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Abstract 
 

Ecoacoustics has become a field of growing interest for ecosystem monitoring. Its main advantages over 

traditional methods include cost effectiveness, non-invasiveness and simplicity; besides the distribution of 

many recorder units makes possible the recollection of more information. However, for long term studies, the 

quantity of collected data makes the manual inspection of recordings a cumbersome task, leading to reduced 

analysis. As an alternative to manual inspection, a series of indices have been proposed to summarize the 

acoustical information in recordings. Nonetheless, these indices have been applied mainly to biodiversity 

studies and their connection to ecosystem state is still not clear.  

In this work we trusted ANOVA robustness for non-normal data for proposing a methodology that selected the 

best acoustical indices or features for a specific application and used them to model the ecosystem soundscape 

patterns with hidden Markov models and Gaussian mixture emissions (GMMHMM). Additionally, the set of 

input features included by default a biodiversity indicator per 1kHz band.  

This methodology was applied to two Colombian cases with defined ecosystem types. In the first case, a series 

of forest, stubble and pasture recordings were collected for over a year in the east of Antioquia. The second 

application aimed to find the soundscape patterns of dry forests transformations in two regions of the 

Colombian Caribbean. The model identified six and three soundscape patterns for the first and second dataset 

respectively. In the first application, continuous sounds, high biophonic intensity and multiple occupied 

frequency bands were found in the patterns associated to forest sites; on the other hand, stubble sites 

presented more general entropy, which we related to high geophonic presence, preventing biophonic activity. 

Lastly, pasture soundscapes alternated between periods of high geophony and high frequency complexity, 

making it an intermediate ecosystem in the acoustical sense. The adaptation of the model for classification 

resulted in the identification of 81% of the forest samples, 96.6% of the stubble samples and 51.2% of the 

pasture samples. 

The classification results for the second application were not as high, with 68% for the low transformation 

samples, 58.8% for the medium transformation and 31.8% for the high transformation. Nonetheless, the 

confusion matrices indicated that the training samples were not enough, and more sampling should be 

provided for attaining better results. 

Given that GMMHMM is a sequential model, it also presented the temporal configuration of the acoustical 

patterns by their transition probabilities. This feature allowed us to emphasize the importance of conservation, 

when we found that the most stable and inaccessible states were associated to the most acoustically diverse 

ecosystems. 
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Resumen 
 

La ecoacústica se ha convertido en un área de creciente interés para el monitoreo de ecosistemas. Entre las 

principales ventajas que presenta sobre las técnicas tradicionales se encuentran su bajo costo, poca afectación 

al entorno y simplicidad; además de que la distribución de varias grabadoras hace posible la recolección de más 

información. Sin embargo, para estudios de largo plazo, la cantidad de datos hace que la inspección manual de 

las grabaciones sea una tarea tediosa y por consiguiente el análisis sea limitado. Como alternativa a la 

inspección manual, una serie de índices han sido propuestos para resumir la información acústica de las 

grabaciones. No obstante, estos índices han sido aplicados principalmente a estudios de biodiversidad y su 

relación con el estado del ecosistema no es claro aún. 

En este trabajo se confió en la robustez del ANOVA frente a datos que no se distribuyen normalmente para 

proponer una metodología de selección de los mejores índices o descriptores acústicos para una aplicación 

específica y usarlos para modelar los patrones del paisaje acústico del ecosistema con modelos ocultos de 

Markov y emisiones por mezclas Gaussianas (GMMHMM). Además, el conjunto de descriptores que entran al 

modelo incluye por defecto un indicador de biodiversidad para cada banda de 1kHz.   

Esta metodología fue aplicada a dos casos colombianos con tipos de ecosistema definidos. En el primer caso, 

una serie de grabaciones de bosque, rastrojo y pastizal fueron colectados por más de un año en el este de 

Antioquia. La segunda aplicación buscaba encontrar patrones de paisaje acústico de las transformaciones de 

bosque seco en dos regiones del caribe colombiano. El modelo identificó seis y tres patrones acústicos para la 

primera y segunda base de datos respectivamente. En la primera aplicación, se encontraron sonidos continuos, 

alta intensidad biofónica y ocupación de varias bandas en los patrones asociados a bosque, mientras que en los 

rastrojos se presentó más entropía, que se relaciona con alta presencia geofónica, lo que limita la actividad 

biofónica. Finalmente, los paisajes acústicos de pastizal alternaron entre periodos de alta geofonía y alta 

complejidad frecuencial, haciéndolo un ecosistema intermedio en el sentido acústico. La adaptación del modelo 

para clasificación resultó en la identificación del 81% de las muestras de bosque, 96,6 % de las muestras de 

rastrojo y 51,2 % de las muestras de pastizal. 

Los resultados de clasificación para la segunda aplicación no fueron altos, con 68% para las muestras de baja 

transformación, 58,9% para la transformación media y 31,8% para la transformación alta. No obstante, las 

matrices de confusión indicaron que las muestras de entrenamiento no fueron suficientes, y que debería 

proporcionarse mayor muestreo para obtener mejores resultados. 

Dado que GMMHMM es un modelo secuencial, también presentó la configuración temporal de los patrones 

acústicos dadas sus probabilidades de transición. Esta característica nos permitió destacar la importancia de la 

conservación, cuando encontramos que los estados más estables e inaccesibles fueron asociados a los 

ecosistemas más diversos acústicamente. 
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𝜔 Window size for the spectrogram computation 

𝑤 A specific frequency bin (different to 𝑗) 

𝑊𝑗  Welch’s power spectral density estimate (for frequency bin 𝑗) 

𝑥 Raw audio signal 

𝜓𝑡(𝑖) Temporary vector keeping track of the state sequence that maximizes 𝛿𝑡(𝑖) 

𝑌 (𝑍) Denotes a specific index 

�̅� Index mean for all samples 
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𝑦𝑔 Index mean for the group 𝑔 

𝑦𝑔𝑟  Index value for the recording 𝑟 in the group 𝑔 

𝑦𝑡  Observation vector in time 𝑡 
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Chapter 1. Introduction 
 

1.1. Problem Description and Justification 
 

Sound, as an important indicator for ecosystem activity, can be of great help to monitor the natural periodicity 

in the ecosystem and its degradation due to industrial pollution or climate change (Joo, Gage, & Kasten, 2011; 

B. L. Krause & Farina, 2016). Currently, there are many tools to automatize the collection of recordings and 

analyze the data (Aide et al., 2013; Kasten, Gage, Fox, & Joo, 2012; Merchant et al., 2015; Sueur, Farina, Gasc, 

Pieretti, & Pavoine, 2014) but given the diversity of applications and the different approaches to address them, 

there is still not a clear consensus about the best methodology for extracting the ecosystem acoustical patterns. 

Summarizing the soundscape behavior for specific sites generally relies on the analysis of certain acoustic 

metrics or indices. These analysis have been carried on  visually (Gage & Axel, 2014; Gaitán Forero, 2017; Job, 

Myers, Naghshineh, & Gill, 2016; Razali et al., 2015; Mangalam Sankupellay, Towsey, Truskinger, & Roe, 2015) 

or applying statistical tools like correlation or linear models (Fuller, Axel, Tucker, & Gage, 2015; Gage, Wimmer, 

Tarrant, & Grace, 2017; Jorge, Machado, da Cunha Nogueira, & Nogueira-Filho, 2018; Bernie Krause, Gage, & 

Joo, 2011; Pekin, Jung, Villanueva-Rivera, Pijanowski, & Ahumada, 2012; Tucker, Gage, Williamson, & Fuller, 

2014). Although some of the studies have employed machine learning techniques for grouping the acoustic 

measurements (Mangalam Sankupellay et al., 2015; Tucker et al., 2014); these techniques have been used 

rather rarely for soundscape pattern recognition (Bormpoudakis, Sueur, & Pantis, 2013; Mullet, Gage, Morton, 

& Huettmann, 2016). 

Few of the studies cited above analyze temporal variation of soundscapes beyond daily fluctuations. Those that 

do, seemed to describe accurately the respective seasonal soundscape patterns, but some presented analysis 

lacking predictive power; then, for these methodologies to detect early anomalies in the ecosystem acoustic 

signature is more difficult (Gage & Axel, 2014; Bernie Krause et al., 2011). Only one study proposed predictive 

models for each of the soundscape components, instead of building a model for the soundscape as a whole 

(Mullet et al., 2016). In this work, we proposed such a model by the application of predictive machine learning 

algorithms. 

The region where the recordings are collected is another factor to consider. The acoustic richness is expected 

to increase as we approach to the Equator, as this region favors the conditions for life and diversity of species 

(Gaston, 2000). Nonetheless, few ecoacoustic studies are made on equatorial ecosystems.  

In this work, we describe a new methodology for assessing the temporal and structural changes in tropical 

soundscapes. For this purpose, two Colombian databases were used for building the model; the first one was 

collected from the western mountain chain of the Andes; the second one contained recordings from the 

Caribbean dry forests. Firstly, the acoustic metrics were selected according to the ecosystem types of each 

database; then a model based on hidden Markov models (HMM) (Rabiner, 1989) was trained. HMM is a 

statistical model that can be fit as a machine learning model; it also groups the samples by acoustical similarity 
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and stablishes relations between groups (components or states), in order to predict the most likely future state 

for a given soundscape pattern.    

