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Reverse Time Migration (RTM) and Full Waveform Inversion (FWI) are tech-

niques widely used in the hydrocarbon exploration industry to generate images

of the earth’s sub-surface at target depths by means of controlled seismic waves.

The first technique produces reflectivity maps that show the distribution of the

structures under the surface and the second gives information about param-

eters that can model the earth’s properties.These parameters are for example

wavespeed, density, or other elastic parameters of the media. Both techniques

have been traditionally applied to zones with flat surface, and in order to adapt

them to zones of complex topography some geometrical transformations have

been proposed recently that translate the RTM and FWI algorithms to a Riema-

niann scenario. We introduce a simple type of geometrical transformation to

implement these algorithms for rugged topography, analyze the stability condi-

tions for these scenarios and analyze its consequences in terms of computational

cost as compared with non-Riemannian case.



”We are at the very beginning of time for the human race. It is not

unreasonable that we grapple with problems. But there are tens of thousands

of years in the future. Our responsibility is to do what we can, learn what we

can, improve the solutions, and pass them on”.

Richard P. Feynman
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INTRODUCTION

RTM is an imaging technique that although was introduced in the year

1983 (E. Baysal and Sherwood, 1983) has only been extensively used in the last

few years because the computational resources needed to implement it were

only available recently. Despite its high computational cost, RTM is nowaday’s

choice among a wide set of options to produce seismic images because it can be

used in zones with strong variations of the velocity of propagation, it can map

sub-surface structures with any dipping angle and can create good images of

zones of interest like those under and around salt domes where hydrocarbon

reservoirs can be found.

The classical RTM algorithm produces images of the earth’s sub-surface by

means of controlled seismic waves. These waves are generated mechanically

using seismic sources such as vibroseis (a truck-mounted vibrator) or controlled

explosions among others. Figure 1 (Sahara Wealth Advisors, 2015) shows a typ-

ical field setup used to get the seismic data, required as the starting point for the

RTM method.

The wavefield registered by each geophone is known as trace. When all

traces are put together, in some order, the result is called seismogram where the

horizontal axis (in units of lenght), corresponds to a coordinate in which the

geophones are placed and the vertical axis is the time (Figure 2).

The signal contained in each trace can be retropropagated in order to map the
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Figure 1: Typical scheme for the acquisition of seismic waves used in the RTM
method. The geophones are devices similar to microphones that register the
seismic waves that carry information of the internal structures of the earth since
they are reflected in the interfaces of strata

Figure 2: Typical form of a seismogram
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regions of the sub-suface where reflected energy came from. This procedure

is done using the wave equation (acoustic or elastic) where the trace (inverted

in time) enters as the source term. When this propagation procedure is done

with all seismic traces simulaneously, it produces what is known as backprop-

agated wavefield, Pb(x, y, z, t), where x, y and z are the spatial coordinates and t

the time. This field carries information about the interfaces that produced the

reflections. To create the RTM image, the simulation of the seismic source prop-

agation is needed as well. The functional form of the artificial seismic pulse is

modeled mathematically and introduced as the source term in the same wave

equation used for the backpropagation. The result is the forward propagated field,

P f (x, y, z, t). P f and Pb should coincide in the regions of the sub-surface where

the field was reflected (Figure 3).

Figure 3: Graphical representation of the cross-correlation procedure. The for-
ward propagated field and the backward propagated field should have a high
cross-correlation in the regions where the waves are reflected
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To map those reflecting regions, the zero-lag cross-correlation of the forward

propagated field and the backward propagated field is calculated using the ex-

pression:

I(x, y, z) =
∑

s

∑
r

∫
dtP f (z, y, z, t)Pb(z, y, z, t). (1)

The result of the cross-correlation is the RTM image. A typical RTM image

is shown in Figure 4.

Figure 4: RTM image for the Marmousi synthetic model

Before the use of RTM algorithms were popular, the most common technique

used to produce seismic images were based on rays named the method Kirch-

hoff. Another commonly used method is known as One-Way Wave Equation,

OWWE, or wave-field extrapolation since it takes the field that was registered in

the surface by the seismic geophones and extrapolate it back into the earth’s in-

terior in order to predict the location of the reflecting structures or strata where

the came from (Claerbout and Doherty, 1983; D. Loewenthal and Sherwood,

1976; Stolt, 1978). This method is much faster and require less memory but has

some drawbacks: it can not handle media with strong horizontal variation in

the wave speed and also fails to create good images in the regions of the earth’s

sub-surface where the strata have big dipping angles (Stolt, 1978). These zones
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can be found in practice for example near faults, in over-thrusts, or under the

salt domes and are of special interest in the hydrocarbon exploration industry

because they can present oil traps (Figure 5). Since the OWWE method use

approximated solutions to the wave equation in which the wavefield propaga-

tion is computed only in one direction (usually down), the zones under the salt

domes as those that can be seen in Figure 5 (Energy education, 2015) can not be

well illuminated.

Figure 5: Different configurations of hydrocarbon traps presenting zones with
large dipping angles.

In order to improve the illumination of the these zones, Sava and Fomel

(2005) introduced a modification of the OWWE method consisting in taking the

OWWE equations into a Riemannian scenario where the coordinate system used
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is not Cartesian but curvilinear. This is achieved by modifying the Laplacian of

the wave equation introducing a metric tensor. In this way Sava and Fomel

obtained a one-way field extrapolation method that can be used to propagate

the seismic waves in arbitrary directions, in contrast to downward continua-

tion, which is used for waves propagating in the vertical direction. This semi-

orthogonal coordinates systems includes for example the ray coordinate sys-

tems in which the wave propagation happens mainly along the extrapolation

direction. The use of semi-orthogonal system of coordinates in this approach

can lead to situations in which the coordinates system suffer from problematic

bunching and singularities. To solve this problems Shragge (2008) introduced

the non-orthogonal Riemannian field extrapolation, a procedure that introduces

singularity-free coordinate meshes.

In the decade of 2010s the OWWE methods became less popular, mainly

because the available computational resources made possible the use of more

powerful methods such as RTM, which are based on the solution of the com-

plete wave equation without the strong approximations required by the old

field extrapolation method. The RTM method is better because the complete

solution of the wave equation takes into account the up-going and down-going

fields. and the large dips in the strata are also well imaged and RTM can han-

dle any variation in the propagation velocity of the seismic waves. It seems

then that there is no need to use non-orthogonal coordinates systems anymore

to illuminate complex zones.

