
Research Article
Donor Impurity-Related Optical Absorption in
GaAs Elliptic-Shaped Quantum Dots

M. A. Londoño,1 R. L. Restrepo,2 J. H. Ojeda,3 Huynh Vinh Phuc,4 M. E. Mora-Ramos,5

E. Kasapoglu,6 A. L. Morales,7 and C. A. Duque7
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The conduction band and electron-donor impurity states in elliptic-shaped GaAs quantum dots under the effect of an externally
applied electric field are calculated within the effective mass and adiabatic approximations using two different numerical
approaches: a spectral scheme and the finite element method. The resulting energies and wave functions become the basic
information needed to evaluate the interstate optical absorption in the system, which is reported as a function of the geometry,
the electric field strength, and the temperature.

1. Introduction

Semiconductor elliptical quantum dots (QDs) have been the
subject of investigation for a number of years due to their
prospective applications in optoelectronics. Recent works on
electronics and optical properties in this kind of nanosystems
can be referred to in [1–10]. Among them it is worth
highlighting, for instance, the practical realization of elliptical
QDs in the InGaN/GaN system which can be used as single
photon sources, allowing predefining photon states according
to the QD orientation [9]. This points at the prospective
applications of this kind of nanostructures in fields such as
quantum information.

The calculation of charge carrier states in 3D confined
systems heavily depends on the geometry of the structure.
In the particular case of elliptic-like QDs the analytical

solution of effective mass equations is not possible in general.
Furthermore, the inclusion of the effect of an externally
applied electric field makes this possibility be unreachable.
Therefore, numerical ways of solution for conduction and
valence band states are required. In this sense, different
approaches appear reported: finite- and boundary-element
calculations [6, 7], variational solutions [8], and meshless
schemes for the numerical solution of the effective mass
equation [11, 12], to mention but a few.

It is well known that even in the case of high quality
and high purity samples, semiconductor compounds contain
atoms of external elements acting as impurities, not to
mention the intentional doping aimed at obtaining a desired
carrier concentration in the material. In consequence, the
investigation of the influence of impurity atoms on the
spectrum of carrier states in semiconductor-based systems
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Figure 1: (a, b) Pictorial view of the two kinds of quantum dots considered in the present work: with constant height (a) and with variable
height (b).

is always of significance. On the other hand, the optical
response associated with quantum confined carrier states
is an important element for both the understanding of the
very energy spectrum of the systems and the design of
their practical applications. In the case of elliptic-shaped
systems a numerical calculation of optical transitions in
InAs/GaAs QDs is reported, for example, in [6]. By using
the adiabatic approximation, Gusev et al. have reported
the electronic structure in low dimensional systems, with
parabolic and rectangular potential, including impurity and
exciton states [13, 14].Their results are developed for quantum
wells, wires, and dots, with particular spheroidal-shapes [14].
Their findings are in excellent agreement with variational
calculations.

In this article we are going to present the results of a study
on the electron and electron-impurity states in elliptic-shaped
GaAs-based QDs, including the influence of external static
electric fields. Two kinds of structures are considered, for
which Figure 1 depicts their corresponding pictorial views.
The calculation is carried out within the framework of the
effective mass and parabolic band approximations. With the
outcome information we shall discuss the light absorption
related with transitions between a number of the lowest
confined electron and electron-impurity states. Accordingly,
the organization of the paper is as follows: Section 2 is
devoted to presenting in detail the theoretical framework.
Section 3 contains the obtained results and the corresponding
discussions, and, finally, in Section 4 we give the conclusions.

2. Theoretical Model

Here we shall consider the motion of conduction band
electrons in the 3D elliptically shaped QD under the effect
of in-plane applied electric field [𝐹⃗ = (𝐹𝑥, 𝐹𝑦, 0)] and
considering the presence of a shallow-donor impurity. The
Hamiltonian of the system, within the framework of the
effective mass and parabolic band approximations, is given
by

𝐻 = − ℏ22𝑚∗
‖

∇2𝜌 − ℏ22𝑚∗⊥
𝜕2𝜕𝑧2 + 𝑉 (𝜌, 𝑧) + |𝑒| 𝐹⃗ ⋅ ⃗𝑟 − 𝑒2𝜀𝑟𝑒𝑖 . (1)

