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We perform theoretical calculations for the band structure of semiconductor superlattice under intense

high-frequency laser field. In the frame of the non-perturbative approach, the laser effects are included

via laser-dressed potential. Results reveal that an intense laser field creates an additional geometric

confinement on the electronic states. Numerical results show that when tuning the strength of the laser

field significant changes come in the electronic energy levels and density of states.
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1. Introduction

Technological developments in the growth techniques in
recent years made possible the fabrication of low-dimensional
nanostructures such as single and multiple quantum wells,
quantum dots, quantum wires and superlattices [1]. Because of
their intrinsic physical properties and their technological applica-
tions in electronic and optoelectronic devices [2], there has been
an increasing interest on semiconductor nanostructures [3,4]. In
addition to this, advances of high-power, long-wavelength, line-
arly polarized laser sources has opened a new possibility in the
use of lasers as a tool to manipulate electronic wavefunctions
[5–7]. Some interesting phenomena associated with the external
field arise in case of system with reduced dimensionality owing to
the confinement of the charge carriers. Application of an intense
laser-field (ILF) radiation considerably affects the electrical and
optical properties of low-dimensional semiconducting structures
[8–13].

Semiconductor superlattice (SSL) is based on a periodic struc-
ture of alternating layers of two semiconductor materials of
almost equal lattice constant with wide and narrow band gaps
[14,15]. The artificial periodicity of the SSL perturbs the band
structure of the underlying materials to produce new (miniband)
conduction states, the energies of which can be selectively tuned
through the design of the SSL [16]. Localization of the electronic
ll rights reserved.
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states in the material is highly sensitive to the barrier width and
height, impurity distribution, effective mass, and the action of
external fields [17]. The typical energy scales in superlattices or
multiple quantum wells, such as miniband width, exciton level
spacing, Bloch oscillation frequency, etc., are in the terahertz
(THz) regime [18]. Therefore, these structures can be served as a
tool to investigate the effects of an ILF. Understanding the basic
physics involved in the external field-semiconductor interaction
may assist in designing optoelectronic devices with high fre-
quency. Recent experiments on the optical properties of SSLs
irradiated by an intense THz radiation revealed some interesting
phenomena, including the dynamical Franz-Keldysh effect, the ac
Stark effect, the dynamical localization, and the inverse Bloch
oscillations [19,18]. Many theoretical efforts have been devoted to
the realization of phenomena of the irradiated SSLs, most notably
in their transport properties where many nonlinear processes
arise out [20]. Holthaus [21,22] investigated the quantum
mechanics of laser-driven superlattice and showed the controll-
ability of the quasienergy miniband by the strength and the
frequency of the driving far-infrared laser radiation. Analysis of
the conditions under which collapse of magnetic subbands and
suppression on N-photon absorption or emission precesses occur
has been considered by Rodriguez-Castellenos et al. [19]. Yun and
coworkers [18] studied the excitonic optical absorption and
discussed the interplay between the dynamical localization and
the ac Stark effect. It is well known that significant modifications
in the shape of the confining potential of the quantum well
emerge in a high-frequency ILF [23–25]. Although the main
physics for quantum well structures in high-frequency laser field
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is generally clear, many details on SSLs have not yet been
explored. So far, to our knowledge, the consequences of subject-
ing the charge carriers to an ILF and treating the problem in the
frame of ‘‘laser-dressed potential’’ has not been yet investigated.

The purpose of the present paper is a theoretical study of the
influence of an intense, linearly polarized, non-resonant laser
radiation on the potential profile, the electronic band structure
and the density of states (DOS) of GaAs/AlxGa1�xAs superlattices.
The investigations are based upon a non-perturbative theory that
has been developed to describe the atomic behavior in intense
high-frequency laser fields. The effect of the radiation is
expressed in the ‘‘dressed’’ potential which renormalizes electro-
nic bands. Calculations on the electronic structure of the system
as a function of the laser-dressing parameter has been carried out.

This paper is organized as follows. In Section 2 overview of the
Kronig-Penney formalism for GaAs/AlxGa1�xAs SSL and then
the calculation model used to describe the laser-dressed SSL for
the formation of electronic energy bands is discussed. Numerical
results for the electronic energies versus the laser-dressing para-
meter are presented in Section 3. Finally, Section 4 is dedicated to
the conclusions.
2. Theory and formalism

The one-dimensional Kronig-Penney (KP) model consists of an
infinite series of rectangular barriers with potential height V0 and
width Lb, separated by wells of width Lw resulting in a periodic
potential with period L¼ LwþLb [26]. As well known solution of the
Schrödinger equation for an electron in this periodic potential
introduces the formation of electronic energy bands as well as energy
band gaps. In case of a variable charge carrier effective masses, mn

w

and mn

b in the well and barrier, respectively, the solution of the
Schrödinger equation can be obtained by using the basis of envelope-
function approximation. The Schrödinger equation then is written as