Nevertheless it has been pointed out recently (Shragge, 2014a) that the ap-

plication of RTM method to zones with strong variations on the height (rugged

topography) requires the forced application of a Cartesian mesh to a curved
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domain. This can lead to a wrong positioning of sub-surface structures and

gives rise to defects known as artifacts in the final images. In order to solve this

problems, he proposed a coordinate transformation to turn the rugged acquisi-

tion surface into a flat one by means of a 2D complex variable transformation,

namely, the Schwarz-Christoffel transformation. With this approach, the RTM

algorithm is applied in a geometrically transformed domain in which the wave

equation is changed into a more general equation and the metric of the space is

no more Euclidean but Riemannian. In this way good RTM images are obtained

but at the expense of increased computational time. Another inconvenience of

this approach is that the Schwarz-Christoffel transformation can not be gener-

alized to a 3D scenario. A more general approach was introduced (Shragge,

2014b) in which the Riemannian acoustic wave equation was solved for 3D do-

mains. The next step pointed out by him was the implementation the complete

RTM algorithm. Here we implement the RTM algorithm based in that type of

transformations. We present a simple map that transforms a generally curved

acquisition surface into a flat one. The curved domain is transformed into a

rectangular domain where a uniform grid can be applied to solve the acous-

tic wave equation with a generalized Laplacian. When the 3 steps of the RTM

are finished in this rectangular domain we map the final image into the curved

domain, i.e., into the physical domain.

Another problem that can be taken into the Riemannian scenarios is the in-

version of seismic data. Full waveform inversion or FWI (Tarantola, 1984) is

a data-fitting method that uses an approximate velocity model estimate of the

subsurface and iteratively finds a better estimate such that the quadratic error

between modeled seismogram (computed with the estimated velocity model)

and the observed seismogram decreases as the number of iterations increases.
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There are several ways to update the estimate of the velocity model at each iter-

ation, but one of the simplest and most efficient is the gradient descent method.

The strategy proposed by Plessix (2006) can be used to compute the gradient via

the adjoint state method. A good review for the FWI method was written by J.

Virieux and S. Operto (2009).

Currently, the FWI method is an active research topic, from the mathemat-

ical, computational and geophysical points of view. Several drawbacks of this

method still remain as open problems. Among others, the problem of avoiding

local minima, the sensitivity of the method to amplitude errors (Virieux 2009)

and high cost. In addition, Shragge (2014b), pointed out that the use of Rieman-

nian manifolds for rugged topography would allow to obtain better estimates

of model parameters at the near surface. We implemented a FWI algorithm in

Riemannian coordinates based on the approach introduced by Shragge (2014).

FWI methods for rugged topography (Y. Han and Jia, 2015) have been previ-

ously proposed for decoupled acoustic wave equation using a velocity model

with simple topography and a different transformation. Here the FWI is im-

plemented for the Canadian Foothills velocity model which is a standard SEG

model useful to test algorithms for rugged topography. The results of our com-

putational experiments show that our proposed approach makes feasible to per-

form FWI in domains with a general rugged surface. The computational cost is

increased but the convergence of the method is quite good. Our approach es-

timates satisfying velocity models even for the near surface region where it is

usually difficult to have good results.

The construction of images of the Earth’s interior using methods like RTM
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or FWI depends crucially on the numerical solution of the wave equation. A

mathematical expression of the numerical stability and dispersion for a particu-

lar wave equation must be known in order to avoid unbounded numbers of am-

plitudes. In the case of the acoustic wave equation, the Courant-Friedrich-Lewy

(CFL) condition is a necessary, but not a sufficient condition for convergence.

Thus, we need to search other types of stability conditions.

Shragge (2014a) derived a stability condition in a heuristic way taking as

a starting point the Courant stability condition and translating it to the trans-

formed scenario by means of the chain rule of calculus. This is not formally a

stability condition and indeed the resulting rule it gives to calculate the time

sampling needed to ensure stability of the finite differences (FD) solution is

quite far of being true. Appelo and Petersson (2009) established a second or-

der stable finite difference scheme for the elastic wave equation in a curvilinear

system, showing that the spatial operators in the method are self-adjoint for

free-surface, nevertheless, the authors do not present a stability criteria. Re-

cently in Zhao et al. (2014), the Von-Neumann method was applied to stability

and numerical dispersion in a FD scheme for the diffusive-viscous wave equa-

tion. The results obtained were compared with stability for the acoustic case and

revealed that the stability condition is more restrictive for the diffusive-viscous

case on which a smaller time step is required. The numerical dispersion is also

smaller than that in the acoustic case.

We applied the Von-Neumann method to obtain a stability criteria for a FD

scheme, first for a second-order in time and second-order in space, and then for

second order in time and fourth order in space, applied to the 2D Riemannian

acoustic wave equation and compared it with the heuristic one used by Shragge
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(2014a). For numerical comparison, we also performed a wave propagation

experiment using two different topography profiles: a Gaussian 2D profile and

the Canadian Foothills profile (Gray and Marfurt, 1995), a synthetic velocity

model representing a zone in the British Columbia (Canada) that shows several

geological complexities common in that region. This velocity model allows us

to show the dependence of the stability criteria on the smoothness of the profile.

Finally, we analyze the numerical dispersion for the generalized wave equation

and compare it with the Cartesian acoustic wave equation.
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CHAPTER 1

MATHEMATICAL FRAMEWORK

2D Riemannian Wave Equation

In this chapter we make a review of the formulation of the Riemannian wave

equation which agrees with the wave equations used by Sava and Fomel (2005),

Shragge (2008) and Shragge (2014a). For a basic study on Riemannian manifolds

the reader is referred to Robin and Salamon (2013) and for elastic formulation

on Riemannian manifolds see Marsden and Hughes (1983).

Figure 2.1. Physical domain (left) and computational domain (right).

Let x = [x1, x2]T be the coordinates of a curved physical domain on which

we want to solve the wave-equation and ξ = [ξ1, ξ2]T a regular (rectangular)

computational domain on which one actually computes the acoustic wave field

(Figure 1). Thus, we use a function x = φ(ξ) that maps from computational

domain onto physical domain. Hence, we have the (constant-density) acoustic

wave equation in a 2D generalized coordinate system defined by

∇2
ξUξ −

1
v2
ξ

∂2Uξ

∂t2 = Fξ, (1.1)
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where Uξ = U(φ(ξ), t) is a scalar wave field, the scalar vξ = v(φ(ξ)) as the wave

velocity and Fξ = F(φ(ξ), t) is the source distribution. Hence, take the Jacobian

of φ as

J =
∂φ

∂ξ
, (1.2)

the Laplace-Beltrami operator ∇2
ξ is described as (Guggenheimer, 1977)

∇2
ξ =

2∑
j=1

2∑
l=1

1√
|g|

∂

∂ξ j

(
g jl

√
|g|

∂

∂ξl

)
, (1.3)

where |g| = det[g jl] is the determinant of g jl with

[g jl] = JT J and [g jl] =
[
g jl

]−1
. (1.4)

Thus, take the coordinate transformation mapping φ as a diffeomorphism (it

is an invertible and smooth function whose inverse is smooth too) the basic

question on that manifold is its Jacobian J preserves area (volume). That is,

det[J] = 1 , that implies |g| = 1 . (1.5)

Equation (1.5) makes the Laplace-Beltrami operator a good candidate to formu-

late acoustic wave equations on a Riemannian manifold. Note that the transfor-

mation φ is a mapping that transforms from computational domain to the phys-

ical domain in a bijective way, preserving the area, and, at least, twice differen-

tiable. Using that transformation, we find a new expression for the Laplacian-

Beltrami operator on the computational domain ξ to propose an acoustic wave

equation.

