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Abstract

Emotional processing (EP) is necessary for the analysis of everyday situations and for the
expression of social cognition and behavior (SCB) patterns. In ex-combatants, EP is affected by
chronic exposure to violent events. For a successful reintegration into society, it is necessary
to characterize their brain responses to emotional stimuli, as a first stage to develop interven-
tions in mental health. In the present work, we present three approaches to assess emotional
processing and its relation with SCB dimensions, such as aggression and social skills, in a sam-
ple of 50 subjects, 30 ex-combatants from illegally armed groups in Colombia and 20 controls
without combat experience. To achieve this objective, we use EEG data from an emotion recog-
nition task for faces and words. In the first approach, we implement a SVM classifier using
features extracted from event-related potentials. Classification rate is improved by incorporat-
ing SCB features. For the second approach, we extract features from functional connectivity
network (FCN) to discriminate the neural reorganization in ex-combatants from controls. In this
approach, we use a feature fusion scheme based on canonical correlation analysis for integrat-
ing SCB scores. Finally, we perform a canonical correlation analysis to explore relations among
FCN and behavioral variables related to performance in the task. In general, the proposed ap-
proaches provide new empirical knowledge on the atypical EP in ex-combatants elicited by a
neural reorganization.
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Chapter 1

Introduction

C OLOMBIA is an upper-middle-income country that has been challenged by the adverse
effects of internal conflict for more than six decades (Denissen, 2010). A central chal-
lenge in definitely bringing internal conflicts to an end is the reintegration of illegal

combatants into civilian life. Recently, the Reincorporation and Normalization Agency (ARN)1

has been leading disarmament, demobilization, and reintegration (DDR) programs with illegal
armed groups in Colombia (Kaplan and Nussio, 2015). Previous studies in ex-combatants have
informed that DDR programs involve at the same time social, political and economical (Denis-
sen, 2010; Thorsell, 2013) risks.

Recidivism is among the related social problems in DDR programs. Multiple reasons to re-
turn to violent and illicit behavior have been identified, such as social cognition impairments,
unstable family liaisons, lack of educational attainment, and the presence of illegal groups (Ka-
plan and Nussio, 2016). Combatants have a high possibility of developing aggressive behavior
traits (Baez et al., 2017; Weierstall et al., 2013) elicited by their exposure to numerous forms of
extreme violence (Köbach et al., 2015). Several studies have found aggression traits to be highly
correlated with recidivism of ex-combatants, and profoundly affect their overall experience of
reintegration into Colombian society (Kaplan and Nussio, 2016; Rodríguez López et al., 2015).
Moreover, ex-combatants exhibit atypical modulation of the emotional processing (EP) during
valence recognition lead by adaptive mechanisms elicited by chronic exposure to war experi-
ences (Tobón et al., 2015; Trujillo et al., 2017b).

EP as part of social cognition is associated with the evaluation, the behavioral regulation,
and the analysis of the feedback derived from social interaction (Couto et al., 2013; Petroni et al.,
2011). Particularly, the neurophysiological organization of EP have been studied in healthy
individuals as well as in clinical samples (Doose-Grünefeld et al., 2015; Luyster et al., 2017;
Müller et al., 2018; Pera-Guardiola et al., 2016). Furthermore, previous studies in military-related
posttraumatic stress disorder (PTSD) have informed resting state connectivity alterations in the
salience network and the default mode network (Kennis et al., 2016), as well as phenotypic data
related to hyporeactivity to angry faces (DiGangi et al., 2017); however, there is limited evidence
that explore EP brain connectivity in subjects exposed to chronic violent events without a PTSD

1http://www.reintegracion.gov.co/en

1
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diagnosis.

Additionally, aggressive behavior in patients with neurological disorders or those who have
suffered traumatic brain injury have been associated with dysfunctions in an affective regulation
network encompassing the amygdala and prefrontal cortex areas (Bufkin and Luttrell, 2005;
Klasen et al., 2013). In ex-combatants, the characterization of such network remains an open
issue. Research into this topic would provide the possibility of identifying phenotypic data to
help improving the design of social cognitive and behavioral trainings.

Graph theoretical analysis (GTA) has been widely used in the research of functional con-
nectivity network (FCN) (Bullmore and Sporns, 2009; Stam and Reijneveld, 2007) and it pro-
vides tools to characterize network topology. The power of GTA consists on the detection of the
so-called small-world network architecture (Bassett and Bullmore, 2006, 2009; Sporns and Zwi,
2004; Uehara et al., 2014). Disruption of the small-world network and randomization of network
topology have been consistently related to neuropsychiatric diseases such as Alzheimer’s dis-
ease (Stam et al., 2009; Stam and Reijneveld, 2007), depression (Li et al., 2015), and schizophrenia
(Jalili and Knyazeva, 2011). Small-world network analysis provides information on how EP al-
ters functional connectivity (FC) between brain regions (Kinnison et al., 2012) and it is useful in
characterizing brain organization as a FCN during emotion-related processing (Ma et al., 2012;
Rutter et al., 2013).

A successful small-worldness analysis relies on computing the optimal threshold for com-
munity detection in brain connectivity networks. However, finding an objective criterion for
selecting such a threshold is not trivial and often obligates researchers to repeat their analysis in
a range of several increasing thresholds (De Vico Fallani et al., 2014). This pitfall can be tackled
by performing GTA of FCN using minimum spanning tree (MST), a graph method that corrects
for comparison bias (Stam et al., 2014). MST analysis is also preferable to conventional GTA as it
provides a normalized comparison between conditions or groups (Tewarie et al., 2015). A small-
world network efficiently combines local specialization and global integration (Tewarie et al.,
2015), which can be addressed in MST analyses by an increased MST diameter and decreased
leaf fraction (Boersma et al., 2013; Chen et al., 2018).

Further analyses over the FCN metrics extracted from the graph (or tree) can be grouped
into three approaches: (a) Hypothesis testing focused on the group differences, (b) statistical
modelling for determining relations among FCN and behavioural outcomes, and (c) machine
learning approaches to separate groups of brain graphs (De Vico Fallani et al., 2014). From these
approaches, machine learning ones are preferable as they can deal with correlated and non-
Gaussian variables. Besides, machine learning can identify the existence of patterns within be-
haviorally homogeneous populations, which can be interpreted as a neurophysiological marker
or phenotype that helps characterizing the majority of the population under evaluation (John
et al., 1992; Johnstone et al., 2005).

Numerous reports suggest the presence of FCN phenotypes within behaviorally homoge-
neous populations. For instance, Jamal et al. (2014) presents a supervised learning approach

2



Chapter 1. Introduction

for classification of autism spectrum disorder from normal control using GTA from the FCN
measures extracted from synchrostates with high accuracy (94.7% with SVM and four network
measures). This study does not account for threshold computing, performing the GTA over the
full graph. In (Jie et al., 2014), a FCN-based classification framework to identify mild cogni-
tive impairment patients from normal controls is proposed, which involves the use of a graph-
kernel-based approach to measure directly the topological similarity between connectivity net-
works achieving a classification accuracy of 91.9%. The main limitation of this study is that
the performance of the proposed method may be affected by the unbalanced data, leading to
overoptimistic results. Plitt et al. (2015) compares the performance of a FCN-based classifier
with one based on behavior metrics to discriminate between autism spectrum disorder and con-
trols. The accuracy achieved using behavior metrics outperforms the accuracy achieved with
FCN metrics, suggesting that a combined analysis could lead to better classifications.

From these works, two main gaps have been identified: (a) How to assess if there is a
functional reorganization during EP functional connectivity in individuals chronically exposed
to combat, and (b) how to use such information to identify phenotypic data related to EP in
ex-combatants. In this thesis, we devise a methodology aimed to examine the association of
aggression with the neural correlates of EP in ex-combatants. Specifically, we implement a
neuroscience-based classification scheme that integrates two different levels of information. First,
Electroencephalography (EEG) data acquired with an emotion recognition task to assess poten-
tial disruptions or specific reorganization of the FCN that could be associated with the exposi-
tion to war experiences. Second, social cognition and behavior (SCB) evaluations that included
the reactive-proactive aggression questionnaire (RPQ) (Raine et al., 2006) and the Scale of Social
Skills (SSS) of Gismero (2000).

1.1 Objectives

To develop a methodology for comparing and analyzing EEG data from emotional tasks
by performing connectivity analysis, to improve the estimation of the emotional processing in
ex-combatants.

To accomplish this objective, we defined the following three specific objectives.

O1. To critically review the literature of connectivity strategies used to estimate emotional pro-
cessing, testing those that are feasible to combine with EEG brain imaging techniques.

O2. To establish a model to perform an efficient estimation of the emotional processing, in terms
of separation of classes between ex-combatants and controls when tested with the available
tasks.

O3. To determine and implement a methodology for validating the model and comparing its
performance with other state of the art approaches.

3



1.2 Outline

1.2 Outline

The chapters of this thesis are organized as follows. Chapter 2 gives the background con-
cepts to help understanding the problem and methods. It begins with a definition of emotional
processing, followed by the theory related to electroencephalography. This chapter continues
introducing the general framework to functional connectivity network analysis. Thereafter, the
chapter presents the theory to support vector machine classification. Finally, the rationale into
canonical correlation analysis as a feature fusion technique is presented.

Chapter 3 presents the experimental setup, beginning with a description of the participants
and the protocol to assess the social cognition and behavior scores. This chapter finally presents
the steps involved in the acquisition and preprocessing of EEG data.

In Chapter 4, we discuss a first approach to EP assessment based on ERP features and SCB
scores. With this framework, we establish an analysis baseline to validate the hypothesis of
atypical EP in ex-combatants, with the limitation that it does not provide enough information to
infer possible disruptions in the underlying functional processes in the brain. This motivates the
introduction of FCN analysis to help elucidating changes on the neural reorganization elicited
by combat experience.

Once we establish that behavioral and brain function measures of EP may provide assess-
ment of neural reorganization in ex-combatants, in Chapter 5 we propose a FCN-based approach
to characterize the EP in such population. This methodology follows the recommendation of the
National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC) initiative2 into
integrating several levels of information.