 

1.2. Background 
 

Sound is an important indicator in ecological studies. Through sound, many species can interact with the 

environment, mark their territory, start mating rituals, and detect preys or predators (Mcwilliam & Hawkins, 

2013). The study of animal communication by analyzing the sounds they produce has become into a science 

called Bioacoustics (Fletcher, 2007).Thanks to bioacoustics applications, it has been possible to discover new 

aspects of animal behavior, such as the differences between female and male vocalizations (Langbauer, 2000) 

or preferred position for making alarm calls (Collier, Blumstein, Girod, & Taylor, 2010), etc. 

The development of sophisticated tools for efficient recording has allowed the enhancement of bioacoustics 

studies, leading to the analysis of higher organizational levels in ecology. In the past, the studies focused mainly 

on species behavior (Erbe, King, Yedlin, & Farmer, 1999; Leong, Ortolani, Burks K. D, Mellen, & Savage, 2003; 

Marcellini, 1974), now there are multiple studies at the population and community level (Baker & Logue, 2003; 

De Solla, Fernie, Barrett, & Bishop, 2006; Hobson, Rempel, Greenwood, Turnbull, & Van Wilgenburg, 2002; 

Tobias et al., 2010). Currently, the goal is to take the next step and extract information from the ecosystem 

level. 

To study the ecosystem acoustic dynamics, it is necessary to include in the analysis sounds from non-biological 

sources, which are proven to modify the communication patterns in living organisms (B. Krause, 1987) and even 

help them choose their habitat (Slabbekoorn & Bouton, 2008). In addition, the seasonality of ecosystem 

soundscape must be characterized, to understand its natural cycles and recognize atypical behavior. For the 

first purpose, three types of sounds are to be analyzed: biological sounds, or biophony; sounds produced by 

physical phenomena, such as wind, rain, etc. or geophony, and sounds produced by human-made machinery, 

which are called technophony or anthrophony. The collection of these sounds is the definition of soundscape 

for ecological studies (Pijanowski, Villanueva-Rivera, et al., 2011). 

The study of soundscape surpasses the bioacoustics domain, because this area is focused mainly on biological 

sound. On the other hand, the area of soundscape ecology is specifically addressed to landscape ecology studies 

(Pijanowski, Villanueva-Rivera, et al., 2011). Hence, a new term was needed to enclose the analysis of 

soundscape for ecosystem studies, and it has now been defined as Ecoacoustics (Sueur & Farina, 2015). 

Consequently, ecoacoustics concerns both bioacoustics and soundscape ecology and other spatiotemporal, 

large-scaled studies intended to respond questions about the ecosystem through sound.  

For ecoacoustics studies to include spatiotemporal ecosystem change, a big amount of data is needed, because 

the perturbation gradient is only visible through long periods of time (Magurran et al., 2010). Additionally, big 

quantities of data demand more accuracy for acoustical measurements. Over the past few years, many acoustic 

metrics have been proposed to describe the ecological components in sound and summarize acoustical data 

(Sueur et al., 2014). Most of them were design to estimate biodiversity (Pieretti, Farina, & Morri, 2011; Sueur, 

Pavoine, Hamerlynck, & Duvail, 2008; Villanueva-Rivera, Pijanowski, Doucette, & Pekin, 2011), while only a few 
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consider other soundscape elements in the analysis (Kasten et al., 2012; Qi, Gage, Joo, Napoletano, & Biswas, 

2008). Although these indices convey important information about the ecosystem dynamics, their relation to 

ecosystem state and communities’ distribution is not clear yet. 

In other acoustical sciences such as psychoacoustics and acoustic design, the relationship between the listeners 

and the acoustical surroundings is explored (Everest & Shaw, 2001; Truax, 1998). Particularly, in 

psychoacoustics, three components of sound are considered to be the most important for analyzing its effects 

on people: intensity, frequency changes and temporal structure (De Coensel, Botteldooren, Debacq, Nilsson, & 

Berglund, 2007). Although these studies focus on human perception of sound, other studies have adapted some 

psychoacoustical metrics to measure other species hearing (Bedoya, Isaza, Daza, & López, 2014; Blumstein et 

al., 2011; Delaney, Grubb, Beier, Pater, & Hildegard Reiser, 1999; Fuller et al., 2015). Given that most of 

ecoacoustics indices are based on spectrograms, which is a representation of sound intensity in time and 

frequency, the combination of these three components should be a good criterion to find the right model for 

soundscape characterization. 

Several types of techniques have been applied to build an ecoacoustic model for ecosystem assessment. Some 

are based on statistical models (Fuller et al., 2015; Bernie Krause et al., 2011; Tucker et al., 2014) and others 

are based on machine learning techniques (De Coensel, Botteldooren, Debacq, Nilsson, & Berglund, 2008; 

Mullet et al., 2016; Rychtáriková & Vermeir, 2013). Machine learning techniques are being preferred recently 

for their versatility, practicality and adaptability to any type of problem. A subgroup of these techniques, known 

as unsupervised learning or clustering, are especially useful for problems where the data patterns are not clear, 

like soundscape analysis, because they are able to automatically identify clusters by grouping similar data 

(Bishop, 2006).  

However, in ecoacoustic modeling studies, few machine learning approaches have taken into account the 

temporal dimension of data, which is key for seasonal soundscape characterizing or degradation detection. A 

robust model should include time series analysis for interpreting correctly the dynamism of ecosystem 

soundscape through time. One of the most popular method for time series analysis is hidden Markov models 

(HMM)  (Rabiner, 1989). Hidden Markov models (HMM) are based on Markov chains, a stochastic model that 

stablishes that the current state depends on the previous one. They have been used in many bioacoustics 

applications, leading to high performance in species vocalizations recognition (Agranat, 2009; Aide et al., 2013; 

Erbe et al., 1999; Kirschel et al., 2009; Kogan & Margoliash, 1998). In this work, it is explored for first time to 

assess the ecosystem change through space and time. 

1.3. Objectives 
 

1.3.1. General Objective  
 

Develop a methodology to analyze ecosystem changes by their soundscape, considering environmental factors 

and the distribution of its communities.  
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1.3.2. Specific Objectives 
 

 

• Analyze current ecoacoustic indices to assess their main strengths and drawbacks. 

 

 

• Propose a new methodology based on ecoacoustics for a structured analysis of the ecosystem 

soundscape. 

 

 

• Test the proposed methodology on a large dataset with known ecosystem changes and compare the 

results to other approaches. 
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Chapter 2. Proposed Methodology 
 

The proposed methodology for ecosystem soundscape characterization consists of 3 stages: in the first stage, 

or preprocessing stage, the noisiest recordings are discarded. Then, in the features stage, soundscape features 

are extracted and selected, and the acoustic diversity indices are calculated for biodiversity estimation. Finally, 

in the modeling stage, the parameters of the hidden Markov model with Gaussian mixture emissions 

(GMMHMM) are set up and the model is trained and tested with the data (Figure 2.1). In this chapter, each of 

the stages is introduced and justified and the details of the implementation are explained.   

 

 Figure 2.1 Block Diagram of the Proposed Methodology to Detect Ecosystem Acoustical Patterns   

 

2.1. Preprocessing 
 

2.1.1. Recordings Filtering 
 

Loud geophonic and technophonic sounds can modify animal communication patterns (Slabbekoorn, 2004; 

Towsey, Wimmer, Williamson, & Roe, 2014). It has been proven that these sounds can prevent individuals of 

making calls (Lengagne & Slater, 2002) or provoke the increase of callings to overcome the acoustical obstacles 

(Lengagne, Aubin, Lauga, & Jouventin, 1999). Wind and rain are specially problematic, because they occupy a 

large range of the spectrum, masking the calls of many species (Qi et al., 2008). Therefore, in order to identify 

ecosystem change by acoustic analysis, the common practice is to discard the recordings with high levels of 

these sounds (Mangalam Sankupellay et al., 2015). 

Manual inspection of recordings for this purpose could be tedious for large datasets. In this work, we estimated 

and implemented an automatic threshold to the algorithm proposed by Bedoya et al. (Bedoya, Isaza, Daza, & 
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López, 2017) for detecting the recordings containing heavy rain or wind. As mentioned in their work, we found 

that these recordings had the highest levels of power spectral density (𝑃𝑆𝐷) in the band between 600 and 1200 

Hz (not only for rain, but also for wind, see Figure 2.2). For automating this process, we tested the geometric 

and arithmetic mean as thresholds for filtering out the noisiest recordings per session and discovered that the 

best threshold was the average of the two means (see Eq. (2.1)).  

 

𝑡ℎ𝑟𝜁 =  

∑ 𝑃𝑆𝐷𝑛𝑟𝜁

𝑅𝜁

𝑟

𝑅𝜁
+  √∏ 𝑃𝑆𝐷𝑛𝑟𝜁

𝑅𝜁

𝑟

𝑅𝜁

2
 

(2.1) 

Where 𝑡ℎ𝑟𝜁  is the threshold per session, 𝑃𝑆𝐷𝑛𝑟𝜁  is the mean 𝑃𝑆𝐷 in the band between 600 and 1200 Hz for 

each recording 𝑟 in the session 𝜁 and 𝑅𝜁  is the number of recordings per session. A recording session is a set of 

consecutive recordings made by the same recorder, in the same location (during this period the recorder was 

not reconfigured or recharged). It was necessary to compute the threshold per session, because we noticed 

that, even though recorders were supposed to be set with the same specifications, there were considerable 

differences in intensity, which could be due to different models of recorders, microphones, or misfunctioning. 