�
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1
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where the periodic potential of the superlattice satisfies the following
translational invariance VðzþLÞ ¼ VðzÞ and discontinuity at the
interfaces of the two kinds of materials with the local masses mnðzÞ,

VðzÞ ¼
V0,

0;

(
mnðzÞ ¼
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b, �Lbozo0,

mn
w, 0ozoLw:

(
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The solution of the Schrödinger’s equation for the KP potential is
obtained by assuming the Bloch periodicity condition

jðzþLÞ ¼ expðikzLÞjðzÞ, ð3Þ

where kz is the wavevector with the manifold of �p=Lokzop=L.
The KP model assumes that the electron wave function and
its weighted derivative are continuous at the interface of
quantum well and potential barrier [27]. Then the solution of the
Schrödinger equation in Eq. (1) is obtained from the determinant
of a 4�4 matrix resulting from four boundary conditions.
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and, other case V0ZE, the solution is
cosðkzLÞ ¼ cosðkwLwÞ coshðkbLbÞ
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in the form.
The method of approach used in the present calculation is

based on a non-perturbative theory describing the atomic beha-
vior in intense high-frequency laser fields [28]. Non-resonant
electromagnetic (EM) radiation is assumed to be a linearly
polarized along the growth axis of a structure and it is repre-
sented by a monochromatic plane wave with a frequency o.
Determination of the electronic states implies the inclusion of the
potential corresponding to the radiation field to the kinetic part of
the Hamiltonian. This problem can be handled semiclassically by
combining a quantum description of the particle with a classical
description of the radiation field [29].

For a slowly varying field in the physically important region of
the space, upon the non-relativistic dipole approximation the
vector potential of the EM field can be expressed as Aðr,tÞ � AðtÞ.
For any oscillatory AðtÞ, the Kramers–Henneberger (KH) unitary
translational transformation [30] can be applied in order to
transfer the time dependence from the kinetic to the potential
term in the Hamiltonian. This transformation leads to time-
dependent Schrödinger equation given as
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Here Vð r
!
Þ is the atomic potential and aðtÞ ¼ e=mn

R t
Aðt0Þ dt0 [31].

For a monochromatic laser field with a strength of F0, the vector
potential is assumed to be AðtÞ ¼ A0 cosðotÞẑ where A0 ¼ F0=o and
ẑ is the unity vector for the z-axis direction chosen to be a growth
direction of the SSL. Then we have aðtÞ ¼ a0 sinðotÞ, where
a0 � eA0=mno is defined as a laser dressing parameter. The
Eq. (4) emphasizes the fact that the electron motion in an EM
field can be alternatively described in an accelerated frame that
oscillates in the phase of the field [29]. Expansion of the oscillat-
ing potential Vð r

!
þ a!ðtÞÞ in a Fourier–Floquet series in the case

of a sufficiently high frequencies, bring out the dominating
zeroth-order term which corresponds to the time average
1=T

R T
0 Vð r
!
þ a!ðtÞÞ dt (T ¼ 2p=o) being the period of the radia-

tion) [32–34], and called as a laser-dressed potential [29].Then
electronic states of the system can be obtained via the solution of
the following time-independent Schrödinger equation:
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where E is the energy level of zero-th Floquet component jðzÞ
under ILF conditions.

In searching for an analytical expression for the laser dressed
potential, after making the substitution u¼ot, time-averaging
integral is written as a sum of four integrals corresponding to the
equally spaced subintervals of the integration domain. Extended
details can be find in the reference [29]. Then the laser-dressed
potential takes the form

/Vðz,a0ÞS¼
1

p

Z þa0

�a0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0�a2
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It should be noticed that the approach of the laser-dressed
potential is valid for a high-frequency regime, e.g., otb1, where
t is the transition time of the electron. This condition is well
satisfied in case of GaAs/AlxGa1�xAs quantum well of width 100 Å
and with x¼0.3 subjected to a monochromatic CO2 laser beam of
frequency � 100 THz [35].
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The conduction band superlattice potential with a period
L¼ LwþLb consists of GaAs of width Lw which serves as a well
and AlxGa1�xAs of width Lb which serves as a barrier. In order to
take quantum interference effects due to the superlattice poten-
tial, VðzÞ is decomposed in a Fourier expansion of a general form