The classification accuracy is improved using a recursive feature elimination strategy to se-
lect the most discriminant set of FCN features. On the other hand, we used canonical correlation
analysis to fuse the FCN features with the SCB scores.

The comprehension of the functional reorganization of the face and word EP among ex-
combatants will be crucial to design intervention strategies that complement DDR programs.
Chapter 6 explores this phenomenon and its link to behavioral data from the emotion recogni-
tion task, namely reaction times and accuracies. For this aim, we perform classical statistical
analysis to find significant differences between ex-combatants and civilians.

Finally, general conclusions, main contributions derived from this study, and future work
are presented in Chapter 7.

1.3 Methodology

To accomplish the proposed objectives, we first reviewed the literature on connectivity meth-
ods applied to EEG data. This review yielded the selection of five potential connectivity indices:
Correlation, Cross-correlation, Coherence, Imaginary part of Coherency and the Phase-Lag In-

2https://www.nimh.nih.gov/research-priorities/rdoc/index.shtml

4
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dex. In (Rodríguez-Calvache et al., 2017), we performed a comparative analysis that resulted in
the final selection of Imaginary part of Coherency as our coupling metric.

To perform the connectivity analysis, we opted for a machine learning approach over a clas-
sic statistical one. For this aim, we proposed an initial strategy presented in (Quintero-Zea et al.,
2016). In this paper, we performed a graph-based analysis to extract regional connectivity in-
formation. We additionally implemented two machine learning techniques to discriminate ex-
combatants from civilians. Classification accuracy was similar to other state-of-the-art strategies.

From (Quintero-Zea et al., 2016), we identified three challenges to focus on: (a) The definition
of a region of interest may bias the analysis, (b) connectivity networks have to be thresholded,
and (c) the classifier must have the ability to handle imbalanced data. To overcome these chal-
lenges, in (Quintero-Zea et al., 2018a), we proposed a whole brain analysis from minimum span-
ning trees to extract graph-based metrics. Such features were used as input to an SVM classifier,
which can deal with imbalances in the dataset.

We identified the need of adding information from other domains. In (Quintero-Zea et al.,
2017), we use psychological evaluations to increase classification accuracies. Results in detail are
presented in Chapters 4 and 5.

Finally, we performed a canonical correlation analysis to assess how the functional connec-
tivity is related with the behavioral performance of the subjects in the task. These results are
presented in Chapter 6 and in (Quintero-Zea et al., 2019).

All the analysis were performed in the Fieldtrip toolbox for Matlab, this choice was based on
the results presented in (Quintero-Zea et al., 2018b).

1.4 Publications

The main contributions of this thesis are to establish a characterization framework to assess
EP in ex-combatants and to identify some FCN metrics that would serve as markers of EP.
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López-Hincapié, J. D. (2017). Detecting atypical functioning of emotional processing in Colom-
bian Ex-combatants. TecnoLógicas, 20(40):83–96
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(2016). EEG graph analysis for identification of ex-combatants: A machine learning approach.
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ference on Computational Intelligence (LA-CCI), pages 1–5
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on EEG and Behavioral Features. In Torres, I., Bustamante, J., and Sierra, D. A., editors, VII
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in Engineering, pages 385–394, Cham. Springer International Publishing
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Chapter 2

Background

T HIS chapter presents some background for the research presented in this thesis. The
chapter begins with the explanatory concepts of emotional processing in Section 2.1
and electroencephalography in Section 2.2. Thereafter, we discuss the theory concern-

ing functional connectivity analysis in Section 2.3. The basis for support vector machines is
presented in Section 2.4. Finally, Section 2.5 presents the theory of canonical correlation analy-
sis.

2.1 Emotional processing

Emotional processing (EP) is a cognitive process based on the ability of understanding emo-
tional information conveyed by stimuli or situations, including facial expressions and words
with emotional content (Carretié et al., 1997). The process starts when the subject identifies
changes in external or internal circumstances that involve differences in valence, operating as a
trigger situation (Plutchik, 1980). EP is crucial for an adequate interpersonal functioning and
it facilitates a rapid and appropriate response to the social context (Batty and Taylor, 2003;
Plutchik, 2001).

Assessing how ex-combatants are processing emotional information is important to provide
an adequate intervention training. EP can be estimated using task events synchronized with
neural acquisition techniques such as electroencephalography (EEG) and magnetoencephalog-
raphy (MEG). EEG and MEG are preferred over other functional imaging techniques because
several studies have evidenced that emotional stimuli are recognized and differentiated within
the first 200 to 250 ms after their presentation, and fMRI is known to have a poor temporal reso-
lution (Knyazev et al., 2010).

2.2 Electroencephalography

EEG is an electrophysiological technique to represent the electrical activity of the brain as
recorded from Nc electrodes placed on the scalp. Due to its high temporal resolution, the main
utility of EEG is in the evaluation of the brain dynamics (Rodichok, 1995).
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2.3 Functional connectivity networks

EEG can be acquired during resting state or task related procedures. The first paradigm is
believed to reflect intrinsic activity of the brain (van Diessen et al., 2015) which may reveal infor-
mation on the so-called default mode network (Scheeringa et al., 2008). However, power spectra
of resting state EEG is highly noisy and becomes a non-reliable way for extracting personality
traits (Korjus et al., 2015). In task related paradigm, the EEG is recorded while the subject per-
forms a specific motor or cognitive task. In this thesis, we work with EEG acquired from a task
designed to stimulate emotional processes in the brain.

The acquired EEG signals may be characterized by well-defined rhythms that have specific
frequencies. Spectral analysis is used to identify brain-wave characteristics by frequency range.
These ranges have traditionally been labeled as delta waves (less than 4 Hz), theta waves (4
to 7 Hz), alpha waves (8 to 13 Hz), beta waves (13 to 30 Hz), and gamma waves (above 30 Hz)
(Afshari and Jalili, 2016).

Task related EEG waveforms may also be averaged, giving rise to evoked potentials and
event-related potentials (ERPs), that represent neural activity of interest that is temporally re-
lated to a specific stimulus. ERPs are used in clinical practice and research for analysis of neural
mechanisms underlying EP (Balconi and Pozzoli, 2003; Kissler et al., 2009; Rawls et al., 2018).

2.3 Functional connectivity networks

Traditional ERP analyses in the time domain do not allow elucidating how functional inter-
actions among different brain regions take place. In our case, exploring potential disruptions
or specific reorganization associated with combat experience may provide valuable information
for designing interventions in mental health. To provide answers on this subject, a widely-used
approach is the so-called functional connectivity (FC). FC refers to linear or nonlinear statistical
interdependencies between time series of recorded signals from EEG sensors (Friston, 1994). FC
is assumed to reflect functional interactions among the underlying brain regions (Stam et al.,
2009).

A general framework for EEG FC analysis comprises five steps (see Figure 2.1):

1. Nodes definition. EEG FC is a sensor-based analysis. Nodes can be assigned directly to
sensors, to reconstructed cortical sources, or to regions of interest (ROIs).

2. Links estimation. In functional neuroimaging, the links of a brain graph are given by
evaluating the similarity between two brain signals, through FC measures.

3. Graph filtering. Spurious links must be discarded by maintaining only those links whose
weight corresponds to significant FC such as correlation, coherence, or phase lag index.

4. Graph metrics extraction. Brain networks can be characterized using topological proper-
ties of their graphs. Depending on the nature of the neuroimaging experiment, the FC
method and the filtering threshold, some graph indices can result in being more appropri-
ate than other ones.

8



Chapter 2. Background

5. Classification. After extracting topological metrics from the graph, the final step is to clas-
sify them to obtain potential markers.

Figure 2.1: Pipeline for functional connectivity network modeling and analysis. (1) Nodes corre-
spond to EEG electrodes. (2) Links are estimated by measuring the FC between the time series of nodes;
this information is held in a connectivity matrix. (3) Most relevant links are retained using a filtering
procedure to constitute the brain graph. (4) The topology of the brain graph is quantified by different
graph metrics. (5) These graph metrics are input to a classifier to look for potential neuromarkers. This

figure was adapted from De Vico Fallani et al. (2014).

2.3.1 Construction of networks

A functional connectivity network (FCN) is constructed through FC measures. EEG elec-
trodes are likely to acquire activity of identical sources, resulting in strong correlations between
recorded signals that reflect simple volume conduction rather than true FC (Nunez et al., 1997).
To overcome this pitfall one may either study relations among time series of reconstructed
sources or estimate links using techniques that extract relations among signals which are not
due to volume conduction (Stam et al., 2009). The major pitfall of working with reconstructed
sources time series is the absence of a unique solution and the lack of a reliable way to decide
which model is the proper choice. Therefore, we limit this work to sensor level connectivity.

In Rodríguez-Calvache et al. (2017), we demonstrated that the imaginary part of the co-
herency between two signals proposed by Nolte et al. (2004) is a reliable way to estimate the
functional connectome. Coherency is a measure of the linear relation between two EEG elec-
trodes at a specific frequency (Nolte et al., 2004) that is less prone to effects of the volume con-
duction (Sekihara and Nagarajan, 2015). For two different time series of electrodes i and j, the
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2.3 Functional connectivity networks

coherency at each frequency ( f ) is defined as

COHij( f ) =
Sij( f )√

Sii( f ) Sjj( f )
, (2.1)

where Sij( f ) is the cross spectrum of the signals acquired from electrodes i and j, while Sii( f )
and Sjj( f ) are the respective autospectra for a given frequency f . From this formula, we only
work with the imaginary part (iCOH) that captures true source interactions, which means that
whenever it produces significant values some coordinated activity is taking place.

From a physiological point of view, EEG coherency reflects functional interactions among
those brain areas under study (Babiloni et al., 2011). Therefore, higher values of coherency de-
note that two brain regions are working synchronized at a specific frequency.

The result of the FC estimation between all pairs of sensors leads to Nc × Nc relations that
can be represented by a symmetric matrix W ∈ RNc×Nc , containing all pairwise FC measures
wij = Im{COHij} corresponding to the weighted links of the brain graph. To avoid spurious
relations, only the significant ones must be retained for further analysis. This process is known
as graph filtering.