 

Figure 2.2 Two spectrogram segments of discarded recordings in the Humboldt case. The upper segment presented rain 
noise, while the lower segment presented wind noise. The y axis represents frequency, the x axis represents time and the 
coloring represents the intensity of the signal 
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The recordings with high level noise detected by the algorithm were discarded from the subsequent stages of 

the analysis. 

 

2.2. Features 
 

In this stage, different sets of features are extracted from the recordings. For acoustic signal characterization, 

there are a wide variety of proposed features which are to be considered according to the application. Maybe 

the most popular type of acoustical features is the Mel Frequency Cepstral Coefficients (MFCC) for automatic 

speech recognition. This technique has been used not only for human speech (Davis & Mermelstein, 1980; 

Hermansky, 1990; Milner, 2002; Wang & Paliwal, 2003), but also for birds (Kirschel et al., 2009; Kogan & 

Margoliash, 1998; Lellouch, Pavoine, Jiguet, Glotin, & Sueur, 2014), anurans (Bedoya et al., 2014; Duque-

Montoya, Isaza, & Cano Rojas, 2017), and other species calls classification (Mazhar, Ura, & Bahl, 2007; Soltis, 

Leong, & Savage, 2005). However, the main use of MFCC and other automatic feature extraction techniques 

(like those used in deep learning) is for supervised applications, where the final clusters are commonly known. 

For the goal of characterizing acoustical dynamics in the ecosystem, in which we look for identifying patterns 

that have not been fully described, we chose to use features with physical interpretation, so the resulting 

clusters could be analyzed using their features profile by the final users of our model. 

The users of our model will be the people responsible to study the ecosystem soundscape and set the guidelines 

for protecting it, as an important part of ecological conservation. These experts traditionally base their studies 

on identifying the species in an ecosystem and summarizing the findings using biodiversity indices (Magurran 

et al., 2010). To interpret the acoustical information, like in traditional methods, a series of ecoacoustic indices 

based on the biodiversity indices have been proposed (Sueur et al., 2014). In this work we used the alpha 

indices, which describe the diversity within a group by its sound intensity, acoustic complexity and soundscape 

elements. 

Some of these indices have become key elements to many ecoacoustic applications (e.g. Depraetere et al., 

2012; Harris, Shears, Radford, & Reynolds, 2016; Sankupellay et al., 2015). However, they can be easily affected 

by factors such as background noise, distance of sound source to the microphone, number of individuals singing 

or relative amplitude difference between same kind calls (Sueur et al., 2014). Furthermore, their theoretical 

interpretation is still unclear (Eldridge, Casey, Moscoso, & Peck, 2015). For this reason, besides these indices, 

we included in our work acoustic metrics for more general applications, looking to compensate indices bias and 

complement the soundscape description.  

2.2.1. Features Extraction 
 

For selecting the additional features to our problem, we focused on the first source of information for 

ecoacoustical analysis: the spectrogram. Before the indices were proposed, the spectrogram was the main tool 

to visualize the acoustic dynamics of a community (Blumstein & Munos, 2005; Kirschel et al., 2009; Leong et 

al., 2003; Urazghildiiev & Clark, 2006) or an ecosystem (Job et al., 2016; Joo et al., 2011) and it is still the first 

step for the calculation of many indices (Sueur et al., 2014). A spectrogram is an intensity plot of the Short-Time 
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Fourier Transform (STFT) magnitude (Smith, 2007), it allows to see the intensity distribution of the audio signal 

in both frequency and time (see Figure 2.2). 

If we think intuitively on the components of the spectrogram, we identify three elements: intensity, frequency 

and time. Thence, we looked for acoustic features that could retrieve information about these three dimensions 

and describe accurately the spectrogram. The selected acoustic features are mathematically explained, 

described and referenced in Table 2.1. 

Table 2.1 Calculation, description and reference of the extracted acoustical features. 

Acoustic Indices 

Acoustic Feature Calculation Description Reference 

Acoustic 

Complexity 

Index 

(frequency-

time) (ACIft) 

∑ ∑
|𝐼𝑖,𝑗 − 𝐼𝑖,𝑗+1|

(𝐼𝑖,𝑗 + 𝐼𝑖,𝑗+1)

𝑁𝑓−1

𝑗=1

𝑁𝑡

𝑖=1

  (2.2) 

Where 𝐼𝑖,𝑗  is the normalized 

amplitude of each pulse in the 

time step 𝑖 and frequency bin 𝑗, 𝑁𝑡 

is the number of temporal steps 

and 𝑁𝑓 is the number of 

frequency bins in the 

spectrogram. ACIft measures the 

information in two successive 

frequency bins along each time 

step. 

(Farina, Pieretti, 

Salutari, Tognari, & 

Lombardi, 2016) 

ACIft evenness 

(ACIfte) 

1

∑ (∑
|𝐼𝑖,𝑗 − 𝐼𝑖,𝑗+1|

(𝐼𝑖,𝑗 + 𝐼𝑖,𝑗+1)

𝑁𝑓−1

𝑗=1
)

2

𝑁𝑡
𝑖=1

 
(2.3) 

Levins evenness applied to the 

ACIft. ACIfte measures the 

distribution of intensity along 

each time step.  

(Farina et al., 2016) 

Acoustic 

Complexity 

Index (time-

frequency) 

(ACItf) 

∑
∑ |𝐼𝑖,𝑗 − 𝐼𝑖+1,𝑗|

𝑁𝑡
𝑐

𝑖=1

∑ 𝐼𝑖,𝑗

𝑁𝑡
𝑐

𝑖−1

𝑐

𝑘=1

 (2.4) 

Originally named ACI, it is used to 

assess the acoustic complexity 

information in an audio signal. In 

this expression, c stands for the 

number of temporal clusters in 

the recording (usually, c=5 for 

one-minute recordings) 

(Pieretti et al., 2011) 

ACItf evenness 

(ACItfe) 

1

∑ (
∑ |𝐼𝑖,𝑗 − 𝐼𝑖+1,𝑗|

𝑁𝑡
𝑐

𝑖=1

∑ 𝐼𝑖,𝑗

𝑁𝑡
𝑐

𝑖−1

)

2

𝑐
𝑘=1

 

(2.5) 

Levins evenness applied to the 

ACItf. ACItfe measures the 

distribution of intensity along 

each frequency bin. 

(Farina et al., 2016) 

Acoustic 

Diversity Index 

(ADI) 

− ∑ 𝑝𝑏 log2 𝑝𝑏

𝑁𝑏

𝑏=1

 (2.6) 

The Shannon index is used to 

estimate diversity by using 1 kHz 

frequency bands as acoustic 

categories. 𝑝𝑏  is the occupation of 

the frequency band 𝑏, measured 

as the number of cells in the band 

(Pekin et al., 2012) 
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higher than a given threshold. 𝑁𝑏 

is the number of frequency bands. 

Acoustic 

Evenness Index 

(AEI) 

∑ ∑ |𝑝𝑏 − 𝑝𝑑|
𝑁𝑏
𝑏2

𝑁𝑏
𝑏1

2𝑁𝑏
2�̅�

 (2.7) 

The Gini coefficient is applied to 

obtain acoustic evenness across 

frequency bands of 1kHz. 

(Villanueva-Rivera et 

al., 2011) 

Bioacoustics 

Index (𝛽) 
∫ 𝑃𝑓

𝑓=8𝑘𝐻𝑧

𝑓=2𝑘𝐻𝑧

 (2.8) 

Area below the 𝑃𝑓  curve in the 

biophony frecuencies (between 

2kHz and 8kHz) in dB. 𝑃𝑓  is the 

mean of the spectrogram along 

the time dimension. This index 

gives an estimate of the biophonic 

energy in the recording. 

(Boelman, Asner, Hart, 

& Martin, 2007) 

Acoustic Entropy 

Index (H) 
𝐻𝑡𝐻𝑠  (2.9) 

It is the product of 𝐻𝑠  and 𝐻𝑡  (see 

below). It ranges between 0 and 

1; 0 for pure tones and 1 for white 

noise. 

(Sueur et al., 2008) 

Entropy of 

spectral maxima 

(Hm) 

𝑈𝑗 =  max
∀𝑤=𝑗

(𝑠𝑖,𝑤) (2.10) 

The Shannon index is applied to 

the maximum values of each 

frequency bin in the spectrogram, 

but only in the band between 482 

Hz and 8820 Hz (expanding the 

biophony band).  

𝑠𝑖,𝑤stands for a cell in the 

spectrogram in the time step 

𝑖 and frequency bin 𝑤 and 𝑈𝑗  is 

the maximum value in the 

frequency bin 𝑗. 

(Towsey et al., 2014) 

𝐻𝑚 =  − ∑ 𝑈𝑗 log2 𝑈𝑗

𝑁𝑓

𝑗=1

 (2.11) 

Spectral Entropy 

(𝐻𝑠) 
−

∑ 𝑆𝑗 log2 𝑆𝑗
𝑁𝑓

𝑗=1

log2 𝑁𝑓

 (2.12) 

The Shannon evenness Index is 

applied to the average energy (𝑆𝑗) 

in each frequency bin.  