The quantities |𝑒|, 𝑚∗‖ (𝑚∗⊥), and 𝜀 are the absolute value of
the electron charge, the in-plane (growth direction) electron
effectivemass, and theGaAs static dielectric constant, respec-
tively.∇2𝜌 is the in-plane Laplacian operator, ⃗𝑟 = (𝑥, 𝑦, 𝑧) is the
electron position, and 𝑟𝑒𝑖 is the electron-impurity distance,
with the donor impurity localized at (𝑥𝑖, 𝑦𝑖, 0). Considering
that the height of the structure is very small comparing
with the dimensions of the base, we can use the adiabatic
approximation where the 3D-confinement potential can be
written as the sum between two potentials: the first one
depending on the in-plane 𝑥𝑦-dimensions and the second
one depending on the 𝑧-dimension; that is,𝑉(𝜌, 𝑧) = 𝑉1(𝜌)+𝑉2(𝑧; 𝑥, 𝑦), where the 𝑧-dependent confinement potential
(𝑉2(𝑧; 𝑥, 𝑦)) depends of the in-plane coordinates (𝑥, 𝑦) (in
this work this dependence is associated with the variations of
the height of the QD). 𝑉1(𝜌) is zero into the region delimited
by 𝑆1 and infinite outside the region delimited by 𝑆1, where𝑆1 is given by 𝑥2/𝑅2𝑥 + 𝑦2/𝑅2𝑦 = 1 with 𝑧 = 0. Note that
the frame of reference is localized at the gravity center of the
elliptic region. Also, due to the restriction of heights with
respect to the base of the dot, we take the approximation𝑟𝑒𝑖 ≃ |(𝑥, 𝑦, 0) − (𝑥𝑖, 𝑦𝑖, 0)| for the electron-impurity distance.
This approximation does not mean changes in the calculated
Coulomb correlation more than 2% with respect to the
corresponding exact value.

According to the schematic view for the shape of the
3D elliptically shaped QD depicted in Figure 1, two kinds of
configurations will be studied: elliptical base with constant
value of the height (a) and elliptical base with elliptical
dependence of the height (b).

The 3D problem in (1) does not have analytical solutions.
To find the eigenfunctions and eigenvalues of the Schrödinger
equation we will use the adiabatic approximation. In this
paper we deal with heterostructures where the vertical
dimension of the dot is small as compared with the in-plane
dimensions. Under such conditions the electron has a fast-
movement along the 𝑧-direction and slow-movement in the𝑥-𝑦 plane. This is the spirit of the adiabatic approximation
used in this paper where we decouple the two movements
in (1). In this case we propose that the eigenfunctions of the
Hamiltonian in (1) can be written as the product Ψ(𝑥, 𝑦, 𝑧) =𝑁𝜙(𝑥, 𝑦)𝜒(𝑧; 𝑥, 𝑦), where 𝑁 is the normalization constant
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and𝜙(𝑥, 𝑦) and𝜒(𝑧; 𝑥, 𝑦) are, respectively, the eigenfunctions
of the following two differential equations:

𝐻𝑥,𝑦𝜙 (𝑥, 𝑦) = [− ℏ22𝑚∗
‖

∇2𝜌 + 𝑉1 (𝜌) + |𝑒| 𝐹⃗ ⋅ ⃗𝑟 − 𝑒2𝜀𝑟𝑒𝑖
+ E1 (ℎ; 𝑥, 𝑦)] 𝜙 (𝑥, 𝑦) = 𝐸𝜙 (𝑥, 𝑦) ,

(2)

[− ℏ22𝑚∗⊥
𝜕2𝜕𝑧2 + 𝑉2 (𝑧; 𝑥, 𝑦)] 𝜒 (𝑧; 𝑥, 𝑦) = E1 (ℎ; 𝑥, 𝑦)

⋅ 𝜒 (𝑧; 𝑥, 𝑦) ,
(3)

where E1(ℎ; 𝑥, 𝑦) is the adiabatic potential energy and cor-
responds to the ground state of (3) which is a function
of the in-plane coordinates. It is clear that the eigenvalues
and eigenfunctions of (3) are the same as those for a single
quantum well with width ℎ(𝑥, 𝑦). Three possibilities have
been considered for the upper and lower surfaces (separated
by the distance ℎ(𝑥, 𝑦)) in Figure 1: (i) a QW with two rigid
potential barriers, (ii) a symmetric QW with finite potential
barriers (𝑉0), and (iii) an asymmetric structure with infinite
and finite (𝑉0) barriers. In the first case the adiabatic potential
is given by