Graph filtering

FC measures can be affected by various non-neural phenomena, and possible difficulties
related to the statistical uncertainty on the link weights can arise when interpreting the resulting
extracted graph metrics (De Vico Fallani et al., 2014). To overcome this problem, it is good
practice to filter the matrix W to retain only those links whose weight corresponds to significant
FC.

A common approach for filtering is to fix an arbitrary threshold T ∈ R+ and remove the links
whose weight wij is lower than it. This method may add bias and lead to misinterpretations of
the topological metrics (De Vico Fallani et al., 2014; Stam et al., 2009; Stam and Reijneveld, 2007).
A better way to filter W is to find the minimum spanning tree (MST) (Stam et al., 2014). The MST
fully connects Nc nodes with Nc − 1 edges with low connection density and without forming
loops. Analysis of the MST may be helpful as it avoids methodological biases when comparing
networks (Tewarie et al., 2015). Two major algorithms have been described to construct the MST
of a weighted graph (Kruskal, 1956; Prim, 1957). Here, we implement Kruskal’s algorithm (see
Algorithm 2.1). Prim’s method produces the same MST if the weights of the original graph are
unique.

2.3.2 Graph theoretical analysis

Graph theoretical analysis (GTA) provides a widely used framework to understand the topol-
ogy of the brain FCN (Bullmore and Sporns, 2009; Stam and Reijneveld, 2007). Modern network
science has developed a large number of measures to characterize the topology of complex net-

10
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ALGORITHM 2.1: Kruskal-MST

Input: Graph G = (V, E)
Output: A minimum spanning tree of G

A← ∅
foreach v ∈ V do

MAKESET(v)
end
sort the edges of E in non-decreasing order
foreach e = {a, b} ∈ E, where e is taken in sorted order do

Va ← FIND(a)
Vb ← FIND(b)
if Va 6= Vb then

A← A ∪ {e}
MERGE(Va, Vb)

end
end
return A

works. These metrics are often linked to a particular filtering method. For instance, a tree does
not reflect some properties, particularly those that depend upon cycles, such as clustering coef-
ficient (Stam et al., 2014). In this work, we characterize the MSTs using three common metrics
(Latora and Marchiori, 2001; Tewarie et al., 2015):

• Leaf fraction (LF): Fraction of leaf nodes in the MST network, where a leaf node is defined
as a node with degree one. This measure is particularly useful to quantify the extent to
which a tree is more pathlike (LF = 2/Nc) or more starlike (LF = 1− 1/Nc). A high leaf
fraction suggests that the communication of a network is largely dependent on hub nodes.

• Maximum degree (MD): Degree of the node with the highest number of links. A high
value of MD denotes the existence of hubs within the tree. In a pathlike tree MD is two,
while in a star MD is equal to the number of edges (Nc − 1).

• Diameter (D): The largest-shortest path length between any two nodes in the graph. The
global efficiency in the communication of the tree can be defined to be inversely propor-
tional to D. A pathlike tree has the worst efficiency with a diameter equal to (Nc − 1). In
the case of a star, the diameter is two, leading to a high efficiency. Information may be
efficiently processed between remote brain regions with low diameter.

2.4 Support vector machines

A support vector machine (SVM) is a discriminative classifier developed on statistical learn-
ing theory by Vapnik (1995) and modified by Cortes and Vapnik (1995). An SVM consists of
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2.4 Support vector machines

supervised learning models that recognize patterns with classification purposes. An SVM aims
to find a hyperplane that best divides a dataset into two classes.

2.4.1 Hyperplane classifiers

To describe SVMs, it is important to understand what a hyperplane classifier is. To this aim,
consider the empirical data

(x1, y1), . . . , (xNp , yNp) ∈ H× {±1}, (2.2)

where H denotes some inner product space from which the patterns xi are taken; and the yi are
called labels. Furthermore, consider the hyperplanes

〈w, x〉+ b = 0, (2.3)

where x, w ∈ H and b ∈ R, which corresponds to the decision function

f (x) = sgn (〈w, x〉+ b) . (2.4)

Among all hyperplanes separating data, there is a unique optimal one, given by the maxi-
mum margin of separation between any training point and the hyperplane (see Figure 2.2 for a
graphical representation of the geometrical problem). The optimal hyperplane can be found by
solving the constrained optimization problem

minimize
w ∈ H, b ∈ R

J(w) =
1
2
‖w‖2

subject to yi(〈w, xi〉+ b) ≥ 1, i = 1, . . . , Np.
(2.5)

Problems of this kind are dealt with by the introduction of Lagrange multipliers αi ≥ 0 and
a Lagrangian

L(w, b, α) =
1
2
‖w‖2 −

Np

∑
i=1

αi(yi(〈w, xi〉+ b)− 1). (2.6)

The Lagrangian L is minimized with respect to the primal variables w and b, and maximized
with respect to the dual variables αi.

Taking the derivatives of L with respect to the primal variables and setting them equal to
zero leads to

Np

∑
i=1

αiyi = 0 (2.7)

and

w =
Np

∑
i=1

αiyixi. (2.8)
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Chapter 2. Background

Figure 2.2: Binary classification toy example. The optimal hyperplane is shown as a solid black line.
The support vectors lie on the dashed line margins.

By substituting (2.7) and (2.8) into (2.6), the so-called dual optimization problem is obtained

maximize
α ∈ RNp

Np

∑
i=1

αi −
1
2

Np

∑
i,j=1

αiαjyiyj〈xi, xj〉

subject to αi ≥ 0, i = 1, . . . , Np,
Np

∑
i=1

αiyi = 0.

(2.9)

And the decision function becomes

f (x) = sgn

(
Np

∑
i=1

αi yi 〈x, xi〉+ b

)
. (2.10)

2.4.2 SVM classification

The hyperplane classifier requires the patterns xi to belong to an inner product space and to
be linearly separable. The SVM formulation can deal with the first restriction by expressing the
inner product 〈x, x′〉 in terms of a mapping function k(x, x′) known as a kernel. By applying this
transformation, the dual optimization problem becomes
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2.4 Support vector machines

maximize
α ∈ RNp

Np

∑
i=1

αi −
1
2

Np

∑
i,j=1

αiαjyiyjk(xi, xj)

subject to αi ≥ 0, i = 1, . . . , Np,
Np

∑
i=1

αiyi = 0.

(2.11)

with decision function

f (x) = sgn

(
Np

∑
i

αi yi k(x, xi) + b

)
. (2.12)

The kernel function may be any function that satisfies Mercer’s conditions (Mercer, 1909). In
this work, we use the widely-used Gaussian radial basis function (G-RBF) kernel defined as

k(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
), (2.13)

where γ is the bandwidth of the kernel.

One way to deal with the linearly separable problem is to introduce slack variables ξi to
reformulate (2.5) as

minimize
w ∈ H, b ∈ R

1
2
‖w‖2 + C

Np

∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , Np,

ξi ≥ 0.

(2.14)

where C > 0 is a constant that determines the trade-off between margin maximization and
training error minimization. This model is known as a soft margin classifier. In this case, the
dual optimization problem is the same as (2.11), but subject to the constraints

0 ≤ αi ≤ C, i = 1, . . . , Np, and
Np

∑
i=1

αiyi = 0 (2.15)

2.4.3 SVM recursive feature elimination

The goal of recursive feature elimination (RFE) is to find the subset of features that maximizes
the performance of the predictor using a SVM classifier. The importance of a particular feature
is determined by the influence it has on the margin of a trained SVM (Guyon et al., 2002). The
SVM-RFE iterative algorithm proposed by Guyon et al. (2002) is presented in Algorithm 2.2.

Rakotomamonjy (2003) presented an extension of the SVM-RFE algorithm when it is imple-
mented with non-linear kernel functions. In this case, the ranking criterion for feature ` is given
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ALGORITHM 2.2: SVM-RFE

Input: Initial feature set, F
Output: Rank list, R

R← ∅
repeat

Train SVM using F
Compute and sort the ranking criteria
Update the ranking list R
Remove the feature with smallest rank from F

until F is empty
return R

by:

J(`) =
1
2

Np

∑
i,j=1

yi yj αi αj k(xi, xj)−
1
2

Np

∑
i,j=1

yi yj αi αj k
(

x(−`)i , x(−`)j

)
, (2.16)

where x(−`)i stands for pattern xi after removing the `-th feature.

2.5 Canonical correlation analysis

Canonical correlation analysis (CCA) is used to identify and measure associations among
two sets of variables. In this thesis, we have features coming from electrophysiological data as
well as psychological tests. For this reason, we use a feature fusion technique based on CCA
(Sun et al., 2005) to obtain a single set of features, which is more discriminant than any of the
other feature sets.

There are several ways to define the canonical correlations of a pair of matrices. In this
work, we use the linear algebraic formulation of Golub and Zha (1994) based on the singular
value decomposition (SVD) (Avron et al., 2014; Björck et al., 1973) of matrices A ∈ RNp×Na and
B ∈ RNp×Nb . The aim of this approach is to find the linear transformations X = AW A and
Y = BW B, where W A and W B are canonical projection matrices whose columns are canonical
weights for A and B, respectively. Algorithm 2.3 shows the procedure for finding W A and W B.

As defined in Sun et al. (2005), feature-level fusion is performed either by concatenation or
summation of the transformed feature spaces:

Z1 =
(

X Y
)
=
(

A B
)(W A 0

0 W B

)
, (2.17a)

Z2 = X + Y = AW A + BW B, (2.17b)

where Z1 ∈ RNp×2r and Z2 ∈ RNp×r, with r = min(rank(A), rank(B)), are called the canonical
correlation discriminant features (CCDF). Z1 and Z2 are further used as the sets of features for
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ALGORITHM 2.3: CCA

Input: Original matrices, A and B
Output: Canonical projective matrices, W A and W B

Compute the SVD of A = U AΣAV>A
Compute the SVD of B = UBΣBV>B
Compute the SVD of U>AUB = UΣV>

Compute W A = V AΣ−1
A U

Compute W B = V BΣ−1
B V

return W A and W B

classification.