(Sueur et al., 2008) 

Temporal 

Entropy (𝐻𝑡) 
−

∑ 𝜀𝑖 log2 𝜀𝑖
𝑁𝑡
𝑖=1

log2 𝑁𝑡

 (2.13) 

Similarly, to 𝐻𝑠, the Shannon 

evenness Index is applied to the 

amplitude envelope of the signal, 

obtained by applying the Hilbert 

transform (𝜀).  

(Sueur et al., 2008) 

Entropy of 

spectral 

variance (𝐻𝑣) 

𝑉𝑗 =  var
∀𝑤=𝑗

(𝑠𝑖,𝑤) (2.14) 
The Shannon index is applied to 

the variance value for each 

frequency bin. 𝑉𝑗  stands for the 

variance value in the frequency 

bin 𝑗. 

(Towsey et al., 2014) 

𝐻𝑣 =  − ∑ 𝑉𝑗 log2 𝑉𝑗

𝑁𝑓

𝑗=1

 (2.15) 



P a g e  | 10 

 

Median of 

amplitude 

envelope (M) 

2𝐷−1 median(𝜀) (2.16) 

The median of the amplitude 

envelope (obtained by using the 

Hilbert transform), where 𝐷 is the 

signal digitalization depth. 

(Depraetere et al., 

2012) 

Mid-band 

activity (MID) 

𝐹𝑓 =  {
𝑃𝑓  𝑖𝑓 𝑃𝑓 > 𝑃�̅�

0 𝑖𝑓 𝑃𝑓 < 𝑃�̅�

 

 

(2.17) 

The area below 𝑃𝑓  in the mid band 

(482 Hz – 3500 Hz) for values of 𝑃𝑓  

that surpass a certain threshold. 

𝐹𝑓 corresponds to the values of 𝑃𝑓  

over that threshold (in this case 

the mean of 𝑃𝑓) 

(Towsey et al., 2014) 

∫ 𝐹𝑓

𝑓=3500𝐻𝑧

𝑓=482𝑧

 (2.18) 

Normalized 

Difference 

Soundscape 

Index (NDSI) 

𝛽 − 𝛼

𝛽 + 𝛼
 (2.19) 

A normalized measure of the ratio 

of biophony to technophony. For 

pure technophony NDSI = -1 and 

for pure biophony NDSI = 1. 𝛽 is 

the bioacoustics index and 𝛼 is the 

estimated technophony, which is 

measured similarly to 𝛽 for the 

frequency band between 200 Hz 

and 1500 Hz 

(Kasten et al., 2012) 

Number of 

peaks (𝑁𝑃) 

Λ𝑗 =  {
1 𝑖𝑓 𝑆𝑗 >  𝑆𝑚  ∩  |𝑑𝑆𝑙|̅̅ ̅̅ ̅̅ > 0.01

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

(2.20) 

Number of major frequency peaks 

in the mean spectrum. It assumes 

that the more peaks, the higher 

spectral complexity and richness. 

In this equation 𝑚 represents the 

frequency bins lower than 𝑗; and 𝑙 

represents the surrounding bins 

of the peak.  Λ𝑗  is then 1 if 𝑗 is a 

major peak and 0 otherwise. 

(Gasc, Sueur, Pavoine, 

Pellens, & Grandcolas, 

2013) 

𝑁𝑃 =  ∑ Λ𝑗

𝑁𝑓

𝑗=1

 

 

(2.21) 

Ratio of 

biophony to 

anthrophony (ρ) 

𝛽

𝛼
 (2.22) 

The first index to estimate the 

effect of technophony to 

biophony. 

(Qi et al., 2008) 

Complementary Acoustic Features 

Frequency 

Background 

Noise (𝐵𝑁𝑓) 

mode
∀𝑤=𝑗

̅̅ ̅̅ ̅̅ ̅(𝑠𝑖,𝑤) 

 
(2.23) 

Mean background noise of the 

spectrogram frequency bins, 

based on the mode value for each 

frequency bin 𝑗. 

(Towsey, 2013) 

Temporal 

Background 

Noise (BNt) 

mode(𝑆𝑃𝐿) 

 
(2.24) 

Temporal background noise in dB. 

Based on the mode value for the 

immediate sound pressure level 

signal (𝑆𝑃𝐿) 

(Towsey, 2013) 
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Crest Factor (CF) 

 𝐸𝑝𝑒𝑎𝑘

𝑅𝑀𝑆
 

 

(2.25) 

The ratio of the peak value of the 

energy signal (𝐸𝑝𝑒𝑎𝑘) to its root 

mean square value (𝑅𝑀𝑆, 

explained below). The higher the 

value, the more expected peaks in 

the energy signal.  

(Torija, Ruiz, & Ramos-

Ridao, 2013) 

Frequency 

Modulation 

(FM) 

∑ ∑
180°

𝜋
|arctan

𝐼𝑖,𝑗+1 − 𝐼𝑖,𝑗

𝐼𝑖+1,𝑗 − 𝐼𝑖,𝑗
|

𝑁𝑓−1

𝑗=1

𝑁𝑡−1
𝑖=1

(𝑁𝑓 − 1)(𝑁𝑡 − 1)
 

(2.26) 

The mean angle of the directional 

derivatives. The higher the value, 

the more abrupt changes in 

intensity. 

(Tchernichovski, 

Nottebohm, Ho, 

Pesaran, & Mitra, 

2000) 

Musicality 

Degree (MD) 

∑
log(𝑊𝑗+1

2 − 𝑊𝑗
2)

log(𝑓𝑗+1 − 𝑓𝑗)
𝑁𝑓−1

𝑗

𝑁𝑓 − 1
 

(2.27) 

The mean slope of the 1/f curve. 

𝑊 is the Welch’s power spectral 

density estimate. MD is a measure 

of the temporal complexity of the 

signal. 

(De Coensel, 2007) 

Root mean 

square (𝑅𝑀𝑆) 
√𝑥2 (2.28) 

The root mean square of the raw 

signal (𝑥). It is a measure of the 

amplitude of the signal. 

(Rodriguez et al., 

2014) 

Spectral Flatness 

(SF) 

√∏ 𝑊𝑗
𝑁𝑓

𝑗=1

𝑁𝑓

�̅�
 

(2.29) 

The ratio of the geometric mean 

of the power spectrum to its 

arithmetic mean. The higher the 

value, the more frequency 

complexity.  

(Mitrović, 

Zeppelzauer, & 

Breiteneder, 2010) 

Temporal Sound 

Level Variance 

Descriptor 

(TLSV) 

𝜎𝐿𝜎𝑒𝑞  (2.30) 

The product of the instantaneous 

sound pressure level standard 

deviation (𝜎𝐿) and the energy-

equivalent sound pressure level 

standard deviation (𝜎𝑒𝑞). TLSV is a 

measure of temporal complexity. 

(Torija et al., 2013) 

 

All the acoustic indices were computed on the selected recordings, then each site daily averages were 

calculated and standardized using (2.31). 

 �̂� =
𝑦 − �̅�

𝜎𝑌

 (2.31) 

Where �̂� is the new standardized value, 𝑦 is the original value, �̅� and 𝜎𝑌 are the index mean and the index 

standard deviation calculated over all samples respectively. 

2.2.2. Features Selection 
 

In this stage, the most significant indices for our application are selected as features.  
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2.2.2.1. Data Division 
 

At this point, the data was divided in two subsets: the training data, containing 80 percent of the total data; 

and the testing data, with the remaining 20 percent. Given the requirements of the clustering method and the 

purpose of this study, the data division was made in such a way that the chronological order was maintained, 

and each subset contained samples from each recording sequence as possible. A recording sequence is a set of 

recordings in the same session with possible gaps not larger than 6 days. The features extraction and selection 

methods and the model set up (section 2.3.1) were applied only to the training data, and after the model is 

configured, it is implemented to both the training and testing data. In other words, the complete methodology 

is executed using only the training data, except for the model implementation stage (section 2.3.2), in which 

both training and testing data were classified by the resulting model. The data division is suggested to avoid 

overfitting and obtain a model capable of generalization. 

 

2.2.2.2. Correlation Analysis 
 

A first stage of feature selection was based on correlation analysis. The Pearson Correlation coefficient (𝑃𝐶𝐶) 

was computed among every pair of indices to identify those which were strong correlated, and therefore 

redundant for the analysis (2.32). For each pair of strongly correlated indices (Absolute value of 𝑃𝐶𝐶 was 0.9 

or higher), only one of the indices were selected for the following stage. 

 𝑃𝐶𝐶𝑌,𝑍 =  
𝜎𝑌,𝑍

𝜎𝑌𝜎𝑍

 (2.32) 

Where 𝜎𝑌,𝑍  is the covariance for indices 𝑌 and 𝑍, 𝜎𝑌 is the variance for index 𝑌 and 𝜎𝑍 is the variance for index 

𝑍. 

 

2.2.2.3. F-value 
 

For selecting the most representative indices for each case, the Analysis of Variance (ANOVA) F-value was 

calculated for each index. Computing this value requires knowing the prior classification of the data; which for 

our case, corresponded to the ecosystem type of the site where the audio files were recorded. Then, the F-

value is computed as shown in (2.33). 