VðzÞ ¼
Xþ1

n ¼ �1

vn eið2pn=LÞz, ð7Þ

with expansion coefficients vn given as

vn ¼
iV0

2pn
ð1�eði2pn=LÞLb Þ and v0 ¼ V0

Lb

L
: ð8Þ

The laser-dressed potential corresponding to the superlattice
potential in Eq. (7) is obtained by performing the time-averaging
procedure presented in Eq. (6) and using Jacobi–Anger expansion
[36] for the exponential term in the Fourier expansion of super-
lattice potential. Then we have

/Vðz,a0ÞS¼
Xþ1

n ¼ �1

vn eið2pn=LÞzJ0
2pn

L
a0

� �
: ð9Þ

Here J0ðxÞ is zero-order Bessel function [37]. To obtain the laser-
dressed eigenfunctions and eigenenergies associated with the SSL,
the Hamiltonian in Eq. (5) is diagonalized in the model space
spanned by using the time-independent wave function jðzÞ

jðzÞ ¼ eikzzwkz
ðzÞ, ð10Þ

with

wkz
ðzÞ ¼

XþN

n ¼ �ðN�1Þ

dkz

n

einð2p=LÞzffiffiffi
L
p , ð11Þ

where dkz

n are kz-dependent unknown expansion coefficients for
the periodic function wkz

ðzÞ. By applying the appropriate boundary
continuity conditions at the interface between materials, the sum
is extended over the number n which denote the number of sites
in the unit cell, with length L¼ 2Nh and equally spaced size h.
Eigenenergies with satisfying sufficient accuracy have been
obtained for NZ50.

The density of states reflects the maximum number of carriers
that occupy states with energies between E and EþdE. We start
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Fig. 1. Laser-dressed potential for GaAs/AlxGa1�xAs superlattice with x¼0.3, Lw¼100 Å

state the superlattice in the absence of external EM field. (For interpretation of the refer

article.)
from the general expression of the local density of states in one
dimension, assuming a quantum-numbers set a¼ fn,kzg and spin
degeneracy gs ¼ 2, defined as

DðE,zÞ ¼ gs

X
n,kz

dðE�EnðkzÞÞ9jn,kz
ðzÞ92

: ð12Þ

Here n is the band index, EnðkzÞ is the band energy and jn,kz
ðzÞ is

the solution of Eq. (5). By applying the scaling transformations
such as E-En

hE, L-an
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With the definitions, D0 ¼mn
w=ðp_

2
Þ which is DOS of the two-

dimensional free electron gas and l defined to be the number of
roots for the equation E�Enðkz,iÞ ¼ 0, with i¼ 1;2, . . . ,l, the final
expression for the integrated DOS reaches to the form
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3. Results and discussion

In numerical calculations, the finite-barrier confinement
potential V0 is obtained from the 60% rule ðxr0:45Þ of the band
gap discontinuity ðDEgÞ between AlxGa1�xAs and GaAs in the
absence of the laser radiation. The conduction-band offset is
estimated according to the Miller’s rule, V0 ¼ 600� ð1:155xþ

0:37x2Þ (meV) [38]. It is known that, when the concentration x

of Al in the superlattice barriers is varied, transparency of the
system is affected and hence the system turns smoothly from the
case of strongly coupled to the weakly coupled SSL. These regimes
are identified with wide minibands/narrow minigaps and narrow
minibands/wide minigaps, respectively [39]. In the present study
the Al concentration in the barriers is fixed at x¼0.3 and the zero
reference energy is settled at the bottom of GaAs conduction band
1 2 3

2 4
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4 , 1

2 ,1 and (b) a0=Lw ¼ 0, 1
4 , 1

2 ,1. The black straight lines

ences to color in this figure legend, the reader is referred to the web version of this
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edge which leads to the barrier height at 228 meV. The relation
between the effective masses and the Al content is given as
mn

w ¼ 0:0665m0 and mn

b ¼ ð0:0665þ0:083xÞm0 where m0 is the
bare electron mass [40,41].

An array of barriers of energy V0 in SSL gives rise to the
formation of minibands for the electron motion along the super-
lattice axis where the minibands are separated by minigaps. The
width of the minibands and the minigaps is determined by the
thickness of the quantum-well and quantum-barrier layers.
Electronic band structure of the system is calculated by using
the series expansion method. Figs. 1(a) and (b) illustrate the laser-
dressed potential for a SSL with Lw ¼ 100 Å and Lb ¼ 40 Å as a
function of the z-position which is considered as a growth
direction. The abbreviation Vd seen in the figure denotes the
laser-dressed potential calculated using the Eq. (6).