2.6 Hypothesis testing

In this thesis we used t-tests and ANOVA analyses to find statistical differences among
groups, stimuli, or conditions. In hypothesis testing, the goal is usually to reject the null hypoth-
esis. The null hypothesis is the null condition: no difference between means or no relationship
between variables. A t-test is a type of hypothesis testing used to determine if there is signifi-
cant difference between the means of two groups, which may be related in certain features. On
the other hand, ANOVA is used to determine whether the means of more than two groups are
equal.

2.7 Summary

In this chapter, we presented the theoretical and conceptual framework used in this thesis
to analyze EP of Colombian ex-combatants using functional connectivity analysis from EEG
data. As mentioned in Section 2.2, EP can be assessed in a reliable way with task-related EEG
recordings. In Chapter 3, we will present the experimental setup carried out in this research to
acquire such a data.
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Chapter 3

Experimental setup

T HIS chapter describes the experimental setup adopted for the current research work.
The first section describes the source and number of participants and provides their
demographic information. The second section presents the instruments used to as-

sess the social cognition and behavior profile of the subjects. The third and last section details
the experimental setup of the EEG acquisition, detailing the system configuration and the ex-
perimental procedure. Moreover, it describes the preprocessing steps employed to prepare the
acquired signal for further processing stages.

3.1 Participants

The sample consisted of Np = 50 participants. Of these, 30 were ex-combatants from illegal
groups of the Colombian armed conflict who, by the time of the study, were enrolled in the DDR
program offered by the ARN; and 20 Colombian citizens without combat experience. Volunteers
that reported psychiatric or neurological disorders were excluded from the study. Individuals
that were not able to perform the task were also excluded. The decision about excluding par-
ticipants was made by the lead psychologist group before the EEG session. Both groups were
matched according to age, gender, and years of education (see Table 3.1).

Table 3.1: Demographic information of ex-combatant and civilian participants.

Ex-combatants Civilians
n = 30 n = 20

M (SD) M (SD) t/Chi2 (p) Bayes Factor
Age (Years) 37.50 (8.22) 36.15 (9.17) 0.543 (0.589) 4.083
Education (Years) 10.23 (3.02) 11.05 (2.14) -1.118 (0.269) 2.871
Gender (Female:Male) 2:28 2:18 0.181 (0.670) 3.232

Ex-combatants were mainly men (28 men, all right-handed), their ages ranged from 27 to
57, with an average education of 10.23 years (standard deviation, SD = 3.03). The control group
consisted of 20 volunteers (18 men, 19 right-handed) with ages ranging between 24 and 55 years
and a mean education of 11.05 years (SD = 2.14).
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3.2 Assessment of social cognition and behavior

All participants read and signed an informed consent before starting the study. The study
procedures and informed consent were approved by Ethics Committee of the Faculty of Medicine,
Universidad de Antioquia, Medellín, Colombia. Participants were informed about the aim of the
study, the confidentiality of the collected information, and about procedures of psychological
tests and electroencephalographic recordings.

3.2 Assessment of social cognition and behavior

Both ex-combatants and civilians completed a neuropsychological evaluation to assess SCB.
It included two psychological tests: the Scale of Social Skills (SSS) (Gismero, 2000), and the
Reactive-Proactive Aggression Questionnaire (RPQ) (Raine et al., 2006).

3.2.1 Scale of social skills

Assertive and socially skilled behavior was assessed by means of the scale of social skills
(SSS) (Gismero, 2000). SSS is a self-report instrument that inquires about individuals ability to
interact with others in different situations. The SSS scale consists of 33 items grouped in six
dimensions: (1) self-expression in social situations, (2) defense of own rights as a consumer, (3)
expression of anger or displeasure, (4) stopping interactions and saying no, (5) making requests,
and (6) starting positive interactions with the opposite gender. Individuals responded to the
questions using a 4-item Likert scale (I do not identify at all / Does not apply to me, although
sometimes happens / This describes me, although I do not always act or feel this way / Strongly
agree and would feel or act as such in most cases). In this study, we focused on the Global SSS
score. Larger values of this score suggest reduced social assertion.

3.2.2 The reactive–proactive aggression questionnaire

To assess aggressive behavior, we administered the RPQ (Raine et al., 2006). The RPQ is a
self-report instrument aimed to distinguish between reactive (i.e. impulsive) and proactive (i.e.
instrumental) aggression. The RPQ consists of 23 items of which 11 items assess reactive ag-
gression and 12 items assess proactive aggression. Each item is rated using a 3-point Likert-type
scale (Never / Sometimes / Often). Summed scores provide a measure of reactive or proac-
tive aggression, as well as total aggression. In this study, we focused on the individual ratings.
Higher scores indicate higher levels of aggression.

3.3 EEG data collection and preprocessing

To evaluate the neural correlates of EP, we implemented an emotion recognition task syn-
chronized with EEG recordings.
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3.3.1 Emotion Recognition Task

Participants performed an emotion recognition task (ERT) aimed to identify facial expres-
sions and words with emotional content. The stimuli consisted of 90 pictures of female and
male faces (30 happy, 30 neutral, and 30 angry) from the MMI Facial Expression Database (Pan-
tic et al., 2005). Additionally, 90 words (30 pleasant, 30 neutral, and 30 unpleasant) were selected
from the linguistic corpus generated by the communications department at Universidad de An-
tioquia (Preseea, 2005). Both faces and words were adapted following the Ibáñez et al. (2011)
methodology. The task sequence is shown in Figure 3.1.

Figure 3.1: Example trial of the Emotion Recognition Task. The schema shows a single trial se-
quence. Face and word trials are independently presented for a short time. Stimuli of positive, negative,
and neutral valence are presented in a randomized sequence. The participant is required to classify each

stimulus. A negative feedback is given when an error is made.

Each trial began with a fixation cross presented for 1000 ms, followed by the stimulus (i.e.,
face or word) presentation for 200 ms. Following face or word presentation, participants had to
categorize the valence of the stimulus displayed on the computer screen into one of three re-
sponse categories (positive, negative, or neutral). Participants entered their responses by press-
ing one of three keys previously allocated on a standard PC keyboard. Correct responses were
followed by an interstimulus interval (ISI) black screen, which appeared for a random duration
between 700 and 1000 ms. The incorrect response was indicated by a red letter “X” that ap-
peared in the center of the screen for 100 ms. The negative feedback was introduced to ensure
that the subject paid attention throughout the task. The feedback screen was followed by the ISI
described above.

3.3.2 EEG Recordings

The ERT was synchronized with EEG recordings. EEG data were acquired by the research
group of mental health (GISAME) at Universidad de Antioquia. EEG registers were acquired with
a 64-electrode NeuroScan EEG SynAmps2 amplifier at a sample rate of 1000 Hz. The electrodes
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were placed according to the international 10-20 system (Klem et al., 1999). Electrode placement
is depicted in Figure 3.2.

(a) (b)

Figure 3.2: Schematic of electrode placement based on the international 10-20 system. Left (a)
and right (b) lateral views of the placement of 60 electrodes for brain activity registration, two cerebellar

electrodes (CB1 and CB2) and two EOG electrodes (HEO and VEO).

During the registration, participants performed the ERT previously described. They were
seated in a comfortable chair in front of a 17-inch PC screen at a distance of 60 cm, located in a
Faraday cage with dimmed lights to guarantee electric isolation. Participants were asked to try
not to blink, move, nor speak while performing the task. Impedances between electrodes and
scalp were maintained below 10 kΩ to ensure a good conductivity between scalp and electrodes.

3.3.3 Signal preprocessing

EEG recordings were preprocessed using the FieldTrip Toolbox (Oostenveld et al., 2011) for
MATLAB. The original signals were band-pass filtered between 0.1 and 30 Hz with a zero-phase
shift FIR filter. Continuous EEG data was epoched from 200 ms prior to the stimulus to 800 ms
after it. Epochs were baseline corrected using the −200 ms to 0 ms window, downsampled to
500 Hz, and offline re-referenced to average. All trials were visually inspected for EMG or other
artifacts not related to blinks removal, so that any trial containing electrical activity below −50 µV
or above 50 µV was rejected. No more than 5% of the trials were marked as bad. An Independent
Component Analysis (ICA) was performed to remove electrooculography (EOG) artifacts. A
maximum of two artifactual components were removed. Thereafter, epochs were separated
according to experimental tasks (Words or Faces).
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Chapter 3. Experimental setup

3.4 Summary

This chapter presented the experimental setup used to acquire the SCB scores and the EEG
data from the participants. Furthermore, the chapter also presented how EEG data was prepro-
cessed to obtain clean time series to be used in the further analyses presented in Chapters 4 and
5.
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Chapter 4

Analysis of emotional processing of ex-combatants

This chapter is partially based on our work “Characterization framework for Ex-combatants
based on EEG and behavioral features” published in IFMBE Proceedings, vol 60.

https://doi.org/10.1007/978-981-10-4086-3_52

E X-COMBATANTS from illegal groups in Colombia present alterations on their EP (To-
bón et al., 2015). The reviewed literature revealed that EP can be estimated from
EEG recordings using ERP or FCN analyses. As a first approach to assess EP in ex-

combatants, we start with an ERP analysis along with the SCB scores. For this aim, we propose
a characterization framework to automatically discriminate between ex-combatant and civilian
populations (described in Section 3.1) using a SVM classifier. The proposed methodology is pre-
sented in Section 4.1, followed by the results in Section 4.2. Finally, Section 4.3 summarizes some
of the key findings.

4.1 Proposed methodology

4.1.1 Signal processing

Clean EEG signals obtained from the preprocessing stage of Section 3.3.3 were averaged over
trials for each task (face or word) to obtain the ERP waveforms per subject. We did not take into
account ERPs for different stimulus valences since previous studies have supported the idea
that these differences are not relevant to this population (Trujillo et al., 2017a,b). In accordance
with the nature of the ERT described in Section 3.3, two peaks were identified as dominant
(Fonarayova Key et al., 2005; Trujillo et al., 2017b):

• N170, a member of the N2 family with latency between 150 and 200 ms, which reflects
expert object recognition.

• P300, which occurs in response to an unexpected stimulus type approximately 300 ms after
the stimulus onset.