 𝑁𝑡𝑟(𝑁𝑡𝑟 − 𝑁𝑔) ∑ (𝑦𝑔 − �̅�)2
𝑔

(𝑁𝑔 − 1) ∑ ∑ (𝑦𝑔𝑟 − 𝑦𝑔)2𝑁𝑡𝑟
𝑟

𝑁𝑔

𝑔

 (2.33) 

Where 𝑁𝑡𝑟 is the total number of recordings in the training set, 𝑁𝑔 is the number of groups, 𝑦𝑔 is the index 

mean for the group 𝑔, �̅� is the index mean for all samples and 𝑦𝑔𝑟  is the index value for the recording 𝑟 in the 

group 𝑔. 
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The F-value assesses the discrimination power of the index, i.e. the higher the F-value, the more uniform index 

values for same group samples, and the more different index values for different group samples. Consequently, 

the indices with highest F-values were selected as soundscape features, for our hypothesis poses that 

soundscape differs with ecosystem type. 

For this selection we excluded the ADI and 𝐵𝑁𝑓  indices, which we used for computing the biodiversity features 

in the following stage. Then, based on the assumption that each soundscape feature would differentiate at 

least two groups, the number of soundscape features was determined by (2.34) 

 
(

𝑁𝑔

2
) (2.34) 

Which is the number of possible pairs between groups, or ecosystem types. 

Although the ANOVA poses the normality of the data as a requirement, it is deemed to be robust for non-

normal data too (Schmider, Ziegler, Danay, Beyer, & Bühner, 2010), therefore the data normality test was 

omitted. 

 

2.2.3. Biodiversity Acoustic Features   
 

Biophony remains still the most important soundscape element (Gage & Axel, 2014). Whereas these sounds 

have been traditionally demarcated in the frequency band between 2 kHz and 8 kHz (Boelman et al., 2007; 

Kasten et al., 2012), this convention has been less applicable to tropical habitats (Sueur et al., 2014) and has 

already been extended to the 2-11 kHz band for some other studies (Eldridge, Guyot, Moscoso, Johnston, & 

Eyre-walker, 2018; Gage & Axel, 2014). The band under 2 kHz is by no means lacking biological sounds, 

especially in the tropic, but it is often dominated by technophony (Fuller et al., 2015; Joo et al., 2011). To 

encompass biodiversity in the soundscape level completely, in this work we included as features a modified ADI 

vector for the 0-11 kHz band as descriptors of acoustic diversity. 

As other acoustic indices (AEI, H, 𝐻𝑠, 𝐻𝑣 , 𝐻𝑚), ADI is based on the Shannon index, which is used frequently in 

ecology for richness estimation (Spellerberg & Fedor, 2003; Sueur et al., 2014). This index was proposed 

originally for measuring the information content in a signal by summing the information of its components 

(Shannon, 1948). In ADI, these components correspond to 1 kHz frequency bands, which we proposed to 

analyze separately because it is easier to interpret (An unique value would not say much about the calls 

distribution in the signal, on the other hand, a value per band would help identify which are the bands with 

higher information or complexity, hence the most active acoustical species by mapping their calls in the 

spectrum).    

The main advantage for ADI over other Shannon based indices is that it considers background noise as a part 

of the calculation (Pekin et al., 2012). Therefore, this index should be more robust to technophony effect in the 

corresponding band. Nonetheless, the main drawback of ADI is that it uses a fixed background noise value for 
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the whole spectrum. Assuming that this value differs between frequency bins, we calculated a different 

background noise value per bin, using the original proposed 𝐵𝑁𝑓  vector (Towsey, 2013) 1  (2.35). 

 𝐵𝑁𝑓𝑗  = mode
∀𝑗=𝑤

(𝑠𝑖,𝑤) (2.35) 

Where 𝐵𝑁𝑓𝑗  is the background noise value in the frequency bin 𝑗, and  

𝑠𝑖,𝑤  is the spectrogram value for time step 𝑖 and frequency bin 𝑤. 

Using 𝐵𝑁𝑓𝑗  the modified ADI is calculated per 1 kHz band as indicated in (2.36) 

 

 
𝐴𝐷𝐼𝑏  =  −𝑝𝑏 log 𝑝𝑏  (2.36) 

Where 𝐴𝐷𝐼𝑏  is the modified ADI for the band 𝑏 and 𝑝𝑏  is the occupation in the band 𝑏, which was measured as 

the number of spectrogram cells in the band higher than their respective 𝐵𝑁𝑓𝑗 . 

As a result, we obtained 11 biodiversity metrics, which join the soundscape features for the complete feature 

set per day.    

 

2.3. Modeling 
 

In this stage, the selected features served as inputs to a GMMHMM for modeling ecoacoustical patterns. HMM 

is a stochastical model in which a sequence of random observations is generated by a set of hidden states (or 

clusters) given a Markov chain and a emission probability distribution (Bilmes, 1998); this process is illustrated 

in Figure 2.3. This model assumes Markov property, i.e. the probability of a given state depends uniquely on 

the previous one (Bilmes, 1998).  For denoting this model, (2.37) is used 

 𝜆 = (𝐴, 𝐵, 𝜋)  (2.37) 

Where 𝜆 is the HMM, 𝐴 is the transition matrix, i.e. the element 𝑎𝑖𝑗  in 𝐴 denotes the probability of passing to 

state 𝑗 being previously in the state 𝑖; 𝐵 is the emission probability distribution, or the distribution that 

determines the probability that a given state produces a given observation; and 𝜋 is the initial state distribution, 

or the distribution that sets the probability for each state to be the first in the sequence (Rabiner, 1989). 

GMMHMM is a type of HMM in which 𝐵 follows a gaussian mixture distribution. Therefore, the probability for 

the state 𝑖 to emit the observation vector 𝑦𝑡  at the time 𝑡 (𝑏𝑖(𝑦𝑡)) is given by a weighted sum of normal 

functions (see (2.38)). 

 𝑏𝑖(𝑦𝑡) =  ∑ 𝑝𝑖𝑚

𝑁𝑚

𝑚=1

𝜙(𝑦𝑡|𝜇𝑖𝑚, Σ𝑖𝑚),    ∑ 𝑝𝑖𝑚

𝑁𝑚

𝑚=1

= 1 (2.38) 

 

                                                                 
1 This is a simplification to the algorithm, to see the complete algorithm, please refer to (Towsey, 2013) 
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Figure 2.3 HMM Diagram. The Markov chain is represented in the upper half of the figure, with its hidden states (denoted 
by the blue circles) and transition probabilities (denoted by the curved arrows). In the lower part of the figure, the observed 
sequence is produced by the Markov chain given the emission probabilities (the observed samples are denoted by purple 
squares and the emission probabilities are denoted by the arrows connecting the states to the observations). 

Where 𝑝𝑖𝑚  is the weight for the 𝑚𝑡ℎ distribution in the state 𝑖, 𝜙(𝑦𝑡|𝜇𝑖𝑚, Σ𝑖𝑚)is the probability for the 

observation 𝑦𝑡  to be generated by the multivariate gaussian distribution described by the mean vector 𝜇𝑖𝑚 and 

covariance matrix Σ𝑖𝑚, and 𝑁𝑚 is the number of components in the mixture. This model has the advantage of 

fitting complex data but requires the calculation of more parameters for the model. In Figure 2.4, an example 

with a univariate 3-component-gaussian mixture model is plotted showing that the distribution is shaped by its 

components and, unlike the normal distribution, in which the data is grouped around a unique value, this model 

presents three different data groups, allowing each state to be associated to different values of the observed 

data. 

Lastly, this model was chosen because it does not only serve to characterize the hidden states (patterns or 

clusters) which describe the ecosystem soundscape, but it also recognizes the relation between them, making 

it a predictable model, suitable for both spatial and temporal analysis. 

 

2.3.1. Model Set Up 
 

In this stage, the optimal GMMHMM parameters 𝐴, 𝐵 and 𝜋 are estimated using the Baum-Welch Algorithm 

and the Mean Squared Error (MSE) applied to the training dataset. Firstly, a set of likely values for Nc (number 

of states) and 𝑁𝑚 (number of mixture components) are established, then the Baum-Welch Algorithm is 

executed and the sum of squared errors (SSE) is calculated several times for each combination of these values. 

Using the SSE resultant values, the MSE is computed per combination and the optimal values for Nc and 𝑁𝑚 are 

chosen according to the lowest MSE. Finally, the Baum-Welch algorithm is executed again several times using 

the selected Nc and 𝑁𝑚 values and the final selected model is that with the lowest SSE. The flowchart for the 

described process is shown in Figure 2.5. The resulting model performance is displayed in Chapter 3. 
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Figure 2.4 Gaussian mixture model example with three components. It shows that three different distributions of the 
observed samples could be assigned to the same hidden state. 

In the following subsections the model set up process is detailed. 

 

2.3.1.1. Baum-Welch Algorithm 
 

For finding the GMMHMM parameters that best fit to the problem, we applied the commonly used Baum-

Welch algorithm to the training data (Bilmes, 1998). This algorithm finds the HMM parameters that maximize 

the probability for the observed sequence of feature vectors.  