Expanding the Laplacian, equation (1.3), we can write it in a more conve-

nient way, as

∇2
ξ =

2∑
j=1

2∑
l=1

[
g jl ∂2

∂ξ j∂ξl

]
+ ζ1 ∂

∂ξ1
+ ζ2 ∂

∂ξ2
, (1.6)
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and as
√
|g| = 1, where

ζ l =

2∑
j=1

∂g jl

∂ξ j
. (1.7)

Therefore, using Equation (1.6) in Equation (1.1), we have the generalized acous-

tic 2D wave equation given by[
g11∂

2Uξ

∂ξ2
1

+ 2g12 ∂
2Uξ

∂ξ1∂ξ2
+ g22∂

2Uξ

∂ξ2
2

+ ζ1∂Uξ

∂ξ1
+ ζ2∂Uξ

∂ξ2

]
−

1
v2
ξ

∂2Uξ

∂t2 = Fξ. (1.8)

Surface topography problem

Using the coordinate transformation approach allows to compute directly

the acoustic wave propagation in topographic coordinates.

The transformation that maps the rectangular domain with coordinates onto

the physical domain is given by
x1 = φ1(ξ1, ξ2) = ξ1 ;

x2 = φ2(ξ1, ξ2) = ξ2 + ψ(ξ1) ,
(1.9)

where ψ is a smooth function that represents the curved upper boundary of the

physical domain. This function must be, at least, twice differentiable. Thus, un-

der that condition the function φ = (φ1, φ2) is a coordinate chart for the physical

domain which is being modeled on a regular Euclidean space (see, Figure 2.1.

The elements ζ i are geometric factors as the g′s so they have to be calculated

only once. For our specific transformation, given in Equation (1.9), we have:

[gi j] =


(
1 + (ψ′)2

)
ψ′

ψ′ 1

 , [gi j] =

 1 −ψ′

−ψ′ (1 + (ψ′)2)

 and |g| = 1 . (1.10)
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The ζ j coefficients are explicitly given by

ζ1 =
∂g11

∂ξ1
+
∂g12

∂ξ2
= 0 ,

ζ2 =
∂g21

∂ξ1
+
∂g22

∂ξ2
= −ψ′′ .

(1.11)

Therefore, using equations (1.10)-(1.11) in Equation (1.8), we arrive in[
∂2Uξ

∂ξ2
1

− 2ψ′
∂2Uξ

∂ξ1∂ξ2
+

[
1 + (ψ′)2

] ∂2Uξ

∂ξ2
2

− ψ′′
∂Uξ

∂ξ2

]
−

1
v2
ξ

∂2Uξ

∂t2 = Fξ , (1.12)

noting that ψ′ and ψ′′ are functions of ξ1.

1.1 2D-second order Riemannian wave equation FD scheme

The finite-difference method is the most straightforward numerical ap-

proach in seismic modeling due to its relative accuracy and computational effi-

ciency. Nevertheless, the size of the time step is bounded by a stability criterion

which is an important factor affecting the accuracy of the results. This bound

depends on the grid spacing and particularly, for the riemannian 2D wave equa-

tion, it also depends on geometrical factors.

Von-Neumann stability criteria of Riemannian 2D wave equa-

tion

The stability condition for the acoustic wave equation is widely known as

the Courant-Friderichs-Lewy condition (CFL) and is given in the case of two

spatial dimensions by

∆t ≤
∆r

v(x)
, (1.13)
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where

∆r =
[
∆x−2

1 + ∆x−2
2

]− 1
2 (1.14)

is the root-mean-square (RMS) of the spatial sampling and v(x) is the maximum

value of the velocity model in physical grid.

In the Riemannian case the only approach to it has been made by Shragge

(2014b) who uses the chain rule to go from Equation (1.13) to the following

expression (that from now we will call heuristic limit):

∆t ≤
1
vξ
× argmin

ξ


(∂φ1

∂ξT ∆ξ

)−2

+

(
∂φ2

∂ξT ∆ξ

)−2− 1
2
 . (1.15)

To derive the numerical stability condition we make use of the Von-Neumann

method as follows:

The differential operators in Equation (1.8), expanded in a second order finite
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difference scheme are:

∂2Uξ

∂t2 ≈
Un+1
ν,k − 2Un

ν,k + Un−1
ν,k

(∆t)2 ,

∂2Uξ

∂ξ1∂ξ2
≈

Un
ν+1,k+1 − Un

ν−1,k+1 − Un
ν+1,k−1 + Un

ν−1,k−1

2∆ξ1∆ξ2
,

∂2Uξ

∂ξ2
1

≈
Un
ν+1,k − 2Un

ν,k + Un
ν−1,k

(∆ξ1)2 ,

∂2Uξ

∂ξ2
2

≈
Un
ν,k+1 − 2Un

ν,k + Un
ν,k−1

(∆ξ2)2 ,

∂Uξ

∂ξ1
≈

Un
ν+1,k − Un

ν−1,k

2∆ξ1
,

∂Uξ

∂ξ2
≈

Un
ν,k+1 − Un

ν,k−1

2∆ξ2
,

(1.16)

where n, ν, and k are the discretization variables for t, ξ1, and ξ2, respectively.