Hereafter, we used the following procedure to identify the latency and amplitude of the N170
and P300 ERP components:
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4.1 Proposed methodology

Figure 4.1: ERP component detection. The peaks N170 and P300 (depicted as black dots) are detected
from the first approximation coefficient of the non-decimated Haar wavelet decomposition of the ERP (n
this case from PO5), shown as red dashed line. The peak amplitudes are then obtained from the original

ERP signal, depicted in blue.

1. The ERP signal was decomposed using a multilevel 1-D non-decimated Haar wavelet
(Alexandridi et al., 2003).

2. The minimum (N170) and maximum (P300) values of the first approximation coefficient
were found between 150 and 350 ms.

3. The occurrence times of both peaks are reported as the latency of the component and
mapped to the original ERP signal to calculate the peak amplitudes.

This procedure was applied to ERPs from PO5 and PO6 electrodes. These electrodes were
selected as representatives based on the prior research, where regions of interest were selected
(see Trujillo et al., 2017b). Figure 4.1 shows a selected ERP signal from electrode PO5, its first
approximation coefficient, and the detected peaks.

4.1.2 Classification

For the classification stage, we selected an SVM with a G-RBF kernel function. Due to our
limited number of samples, a stratified 10-fold cross-validation strategy was employed to eval-
uate the performance of the classifier. In k-fold, we first divide the training set into k subsets of
equal size. Sequentially, one subset is tested using the classifier trained on the remaining k− 1
subsets. The hyper parameters of the SVM, namely C and γ, were tuned for each fold separately
using a nested cross-validated 3-stage grid-search. Accuracy, sensitivity, and specificity were
used to quantify the performance of the classifier based on the results of the cross-validation
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Chapter 4. Analysis of emotional processing of ex-combatants

stage. These parameters are defined as:

Accuracy =
TP + TN

TP + FN + FP + TN
× 100%

Sensitivity =
TP

TP + FN
× 100%

Specificity =
TN

FP + TN
× 100%

(4.1)

where TP is the number of ex-combatants correctly classified; TN is the number of civilians cor-
rectly classified; FP is the number of civilians classified as ex-combatants; and FN is the number
of ex-combatants classified as civilians.

4.1.3 Statistical analyses

SCB and ERP data were analyzed using the Statistical Package for Social Sciences (IBM SPSS
version 23.0 for Windows). Independent samples t-tests were performed to assess differences
between-groups of these scores. For all statistical analyses, a p-value of less than 0.05 was con-
sidered to be statistically significant.

4.2 Results

4.2.1 Social cognition and behavior

We found significant between-group differences in both the global social skills score (GSSS)
from EHS, and proactive and reactive aggression scores from RPQ. Table 4.1 shows the mean,
standard deviation from both groups, and t-tests results of SCB scores.

As SCB scores were statistically significant for the two groups, we used a SVM classifier to
estimate the prediction accuracy using only these three features with these results: accuracy
70.00%, 0.95 CI [55.22% - 81.93%], sensitivity 93.33%, 0.95 CI [81.59% - 98.89%], and specificity
35.00%, 0.95 CI [22.44% - 49.70%].

Table 4.1: Group results of the SCB scores and t (and p) values for between group comparisons based on
Student’s t-test.

Ex-combatants Civilians

M±SD M±SD t (p)
GSSS 68.10±15.86 80.40±25.56 -2.10 (0.041)
Proactive 3.63±3.40 1.50±1.91 2.83 (0.007)
Reactive 7.33±3.17 5.50±2.91 2.07 (0.044)
Note. Bold values indicate significant p-values.
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4.2 Results

4.2.2 ERP components

The grand average ERPs to each stimuli at PO5 and PO6 electrodes in both ex-combatants
and civilians are shown in Figure 4.2. The two components on which the analyses focused, N170
and P300, can be identified in these recordings. N170 was identified within the interval between
166.2 and 226.2 ms, and P300 within the interval between 277.4 and 369.0 ms.

(a) PO5, word stimuli (b) PO5, face stimuli

(c) PO6, word stimuli (d) PO6, face stimuli

Figure 4.2: Grand average ERPs. Waveforms are collapsed over stimulus (face or word) for analyzed
electrodes for civilians (in red) and ex-combatants (in blue). Shaded areas represent the standard error of

the mean.

Descriptive statistics for amplitude and latency are summarized in Table 4.2. Despite ex-
combatants consistently exhibit higher amplitudes for the face stimuli in comparison to civilians,
between-group differences were not observed for either N170 or P300 components elicited by
words and faces, Table 4.3 summarizes t-tests results. These results are in line with previous
studies (Tobón et al., 2015; Trujillo et al., 2017b) and might indicate a neural reorganization of
their cognitive architecture supporting EP to develop emotional undifferentiated mechanisms,
which tend to prioritize faces over word stimuli.
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Table 4.2: Group results of N170 and P300 peak amplitudes and latencies.

Ex-combatants Civilians
Component Task Amplitude (µV) Latency (ms) Amplitude (µV) Latency (ms)

PO5
N170 Words 5.338 ± 2.304 189.669 ± 9.348 6.064 ± 3.197 189.115 ± 5.940

Faces 8.206 ± 3.258 195.818 ± 10.332 6.732 ± 3.795 195.278 ± 10.487
P300 Words 1.964 ± 1.231 328.818 ± 21.318 2.290 ± 1.318 327.030 ± 19.109

Faces 2.771 ± 1.633 317.133 ± 21.658 2.108 ± 1.068 323.229 ± 22.720

PO6
N170 Words 5.034 ± 2.440 188.868 ± 12.288 5.191 ± 2.232 183.753 ± 8.656

Faces 9.439 ± 4.210 198.259 ± 10.583 8.338 ± 4.431 197.899 ± 10.805
P300 Words 2.135 ± 1.045 321.962 ± 24.330 1.981 ± 1.154 317.346 ± 22.605

Faces 2.988 ± 2.183 312.291 ± 19.992 2.593 ± 1.819 323.369 ± 20.607
Note. Values are given as M±SD.

Table 4.3: t-tests results of N170 and P300 peak amplitudes and latencies.

Amplitude Latency
Component Task t(48) p t(48) p

PO5
N170 Words 0.933 0.355 -0.234 0.815

Faces -1.465 0.149 -0.180 0.857
P300 Words 0.892 0.376 -0.302 0.763

Faces -1.597 0.116 0.956 0.343

PO6
N170 Words 0.230 0.818 -1.611 0.113

Faces -0.887 0.379 -0.116 0.907
P300 Words -0.488 0.627 -0.675 0.502

Faces -0.668 0.506 1.896 0.064

27



4.3 Summary

4.2.3 Classification results

Classification results are summarized in Table 4.4. We trained the SVM with two different
sets of features. The first conformed to the ERP features (Table 4.2) and the second integrating
ERP and SCB features (Tables 4.1 and 4.2). The SVM-based classifier presented better perfor-
mance with the later set of features, achieving 72.00% accuracy with high sensitivity. Despite
this evidence pointing to the existence of alterations in EP of ex-combatants, the confidence in-
tervals are wide due to the limited size of the sample, and because some of the features found
also reflect non-emotional cognitive processes that may be common to both populations.

Table 4.4: Accuracy, sensitivity and specificity reached with the proposed methodology.

Feature Set # Features Accuracy (%) Sensitivity (%) Specificity (%)
[0.95 CI] [0.95 CI] [0.95 CI]

ERP features 16 60.00% 76.67% 35.00%
[45.20% - 73.37%] [62.23% - 87.30%] [22.44% - 49.70%]

ERP + SCB features 19 72.00% 76.67% 65.00%
[57.29% - 83.57%] [62.23% - 87.30%] [50.14% - 77.72%]

4.3 Summary

In this chapter, we proposed an SVM-based framework to automatically discriminate be-
tween ex-combatant and civilian populations using a set of features composed by ERP measures.
We achieved a higher classification rate when the ERP features were complemented with SCB
scores. This suggests that EP can be more accurately assessed with a multidimensional featuring
scheme. With this framework, we provide a decision support system for psychologists to im-
prove current interventions in mental health aimed to help ex-combatants to make a successful
reintegration to civilian life.

In conclusion, the methodology presented in this chapter further supports the notion of
combat-experience-related alterations in the cognitive architecture supporting EP to prioritize
the recognition of faces over word stimuli, regardless their valence. Behavioral and brain func-
tion measures of EP may provide valuable additional tools for clinical assessment of neural
reorganization in ex-combatants.
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Chapter 5

On a phenotyping scheme for emotional processing

in ex-combatants

This chapter is based on our work “Phenotyping Ex-Combatants From EEG Scalp
Connectivity” published in IEEE ACCESSS, vol. 6

http://doi.org/10.1109/ACCESS.2018.2872765

I N Chapter 4, we found that ex-combatants tend to prioritize the recognition of faces over
word stimuli, regardless their valence. This may suggest abnormal recruitment of neural
resources to process emotional stimuli in such a population. These FCN alterations can be

assessed with GTA, which makes it possible to fully characterize FCNs (Bullmore and Sporns,
2009, 2012).

In this chapter, we propose a methodology to identify potential neurophysiological pheno-
types related to EP of faces and words in ex-combatants. First, we use graph theory to charac-
terize the ex-combatants’ FCN, in comparison with the non-combat-experienced control group.
Second, we use CCA to assess the relation between the network analysis and the SCB scores. Fi-
nally, a SVM is used to obtain class representative patterns. Such patterns are used to empirically
identify potential phenotypes.

5.1 Proposed methodology

5.1.1 Signal processing

The signal analysis was based on estimating the iCOH (Eq. (2.1)) of all pairs of sensors dur-
ing each trial for each of the 50 subjects. We performed the described analysis for each of the
following frequency bands: delta (less than 4 Hz), theta (4 to 7 Hz), alpha (8 to 13 Hz), and beta
(13 to 30 Hz). We calculated the cross spectrum and autospectra of each data channel using the
multitaper method based on discrete prolate spheroidal sequences as tapers to estimate spec-
tra (Babadi and Brown, 2014). Both spectral and iCOH calculations were performed using the
FieldTrip toolbox (Oostenveld et al., 2011).
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5.2 Results

Afterward, we computed the MST from every connectivity matrix by Kruskal’s algorithm.
Thereafter, we performed a GTA over these MST graphs to estimate their leaf fraction (LF), max-
imum degree (MD), and diameter (D) (see Section 2.3.2 for explanation). As already reported
(Boersma et al., 2013; Tewarie et al., 2015), these measures allow describing and characterizing
the topology of the related MST graphs.