Firstly, the parameters 𝐴, 𝐵 and 𝜋 are initialized with random values. Then, let 𝜋𝑖  be the initial probability for 

state 𝑖, 𝑏𝑖(𝑦𝑡) the probability for state 𝑖 to emit the observation 𝑦𝑡 , Nc the number of states, 𝑎𝑖𝑗  the transition 

probability from state 𝑖 to state 𝑗, and 𝑇 the time for the last element of the sequence. Next, the algorithm is 

recursively executed using forward, backward and update procedures: 

For the forward procedure, we denote 𝛼𝑖(𝑡) as the joint probability for a partial starting sequence finishing in 

the state 𝑖 and time t. 𝛼𝑖(𝑡) can be obtained as shown in (2.39) and (2.40). 
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Figure 2.5 Model set up diagram. This flowchart describes the process for the estimation of the model parameters. The purple 
items describe the first part of the process, where Nc and 𝑁𝑚  are selected. The green items describe the second part of the 
process where the remaining model parameters (𝐴, 𝐵 and 𝜋) are obtained. Note that C is the number of tested values for 
𝑁𝑚, G is the number of tested values for Nc and RG is the number of times that the Baum-Welch algorithm is executed, and 
the SSE is computed. 

 

 𝛼𝑖(1) =  𝜋𝑖𝑏𝑖(𝑦1) (2.39) 

  𝛼𝑗(𝑡 + 1) =  [∑ 𝛼𝑖(𝑡)𝑎𝑖𝑗

𝑁𝑐

𝑖=1

] 𝑏𝑗(𝑦𝑡+1)  (2.40) 

Whereas for the backward procedure we denote 𝛽𝑖(𝑡) as the joint probability for the partial ending sequence 

starting at 𝑡 + 1 and finishing at 𝑇 given state 𝑖 and time 𝑡. 𝛽𝑖(𝑡) is calculated using (2.41) and (2.42). 

 𝛽𝑖(𝑇) =  1  (2.41) 

 𝛽𝑖(𝑡) =  ∑ 𝛽𝑗(𝑡 + 1)𝑎𝑖𝑗

𝑁𝑐

𝑗=1

𝑏𝑗(𝑦𝑡+1)  (2.42) 

Lastly, in the update step, we denote 𝛾𝑖(𝑡) as the probability of being in state 𝑖 at time 𝑡, and it is estimated by 

(2.43). 

 𝛾𝑖(𝑡) =
𝛼𝑖(𝑡)𝛽𝑖(𝑡)

∑ 𝛼𝑗(𝑡)𝛽𝑗(𝑡)𝑁𝑐
𝑗=1

 (2.43) 

In this step it is also defined 𝜉𝑖𝑗(𝑡) as the probability of being in state 𝑖 and 𝑗 in time 𝑡 and 𝑡 + 1 respectively. 

This probability is estimated by (2.44). 
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 𝜉𝑖𝑗(𝑡) =  
𝛼𝑖(𝑡)𝑎𝑖𝑗𝛽𝑗(𝑡 + 1)𝑏𝑗(𝑦𝑡+1)

∑ ∑ 𝛼𝑖(𝑡)𝑎𝑖𝑗𝛽𝑗(𝑡 + 1)𝑏𝑗(𝑦𝑡+1)
𝑁𝑐
𝑗=1

𝑁𝑐
𝑖=1

 (2.44) 

For several sequences, 𝛼𝑖(𝑡), 𝛽𝑖(𝑡), 𝛾𝑖(𝑡) and 𝜉𝑖𝑗(𝑡) are calculated for each sequence with different 

initialization parameters. 

Now, if there are 𝐸 sequences, and the 𝑒𝑡ℎ sequence has a length of 𝑇𝑒, the parameters 𝜋𝑖  and 𝑎𝑖𝑗  are updated 

using (2.45) and (2.46) 

 �̂�𝑖 =  
∑ 𝛾𝑖

𝑒(1) 𝐸
𝑒=1

𝐸
 (2.45) 

 �̂�𝑖𝑗 =  
∑ ∑ 𝜉𝑖𝑗

𝑒 (𝑡)𝑇𝑒
𝑡=1

𝐸
𝑒=1

∑ ∑ 𝛾𝑖
𝑒(𝑡)𝑇𝑒

𝑡=1
𝐸
𝑒=1

 (2.46) 

To estimate 𝑏𝑖(𝑦𝑡), let 𝛾𝑖𝑚
𝑒 (𝑡) be the probability for the 𝑒𝑡ℎ sequence that the 𝑚𝑡ℎcomponent of the 𝑖𝑡ℎstate 

generated observation 𝑦𝑡 , and it is defined by (2.47) 

 𝛾𝑖𝑚
𝑒 (𝑡) =   𝛾𝑖

𝑒(𝑡)
𝑝𝑖𝑚𝜙(𝑦𝑡|𝜇𝑖𝑚, Σ𝑖𝑚)

𝑏𝑖(𝑦𝑡)
  (2.47) 

Finally, 𝐵 is then updated by replacing (2.48), (2.49) and (2.50) in (2.38) 

 �̂�𝑖𝑚 =  
∑ ∑ 𝛾𝑖𝑚

𝑒 (𝑡)𝑇𝑒
𝑡=1

𝐸
𝑒=1

∑ ∑ 𝛾𝑖
𝑒(𝑡)𝑇𝑒

𝑡=1
𝐸
𝑒=1

 (2.48) 

 �̂�𝑖𝑚 =  
∑ ∑ 𝛾𝑖𝑚

𝑒 (𝑡)𝑇𝑒
𝑡=1

𝐸
𝑒=1

∑ ∑ 𝛾𝑖
𝑒(𝑡)𝑇𝑒

𝑡=1
𝐸
𝑒=1

 (2.49) 

 Σ̂𝑖𝑚 =  
∑ ∑ 𝛾𝑖𝑚

𝑒 (𝑡)(𝑦𝑡
𝑒 − 𝜇𝑖𝑚)(𝑦𝑡

𝑒 − 𝜇𝑖𝑚)′𝑇𝑒
𝑡=1

𝐸
𝑒=1

∑ ∑ 𝛾𝑖
𝑒(𝑡)𝑇𝑒

𝑡=1
𝐸
𝑒=1

 (2.50) 

Baum-Welch algorithm is repeated for all values of 𝑡, then executed again until a desired level of convergence. 

Since this algorithm is gradient-based, it can stop in a local optimum. Therefore, it is suggested to be restarted 

and executed several times, to generate several models and choose the one with the best score.  

 

2.3.1.2. Mean Squared Error (MSE) 
 

Baum-Welch algorithm finds the optimal values for most of GMMHMM parameters, except for the number of 

clusters (Nc) and the number of mixture components (𝑁𝑚). For finding such values, a 2D-grid with the 

combinations of likely quantities for these parameters was arranged, then the Baum-Welch algorithm was run 

for several times for each of the combinations in the grid. 

Every time the Baum-Welch algorithm was executed, the SSE was computed for the resulting model. But firstly, 

𝜐𝑡 was computed for each observation using Viterbi algorithm (explained in the following section), then the 

mean vector 𝜇𝑖  for the model state 𝑖 was calculated using (2.51). 
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 𝜇𝑖 =  ∑ 𝑝𝑖𝑚𝜇𝑖𝑚

𝑁𝑚

𝑚=1

 (2.51) 

Let us remember that 𝜇𝑖𝑚 is the mean vector for the 𝑚𝑡ℎ distribution that composes the emission probability 

for state 𝑖, and 𝑝𝑖𝑚  is its mixture weight. Using 𝜇𝑖  and 𝜐𝑡, SSE can be computed using (2.52) 

 ∑(𝑦𝑡 − 𝜇𝑖)(𝑦𝑡 − 𝜇𝑖)
′

𝑇

𝑡=1

,   ∀𝑖 = 𝜐𝑡   (2.52) 

Finally, the MSE value was obtained as an average of all SSE values within the same Nc and 𝑁𝑚  combination 

(Rasmussen & Williams, 2004). MSE is a measure of cluster compactness, i.e. the higher the MSE the more 

variance within the same cluster samples. Accordingly, the chosen values for Nc and 𝑁𝑚 were the ones that led 

to the lowest MSE value. 

MSE was preferred over maximum likelihood estimation (MLE), Bayesian information criterion (BIC) and Akaike 

information criterion (AIC) (Bishop, 2006), because the first showed convergence with low-complexity models, 

whereas the other methods kept increasing their scores with model complexity (i.e. greater values for Nc and 

𝑁𝑚, which would lead to overfitting). 

Once the optimal parameters for the model have been found, it is not necessary to repeat the model set up for 

new similar data, but only classify these data using the Viterbi algorithm (explained below). This is the reason 

why the data division (section 2.2.2.1) was executed in the first place, to ensure that the model responds 

correctly to new samples from the same study. 

 

2.3.2. Model Implementation   
 

In this stage we apply the resulting GMMHMM model to the complete dataset (both training and testing data) 

using the Viterbi algorithm (Forney, 1973; Rabiner, 1989).  

