illumination but

the absorbed photons induce the formation of free carriers by creating electronâhole pairs

via band-to-band transitions (typically dominant for super-bandgap photons (photons

with energy over band gap energy)) and/or release captured carriers via trap-to-band

transitions (typically dominant for sub-bandgap photons). Thus, a significant amount

of charge may be transferred from the surface to the bulk (or vice versa) and/or re-

distributed within the surface or the bulk [143]. Since the electric potential and the
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charge distribution are inter-dependent through the Poisson and continuity equations,

the potential drop across the surface space charge region SCR (although in the neutral

region can still produce a potential drop), and hence the surface potential,changes. It

is important to note that the formation of a SPV occurs only if carrier generation per

se is followed by net charge redistribution. The detailed analysis of the SPV depends

strongly on whether the incident photon energy is super-bandgap or sub-bandgap [143].

B.3 Intensity Modulated Kelvin Probe Force Microscopy

(IMKPFM)

One method of measuring local recombination is intensity modulated scanning Kelvin

probe microscopy (IM-SKPM), which can measure carrier lifetimes with resolution below

the optical diffraction limit. IM-KPM is a frequency-domain measurement that uses

the slow response of a standard SKPM feedback loop to measure the time averaged

contact potential difference VCPD between the tip and sample in response to a modulated

illumination source Figure B.1. As the experimental modulation frequency increases, the

average VCPD will also increase because recombination is too slow to decay completely

during a single cycle the rate at which average VCPD evolves as a function of modulation

frequency thus reflects the carrier lifetime in the film [148].



Appendix C

Photovoltaic Characteristics of

Solar Cells

The solar cells can be defined as a battery which works while a illumination source is

acting on it. The typical shape of the IV-curve of a solar cells under external pole in dark

conditions is the curve of a diode which shows the rectification properties of the cell,

and under illumination conditions a photovoltage and photocurrent is acquired. The

intersection with the current edge gives the short circuit current (Jsc) and the intersec-

tion with the voltage edge gives the open circuit voltage(V). As their names indicate

the Jsc gives the current without any load connected to the cell, and the Voc gives the

voltage with a infinite load connected. A difference of a traditional electrochemist bat-

tery their current and voltage characteristics are almost independent of the load, but its

current density is dependent of the light intensity (photocurrent). In order to see the

dependence of the current density with the incident spectrum is needed the concept of

quantum efficiency QE which is the probability that an incident photon of energy E will

deliver one electron to the external circuit([1])

Jsc = q

∫
bsQE(E)dE (C.1)

here bs is the photon flux density and represent the number of photons of energy in

the range E to E+ dE. In other way the QE(E) depends on the absorption coefficient

of the absorber material, the efficiency in the charge separation and collection but is

independent of the solar spectrum.

In a common way the solar cells behave like a diode, if a load is present a potential

difference is created between the electrodes of the cell. This voltage or an applied

external pole produce a current which acts in the opossite direction to the fotocurrent.

So taking the same model of an ideal diode the dark density current Jdark(V ) is

62
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Jdark(V ) = J0(e
qV
KT − 1) (C.2)

Where K is the boltzmann constant, T the is the temperature, and J0 is a constant.

If we take the sum of the of the dark current and the short circuit photocurrent in a

linear response we get the current-voltage characteristic, this is called the superposition

approximation that is expressed in the next equation.

J(V ) = Jsc + Jdark(V ) (C.3)

If there is not connection(open circuit), the potential difference has a maximum value

Voc, In this point the dark and short circuit current cancel out and we get a relationship

between the Jsc and the Voc

Voc =
KT

q
ln
Jsc
J0

+ 1 (C.4)

With this concepts in mind the efficiency of a solar could be defined, because the cell

delivers power in a range of 0 to Voc. So the power is

P = JV (C.5)

This power reaches a maximum power point in some place in the range before mentioned

this point has maximum voltage Vm and a maximum density current Jm. So if the light

power density is Ps the efficiency η of a solar cell is defined as

η =
JmVm
Ps

(C.6)