5.1.2 Feature selection

The GTA yielded a total of 24 features (three features per band per task). We performed
SVM-RFE to select the most discriminant subset of features. Subsequently, we performed CCA
over the reduced feature set given by the top features selected by the SVM-RFE for the FCN
metrics and the SCB scores. The SVM was implemented in the same way described in Section
4.1.2.

5.1.3 Classification

After selecting the discrimination features, the final task was to inquire about the existence
of cognitive phenotypes. The classifier adopted here was the SVM (Cortes and Vapnik, 1995), as
it is one of the most robust and accurate classifiers. The SVM was implemented in the same way
described in Section 4.1.2.

5.1.4 Statistical analyses

All FCN data were analyzed using the Statistical Package for Social Sciences (IBM SPSS
version 23.0 for Windows). Independent samples t-tests were performed to assess differences
between-groups of these scores. p-values were corrected for multiple comparisons using the
two-stage FDR method (Benjamini et al., 2006). For all statistical analyses, a p (or q) value of less
than 0.05 was considered to be statistically significant.

5.2 Results

5.2.1 Functional connectivity network

We used the procedure originally introduced in Nolte et al. (2004) to depict the connections
between all pairs of electrodes. In this procedure, the scalp is depicted as a large circle. Small
circles are placed at the location of each electrode also representing the scalp and containing
the absolute value of iCOH for the respective electrode (marked as a black dot) with all other
electrodes. From the qualitative comparison of maps shown in Figure 5.1, the iCOH for ex-com-
batants shows a spatial pattern similar to that for civilians.

Between-group differences were not observed for the whole brain-averaged level of iCOH.
Both groups were therefore indistinguishable, meaning that the overall level of connectivity did
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Figure 5.1: Absolute value of the imaginary part of coherency. These maps correspond to the face
stimuli in the delta band, and to the word stimuli in the alpha band, as they were further validated to be

the top-ranked discriminative features.
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not define a phenotype. Table 5.1 summarizes the mean value, the standard deviation, and the
test results per task per band.

Table 5.1: Group comparisons based on Wilcoxon rank-sum test. Results for iCOH, Z-scores, and p-
values.

Ex-combatants Civilians

Band Task M±SD M±SD Z (p)
Delta Words 0.061±0.020 0.061±0.019 -0.139 (0.890)

Faces 0.067±0.016 0.071±0.022 -0.297 (0.766)
Theta Words 0.077±0.022 0.077±0.037 -0.891 (0.373)

Faces 0.094±0.028 0.097±0.025 -0.535 (0.593)
Alpha Words 0.056±0.014 0.055±0.016 -0.574 (0.566)

Faces 0.065±0.020 0.066±0.017 -0.673 (0.501)
Beta Words 0.035±0.011 0.035±0.006 -0.693 (0.488)

Faces 0.038±0.012 0.037±0.008 -0.257 (0.797)

For the word task, significant differences between groups were obtained for leaf fraction (LF)
and maximum degree (MD) for the delta band; and LF, MD and diameter (D) for the alpha band.
For the face task, we found significant differences in LF for the delta band; LF, MD and D for
the theta band; MD for the alpha band; and LF for the beta band. Table 5.2 shows the mean,
standard deviation, and test results for the network metrics per task per band.

Table 5.2: Group results of the network metrics, Z-scores, and corrected p-values for their group compar-
isons based on Wilcoxon rank-sum test.

Leaf fraction Max. degree Diameter

Ex-combatants Civilians Ex-combatants Civilians Ex-combatants Civilians

Band Task M±SD M±SD Z (q) M±SD M±SD Z (q) M±SD M±SD Z (q)

Delta Words 0.749±0.060 0.711±0.063 -3.389 (0.004) 18.578±6.253 16.400±6.416 -2.363 (0.036) 9.622±2.009 10.217±2.084 1.500 (0.164)
Faces 0.761±0.053 0.733±0.055 -2.864 (0.017) 19.733±8.067 17.317±5.803 -1.650 (0.136) 9.167±1.874 10.100±2.097 2.675 (0.021)

Theta Words 0.753±0.060 0.736±0.060 -1.409 (0.184) 18.956±6.413 17.667±6.027 -1.306 (0.211) 9.500±1.973 9.767±2.174 0.629 (0.467)
Faces 0.810±0.049 0.779±0.052 -3.728 (0.002) 25.789±8.288 21.783±7.461 -2.832 (0.017) 7.978±1.635 8.683±1.818 2.366 (0.036)

Alpha Words 0.740±0.057 0.709±0.048 -3.789 (0.002) 17.111±6.306 14.300±4.666 -2.529 (0.028) 9.789±1.963 11.117±2.415 3.521 (0.003)
Faces 0.760±0.051 0.740±0.056 -1.826 (0.115) 19.189±5.904 17.817±7.808 -2.183 (0.053) 9.244±2.063 9.617±2.132 0.634 (0.467)

Beta Words 0.717±0.069 0.699±0.057 -1.759 (0.116) 15.700±6.942 14.850±5.963 -0.525 (0.508) 10.644±2.745 10.917±2.472 0.884 (0.378)
Faces 0.722±0.064 0.695±0.061 -2.719 (0.021) 15.011±5.049 14.150±5.665 -1.758 (0.116) 10.667±2.308 10.750±2.297 0.285 (0.570)

Note. Bold values indicate significant q-values.

5.2.2 Feature selection

We defined a 24-dimensional neurophysiological set comprised of the FCN network metrics
(see Table 5.3). We performed SVM-RFE to determine which of them were most predictive of ex-
combatant or civilian classification. Classification accuracies for this step are reported in Figure
5.2. We found that the subset comprised of leaf fraction and diameter for the face stimuli in delta
band, and leaf fraction and diameter for the word stimuli in alpha band showed the highest
discriminability.

Furthermore, the CCA was performed using the top four FCN (Na = 4) and the 3-dimensional
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Table 5.3: List of features extracted from FCN analysis.

Band Stimulus type Feature name Rank in SVM-RFE

Delta

Words
Leaf fraction 15
Maximum degree 10
Diameter 6

Faces
Leaf fraction 1
Maximum degree 11
Diameter 4

Theta

Words
Leaf fraction 13
Maximum degree 24
Diameter 14

Faces
Leaf fraction 12
Maximum degree 5
Diameter 8

Alpha

Words
Leaf fraction 3
Maximum degree 22
Diameter 2

Faces
Leaf fraction 19
Maximum degree 21
Diameter 7

Beta

Words
Leaf fraction 17
Maximum degree 20
Diameter 16

Faces
Leaf fraction 18
Maximum degree 23
Diameter 9

Note. Top-ranked features are shown in boldface.

set comprised of the SCB scores (Nb = 3). With this final step, we identified six different sets of
features, presented in column one of Table 5.4.

5.2.3 Classification results

The SVM classifier was implemented using the libsvm library (Chang and Lin, 2011). To tune
the hyper parameters of SVM, we performed a 3-level grid search using growing sequences
in the range [2−5, 217] for C, and [2−17, 23] for γ. Additionally, to account for imbalances in
the dataset, we set the parameter wi to be 1.5 for the positive class (ex-combatants) and 1.0 for
the negative one (civilians). Classification performances of the SVM classifier with each set of
features are summarized in Table 5.4.

The use of SVM-RFE to identify the top-ranked FCN features allowed improving the classi-
fication rates from 60.00 % to 75.29 %. With the inclusion of CCA to fuse FCN and SCB features,
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5.2 Results

Figure 5.2: SVM-RFE results on FCN features. Average classification accuracy with respect to the
number of features selected. The shaded area represents the variability of cross-validation, one standard

deviation above and below the mean accuracy score drawn by the curve.

Table 5.4: Accuracy, sensitivity and specificity reached with the proposed methodology.

Feature Selection Algorithm # Features Accuracy (%) Sensitivity (%) Specificity (%)
FCN features 24 60.00 ± 2.53 67.22 ± 1.85 50.07 ± 3.06
FCN + SCB features 27 61.33 ± 3.50 67.69 ± 3.44 51.66 ± 4.39
SVM-RFE 4 75.29 ± 1.01 80.60 ± 1.73 68.58 ± 2.94
SVM-RFE + SCB features 7 78.67 ± 2.42 82.34 ± 3.27 73.30 ± 2.18
SVM-RFE + CCA concatenation 6 81.00 ± 4.15 83.21 ± 2.64 77.66 ± 6.64
SVM-RFE + CCA summation 3 84.33 ± 1.97 85.61 ± 2.24 82.32 ± 2.34
Note. Bold values indicate best results. Values are given as M ± SD.

the classification accuracy reached values of up to 84.33 % for the summation fusion. This value
outperformed the results obtained in previous works (in Quintero-Zea et al. (2017) we achieved
80.00 %, and in Rodríguez-Calvache et al. (2017) a mean accuracy of 58.4 %).

Furthermore, SVM-RFE allowed identifying a potential phenotype given by the pair Leaf
fraction–Diameter in the delta band elicited by face stimuli, and in the alpha band elicited by
word stimuli. Specifically, controls have higher diameter values that reflect the presence of
networks with reduced global efficiency (Tewarie et al., 2015). Conversely, higher values of
leaf fraction in ex-combatants show the presence of clustered nodes that dominate the network
topology, and it is thought confer high integration of information within the network for spe-
cialized processing (Bullmore and Sporns, 2009; Chen et al., 2018; Su et al., 2017; Vourkas et al.,
2014).

Results from MST analysis showing increased leaf fractions and decreased diameters indi-
cate that a more integrated topology of the global FCN is seen in ex-combatants. This suggests
that FCNs became more centralized (star-like topology) and with increased global efficiency in
the theta band for face stimuli and in the alpha band for word stimuli in ex-combatants com-
pared with civilians.