For the implementation of the algorithm, let 𝛿𝑡(𝑖) be the highest probability for the first 𝑡 observations in the 

sequence ending in state 𝑖, and 𝜓𝑡(𝑖) the vector keeping track of the state sequence that maximized said 

probability. Now, the procedure is developed by the following steps: 

1) Initialization: 

 𝛿1(𝑖) =  𝜋𝑖𝑏𝑖(𝑦1) (2.53) 

 𝜓1(𝑖) =  0 (2.54) 

2) Recursion: 

 𝛿𝑡(𝑗) =  max
𝑖

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑦𝑡) (2.55) 

 𝜓1(𝑖) =  argmax
𝑖

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗] (2.56) 
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3) Termination: 

 �̂� =  max
𝑖

[𝛿𝑇(𝑖)] (2.57) 

 𝜐𝑇 =  argmax
𝑖

[𝛿𝑇(𝑖)] (2.58) 

4) State sequence backtracking: 

 𝜐𝑡 =  𝜓𝑡+1(𝜐𝑡+1) (2.59) 

Where �̂� is the estimated probability for the given sequence and 𝜐𝑡 is the probable state that emitted 

observation 𝑦𝑡 . This process is repeated for each of the observed sequences.  

As a result, the data is grouped in clusters and their patterns can be now described and analyzed. Notice that 

the obtained clusters might not correspond to the ecosystem types, but they are meant to describe the 

acoustical processes that configure the observed soundscape dynamics. 
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Chapter 3. Results 
 

In this chapter the methodology is applied to two Colombian datasets, and the results for each of the processing 

stages are described. The final interpretation of the resulting clusters was reviewed by a biologist. 

3.1. Jaguas Application 
 

The first dataset was provided by Grupo Herpetológico de Antioquia (GHA)2 and ISAGEN3, an energy generation 

company. The recordings were collected for monitoring the ecosystems surrounding San Lorenzo dam and 

assess the influence of the Jaguas energy plant in the natural communities and environment. 

 

3.1.1. Database Description 
 

Six sites surrounding the Jaguas hydroelectric power station in Alejandría, Antioquia, were acoustically 

monitored for this study. A total of 124,989 recordings were collected from April 22nd of 2016 to May 6th of 

2017 using Wildlife Acoustics4 Songmeter SM2 recorders (Wildlife Acoustics, 2011). The proprietary recording 

format WAC could be converted to WAV using Wildlife’s Kaleidoscope software. The resulting recordings had a 

digital format of 16-bit PCB (𝐷 = 16), a sampling frequency of 22,050 Hz (𝐹𝑠 =  22,050 𝐻𝑧), one minute of 

duration (𝑑 =  60 𝑠𝑒𝑐) and were programmed to be recorded every 20 minutes. Even though some recorders 

had two functioning channels during this period, only one channel per recorder was considered. 

The sites were chosen and labeled by experts along a perturbation gradient. Each of the sites was assigned with 

a specific recorder during this monitoring period. In Table 3.1 the location of the monitored sites, their 

classification and the number of resulting recordings are described.  

Table 3.1 Description of the recording sessions for the Jaguas application. The rows are colored according to their ecosystem 
type. 

Recorder Location Ecosystem Type Number of recordings 

5253 6.356 N, 74.997 W Stubble 20,256 

5255 6.367 N, 74.997 W Stubble 24,018 

5256 6.367 N, 75.027 W Forest 10,119 

5260 6.361 N, 74.998 W Forest 25,756 

5257 6.375 N, 75 W Pasture 19,416 

7125 6.375 N, 74.998 W Pasture 25,424 

  Total 124,989 

                                                                 
2 http://grupoherpetologicodeantioquia.org/ 
3 https://www.isagen.com.co/SitioWeb/es/ 
4 https://www.wildlifeacoustics.com/  

http://grupoherpetologicodeantioquia.org/
https://www.isagen.com.co/SitioWeb/es/
https://www.wildlifeacoustics.com/
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In conclusion, three ecosystem types were monitored: forest, stubble and pasture, with two sites per 

ecosystem type (see Figure 3.1). 

 

Figure 3.1 Google Earth screenshot of the monitored area. Yellow pin color indicates a pasture site, green pin color indicates 
a forest site and red pin color indicates a stubble site. The closest weather station is also marked. 

 

3.1.2. Preprocessing Results 
 

In this stage, a total of 25,560 recordings were automatically discarded due to probable heavy rain. This quantity 

corresponded to 20.4 % of the total recordings. In Table 3.2. the number of original recordings, the number of 

discarded recordings and the percentage of excluded recordings per site are presented. 

It is interesting to notice that the quantity of discarded recordings per site were very different. This seems to 

imply that it did not rain the same for all six sites, even though they are in the same locality. To test this 

hypothesis, we requested the local climate authority (IDEAM) to send the area daily rain records for the same 

dates (see in Fig. 3.1. the relative location of the weather station). We found that there was no strong 

correlation between any of the monitored sites 𝑃𝑆𝐷𝑛 and the weather station measurements, reinforcing our 

hypothesis (see Table 3.3). Notice that the longest distance between measuring points is approximately 3.9 km 
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for the weather station and recorder 5256, and the shortest distance is approximately 260 m for recorder 5257 

and 7125. 

Table 3.2 Results for the preprocessing stage in the Jaguas application. 

Recorder Number of Original 

Recordings 

Number of Discarded 

Recordings 

Percentage of noisy 

recordings  

5253 20,526 5,679 27,67 % 

5255 24,018 3,590 14,95 % 

5256 10,119 2,281 22,54 % 

5257 19,416 1,030 5,3 % 

5260 25,756 9,561 37,12 % 

7125 25,424 3,419 13,45 % 

 

Table 3.3 𝑃𝐶𝐶 matrix for the recorders and weather station (IDEAM). The cells are colored according to their value, Greener 
cells indicate high 𝑃𝐶𝐶 values; Redder cells indicate low 𝑃𝐶𝐶 values.  

  IDEAM 5253 5255 5256 5257 5260 

5253 0.31 - - - - - 

5255 -0.034 0.21 - - - - 

5256 -0.063 -0.0098 -0.052 - - - 

5257 0.2 0.18 -0.0047 -0.005 - - 

5260 0.17 0.17 -0.017 0.015 0.04 - 

7125 0.11 0.088 0.052 -0.037 0.23 0.086 

 

Nonetheless, IDEAM measurements seem to be the more correlated to the remaining sites measurements, 

slightly proving the rain algorithm reliability. On the other hand, the site 5256 shows the least correlation to 

the other sites, probably because it is the most remote point. Finally, relatively high 𝑃𝐶𝐶 can be observed for 

same ecosystem type sites (except for the forest type), indicating that, on this band at least, there is some 

evidence for similar acoustical properties. 

 

3.1.3. Feature Extraction Results 
 

For the ecoacoustic indices calculation, MATLAB (Mathworks, 2013) home-made routines were executed. For 

ACIft, ACIfte, ACItf, ACItfe, β, 𝐻𝑠, 𝑁𝑃 and MID, the spectrogram was obtained using a Hann Window with no 

overlap (𝑁𝑜𝑣 = 0), size of 512 points (𝜔 = 512) and 512 points for the Fast Fourier Transform (FFT) (𝑛𝑓𝑓𝑡 =

 512). This configuration produced a spectrogram of dimension 257 x 2,584 (see (3.1) and (3.2)). For 𝑁𝑃, the 

smoothed mean spectrum (𝑆𝑗) was inspected for 10-point zones to find possible major peaks, and then if two 

peaks were found with a separation of less than 200 Hz, only the highest one was considered for the count.  
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 𝑁𝑓 = ⌈
𝑛𝑓𝑓𝑡

2
+ 1⌉ (3.1) 

 𝑁𝑡 = ⌊
𝑑 × 𝐹𝑠 −  𝑁𝑜𝑣

𝜔 −  𝑁𝑜𝑣

⌋ (3.2) 

For ADI, AEI, 𝐻𝑚  and 𝐻𝑣 , 𝑛𝑓𝑓𝑡 and 𝜔 were set as a tenth of 𝐹𝑠 (𝑛𝑓𝑓𝑡 =  𝜔 = 2,205) leading to a spectrogram 

of 1,104 x 600 cells. Lastly, for NDSI and ρ the spectrogram was calculated using a Hamming window, and 𝑛𝑓𝑓𝑡 

and 𝜔 were set to 𝐹𝑠 (𝑛𝑓𝑓𝑡 =  𝜔 = 22,050) leading to a spectrogram dimension of 11,026 x 60. Additionally, 

for ADI and AEI, the threshold for computing the band occupation was set at -50 dBFS. 

For the remaining features (complementary soundscape features and biodiversity features), the spectrogram 

was computed using a Hamming window with 𝑛𝑓𝑓𝑡 = 𝜔 = 512 and 256 points of overlapping (𝑁𝑜𝑣 =  256) 

producing a spectrogram dimension of 257 x 5,161. On the other hand, the Welch’s method for SF and MD was 

computed using a Hann window with 𝑛𝑓𝑓𝑡 = 𝜔 = 256 and 128 points of overlapping (𝑁𝑜𝑣 =  128), leading to 

a signal of 129 elements (this value is computed using (3.1)). The calculation of this last group of features was 

executed using Scipy library for Python (Jones, Oliphant, & Peterson, 2001). 

Before the calculation of the daily averages, we noticed that some recordings presented “nan” values (not a 

number) for the ACIft index. Inspecting these recordings, we found that they presented clicks and moments of 

silence, as if the microphone stopped working for those instants (see Figure 3.2). We opted for discarding such 

recordings to avoid introducing noise to the analysis. In total, only 34 recordings were discarded for this reason. 