E1 (ℎ; 𝑥, 𝑦) = ℏ2𝜋2
[2𝑚∗⊥ℎ (𝑥, 𝑦)2] (4)

whereas in the second and third cases, respectively, it is
obtained by the first solution of the transcendental equations

tan[ℎ (𝑥, 𝑦) 𝛽2 ] − 𝜉𝛽 = 0,
cot [ℎ (𝑥, 𝑦) 𝛽] + 𝜉𝛽 = 0,

(5)

where 𝜉 = √(2𝑚∗⊥,𝐵/ℏ2)[𝑉0 − E1(ℎ; 𝑥, 𝑦)], 𝛽 =
√(2𝑚∗⊥,𝑊/ℏ2)E1(ℎ; 𝑥, 𝑦), and 𝑚∗⊥,𝑊 (𝑚∗⊥,𝐵) refers to the
effective mass inside (outside) the dot region.

The energy 𝑉0 is equal to the barrier potential for
electrons in GaAs surrounded by a Ga1−𝑥 Al𝑥As material.𝑉0 = 𝑄Δ𝐸𝑔, where 𝑄 is the band offset and Δ𝐸𝑔 is the gap
difference between theGa1−𝑥 Al𝑥As andGaAsmaterials; here
we take𝑄 = 0.6 andΔ𝐸𝑔 = (1155𝑥+370𝑥2) meV and 𝑥 = 0.3
for the aluminum concentration.

The eigenfunctions and eigenvalues of (2) can be obtained
by several methods. In this work, particularly, we have used
two different methods to confirm our findings: (i) expansion
of the wave function in a set of complete wave functions
associated with a confined electron in a square rectangular
box (with dimensions 𝐿𝑥 × 𝐿𝑦) with infinite confinement
potential [18–21] and (ii) the finite elements method (FEM).
In the first case, we have chosen to approach the solution of

the in-plane problem in (2) by means of the following 2D
expansion [18–21]:

𝜙 (𝑥, 𝑦) = 2
√𝐿𝑥𝐿𝑦∑𝑛,𝑚𝐶𝑛,𝑚 sin[

𝑛𝜋 (𝑥 + 𝐿𝑥/2)𝐿𝑥 ]

⋅ sin[𝑚𝜋 (𝑦 + 𝐿𝑦/2)𝐿𝑦 ] .
(6)

This means that we are writing the eigenfunctions of the in-
plane problem as a linear combination of the independent
solutions of a rectangular quantumboxwith infinite potential
barriers. For a more realistic approximation, the dimensions𝐿𝑥 and 𝐿𝑦 must be chosen appropriately larger than the
typical in-plane ellipse-size. The calculation procedure then
implies the construction of a Hamiltonian matrix from 𝐻𝑥,𝑦
and its subsequent diagonalization in order to obtain the
eigenenergies 𝐸𝑗 and the set of expansion coefficients 𝐶(𝑗)𝑛,𝑚
that describe the allowed quantum states.

In this study we have used a basis of sine functions in
a region 𝐿𝑥 = 𝐿𝑦 = 5𝑎0 with quantum numbers 𝑛 and 𝑚
both running from 1 to 50, which gives us a total of 2500
functions.The resulting set of states is sorted out in increasing
order of energy and after that we proceeded to choose the first𝑁 = 200 states to diagonalize the Hamiltonian. With that
choice we obtained a convergence of the lowest ten energy
states up to 0.05𝑅0 for the highest fifteen states (where 𝑅0 =ℏ2/2𝑚∗‖ 𝑎20 is the effective unit for energy, 𝑎0 = ℏ2𝜀/𝑚∗‖ 𝑒2 being
the effective unit for length). Calculations were made also for𝐿𝑥 = 𝐿𝑦 = 10𝑎0 with 𝑁 = 300 and for 𝐿𝑥 = 𝐿𝑦 = 7𝑎0
with 𝑁 = 700 and the obtained set of the lowest fifteen
energies did not changemore than 0.05𝑅0.Also the condition𝐿𝑥 = 𝐿𝑦 = 10𝑎0 with 𝑁 = 700 was studied with the same
convergence.

With the aim of solving the eigenvalues problem given by
(2) by means of FEM, we introduce the Sobolev Space𝐻10 (𝑆1),
which is formed by functions 𝑢, such that 𝑢 and ∇𝑢 are
defined and square-integrable functions on 𝑆1. We consider
the variational form for (2) in 𝑆1 joined with a homogeneous
Dirichlet boundary condition, which arises from considering
infinity confinement outside 𝑆1: Find 𝜙 ∈ 𝐻10 (𝑆1) and 𝐸 ∈ R

such that, for any test function 𝜓 ∈ 𝐻10 (𝑆1), (7) is satisfied.
Numerical solutions of this problem were obtained using
solvers implemented in FreeFem++ [22].