If it is defined the fill factor FF as

η =
JmVm
JscVoc

(C.7)

This fill factor describe how good diode is the cell or its squareness. Then the efficiency

can be expressed in the following way

η =
JscVocFF

Ps
= PCE (C.8)
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In this expression are key parameters that characterized a solar cell, but they should

be defined under some particular illumination condition. As a standard test condition

a Air Mass 1.5 spectrum, and incident density power of 1000W m−2 and a temperature

of 25 ◦C is taken. Almost all the physics characteristics of a solar cell are reflected in

on of these four parameters, so any change in the fabrications conditions and materials

will change the J-V curve.

Moreover to take in count a complete description of the cell in a diode way model a

parasitic resistances could be included in order to include the effect of the contacts and

interfaces. This parasitic resistances are the series resistance Rs and the the parallel

or shunt resistance Rsh, the series resistance arise when the the contacts have a high

resistance or some of the buffer layer in the cell has not enough conductivity, in other

way the shunt resistance decrease when there is a leakage current as a product around

the edges or there exist not good rectification in any of the layers in the cell. Taking

in count this two parameters the relationship between the density current and voltage

present the next form

J(V ) = Jsc − J0(eq(V+JARs)/KT − 1)− V + JARS

Rsh
(C.9)

J(V ) = Jsc − J0(eq(V )/mKT − 1)

where m is ideality factor.
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Boundaries in OrganicâInorganic Halide Planar Perovskite Solar Cells. The

Journal of Physical Chemistry Letters, 6(5):875–880, mar 2015. ISSN 1948-7185.

http://xlink.rsc.org/?DOI=C6EE02373H
http://xlink.rsc.org/?DOI=C5NR06687E


Bibliography 83

doi: 10.1021/acs.jpclett.5b00182. URL

http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b00182.

[135] John Ciro, Mario Alejandro Mej́ıa-escobar, and Franklin Jaramillo. Slot-die

processing of flexible perovskite solar cells in ambient conditions. Solar Energy,

150:570–576, 2017. ISSN 0038-092X. doi: 10.1016/j.solener.2017.04.071. URL

http://dx.doi.org/10.1016/j.solener.2017.04.071.

[136] Dane W. DeQuilettes, Susanne Koch, Sven Burke, Rajan K. Paranji, Alfred J.

Shropshire, Mark E. Ziffer, and David S. Ginger. Photoluminescence Lifetimes

Exceeding 8 µs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin

Films by Ligand Passivation. ACS Energy Letters, 1(2):438–444, aug 2016. ISSN

2380-8195. doi: 10.1021/acsenergylett.6b00236. URL

http://pubs.acs.org/doi/abs/10.1021/acsenergylett.6b00236.

[137] Benjamin Calesnick, Jens A. Christensen, and Mabel Richter. Human Toxicity of

Various Oximes. Archives of Environmental Health: An International Journal,

15(5):599–608, nov 1967. ISSN 0003-9896. doi: 10.1080/00039896.1967.10664975.

URL

http://www.tandfonline.com/doi/abs/10.1080/00039896.1967.10664975.

[138] Samuel D Stranks, Giles E Eperon, Giulia Grancini, Christopher Menelaou,

Marcelo J P Alcocer, Tomas Leijtens, Laura M Herz, Annamaria Petrozza, and

Henry J Snaith. Electron-Hole Diffusion Lengths Exceeding. Science, 341(2013),

2014. doi: 10.1126/science.1243982.

[139] Eric T Hoke, Daniel J Slotcavage, Emma R Dohner, Andrea R Bowring,

Hemamala I Karunadasa, and Michael D Mcgehee. Reversible photo-induced

trap formation in mixedhalide hybrid perovskites for photovoltaics. Chemical

Science, 6:613–617, 2014. ISSN 2041-6520. doi: 10.1039/C4SC03141E. URL

http://dx.doi.org/10.1039/C4SC03141E.

[140] Fangzhou Liu, Qi Dong, Man Kwong Wong, Aleksandra B. Djurǐsić, Annie Ng,
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