The system of equations (1.16) replaced in the acoustic wave equation (1.1)

with Fξ = 0 produces the recursive scheme

Un+1
ν,k = −Un−1

ν,k −
∆t2v2

ξ

2∆ξ2
1∆ξ2

2

[
−∆ξ1∆ξ2Un

ν−1,k−1g12 + ∆ξ1∆ξ2Un
ν−1,k+1g12

+ ∆ξ1∆ξ2Un
ν+1,k−1g12 − ∆ξ1∆ξ2Un

ν+1,k+1g12

+ Un
ν,k(−4∆ξ2

1∆ξ2
2 + 4∆ξ2

2g11 + 4∆ξ2
2g22)

+ (Un
ν+1,k + Un

ν−1,k)(−2∆ξ2
2g11 − ∆ξ1∆ξ

2
2ζ1)

+ (Un
ν,k+1 + Un

ν,k−1)(−2∆ξ2
1g22 − ∆ξ2

1∆ξ2ζ2)
]
, (1.17)

valid up to order two in space and time. We derived a similar expression up

16



to fourth order in space and second order in time to implement the RTM and

FWI algorithm. This results are shown in chapter 3 an 4 respectively.
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CHAPTER 2

REVERSE TIME MIGRATION IN RIEMANNIAN MANIFOLDS

The RTM algorithm in Riemannian manifolds for domains with curved

boundary has been proposed recently (Shragge, 2014a). Shragge claims that

modeling curved domains with rectangular meshes introduce ladder effects

that produces artifacts in RTM images. In order to describe the curved domain

with a curved mesh Shragge proposes a geometrical transformation known

as the Schwarz−Christoffel transformation, a complex variable transformation

for 2D domains. Shragge finished the complete RTM algorithm using this

scheme but could not extend it to 3D domains because of the nature of the

Schwarz−Christoffel transformation. A more general approach to solve the

acoustic wave equation in curved domains was introduced by Shargge (2014b)

in which a 3d acoustic wave equation was solved in a rectangular domain, that

is the transformed to the curved domain via a 3D transformation. In that paper

he only shows the propagation but not the RTM. Here we use that transforma-

tion to obtain the results for RTM in Riemannian manifolds and compare them

with RTM in Cartesian coordinates.

As explained in chapter 2, the wave equation in the Riemannian manifold

takes the form:

∇2
ξUξ −

1
v2
ξ

∂2Uξ

∂t2 = Fξ, (2.1)

where the Laplacian is modified to include the effect of the transformation of

coordinates which induce a metric tensor:

∇2
ξ =

2∑
j=1

2∑
l=1

1√
|g|

∂

∂ξ j

(
g jl

√
|g|

∂

∂ξl

)
. (2.2)
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This Laplacian can be expanded in the form

∇2
ξ =

2∑
j=1

2∑
l=1

[
g jl ∂2

∂ξ j∂ξl

]
+ ζ1 ∂

∂ξ1
+ ζ2 ∂

∂ξ2
, (2.3)

in order to make easier the numerical calculation since in this way the deriva-

tives have geometrical factors (gi j and ζ i) that are calculated once and for all at

the beginning. The numerical values of these geometrical coefficients are shown

in Figures 2.1, 2.2 and 2.3. In general the metric coefficients can be functions of 2

variables for the 2-dimensional RTM so it is common to plot them as 2D maps.

(and it can be seen from equation 10 of chapter 1 that the metric coefficient g11

is equal to 1 for the particular transformation we are using).

Figure 2.1: Metric coeficient g12 corresponding to the mountain profile shown in
figure 2.6.

Using the expression (2.3) for the Laplacian we can solve the wave equation

(2.1) in the computational domain. The forward propagation, backward propa-

gation and imaging condition can all be done in the regular grid. To obtain the

RTM image I(x1, x2) we can use the standard zero lag cross correlation between

the forward propagated field P f and the backward propagated field Pb:

I(ξ1, ξ2) =
∑

s

∑
r

∫
dtP f (ξ1, ξ2, t)Pb(ξ1, ξ2, t) (2.4)
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Figure 2.2: Metric coeficient g22 corresponding to the mountain profile shown in
figure 2.6.

Figure 2.3: Metric coeficient ζ2 corresponding to the mountain profile shown in
figure 2.6.

where the first sum over all sources, the second is over all receptors and the inte-

gral is over time. The image I(x1, x2) can be obtained form I(ξ1, ξ2) just by trans-

forming the arguments from (ξ1, ξ2) to (x1, x2) using the transformation equations

(1.9).

We begin our RTM numerical experiments with a model of 2 layers of con-

stant velocity separated by a straight horizontal interface. The velocity of the
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upper layer is 4Km/s and the other is 5Km/s. The step sizes for these grids

were dx = 0.075Km and dz = 0.05Km. The time step was 0.001s. The source

used was a Ricker pulse with a central frequency of 6Hz. The number of seismic

waves was 24 receivers. All the computational experiments of this chapter were

obtained with algorithms implemented in C and parallelized with the standard

Message Passing Interface (MPI) for execution in a cluster.

In the side and lower boundaries we used absorbing boundary conditions, and

in the upper border we use a rigid boundary condition (the field in the bound-

ary is zero) for simplicity, i.e., we set the wave field over the border equal to

zero.

This numerical experiment is done in order to examine the details of the im-

age obtained with RTM in Riemannian coordinates since it is a good starting

point. The interface of the 2 layers is placed at 5Km deep. The RTM result for

the Riemannian algorithm is shown in Figure 2.4 while the result of the purely

Cartesian version is shown in Figure 2.5. The upper curved border should

be smoothed in the Riemannian case since the calculation of the metric tensor

implies the computation of the derivative along the surface topography. We

smoothed it using a simple moving average that assigns to a point in the moun-

tain border a mean height calculated by the expression

bi = (ai−1 + ai + ai+1)/3, (2.5)

where bi is the new height assigned to the point i that had a height ai.

We repeated this smoothing process 10 times to obtain the mountain profile

shown in Figure 2.5. If we apply this smoothing process a few times, for ex-

ample 2 times, the smoothness is not enough and the derivatives of the profile
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will have huge values. We also experimented applying cubic splines or Bezier

curves to the mountain profile expecting to get more precise result but the re-

sults were not much better. The mountain profile of Figure 2.5 on the contrary is

the exact profile of the mountain in the sub-sampled Canadian Foothills model.

Figure 2.4: RTM image computed with the Riemannian coordinats for a 2 layers
model with an upper boundary that corresponds to the Canadian Foothills.

Comparing the figures 2.4 and 2.5 it is evident that the RTM image for the

Riemannian coordinates present a reflecting interface less straight than the im-

age corresponding to the Cartesian case. On one hand this is due to the distor-

tion of the seismic waves due to effects of numerical dispersion, an effect that

will be analyzed in Chapter 4, and on the other hand due to the fact that in a

curved mesh it is harder to represent the straight line corresponding to the plane

interface. The Cartesian image shows some shadows (or artifacts) in places away

from the interface (the interface is the only region were we expect to see some-

thing in this case). These artifacts can be produced by the multiple reflections
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Figure 2.5: RTM image computed with the Cartesian coordiantes for a 2 layers
model with an upper boundary that corresponds to the Canadian Foothills.

of the waves over the border of the mountain. Since in the Riemannian scenario

the border is smooth, it is natural to expect less artifacts there.

The next numerical experiment involves the sub-sampled Canadian

Foothills velocity model shown in Figure 2.6 (Gray and Marfurt, 1995), a syn-

thetic model for a zone in British Columbia that shows several complex struc-

tures common in that region of Canada . This model will be transformed into

the Riemannian domain, i.e., the computational domain, using the transforma-

tion rule given by the equation 1.9. The transformed model in shown in the

Figure 2.7.