∫
𝑆
1

[ ℏ22𝑚∗
‖

∇𝜙 ⋅ ∇𝜓 + (𝑉1 (𝜌) + |𝑒| 𝐹⃗ ⋅ ⃗𝑟 + E1 (ℎ; 𝑥, 𝑦))

⋅ 𝜙 (𝑥, 𝑦) 𝜓 (𝑥, 𝑦)] 𝑑𝑥 𝑑𝑦 = 𝐸∫
𝑆
1

𝜙 (𝑥, 𝑦)
⋅ 𝜓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

(7)

To use the FEM we have defined three contour lines: (i)𝑆1-boundary, with 300 points, which corresponds to the𝑥𝑦-boundary region of the QD, (ii) an auxiliary circular
boundary to define the maximum variation of the Coulomb
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interaction, centered at the impurity position with radius0.2𝑎0 and 30 points, and (iii) a second auxiliary circular
boundary, also centered at the impurity position, enclosing
an empty space with radius 10−4𝑎0, to prevent the singularity
associated with the Coulomb interaction. Note that these
two auxiliary boundaries were chosen so as to converge to
the 2D-hydrogenic binding energy (4𝑅0) for large enough
dimensions of the elliptical region.

The knowledge of the wave functionsΨ𝑗(𝑥, 𝑦, 𝑧) and their
corresponding energy values is crucial to the study of the
optical response related with interstate electron transitions in
the QD.We have chosen to investigate the optical absorption
coefficient, which is derived from the imaginary part of
the dielectric susceptibility that characterizes the electric
polarization of the electron system under the influence of
the electric field of an electromagnetic signal of frequency 𝜔
[23, 24]. The working expression for the optical absorption
coefficient is

𝛼 (𝜔) = 4∑
𝑙>𝑗=1

𝜔√ 𝜇0𝜀𝜖0
󵄨󵄨󵄨󵄨󵄨𝑀𝑗𝑙󵄨󵄨󵄨󵄨󵄨2 𝑒2𝜌𝑗𝑙ℏΓ𝑗𝑙

(𝐸𝑗𝑙 − ℏ𝜔)2 + (ℏΓ𝑗𝑙)2 , (8)

where the quantity 𝐸𝑗𝑙 = 𝐸𝑙−𝐸𝑗 is the energy difference asso-
ciated with the transition between an initial state with energy𝐸𝑗 and a final state 𝐸𝑙. 𝑀𝑗𝑙 is the electric dipole moment
off-diagonal matrix element involving those very states (in
this work calculations are for circular 𝑥𝑦-polarization of
the incident radiation), whereas Γ𝑗𝑙 are the corresponding
transition damping rates. The quantities 𝜇0 and 𝜖0 are the
free space magnetic permeability and dielectric permittivity.
Finally, 𝜌𝑗𝑙 = 2(𝑓𝑗 − 𝑓𝑙)/𝑉 is the corresponding three-
dimensional electron concentration [23], where

𝑓𝑟 = 11 + exp [(𝐸𝑟 − 𝐸𝐹) /𝑘𝐵𝑇] (9)

is the Fermi-Dirac occupation number (𝐸𝐹 is the Fermi level
energy, 𝑉 is the system’s volume, and 𝑇 is the temperature).

The input parameters for a prototypical GaAs QD are as
follows: 𝜀 = 12.35, 𝑐 = 3 × 108m/s, 𝜖0 = 8.85 × 10−12 F/m,𝜇0 = 1.256 × 10−6 Tm/A, 𝑒 = 1.6 × 10−19 C, and 𝑚∗𝑒 =0.067𝑚0, where𝑚0 is the free electron mass. In GaAs we deal
with spherical-symmetric conduction effective mass; that is,𝑚∗‖ = 𝑚∗⊥ = 𝑚∗. Calculations are for 𝑚∗ = 0.067𝑚0 in
the GaAs region and 𝑚∗ = 0.086𝑚0 in the Ga0.7Al0.3As
barriers when the finite confinement is considered. Here𝑚0 is the free electron mass. For the length and energy
effective units the considered values are, respectively, 𝑎0 =97.98 Å and 𝑅0 = 9.95meV. For the broadening we took
the value Ω𝑗𝑙 = ℏΓ𝑗𝑙 = 3meV [25, 26], in agreement
with the corresponding value determined experimentally and
supported by theoretical calculations [27] for a structure
similar to ours. The broadening obviously depends on the
temperature, dimensions, roughness, doping concentration,
alloy disorder, and nonparabolicity of subbands, as well as
the influence of elastic and inelastic scattering mechanisms.
We did not take into account these dependencies in our
calculations and, for that reason, we justify our choice for
the broadening parameter due to the very good resolution
obtained for themain structures in the absorption coefficient.