It is found that ILF induces remarkable variations on the
confinement potential. Fig. 1(a) illustrates the variation of the
laser-dressed potential for different values of a0 corresponding to
a field-free (black line), Lb=4 (blue line), Lb=2 (green line) and Lb

(red line). For a given a0 between 0 and Lb=2 the barrier width
decreases (increases) smoothly at the top (at the bottom). In the
meantime, the opposite behavior takes place in the well region.
Furthermore, for a0 values which satisfy the condition a0ZLb=2,
an abrupt decrease in the effective height of the barrier and the
formation of a symmetric pit in the barrier region is observed. The
variation of the dressed-potential profile as a function of the laser
field amplitudes defined with respect to the width of the well is
seen in Fig. 1(b). When the laser field is turned on, the effective
width of the well at the bottom (at the top) decreases (increases)
linearly with the strength of the field and a symmetric pit in the
barrier region is formed. We should note that in the case of
a0 ¼ Lw the barrier region gets to be a well and the well region
becomes as a barrier. The bottom of the pit is located at the center
of the barrier and both the top and the bottom tends to 0 in the
large-a0 limit. The emergency of role-exchange between the well
and the barrier, opens the possibility of creating controllable
resonant states located in the material.

For a more comprehensive survey, in Fig. 2 We give a picture
of the laser-dressed potential in a chromatic scale, where lighter
regions are higher parts of dressed-potential. This plot empha-
sizes more clearly the dramatic variation of the dressed potential
profile.
Fig. 2. Laser-dressed potential in a chromatic scale with Lw¼100 Å and Lb ¼ 40 Å.

Colorbar indicates the height of the potential. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)
Next, we investigated the changes induced on the energy
bands and the electron DOS. The variation of the first two bands
with respect to the laser-dressing parameter is presented in Fig. 3.
In the absence of a laser field the ground state miniband is found
to be located between 2:77En

h and 3:07En

h above the bottom of the
well and the first excited state miniband to be located at
10:13En

h211:94En

h. Switching a0 to Lw=2 shifts the first miniband
to the energies between 5:43En

h and 7:42En

h whereas the second
miniband lies in the range 7:83En

h213:08En

h. The energy shifts
obtained with the increase in dressing-parameter can be under-
stood in the way that an effective well width is getting to be
smaller than Lw. As a result, electronic band structure, in the point
of band widths and minigaps, shows a significant dependence on
the laser-dressing parameter.

One may notice that for a given a0 between 0 and Lw=2
monotonic increase in the energy boundaries of the first mini-
band is observed whereas as a0 increases toward Lw decrease in
the energies is observed. Accordingly, the width of the first
miniband increases with a0 in the a0oLw=2 region, then the
width reaches its maximum at a certain a0-value and for further
a0-values, it begins to decrease. This non-monotonous behavior
can be attributed to the oscillations of J0-zero order Bessel
functions. Larger period in space (140 Å) implies that the allowed
energy minibands are very narrow [21]. Laser field causes to the
change of the miniband structure, that provides a new degree of
freedom in optical systems in respect of interband and intraband
transitions. By considering the change of the electronic structure
of the SSL in the presence of the ILF, we can say that this feature
can be taken as the basis for the control of population inversion in
a SSL laser operation in the optical pumping lasing scheme, in
which the miniband numbers and miniband widths are taken into
account for the enhancement of the rate of the population
inversion [29].

The changes in the DOS calculated numerically for different
values of a0 with respect to the usual profile are depicted in Fig. 4.

It is clear from this figure that the strength of the laser-driven
DOS reduces with the ILF and the general behavior of the DOS
curve is consistent with that of the energy bands curves in the
Fig. 3. Reduction in the DOS due to ILF enhances with the laser
intensity monotonically, and it suggests an interesting tuning
mechanism. The energy shifts obtained for an ILF can be extracted
from the Fig. 4 by comparing the distances between each vertical
line corresponding to discontinuity at E¼ En and its respective
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Fig. 3. The lowest and first excited bands of quasienergy for the SSL of period

140 Å, plotted vs the laser-dressing parameter.
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vertical black line, which refers to the state in the absence of
external field. It should be noted that the variations of the band
width due to the ILF can be modulated by the well width.
4. Conclusion

In summary, we have theoretically investigated the influence
of an intense, high-frequency, non-resonant laser field on the
electronic band structure of GaAs/AlxGa1�xAs semiconductor. A
closed-form expression for the dressed potential of a semicon-
ductor superlattice is derived. For the laser fields with different
a0, the dramatic variation of the formed potential in the well and
barrier region is predicted. Also we conclude that the DOS
decreases with strength of the ILF. The possibility of the creation
of resonant states, with a good control of the energy differences is
pointed out. Therefore, our results can be useful for the design of
new optoelectronic devices.
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