The RTM image for the Cartesian case is shown in Figure 2.8, and the image
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Figure 2.6: The Canadian Foothills. This is a sub-sampled version has 334x200
sampling points. The original model has 1169x1000 sampling points

Figure 2.7: Transformation of the Canadian Foothills model into the computa-
tional domain. The mountain profile of figure 2.6 is mapped into a horizontal
line and all the points below are deformed in a similar way

for the Riemannian case is shown in the Figure 2.9. The values of dx, dz, dt,

frequency and the size of the grid are the same that we used for the case of the

Figures 2.4, and 2.5

Comparing the Figures 2.8 and 2.9 we see that there is no visible improve-
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Figure 2.8: RTM image for sub-sampled Canadian Foothills velocity model in
the Cartesian scenario.This is a sub-sampled version of size 334x200

Figure 2.9: RTM image for sub-sampled Canadian Foothills velocity model in
the Riemannian scenario.This is a sub-sampled version of size 334x200
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ment for the image in the Riemannian scenario as was expected. The near sur-

face details of the Cartesian image seem to be better and the amplitude of the

image of the reflector is more continuous too. It is not true furthermore that the

curved grid if more suitable to describe the scenarios with rugged topography

since as we said before, and we will explain in more detail in the Chapter 4,

the mountain border in the Riemannian domain is not the original one but a

smoothed version. Although we used the same set of parameters to construct

both images, we show in Chapter 4 that this is not in general true. More specif-

ically, there we show that the time step size requires for the stability condition

in the curved mesh implies a higher computational cost in the Riemannian case.

We applied the Cartesian RTM algorithm to section of the full model (no sub-

sampled) that is shown in Figure 2.10. The result is shown in Figure 2.11. A

analog image using the Riemannian scenario was not possible to do because the

time sampling required was not practical.
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Figure 2.10: A section of the Canadian foothills model
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Figure 2.11: RTM image for the model shown in Figure 2.10. This result was
calculated with the Cartesian algorithm
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CHAPTER 3

FULL WAVEFORM INVERSION IN RIEMANNIAN MANIFOLDS

3.1 Introduction: The standard FWI in Cartesian coordinates

FWI algorithms improve the velocity model of the earth’s sub-surface that

can be used to create RTM images. This improved velocity model is obtained in

an iterative way. In the first step a starting velocity model m0 is proposed and

in each iteration the velocity model is modified adding to it a small variation

∆m. The improvement of the model in each iteration is measured by means

of the quadratic norm of the difference between the real seismogram and the

seismogram simulated using the previous velocity model. The expression for

this difference is denoted as E(m) and is known as objective function, misfit

function, cost function or error function and has the form

E(m) =
1
2

ng∑
r=1

ns∑
s=1

∫ tmax

0
dt |pcal(xr, t; xs) − pobs(xr, t; xs)|2 . (3.1)

Here pcal is the wave field calculated at the positions xr of the registers (geo-

phones) with the velocity model m0 and pobs is the observed wave filed, i.e.,

the field registered by the receivers. To take into account that there are several

source positions, the vector variable xs is used . All this means that the misfit

function is the square of the difference between the real seismogram and the

seismogram calculated with the approximated model m0 .The model variation

required to decrease this error can be obtained from the equation (3.1) after some

mathematical manipulations that we will review here.

The first step is to take the second-order Taylor expansion of the misfit func-
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tion around m0:

E(m0 +∆m) = E(m0)+
∑

i

∂E(m0)
∂mi

∆mi +
∑

i

∑
j

∂2E(m0)
∂mi∂m j

∆mi∆m j +O(||∆m||3). (3.2)

Here mi represent the value of the velocity model in the i-th point of the grid. For

a 100x100 grid for example, there will be 10000 model parameters mi to calculate.

In this particular case the optimum set of model parameters should be found by

finding the global minimum of the misfit function in a space of 10000 variables.

A big question is, how to avoid falling into a local minimum when trying to

find the global minimum? This adds complexity to the FWI algorithm which

already requires a large amount of computational resources when applied to

realistic velocity models.

Taking the derivative with respect to the model parameters mi results in

∂E(m)
∂mi

=
∂E(m0)
∂mi

+
∑

j

∂2E(m0)
∂mi∂m j

∆m j, (3.3)

that can be written in a short way as

∂E(m)
∂mi

=
∂E(m0)
∂m

+
∂2E(m0)
∂m2 ∆m. (3.4)

Then,

∆m = −

(
∂2E(m0)
∂m2

)−1
∂E(m0)
∂m

= −H−1∇Em (3.5)

where H is known as the Hessian matrix and ∇Em is the gradient of the misfit

function that can be written as

∇Em =
∂E(m0)
∂m

=

[
∂E(m0)
∂m1

,
∂E(m0)
∂m2

, ...,
∂E(m0)
∂mN

]T

. (3.6)

A first approximation used in FWI is to take the Hessian matrix proportional

to the identity. In this case the expression for the change in velocity model is

∆m = −α∇Em (3.7)
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where α the constant of proportionality. This means that to vary the velocity

model we should move in a direction opposite to the gradient and α fixes the

size of the jump in that direction. This technique is known like the gradient or

steepest descent method.

Even in the case of a small grid of size 100x100 the calculation on the gradient in

equation (3.6) seem to be rather involved since it is the variation with respect to

10000 parameters. However, the gradient can be calculated by means of integral

methods using the equation (Plessix, 2006)

∂E(m)
∂mi

=

ng∑
r=1

ns∑
s=1

∫
dt

[(
∂2 p(x, t; xs)

∂t2

2
m3(x)

)
(∆pres)

]
, (3.8)

where ∆pres is the residual seismogram, i.e., the difference between the real

and calculated seismograms.

So, once the gradient is calculated the new model in each step can be ob-

tained:

mk+1 = mk + ∆mk (3.9)

∆mi = −αk
∂Ek(m)
∂mi

(3.10)

(3.11)

for k = 0, 1, 2...Niterations.

The number Niterations is chosen such that the misfit functions lies below a

desired value.

It is convenient to choose an adaptive α because a small constant α can lead
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to a very slow convergence and a big value to α can lead to divergence. An

optimum value is given by (Liu et al. (2012))

αk =

∑
s δE s

kE s
k∑

s δE s
kδE s

k

(3.12)

where s is the shot number, k is the iteration number and

E s
k = E s(mk), (3.13)

∆E s
k = Ē s

k+1 − E s
k, (3.14)

Ē s
k+1 = E s(mk − ∇Ek). (3.15)

3.2 Riemannian FWI

We evaluated the performance of the FWI method in generalized coor-

dinates using the sub-sampled Canadian Foothills synthetic velocity model.