3. Results and Discussion

Figure 2 shows the functional dependence of the energy
of lowest confined states with regard to the change in the
horizontal semilength for the case of the elliptical quantum
dot with constant height depicted in Figure 1(a). The results
are for zero applied field and correspond to two different
values of the semilength 𝑅𝑦. The upper row corresponds
to conduction band states [graphics (a) and (b)], and the
lower row contains the energies of electrons coupled to the
donor impurity located at the elliptical QD center. As can be
expected, the increase of the QD size implies the reduction of
the allowed confined energy values due to the loss in carrier
localization. The inclusion of the Coulombic center (donor
impurity) leads to an additional decrement of the energies
as a result of the attractive electron-impurity interaction.
Although the calculation was performed using the FEM in all
cases, the spectral scheme that involves the diagonalization of
theHamiltonianmatrix resulting fromexpansion (6)was also
applied and the corresponding results appear superimposed
to the FEM ones in Figure 2(a), showing a remarkably
good coincidence. Note that in both cases of the numerical
calculations the confinement potential around the elliptical
region is infinite.

In Figure 2(c) we have also included the electron-
impurity correlated energy for the ground state calculated
via a variational technique and considering the 3D-shape of
the structure (it means considering the 3D-character of the
electron-impurity distance) [15–17]. Calculations were done
with a one-variational parameter trial wave function. As can
be seen, the FEM-results and the variational calculations
agree with differences less than 2%, as was established above
after (1).

In Figure 3we are presenting the lowest electron-impurity
energies, depending on the position of the donor impurity
atom along the 𝑦-axis [cases (a) and (c)] and the 𝑥-axis [cases
(b) and (d)] for the QD system of Figure 1(a). The static
electric field is absent in cases (a) and (b). At the same time,
a static electric field of 100 kV/cm is assumed to be applied
along the 𝑦-direction [case (c)] and along the 𝑥-direction
[case (d)]. The zero-field configurations show a symmetric
dependence of the coupled electron-impurity energies which,
depending on the symmetries of the unconnected conduction
band electron states, will show maxima and minima at
different donor impurity positions. For all depicted level
is coincident if the donor atom is placed at one of the
QD borders the effect of the electron-impurity attraction is
weaker and therefore the energy levels tend to go up (this is
due to the an infinite barrier effect). It is worth noticing the
presence of level anticrossings, typical of nonisotropic 2D or
3D systems.

Including the influence of the static electric field modifies
the above-mentioned picture. This time the electron density
of probability becomes displaced inside the QD region.
As a consequence, depending on the localization of the
donor impurity, the energy values will be shifted upwards
or downwards. This is a consequence of the rise or the
fall of the expected electron-impurity distance, respectively,
implying the weakening or the strengthening of the attractive
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Figure 2: (a, b) Energy of the first ten confined-electron states in an elliptical GaAs quantum dot as a function of the horizontal semilength
(𝑅𝑥) of the structure for two different values of the vertical length 𝑅𝑦: 1.0𝑎0 (a) and 1.5𝑎0 (b). In (c) and (d) the corresponding results
including the effects of on-center donor impurity are depicted. The results are for zero electric field. A constant dot-height of 0.3𝑎0 has
been considered. In (a) the open symbols correspond to calculations using a diagonalization method. In (c) the full symbols correspond to
theoretical calculations considering the 3D-character of the electron-impurity distance and using a variational procedure [15–17].

Coulombic interaction. The field effect is more pronounced
when it is applied along the horizontal direction of the
elliptical cross section because in that case the field-induced
electron delocalization is stronger. It can be seen that the
electric field causes the appearance of level anticrossings in
cases not appearing when 𝐹 = 0.This is another consequence
of the field-induced additional symmetry loss.