In war scenarios, the ability to react fastly to adverse stimuli is crucial for survival. Therefore,
FCN reorganization in ex-combatants could be elicited by a cortical adaptation to efficiently react
to potentially threatening stimuli.
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5.3 Summary

In this chapter, we proposed a methodology to identify potential cognitive phenotypes linked
to alterations in the cognitive architecture supporting EP, using SCB features and graph metrics
from EEG FCN. Results show the existence of a cognitive phenotype related to increased values
of the leaf fraction and reduced values of the diameter of the FCN in ex-combatants, in compari-
son with controls. This suggests that combat experience forces a reorganization of the EP-related
FCN in ex-combatants.

This methodology provides new empirical knowledge on the reorganization of EEG-FCN
of ex-combatants. It remains to be seen if the potential phenotype given by the pair Leaf frac-
tion–Diameter may prove to be an effective biomarker for impairments in EP. In addition to the
promise as a diagnostic marker, these features merit further investigation as functional mark-
ers of response to psychological interventions conducted to reduce the prevalence of aggressive
attitudes in ex-combatants.
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Chapter 6

Accounting for neural reorganization extent

R ESULTS from previous chapters suggested atypical reorganization of neural resources
to process emotional stimuli in ex-combatants. In Chapter 4, we proposed a method-
ology that enabled us to find atypical responses in ERP data within the ex-combatants

population. Subsequently, in Chapter 5, we used MST metrics to find potential phenotypic data
related to the increase of global efficiency of the FCN in ex-combatants. In both methodolo-
gies, we integrated SCB scores to the analyses, to accomplish the recommendation of the NIMH
RDoC initiative into integrating several levels of information.

In this chapter, we assess the extent of such neural reorganization over two widely used
behavioral variables related to the ERT. For this aim, we carry out CCA to study relationships
between MST metrics as the predictor set, and behavioral data from the ERT as the criterion set.

6.1 Proposed methodology

6.1.1 Behavioral data from ERT

We calculated reaction time and accuracy for each of the six stimuli of the ERT: (1) Happy
faces, (2) neutral faces, (3) angry faces, (4) pleasant words, (5) neutral words, and (6) unpleasant
words; to account for the behavioral response of the EP. Reaction time was used to infer how
long it takes for a subject to process emotional stimuli and accuracy to infer whether the task
was completed correctly.

Moreover, we calculated the inverse efficiency (IE) score, which combines speed and accu-
racy to allow comparisons among conditions uncontaminated by possible speed-accuracy trade-
offs (Spence et al., 2001). IE is computed as the median RT divided by the proportion of correct
trials for a given condition (Kitagawa and Spence, 2005). A higher IE value indicates worse
performance.

6.1.2 Functional connectivity analysis

We followed the procedure described in Section 5.1.1 to obtain the leaf fraction and diameter
of the MSTs for the face stimuli (happy, neutral, and angry) in the delta band, and for the word
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stimuli (pleasant, neutral, and unpleasant) in the alpha band. This selection is consistent with
them being the most discriminating set of features in the SVM-RFE presented in Section 5.2.2.

6.1.3 Statistical analysis

To analyze each of the behavioral features, i.e. reaction time, accuracy, and IE; we used
a three-way mixed ANOVA model. The stimulus type (Faces vs. Words) and the condition
(Happy vs Neutral vs Angry / Pleasant vs Neutral vs Unpleasant) were entered as the within-
subjects factors, and the group was the between-subjects factor with two levels (Ex-combatant
vs Control). The FCN metrics were analyzed with a two-way mixed ANOVA model for both
faces and words with the condition as the within factor and the groups as the between one. To
further explore significant interactions, we used Bonferroni corrected post-hoc tests adjusting
the Alfa level according to the number of contrasts. For the interactions we calculated effect size
(η2

p) and power (β).
Furthermore, we conducted CCA using the six MST metrics as predictors of the nine behav-

ioral conditions to evaluate the multivariate shared relationship between the two variable sets.
This analysis was performed for both faces and word stimuli.

All data were analyzed using the Statistical Package for Social Sciences (IBM SPSS version
23.0 for Windows). All effects are reported as significant at p < 0.05.

6.2 Results

6.2.1 ERT behavioral data

Descriptive statistics are presented in Table 6.1, and the ANOVA results are presented in
Table 6.2. For reaction time, we found significant main effects of the three factors. Post-hoc
analysis indicated that ex-combatants (M = 1022 ms, SEM = 63) tended to answer in shorter
times than controls (M = 1283 ms, SEM = 77). Furthermore, face stimuli (M = 1110 ms, SEM = 54)
are recognized faster than words (M = 1195 ms, SEM = 52). Finally, stimuli with positive valence
(M = 1093 ms, SEM = 54) are identified faster than stimuli with negative (M = 1169 ms, SEM = 51)
or neutral (M = 1195 ms, SEM = 53) valence.

There were also significant main effects of the condition on accuracy. Contrasts revealed
that positive valences (M = 80.2 %, SEM = 2.3 were better classified than negative (M = 70.0 %,
SEM = 2.7) and neutral (M = 61.6 %, SEM = 2.8) valences.

Regarding to IE, there were significant main effects of the condition. Post-hoc analysis re-
vealed that tasks associated with positive valence stimuli present the best performance
(M = 1513 ms, SEM = 112), followed by the negative valence ones (M = 1984 ms, SEM = 186). The
worst performance was achieved by neutral valence tasks (M = 2377 ms, SEM = 212). An interac-
tion effect between stimulus and group was significant for IE. The contrast Face vs. Word stimuli
yielded a statistically significant difference for ex-combatants (t(29) = -3.169, p = 0.004), with a
better performance for the face task (M = 1693 %, SEM = 157) than the word task (M = 2068 %,
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SEM = 171). For civilians, we did not find significant differences (t(19) = 0.729, p = 0.475). Fur-
thermore, between groups differences were not found for face (t(48) = -1.242, p = 0.058), nor
word (t(29) = 0.448, p = 0.752) stimuli.

Table 6.1: Descriptive statistics for behavioral data

Ex-combatants Civilians
M ± SD M ± SD

Faces
Reaction time (ms)
Happy 909 ± 317 1191 ± 600
Neutral 981 ± 269 1357 ± 580
Angry 984 ± 268 1242 ± 560

Accuracy (%)
Happy 82.8 ± 19.1 87.0 ± 18.7
Neutral 61.5 ± 24.1 64.3 ± 22.5
Angry 62.9 ± 21.8 73.7 ± 18.9

Inverse efficiency (ms)
Happy 1333 ± 1006 1634 ± 1501
Neutral 2209 ± 1892 2587 ± 2002
Angry 1942 ± 1143 2133 ± 2284

Words
Reaction time (ms)
Pleasant 1033 ± 302 1243 ± 488
Neutral 1112 ± 417 1330 ± 449
Unpleasant 1116 ± 351 1338 ± 456

Accuracy (%)
Pleasant 69.0 ± 20.2 81.9 ± 13.5
Neutral 56.1 ± 21.8 64.6 ± 19.3
Unpleasant 65.2 ± 25.2 78.4 ± 17.9

Inverse efficiency (ms)
Pleasant 1697 ± 714 1592 ± 751
Neutral 2550 ± 1763 2319 ± 1176
Unpleasant 2096 ± 1201 1920 ± 1291
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Table 6.2: ANOVA results for behavioral data

df1, df2 F, p, η2
p, β

Reaction time (ms)
Stimulus 1, 48 4.527, 0.039, 0.086, 0.550
Condition 2, 96 5.351, 0.006, 0.100, 0.830
Group 1, 48 6.977, 0.011, 0.127, 0.735
Stimulus × Group 1, 48 1.263, 0.267, 0.026, 0.196
Condition × Group 2, 96 0.469, 0.616, 0.01, 0.122
Stimulus × Condition 2, 96 0.641, 0.529, 0.013, 0.155
Stimulus × Condition × Group 2, 96 0.656, 0.521, 0.013, 0.157

Accuracy (%)
Stimulus 1, 48 3.070, 0.086, 0.060, 0.404
Condition 2, 96 33.658, <0.001, .0412, 1.000
Group 1, 48 3.633, 0.063, 0.070, 0.463
Stimulus × Group 1, 48 3.007, 0.089, 0.059, 0.397
Condition × Group 2, 96 0.994, 0.374, 0.020, 0.219
Stimulus × Condition 2, 96 6.546, 0.002, 0.120, 0.901
Stimulus × Condition × Group 2, 96 0.371, 0.691, 0.743, 0.108

Inverse efficiency (ms)
Stimulus 1, 48 0.625, 0.423, 0.013, 0.124
Condition 2, 96 12.000, <0.001, 0.200, 24.000, 0.994
Group 1, 48 0.296, 0.589, 0.006, 0.083
Stimulus × Group 1, 48 5.074, 0.029, 0.096, 0.598
Condition × Group 2, 96 0.054, 0.947, 0.001, 0.058
Stimulus × Condition 2, 96 0.317, 0.729, 0.007, 0.099
Stimulus × Condition × Group 2, 96 0.054, 0.947, 0.001, 0.058
Note. Bold values indicate significant differences.

6.2.2 ERT connectivity data

Table 6.3 summarizes the descriptive statistics for each of the MST metrics. Furthermore,
results for the ANOVAs are shown in Table 6.4. Note that increased leaf fractions and decreased
diameters in ex-combatants are preserved for each stimulus type. Despite these results, there
were no significant main effects of the condition on either leaf fraction or diameter. This suggests
that the neural reorganization in ex-combatants might be driven by the stimulus type regardless
of their valence.