The computational grid of the computational experiment is 334 × 200, with

∆x1 = ∆x2 = 0.03 Km. The mountain profile was smoothed using a moving

average. We used 7 point sources of Ricker shape. The FWI had a multi-scale

strategy where the Ricker sources and the seismograms have central frequencies

3Hz, 5Hz , 10Hz and 15Hz. In the multi-scale strategy, the estimated velocity

model obtained for first frequency is the used as starting-point for the second

frequency. For each wave propagation we used a sampling time of 1ms and a

total acquisition time of 2.5s. The number of iterations for each frequency was

200. The initial velocity is shown in Figure (3.1). The final estimated model for

the first, second and third frequencies are shown in Figures (3.1), (3.2) and (3.3)

respectively. As the velocity has originally a flat bottom, the curved mesh must
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go beyond. Therefore, the missing area of the curved mesh is filled with a con-

stant velocity 6km/s, which does not harm the results because those points are

mainly immersed in the attenuation layer and this does not imply a significant

variation for the velocities. The border of the original model was smoothed be-

fore any computation. The observed data were generated synthetically using

the original model shown in Figure (3.4). These results were obtained with an

algorithm parallelized with CUDA-C.

Figure 3.1: The starting velocity model

These numerical experiments show that the multi-scale FWI algorithm in

Riemannian coordinates produced a final result quite similar to the original

model even with a starting model that was quite far from the original one. The

computational cost was moderate since the time sampling is not too far from

the one given by the CFL condition Courant condition for this set of parameters

which is 3ms, nevertheless this moderate time sampling is not guaranteed for

bigger grids or for strong variations on the topography as we show in Chap-

ter 4. It would be interesting to compare the convergence performance of this
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Figure 3.2: The final velocity model with 5hz

Figure 3.3: The final velocity model with 15hz

algorithm with other ones developed for the same model but in Cartesian coor-

dinates and homogeneous grid.
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Figure 3.4: The original velocity model
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CHAPTER 4

ANALYSIS OF STABILITY AND DISPERSION

4.1 2D-second order Riemannian wave equation FD scheme

The finite-difference method is the most widespread numerical approach in

seismic modeling due to its relative accuracy and straightforward implementa-

tion, nevertheless, the size of the time step is bounded by a stability criterion

which is an important factor affecting the accuracy and the computational ef-

fort to obtain the results. This bound depends on the grid spacing and wave

speed, particularly for the Riemannian 2D wave equation, it also depends on

geometrical factors.

Von-Neumann stability criteria of Riemannian 2D wave equa-

tion

The stability condition for the acoustic wave equation is widely known as

the Courant-Friderichs-Lewy condition (CFL) and is given in the case of two

spatial dimensions by

∆t ≤
∆r

v(x)
, (4.1)

where

∆r =
[
∆x−2

1 + ∆x−2
2

]− 1
2 (4.2)

is the root-mean-square (RMS) of the spatial sampling and v(x) is the value max-

imum of the velocity model in physical grid.
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In the Riemannian case the only approach to it has been made by Shragge

(2014a) who uses the chain rule to go from Equation (4.1) to the following ex-

pression:

∆t ≤
1
vξ
× argmin

ξ


(∂φ1

∂ξT ∆ξ

)−2

+

(
∂φ2

∂ξT ∆ξ

)−2− 1
2
 . (4.3)

To derive the appropriate stability condition we make use of the Von-Neumann

method as follows:

The differential operators in Equation (1.8), expanded in a second order finite

difference scheme are:

∂2Uξ
∂t2 ≈

Un+1
ν,k − 2Un

ν,k + Un−1
ν,k

(∆t)2 ,

∂2Uξ
∂ξ1∂ξ2

≈
Un
ν+1,k+1 − Un

ν−1,k+1 − Un
ν+1,k−1 + Un

ν−1,k−1

2∆ξ1∆ξ2
,

∂2Uξ
∂ξ2

1

≈
Un
ν+1,k − 2Un

ν,k + Un
ν−1,k

(∆ξ1)2 ,

∂2Uξ
∂ξ2

2

≈
Un
ν,k+1 − 2Un

ν,k + Un
ν,k−1

(∆ξ2)2 ,

∂Uξ
∂ξ1

≈
Un
ν+1,k − Un

ν−1,k

2∆ξ1
,

∂Uξ
∂ξ2

≈
Un
ν,k+1 − Un

ν,k−1

2∆ξ2
,

(4.4)

where n, ν, and k are the discretization variables for t, ξ1, and ξ2, respectively.

The system of equations (4.4) substituted into the acoustic wave equa-

tion (2.1) with Fξ = 0 produces the recursive scheme
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Un+1
ν,k = −Un−1

ν,k −
∆t2v2

ξ

2∆ξ2
1∆ξ2

2

[
−∆ξ1∆ξ2Un

ν−1,k−1g12 + ∆ξ1∆ξ2Un
ν−1,k+1g12

+ ∆ξ1∆ξ2Un
ν+1,k−1g12 − ∆ξ1∆ξ2Un

ν+1,k+1g12

+ Un
ν,k(−4∆ξ2

1∆ξ2
2 + 4∆ξ2

2g11 + 4∆ξ2
2g22)

+ (Un
ν+1,k + Un

ν−1,k)(−2∆ξ2
2g11 − ∆ξ1∆ξ

2
2ζ1)

+ (Un
ν,k+1 + Un

ν,k−1)(−2∆ξ2
1g22 − ∆ξ2

1∆ξ2ζ2)
]
, (4.5)

valid up to order two in space and time. Now consider a trial solution in the

form

Un
ν,k = un

ν,k + εn
ν,k , (4.6)

where Uξ is the exact solution (if it exists), u is the approximation to the solution

and ε is the error introduced up to the desired order when approximating the

solution. Assuming that equation (4.5) has solutions of the form

un
ν,k = unei(κ1ν∆ξ1+κ2k∆ξ2) , (4.7)

where i =
√
−1 is the imaginary number and κ1, and κ2 are wave numbers, we

can expect that the error behaves in the same way:

εn
ν,k = εnei(κ1ν∆ξ1+κ2k∆ξ2) . (4.8)

Inserting Equation (4.6) in the FD scheme Equation (4.5) and taking into account

that u satisfies the wave equation within the specified order of accuracy , the

resulting equation only involves ε:

εn+1
ν,k = 2εn

ν,k − ε
n−1
ν,k

+εn
ν,k(c∆t)2

(
ζ1

∆ξ1
i sin(κ1∆ξ1) +

ζ2

∆ξ2
i sin(κ2∆ξ2) +

g11

(∆ξ1)2 [2 cos(κ1∆ξ1) − 2]

+
g22

(∆ξ2)2 [2 cos(κ2∆ξ2) − 2] +
g12

2∆ξ1∆ξ2
2i sin(κ1∆ξ1)2i sin(κ2∆ξ2)

)
, (4.9)
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that can be written as

εn+1 = Bεn − εn−1 . (4.10)

Denote

R =
εn+1

εn =
εn

εn−1 , (4.11)

then the previous expression is written as R2 − BR + 1 = 0, from which

R =
B ±
√

B2 − 4
2

. (4.12)

We want εn, to remain bounded, so |R| ≤ 1 which implies that the stability

condition for the 2D Riemannian wave equation is

∣∣∣∣B ± √B2 − 4
∣∣∣∣ ≤ 2. (4.13)

If B were real, this expression could be replaced by two inequalities that

would allow us to solve for ∆t but In this case, however, we have that B is com-

plex, so that our strategy is to evaluate this inequality numerically, for a range of

values of ∆t and take for each value of ξ1 the maximum value of ∆t that satisfies

the inequality.