These features can be confirmed by observing the evolu-
tion of the lowest electron confined energy levels as functions

of the electric field strength shown in Figure 4. Again, we
are dealing with the constant height elliptic-shaped disc
geometry and the dimensions 𝑅𝑥 and 𝑅𝑦 are fixed. Upper
row [cases (a) and (b)] corresponds to the conduction band
states in absence of impurity and the graphics in lower row
[cases (c) and (d)] contain the results that include the donor
center atom in the structure. The decrease of the energy level
position as a result of the increment in the field intensity
(greater loss in electron localization) is readily apparent in
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Figure 3: (a, b) Energy of the first ten confined-electron states in an elliptical GaAs quantum dot as a function of the impurity position along
the 𝑦-direction (a, c) and 𝑥-direction (b, d). The results are for 𝑅𝑥 = 1.5𝑎0 and 𝑅𝑦 = 1.0𝑎0 for zero applied electric field (a, b), 𝐹 = (0, 100, 0)
kV/cm (c), and 𝐹 = (100, 0, 0) kV/cm (d). A constant dot-height of 0.3𝑎0 has been considered.

all cases. The above discussed situation where the presence
of the attractive electron-impurity interaction implies the
larger rate of decrement is also clearly present. Furthermore,
the more noticeable effect of the 𝑥-oriented electric field is
observed as well.

The results for the variation of the energy levels as
functions of 𝑅𝑥 in the case of the variable height QD [see
Figure 1(b)] is shown in Figure 5. There, the zero-field

situation is explored for two different geometrical configu-
rations. In one of them, the QD height is assumed to vary
in the form ℎ = 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦 [cases (a) and (c)].
In the second one, the height changes according to ℎ =
ℎ0 + 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦 [cases (b) and (d)]. This means
that close to the QD bottom there is a strip of constant
height, resembling the presence of a possible wetting layer.
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Figure 4: (a, b) Energy of the first ten confined-electron states in an elliptical GaAs quantum dot as a function of the applied electric field
along the 𝑦-direction (a, c) and 𝑥-direction (b, d). The results are for 𝑅𝑥 = 1.5𝑎0 and 𝑅𝑦 = 1.0𝑎0 without impurity (a, b) and with on-center
impurity (c, d). A constant dot-height of 0.3𝑎0 has been considered.

In addition, the presence of the donor impurity center is
included in the results appearing in Figures 5(c) and 5(d).

The reduction in the energy values as a consequence of the
increase in the horizontal dot size, as discussed above in the
constant height case, is observed as well. It is interesting to
note that the inclusion of a nonzero-height strip at the base
of the QD that amounts 33% of increase in the top height
causes a significant redshift of the confined energies. For
instance, in the case of the ground state, the energy decreases
approximately 40% with respect to the unstriped geometry,

both with and without the presence of the impurity atoms.
The presence of anticrossings is preserved.

In Section 2 we have commented the possibility of
the numerical calculation of the confined states in the
QD which has the elliptical-shaped configuration with the
finite confinement potential via FEM. Accordingly, Figure 6
contains the zero electric field results for the variation of the
confined states in the case of nonconstant height geometry
[analogous to that appearing in Figure 1(b)] as functions of𝑅𝑥. Graphics (a) and (b) correspond to conduction band
electron states without impurity effect, whereas graphics (c)
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Figure 5: (a, b)The results are as in Figure 2, but here we are interested in an quantum dot with variable height. In (a, c) the height of the dot
is given by ℎ = 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦, whereas in (b, d) the results are for ℎ = ℎ0 + 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦. Calculations are for 𝑅𝑦 = 1.0𝑎0,𝑅𝑧 = 0.3𝑎0, and ℎ0 = 0.1𝑎0.
and (d) show the allowed electron-donor impurity energies.
The configurations chosen for the finite potential energy
confinement profiles are as follows: (i) With QD height given
by ℎ = 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦 [cases (a) and (c)], the
quantum well along the 𝑧-direction is taken as symmetric
finite barrier one with depth provided by the corresponding
band offset of the Al0.3Ga0.7As/GaAs system. (ii) With QD
height given by ℎ = ℎ0 + 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦, withℎ0 = 0.25𝑎0 [cases (b) and (d)], the quantum well along
the 𝑧-direction has a bottom finite barrier and an infinite

barrier at the top that could simulate an upper free-standing
configuration.