In concordance with the results obtained in Table 5.2, there were significant main effects
of the group on all the MST metrics, indicating higher values of leaf fraction and lower MST
diameters in ex-combatants. Furthermore, we did not find significant interaction effects between
the condition and the group for either faces or words stimuli.
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Table 6.3: Descriptive statistics for MST metrics

Ex-combatants Civilians
M ± SD M ± SD

Faces
Leaf fraction in delta band
Happy 0.767 ± 0.051 0.736 ± 0.055
Neutral 0.762 ± 0.050 0.728 ± 0.057
Angry 0.753 ± 0.059 0.736 ± 0.054

Diameter in delta band
Happy 9.000 ± 1.948 9.900 ± 1.944
Neutral 9.100 ± 2.006 10.250 ± 2.197
Angry 9.400 ± 1.694 10.150 ± 2.231

Words
Leaf fraction in alpha band
Pleasant 0.745 ± 0.052 0.720 ± 0.043
Neutral 0.734 ± 0.066 0.696 ± 0.052
Unpleasant 0.739 ± 0.053 0.712 ± 0.047

Diameter in alpha band
Pleasant 9.567 ± 1.675 10.550 ± 2.564
Neutral 9.800 ± 1.990 11.650 ± 2.300
Unpleasant 10.000 ± 2.228 11.150 ± 2.368

Table 6.4: ANOVA results for network metrics

Faces Words
df1, df2 F, p, η2

p, β F, p, η2
p, β

Leaf fraction
Condition 2, 96 0.48, 0.617, 0.010, 0.13 1.89, 0.156, 0.038, 0.38
Group 1, 48 4.85, 0.033, 0.092, 0.58 7.01, 0.011, 0.127, 0.74
Condition × Group 2, 96 0.60, 0.550, 0.012, 0.15 0.32, 0.726, 0.007, 0.10

Diameter
Condition 2, 96 0.38, 0.686, 0.008, 0.11 1.58, 0.212, 0.032, 0.33
Group 1, 48 6.55, 0.014, 0.120, 0.71 9.69, 0.003, 0.168, 0.86
Condition × Group 2, 96 0.14, 0.870, 0.003, 0.07 0.68, 0.509, 0.014, 0.16
Note. Bold values indicate significant differences.

6.2.3 Canonical correlation model

For the face stimuli, the analysis yielded six functions with squared canonical correlations
(R2

c ) of 0.507, 0.428, 0.285, 0.138, 0.106, 0.015 for each successive function. The full model across
all functions was statistically significant using the Wilks’ λ = 0.153 criterion, F(40,183.06) = 1.51,
p = 0.024. For the set of four canonical functions, the r2 type effect size was 1− λ = 0.847, which
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indicates that the full model explained about 84.7 % of the variance shared among the variable
sets.

Given the R2
c effects for each function, only the first three functions were considered note-

worthy in the context of this study (50.7 %, 42.8 % and 28.5 % of shared variance, respectively).

The standardized canonical function coefficients and structure coefficients for functions 1 to
3 are summarized in Table 6.5. The squared structure coefficients are also given as well as the
communalities (h2) across the three functions for each variable.

Looking at the function 1 coefficients, only one criterion variable (accuracy for happy faces)
had a relevant contribution to the synthetic criterion variable. Regarding the predictor variable
set in function 1, diameter for neutral faces and leaf fraction for neutral and angry faces were
the primary contributors to the predictor synthetic variable.

From all the criterion variables, reaction time and inverse efficiency for angry faces did not
have any relevant contribution to the model, albeit the magnitude of its structure coefficient was
just below 0.4. In the case of the predictor set, the only variable that did not contribute to the
model was the leaf fraction for angry face stimuli.

Table 6.5: Canonical solution for MST predicting task behavior for functions 1, 2, and 3.

Variable
Function 1 Function 2 Function 3

Coef rs r2
s (%) Coef rs r2

s (%) Coef rs r2
s (%) h2

s (%)

Happy faces
Accuracy -0.219 -0.481 23.13 0.743 0.043 0.18 1.166 -0.412 16.94 40.25
Reaction time -0.399 0.069 0.48 -0.846 -0.521 27.12 -0.970 0.285 8.10 35.70
Inverse efficiency 1.524 0.377 14.19 2.182 -0.311 9.66 2.202 0.468 21.92 45.77
Neutral faces
Accuracy 0.065 -0.173 2.99 0.850 0.433 18.73 0.223 -0.467 21.84 43.56
Reaction time -0.541 -0.020 0.04 -0.460 -0.577 33.24 0.932 0.547 29.88 63.15
Inverse efficiency 0.215 0.083 0.68 0.101 -0.537 28.83 0.315 0.689 47.41 76.92
Angry faces
Accuracy 0.968 0.024 0.06 -1.260 -0.097 0.95 -1.331 -0.560 31.39 32.40
Reaction time -1.062 -0.153 2.35 -0.173 -0.359 12.87 -0.633 0.252 6.36 21.58
Inverse efficiency 0.762 0.191 3.65 -1.429 -0.309 9.57 -1.236 0.391 15.27 28.49
R2

c 50.7 42.8 28.5

Happy faces
Leaf fraction -1.103 -0.317 10.07 -0.055 0.123 1.50 0.246 -0.172 2.97 14.54
Diameter -0.484 -0.141 1.99 -0.004 0.028 0.08 1.055 0.741 54.88 56.95
Neutral faces
Leaf fraction 0.132 0.402 16.16 0.907 0.563 31.69 -0.393 -0.105 1.10 48.95
Diameter -0.502 -0.489 23.90 0.445 -0.146 2.13 -0.152 -0.080 0.63 26.67
Angry faces
Leaf fraction 0.765 0.431 18.59 -0.925 0.195 3.81 0.720 0.289 8.35 30.75
Diameter 0.221 -0.212 4.49 -1.103 -0.672 45.16 0.001 -0.355 12.60 62.24
Note. Structure coefficients (rs) greater than |0.40| and communality coefficients (h2) greater than 40 % are shown
in boldface. Coef = standardized canonical function coefficient; rs = structure coefficient; r2

s = squared structure
coefficient; h2 = communality coefficient.

For the word stimuli, we did not find a significant canonical correlation model. This suggests
an atypical word valence processing in ex-combatants, perhaps related to the fact that in war
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contexts, words may be less relevant than visual stimuli.

6.3 Summary

In this chapter, we performed CCA using MST metrics as predictors and behavioral data
from ERT as criteria. Behavioral data indicated that ex-combatants exhibit lower reaction time
when processing face stimuli, and make more mistakes when analyzing word stimuli. Further-
more, positive valence stimuli are better processed in both groups, followed by negative valence
stimuli. Stimuli with neutral valence are the worst processed in both populations.

The canonical correlation yielded associations between MST metrics and behavioral vari-
ables. For instance, reaction time, inverse efficiency, and leaf fraction for angry faces were the
only variables that did not contribute to the model. Words proved to be less informative in ex-
combatants than in controls. This conclusion was supported by two facts: (a) Ex-combatants
made more mistakes when processing word stimuli. (b) This finding could not be due to lower
literacy in ex-combatants as the ANOVA did not yield main effects of the group in the inverse
efficiency, and both groups were matched according to their education.
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Chapter 7

Concluding Remarks

T HE analyses reported within this thesis explored the hypothesis that atypical modula-
tion of emotional processing in ex-combatants is associated with a neural reorganiza-
tion elicited by their combat experience. With this in mind, we proposed three analysis

approaches to assess the extent of such a reorganization: (a) A classification framework using
ERP features alongside SCB scores, (b) a phenotyping scheme based on MST metrics and SCB
scores, and (c) a canonical correlation model to relate MST metrics and ERT behavioral data.
Below some conclusions from these approaches are shown, as well as some recommendations
for future works.

7.1 Conclusions

Design of a characterization framework for ex-combatants based on EEG and SCB features.
The framework proposed in Chapter 4 sets up a first approach for assessing EP in ex-combatants.
The classification process was performed using ERP data and behavioral features from psycho-
logical tests. Results show that ex-combatant and civilian populations can be automatically sep-
arated using supervised techniques. Furthermore, we demonstrate that inclusion of SCB scores
entailed improvement of the classification rate. This result is especially remarkable, as it con-
firms that using data from different domains (psychological and electrophysiological) lead to
better characterization of the EP in ex-combatants.

Development of a SVM-based system to estimate cognitive phenotypes related with emo-
tional processing in ex-combatants. In Chapter 5, we proposed a framework to differentiate
EP in ex-combatant using FCN metrics and SCB scores. To our knowledge, this is the first phe-
notyping scheme based on behavioral and brain FCN measures of emotional processing in this
population. In our experiments, we reached the highest accuracy using a method of feature
fusion based on CCA.

Results show the existence of potential phenotypic data in ex-combatant linked to disrup-
tions of the small-world network, which was addressed by an increased MST diameter and
decreased leaf fraction in ex-combatants. This demonstrates that combat experience modulates

45



7.2 Future work

the EP in ex-combatants by forcing a reorganization of their FCN. Using CCA not only helped
improve classification rate but it also suggested relationships among neural reorganization and
aggression traits in ex-combatants.

If further validated, we would expect this approach to help in the monitoring of DDR pro-
grams in countries with internal conflicts, such as Colombia, and to provide a new research
approach to characterize affective problems in populations that do not fall within the classical
definitions of disease.

Identification of relationships among FCN and ERT performance. Finally, in Chapter 6, we
implemented CCA to take into account the extent of small-world network disruption in per-
formance during task development. For this aim, we exploited three widely used behavioral
variables in cognitive psychology: (a) Accuracy, (b) reaction time, and (c) inverse efficiency.

Results showed that ex-combatants exhibit atypical modulation of word processing, as they
made more mistakes when processing such stimuli in comparison to controls. This indicates
that ex-combatants have developed specialized skills to process emotional content in facial ex-
pression over written information.

Moreover, while stimuli with neutral valence proved to be worst processed in both popu-
lations, positive valence stimuli were better processed. This suggests that EP is prone to the
ambiguity of the multi-valence context of the ERT.

The resulting canonical correlation model yielded significant associations among disruptions
in the small-world network and behavioral data related to emotional face processing. This could
help elucidate how the neural reorganization in ex-combatants might modulate the perceptual
and mental processes associated to face processing.

7.2 Future work

Following the research line described in this thesis, two main projects could be taken up:

1. Further efforts to include different domains related to EP in ex-combatants, such as atten-
tional bias toward threat-related paradigms.

2. Development of model-driven connectivity methodologies to explore how combat experi-
ence in ex-combatants affects their neural reorganization.
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