We applied the same procedure to calculate the stability for the generalized

acoustic wave equation using finite differences formulas of 4th order for the

spatial derivatives. Again we obtained a relation between εn+1, εn and εn−1 be-

cause they come from the second derivative in time that is kept at second order

in the finite differences approximation. That produces again a polynomial of

order 2 for R and then an stability condition similar to (4.13) but the B is a larger

expression:
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B = 2 + v2(∆t)2


2 cos(κ1∆ξ1) sin2

(
1
2κ1∆ξ1

)
3∆ξ2

1

−
14 sin2

(
1
2κ1∆ξ1

)
3∆ξ2

1

 g11

+

(
4 sin(2κ1∆ξ1) sin(κ2∆ξ1)

9∆ξ1∆ξ2
−

32 sin(κ1∆ξ1) sin(κ2∆ξ2)
9∆ξ1∆ξ2

+
4 sin(κ1∆ξ1) sin(2κ2∆ξ2)

9∆ξ1∆ξ2
−

sin(2κ1∆ξ1) sin(2κ2∆ξ2)
18∆ξ1∆ξ2

)
g12 (4.14)

+

2 cos(κ2∆ξ2) sin2
(

1
2κ2∆ξ1

)
3∆ξ2

2

−
14 sin2

(
1
2κ1∆ξ1

)
3∆ξ2

2

 g22

+ i
(
4 sin(κ1∆ξ1)

3∆ξ2
−

sin(2κ1∆ξ1)
6∆ξ1

)
ζ1

+ i
(
4 sin(κ2∆ξ2)

3∆ξ2
−

sin(2κ2∆ξ2)
6∆ξ2

)
ζ2

}

Numerical dispersion analysis

The numerical dispersion analysis is performed observing the relation be-

tween the phase velocity and the frequency or what is the equivalent, between

phase velocity and the number of points per wavelength (ppw). When there is

no dispersion the phase velocity is frequency independent. To find this relation

the plane wave solution (4.7) is substituted in the equation (4.5) which, up to

order 2, gives the following equation:

en
ν,k = ei(κ1ν∆ξ1+κ2k∆ξ2−ωn∆t) . (4.15)

To derive the dispersion relation, the harmonic plane wave in Equation (4.15)

is used in equations (4.4), and obtain

2 cos(ω∆t) = 2 + v2(∆t)2
[
−2g11

∆ξ2
1

+
2 cos(dξ1 p cos(θ))g11

dξ2
1

−
sin(dξ1 p cos(θ)) sin(dξ2 p sin(θ))g12

dξ1dξ2
−

2g22

dξ2
+

2 cos(dξ2 p sin(θ))g22

dξ2
2
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+ i
sin(dξ1 p cos(θ))ζ1

dξ1
+ i

sin(dξ2 p sin(θ))ζ2

dξ2

]
= f (ξ1, θ,∆ξ1,∆ξ2, p), (4.16)

where p is the modulus of the wavenumber vector and θ is its argument.

Equation (4.16) allows us to find the relation between the grid points per wave-

length G1 = λ/∆ξ1, G2 = λ/∆ξ2 and the normalized phase velocity Cp/v = (ω/k)/v

since
Cp

v
=
ω

k
1
v

=
ω

2π
λ

∆ξ

∆ξ

v
=
ω

2π
G∆ξ, (4.17)

p∆ξ =
2π
G
, (4.18)

and

ω∆t =
Cp

v
2π
G

v∆t
∆ξ

=
Cp

v
2πc
G

(4.19)

where c = v∆t/∆ξ is the Courant-Friedrich-Levy number.

Replacing the expression (4.19) in the equation (4.16) we get

Cp

v
=

G
4πc

arccos( f (ξ1, θ,∆ξ, p)) (4.20)

where we took ∆ξ1 = ∆ξ2 = ∆ξ for simplicity and f is defined in equation (4.16).

4.2 Numerical Results

In this section we investigate, the 2D acoustic wave propagation for two

topographic coordinates, in the following aspects: (i) stability criteria, and (ii)

numerical dispersion. These computational meshes provide informative tests of

the generalized 2D acoustic wave-equation theory and of the implementation of

the 2D FDTD numerical scheme described above.
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Numerical stability

As a first example we solved the generalized acoustic wave equation (2.1) for

a domain with constant velocity and an upper boundary with the form ψ(x1) =

he−a2 x2
1 with h = 3 and a = 0.5 that is shown in Figure 4.2. A snapshot for the

propagation in that domain is shown in Figure 4.1. The stability condition was

evaluated numerically using values for ∆t from 0.6 s to 0 s and taking the biggest

value of ∆t that satisfies (4.13) at each point ξ1. Note that taking into account the

transformation (1) ξ1 = x1 so we can evaluate the stability condition in terms of

x1 directly. The result is shown in Figure 4.3.

Figure 4.1: Snapshot for the propagation of a Ricker pulse in a medium with
constant velocity and a upper boundary with the form ψ(x1) = he−a2 x2

1 . The value
of ∆t used for the propagation was 4 × 10−3s, which is in agreement with the
numeric limit shown in Figure 4.3 but not with the heuristic limit

In Figure 4.3 the numeric limit is found by solving numerically the expres-

sion (4.13) and the heuristic limit is the one given by the equation (4.3).
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Figure 4.2: Mountain profile with the form ψ(x1) = he−a2 x2
1

Figure 4.3: Stability condition for the generalized wave equation with an upper
border given by an Gaussian form.The solid line corresponds to the numerical
solution of the expression 4.13. The minimum ∆t for the numeric limit is 4.1 ×
10−3s and for the heuristic limit is 1.8 × 10−6

As a second example we solved the equation (2.1) for a domain with a con-

stant velocity (4 Km/s) and with an upper border corresponding to the Cana-

dian Foothills velocity model. The original model is of size 1668x1000 but for

our analysis we used a sub-sampled version, taking one sample for each 5 points

of the model in both directions. The sub-sampled version of our velocity model
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Figure 4.4: Snapshot of the propagation of a Ricker pulse in a constant veloc-
ity model with a upper profile corresponding to a sub-sampled version of the
Canadian Foothills with size 334x200.The value of ∆t used for the propagation
was 10−3s, which is in agreement with the numeric limit shown in Figure 4.7 but
not with the heuristic limit. The CFL limit for a Cartesian version of this model
would be 5.9 × 10−3s which implies that the computational cost is 143% bigger
using the generalized wave equation. The mountain profile was smoothed with
a moving average. A secondary wavefront is due to the reflection of the wave
in the rugged surface

Figure 4.5: Profile corresponding to a sub-sampled version of the Canadian
Foothills with size 334x200

is of size 334x200. A snapshot of the propagation of a Ricker pulse in this model

is shown in Figure 4.4.