In first place one may readily noticed that, as it should
be expected, the values of the obtained energies are sig-
nificantly smaller compared with the previously discussed
infinite potential barrier cases. However, the behavior of
the energies as functions of the horizontal semilength are
qualitatively similar, with the same arguments related with
the electron spatial localization and the expected electron-
impurity distance as the key elements for their explanation. It
should be kept in mind that the confining configuration (ii)
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Figure 6: (a, b) The results are as in Figure 2, but here we are dealing with a variable height of the dot. In (a, c) the height of the dot is
given by ℎ = 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦 with symmetric finite confinement potentials along the 𝑧-direction, whereas in (b, d) the results are for

ℎ = ℎ0+𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦 with asymmetric finite-infinite-confinement potentials along the 𝑧-direction. Calculations are for𝑅𝑦 = 1.0𝑎0,𝑅𝑧 = 0.3𝑎0, and ℎ0 = 0.25𝑎0.

implies a larger size of thewidth of the quantumwell along the
vertical direction. As a consequence, in spite of the presence
of a top infinite barrier, the obtained energies are lower in
both the uncoupled and Coulombic-coupled situations.

In order to proceed with the investigation of the optical
absorption coefficient in the elliptic-shaped QDs we need to
evaluate the off-diagonal electric dipolematrix elements asso-
ciated with the interstate transitions that will be considered.
As indicated in (8), only the contributions coming from the

transitions that involve the lowest four confined states shall
be included. Following the same geometrical, compositional,
and interaction setups that led to the energy level results
in Figures 2–6, the corresponding variations of the 𝑀𝑖𝑗 are
displayed in Figures 7–11, respectively. Note that all the results
presented in Figures 7–11 are for the low temperature regime
(4K).

The different, and sometimes jumbled, behaviors of these
quantities are governed by two main elements: the spatial
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Figure 7: Dipole matrix elements for circular polarization of the incident radiation considering combinations between the first four confined
states. The results are obtained under the same geometrical, compositional, and interaction configurations leading to Figure 2.

extension and the symmetry of the involved wave functions.
They, combined with the polarization of the incident light
(here considered to be circular), determine whether the
dipole matrix element vanishes or remains finite as well as its
functional dependence with respect to the varying quantity
in the system. For instance, the effect of the anticrossings,

which imply the sudden change in the symmetry of certain
wave function and, therefore, the imposition of a particular
selection rule for the transition under specific circumstances,
can be clearly noticed.

The total light absorption coefficient that includes the
contribution of the above transitions commented on is shown
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Figure 8: Dipole matrix elements for circular polarization of the incident radiation considering combinations between the first four confined
states. The results are obtained under the same geometrical, compositional, and interaction configurations leading to Figure 3.

in Figure 12 as a function of the incident photon energy for
two different values of the temperature 𝑇 = 4K [(a), (c)] and𝑇 = 300 [(b), (d)]. The geometry is that with constant height,
depicted in Figure 1(a), with fixed dimensions. The electric
field, oriented along the 𝑦-direction, intensity is varied from

8 kV/cm to 200 kV/cm. Graphics (a) and (b) correspond to
the case without the presence of the impurity atom, and in
the graphics (c) and (d) the system with on-center donor
impurity atom is taken into account. In the case without
impurity we can identify the resonant peaks associated with
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Figure 9: Dipole matrix elements for circular polarization of the incident radiation considering combinations between the first four confined
states. The results are obtained under the same geometrical, compositional, and interaction configurations leading to Figure 4.

transitions having the ground state as the initial one.The shift
of the peaks as a result of the increment in 𝐹 can be identified
by observing the behavior of the involved state energies
as functions of the electric field strength in Figure 4. The
evolution of the resonant peak amplitudes can also be noticed
which follow the dependence generated by the combined

effects of the variation of the resonant peak position and the
electric dipole moment matrix element through the product𝐸𝑖𝑗|𝑀𝑖𝑗|2/ℏ.

In our calculation, the effect of the temperature is sup-
posed to fall on the population of the transition states. We
are assuming that the influence of 𝑇 on the transition energy
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Figure 10: Dipolematrix elements for circular polarization of the incident radiation considering combinations between the first four confined
states. The results are obtained under the same geometrical, compositional, and interaction configurations leading to Figure 5.

differences and state wave functions is not significant and
can be neglected. Note that in the case of finite quantum
wells in the 𝑧-direction, the temperature coefficient of the
gap for the well and barrier materials is the same and con-
sequently there is no change with temperature of the height
of the confinement potential. In the case of the effects of

the temperature on the electron effective mass and static
dielectric constant, they are global and involve almost rigid
modifications on the whole spectra without changes in
the transition energies. Accordingly, the results depicted in
Figures 12(b) and 12(d) reveal the consequence of the change
in the level populations, with the appearance of absorption
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Figure 11: Dipolematrix elements for circular polarization of the incident radiation considering combinations between the first four confined
states. The results are obtained under the same geometrical, compositional, and interaction configurations leading to Figure 6.

peaks for 𝑇 = 300K, additional to those observed at low
temperature. At the same time, the variation in 𝜌𝑖𝑗 conditions
the change in the resonant peak amplitudes as can be noticed.