As the calculation of the coefficients ζi requires the use of second derivatives,

the mountain border should be smooth in order to avoid divergences, so we

smoothed the original border of the sub-sampled model that is shown if Figure

4.5 using a simple moving average: the height of each point of the mountain
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Figure 4.6: Mountain profile for the Canadian Foothills smoothed with a mov-
ing average

Figure 4.7: Stability condition for the generalized wave equation Canadian
Foothill velocity model. The solid line corresponds to the numerical solution
of the expression 2.1. The minimum ∆t for the numeric limit is 4 × 10−3s and for
the heuristic limit is 2 × 10−4s

was recalculated as the simple mean of the two nearest neighbors. Figure 4.6

shows the result of the application of this moving average smoothing 5 times.

The profile of Figure 4.6 correspond to the one shown in the Figure 4.4. As

shown in Figure 4.7 in the the numeric limit for ∆t is bigger than the heuristic

limit.
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Let us define here the degree of smoothness of the profile as the number of

times it was smoothed with the simple moving average. We evaluated the sta-

bility condition (4.13) for different degrees of smoothness for the profile of Fig-

ure 4.5 and found that the minimum ∆t depends on this degree. The profiles

for the several degrees of smoothness we used are shown in Figure 4.8 and the

respective limits for ∆t are shown in Figure 4.9.

Figure 4.8: Profile for section of the sub-sampled Canadian Foothills model
with different amount of smoothness

Additionally we studied the dependence of the condition (4.13) on the fre-

quency and found that the maximum ∆t allowed depends strongly on the par-

ticular value of the frequency used. For the propagation we used a Ricker pulse

of central frequency 6Hz but it is obviously composed of a wide range of fre-

quencies. Viewing the power spectrum of this pulse we identified range from

1Hz to 80Hz approximately so we evaluated (4.13) for different values in this

range. The results are shown in Figure 4.10.
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Figure 4.9: Maximum ∆t allowed for different degrees of smoothness for a sec-
tion the sub-sampled Canadian Foothills model. The three stability graphs cor-
respond to the profile of figure 4.5 smoothed 1, 5 and 20 times and the respective
limits for ∆t are 0.0032 s, 0.0041 s and 0.0054 s

The result for the stability for a section of the Canadian Foothills model at

second and fourth order is shown in Figure 4.11.

Dispersion analysis

Finally, we performed a dispersion analysis using the equation (4.20) which

allows to observe the variation of the normalized velocity Cp/v as the number

of points per wavelength varies. The Figure 13 shows the result when we take

the angle θ = 0 for the wavenumber and the Figure 14 shows the result when

the angle is π/2. As comparison we calculated the dispersion for the acoustic
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wave equation without metric, i.e., the simple acoustic wave equation and the

result, shown in Figure 15 shows a behavior that is expected: that for a num-

ber of points per wavelength large enough the normalized velocity tends to 1.

In Figure 15 after a value of the grid point per wavelength around 14 the nor-

malized velocity remains stabilized. Contrary to the expected result, Figure 13

shows that no matter the number of point per grid taken, Cp/v is not stabilized

which means that different frequencies have different values of the phase veloc-

ity Cp producing wavefronts that are deformed as the time runs. This effect is

more dramatic for an angle of the wavenumber vector θ = π/2 as shown in 14.

Figure 4.10: Maximum ∆t allowed for different frequencies. For frequencies
bigger than 80Hz the curves lie between those of top and the bottom shown.
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Figure 4.11: Comparison of the stability conditions of order 2 and 4 in the spa-
tial derivatives for the generalized acoustic wave equation. The maximum ∆t
allowed for the 2nd order scheme is 0.0041 s and for the 4th order is 0.0037 s

4.12

Figure 4.12: Dispersion analysis for the sub-sampled Canadian Foothills model
of size 334x200. The graph shows that the normalized velocity Cp/v does not get
the expected value of 1 for large numbers grid points per wavelength. This plot
is for θ = 0
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Figure 4.13: Dispersion analysis for the sub-sampled Canadian Foothills model
of size 334x200. The graph shows that the normalized velocity Cp/v does not get
the expected value of 1 for large numbers grid points per wavelength. This plot
is for θ = π/2

Figure 4.14: Dispersion analysis for a constant velocity model with Cartesian
metric and flat surface of size 334x200. The graph shows that the normalized ve-
locity Cp/v get the expected value of 1 for large numbers grid points per wave-
length.
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CONCLUSIONS

The images obtained by the RTM algorithm in Riemannian coordinates for

the sub-sampled velocity model are not better that those obtained in Carte-

sian coordinates. When we used the Canadian Foothills model without sub-

sampling, we could not find a time step for which the Riemannian RTM prop-

agation is stable so we only obtained the RTM in this case for the Cartesian

algorithm.

Although the FWI results obtained seem to be promising although this lack of a

guarantied stability put the Riemannian method in an obscure scenario.

The numerical experiments show that the time step implied by the stability

condition depends strongly on the degree of smoothness of the mountain pro-

file, so that to obtain time steps suitable for calculations we must represent the

topography with curves that does not pass exactly for each point of the true

profile.

There is a clear difference between the time step given by the heuristic sta-

bility condition and the time step given by the limit obtained rigorously.

The limits obtained for the time sampling show that the computational cost

of a propagation using the generalized wave equation is in general larger than

the same simulation with the usual acoustic wave equation (around 143%)

greater than the one for a particular case shown.

Different transformations from the physical domain to the computational

domain implies different metric tensors and in turn different limit for the time

step required for the stability condition.
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This kind of transformations imply very strong numerical dispersion that

suggests that the Riemannian approach to the solution of the wave equation

does not seem to be convenient for RTM or FWI.

The stability and numerical dispersion analysis for other kind of domain

transformation can be achieved using the same general expression given here,

just by replacing the corresponding metric tensor.
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