Finally, Figure 13 shows the calculated total optical
absorption coefficient in the symmetric finite confinement

configuration of the elliptic-shaped QD with nonconstant
height. The light absorption coefficient is presented as a
function of the incident photon energy and curves are drawn
taking the horizontal elliptic size 𝑅𝑥 as a parameter, with 𝑅𝑦
and 𝑅𝑧 fixed. Again, two values of the temperature are taken
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Figure 12: Total absorption coefficient as a function of the incident photon energy for several values of the electric field applied in the 𝑦-
direction and varying in steps of 8 kV/cm from 0 to 200 kV/cm. 𝑅𝑥 = 1.5𝑎0, 𝑅𝑦 = 1.0𝑎0, and constant dot-height of 0.3𝑎0. The curves are
shifted 0.8×107m−1. In (a) and (b) the results are without donor impurity whereas in (c) and (d) they are for on-center impurity. Two values of
temperature have been considered as indicated in the figures.The green lines correspond to the calculated energy transitions fromFigure 4(a).
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Figure 13: Total absorption coefficient as a function of the incident photon energy for several values of the horizontal length varying in steps
of 0.04𝑎0 from 0.5𝑎0 to 1.5𝑎0.The curves are shifted 3.2×107m−1.The height of the dot is given by ℎ = 𝑅𝑧√1 − 𝑥2/𝑅2𝑥 − 𝑦2/𝑅2𝑦 with symmetric
finite confinement potentials along the 𝑧-direction. Calculations are for 𝑅𝑦 = 1.0𝑎0 and 𝑅𝑧 = 0.3𝑎0. In (a) and (b) the results are without
donor impurity whereas in (c) and (d) they are for on-center impurity. Two values of temperature have been considered as indicated in the
figures.
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into account. Graphics of the results without the presence
of any impurity are labeled (a) and (b), whilst (c) and (d)
correspond to the case with an on-center ionized donor atom.

The shifts of the resonant absorption peak positions can
be explained as above, that is, by observing the behavior of
the confined state energies appearing in Figures 6(a) and
6(c) and the variation of the differences between them. The
change in their amplitudes is, once again, justified by the
behavior of the involved transition energies and the electric
dipole matrix elements shown in Figures 11(a) and 11(c).
Also, as we previously commented, the influence of a higher
temperature, affecting the electron concentration 𝜌, allows
for the resolution of other transition peaks, highlighting the
thermal effect in this case.

4. Conclusions

In the present work we have addressed the calculation of the
conduction band effective mass states of elliptically shaped
quantum dots with finite and infinite confinement potentials,
the presence of a donor impurity atom, and the influence of
externally applied static electric fields. The solution of the
Schrödinger-like effective mass differential equation incor-
porates the adiabatic approximation to uncouple the electron
motion along the 𝑧 and (𝑥, 𝑦) directions, as well as the finite
element method to solve the resulting differential problem.
The use of the finite element method using FreeFem++ is an
important tool for solving this kind of problem. Results also
were obtained via a spectral procedure which reveals a very
good agreement with the finite element scheme.

Our results confirm the known effects of the presence of
the electron-impurity interaction and the application of static
electric fields on the spectrum of carrier confined in quantum
nanostructures, indeed with the particularities associated
with the specific geometry of the system under study.

The light absorption associated with electron transitions
between the allowed quantum states in each case is studied
making use of the previously calculated energies and wave
functions. It is shown that the changes in the electron state
energies and probability densities due to modifications in
the type of confinement, the geometry, and the presence or
absence of the donor impurity center, as well as the variation
of the level population with temperature, are all causes for the
shift of the absorption resonant peaks and/or the increment
or reduction of their corresponding amplitudes.

Quantum dots with the shape here discussed are, actually,
experimentally realized systems, with well-identified current
and prospective applications. We hope, with this work, to
shed some light on the electronic and optical features of a
GaAs-based structure of this type.
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