 

Figure 3.2 Spectrogram segment of a discarded recording. Observe the vertical black lines towards the end of the segment 
indicating a microphone disconnection. 
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Given the discarded recordings in the previous stage and in this one, a minimum number of recordings per day 

and recorder was established for computing the daily average. Considering that a recorder worked every 20 

minutes, a total of 72 recordings should be obtained per day for that recorder. Thence, we established that at 

least 60 recordings per day and recorder should have passed the previous filters for computing the daily average 

and including that day in the subsequent analysis. 

In conclusion, a total of 1172 daily samples were obtained: 142 for recorder 5253, 229 for recorder 5255, 84 

for recorder 5256, 259 for recorder 5257, 195 for recorder 5260 and 262 for recorder 7125. 

 

3.1.4. Feature Selection Results 
 

Once the daily averages were obtained and standardized, the correlation analysis was realized. For every pair 

of features with absolute value of 𝑃𝐶𝐶 higher than 0.9, only one feature was selected for the following stages. 

The criterion for selecting the chosen feature was its mean absolute Pearson coefficient (𝑀𝐴𝑃𝐶) calculated as 

the average of the feature’s absolute 𝑃𝐶𝐶𝑠 over the rest of the features (3.3). The feature with the highest 

𝑀𝐴𝑃𝐶 within the pair, was removed from the study. The discarded features, the corresponded correlated 

feature, their 𝑀𝐴𝑃𝐶𝑠 and 𝑃𝐶𝐶𝑠 are displayed in Table 3.4. 

 𝑀𝐴𝑃𝐶𝑌 =  |𝑃𝑃𝐶𝑌𝑍|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , ∀𝑍 ≠ 𝑌 (3.3) 

Where 𝑀𝐴𝑃𝐶𝑌 is the 𝑀𝐴𝑃𝐶 value for feature 𝑌, 𝑃𝑃𝐶𝑌𝑍 is the Pearson correlation coefficient for features 𝑌 

and 𝑍 and 𝑍 is any feature different than 𝑌. 

Table 3.4 Discarded features with their correspondent correlated feature, their 𝑀𝐴𝑃𝐶𝑠 and their 𝑃𝑃𝐶𝑠 

Discarded Features Correlated Features 
𝑷𝑷𝑪 

Feature 𝑴𝑨𝑷𝑪 Feature 𝑴𝑨𝑷𝑪 

AEI 0.418 ADI 0.3875 -0.97 

Hv 0.4071 Hm 0.3993 0.939 

ACItfe 0.3354 ACItf 0.3281 -0.983 

ACIfte 0.4328 ACIft 0.4282 -0.999 

𝐻𝑠  0.3879 ADI 0.3875 0.938 

H 0.3887 ADI 0.3875 0.941 

TLSV 0.3902 ADI 0.3875 -0.946 

  

Notice that, though ADI is preferred over several other features, the original ADI is not used for training the 

model, but the modified ADI vector is used instead. Nonetheless, including the ADI for the feature selection 

stage helped us identify the features that would have been redundant for the analysis. 

Next, the training samples are grouped according to the ecosystem type classification and the F-value is 

computed. The obtained F-value is depicted in Figure 3.3. Considering that there are 3 ecosystem types and 

applying (2.34), the selected soundscape features are the three features with the highest F-value: 𝐻𝑡 , β and 

𝑁𝑃. The grouped boxplots for these features are displayed in Figure 3.4. 
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Figure 3.3 F-value for the selected features in the Jaguas application. 

 

Figure 3.4 Grouped boxplots by ecosystem type for the three soundscape features. 
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It is interesting to notice that each of the soundscape features are related to one of the spectrogram 

dimensions: time (𝐻𝑡), frequency (𝑁𝑃) and intensity (𝛽). Also, notice in Figure 3.4 that the three ecosystem 

types are not completely distinguished using the soundscape features, even though their F-values are very high 

(Figure 3.3). In general, we can infer that the forest values seem to be more heterogeneous, while the pasture 

values are the most homogeneous. However, since there is not a clear distinction between the classes, we 

expect to find common underlying acoustical patterns for the three ecosystems soundscapes. 

Finally, the biodiversity acoustic features are extracted as explained in section 2.2.3 and the set of features is 

completed (see Table 3.5). 

Table 3.5 Final feature vector for characterizing a daily sample in the Jaguas application. 

Soundscape 

feat. 
Biodiversity features 

𝛽  𝑁𝑃 𝐻𝑡 𝐴𝐷𝐼1 𝐴𝐷𝐼2 𝐴𝐷𝐼3 𝐴𝐷𝐼4 𝐴𝐷𝐼5 𝐴𝐷𝐼6 𝐴𝐷𝐼7 𝐴𝐷𝐼8 𝐴𝐷𝐼9 𝐴𝐷𝐼10 𝐴𝐷𝐼11 

 

3.1.5. Model Set Up Results 
 

For the model set up and implementation stage, the Hmmlearn library for Python was used (Hmmlearn 

developers, 2016). Firstly, 𝑁𝑚 was tested in the range between one and five (C = 5) and Nc was tested in the 

range between 3 and 20 (G = 18). Then, the Baum-Welch algorithm was executed 20 times (RG = 20) for each 

of the Nc and 𝑁𝑚 combinations; and 20 times again when the optimal Nc and 𝑁𝑚 were found. The MSE values 

for each 𝑁𝑚 x Nc combination are shown in Table 3.6. 

 

In the table we find the lowest values in the column for 𝑁𝑚 = 3, and the lowest value in this column for Nc = 

16. However, when we inspected the resulting model, we found that there were seven repeated states; 

therefore, we maintained the value for 𝑁𝑚, changed Nc to 9 and ran the Baum-Welch algorithm 20 more times, 

finding this time only 3 repeated states. Lastly, we retrained the model for Nc = 6 and obtained our final model 

for Jaguas. 

Figure 3.5 and Table 3.7 summarize the resulting model. The graphs in the left column of Figure 3.5 show the 

mean vectors for each cluster, which were computed using (2.51); the graphs at the right correspond to the 

clusters’ prototypes, i.e. the recordings that best fit to the corresponding mean vectors. Table 3.7 shows the 

transition matrix 𝐴 and initial probability 𝜋 of the final model. 

For cluster one, the prototype recording presented four occupied frequency bands by mainly constant calls. 

This type of occupation presents low biodiversity features because the entropy is low. On the other hand, 𝛽 is 

high, because the constant calls sum to the biophonic intensity and 𝑁𝑃 is also high for the number of occupied 

bands. 
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Table 3.6 MSE values for all the possible combinations of Nc and 𝑁𝑚  in the Jaguas application. The table cells are colored 
according to their values. Greener cells indicate lower MSE and redder cells indicate higher MSE. 

Values for Nc 
Values for 𝑵𝒎 

1 2 3 4 5 

3 13,582.69 13,558.85 11,874.24 12,603.17 12,741.83 

4 13,582.69 13,557.71 11,784.15 12,433.33 12,427.01 

5 13,582.69 13,533.03 11,781.18 12,367.13 12,260.71 

6 13,582.69 13,483.86 11,607.86 12,179.76 12,049.71 

7 13,582.69 13,495.78 11,574.52 11,965.19 12,013.15 

8 13,582.69 13,507.9 11,292.71 12,030.13 11,813.66 

9 13,582.69 13,532.99 11,403.33 11,991.37 11,747.56 

10 13,582.69 13,519.78 11,174.39 11,819.75 11,869.43 

11 13,582.69 13,519.98 11,094.87 11,846.88 11,543.39 

12 13,582.69 13,481.7 11,098.45 11,735.96 11,640.71 

13 13,582.69 13,507.62 11,178.56 11,831.09 11,693.77 

14 13,582.69 13,494.92 11,028.94 11,579.31 11,596.84 

15 13,582.69 13,481.28 11,075.92 11,688.5 11,458.84 

16 13,582.69 13,480.98 10,881.52 11,538.69 11,511.13 

17 13,582.69 13,492.81 10,895.7 11,449.9 11,443.27 

18 13,582.69 13,467.54 10,960.35 11,633.1 11,484.58 

19 13,582.69 13,441.88 10,950.44 11,461.99 11,479.11 

20 13,582.69 13,455.77 10,896.47 11,488.65 11,374.74 
 

Table 3.7 Transition matrix (A) of the resulting model in the Jaguas case. The initial probability for each state (𝜋) is 
represented by row 0. Each cell represents the transition probability of the row state (i) to the column state (j). The greener 
the cell color, the higher probability for that transition, and the red cells indicate low transition probability. Notice that the 
row’s sum equals one. 

Current State (i) 
Next state (j) 

1 2 3 4 5 6 

0 0.0456 0.1364 0.2723 0.1807 0.137 0.2273 

1 0.8535 0.0275 0.0070 0.0770 0.0350 0.0000 

2 0.0292 0.7772 0.0818 0.0665 0.0453 0.0000 

3 0.0062 0.0784 0.7838 0.0096 0.0858 0.0362 

4 0.0845 0.0437 0.0388 0.7820 0.0361 0.0150 

5 0.0296 0.0269 0.0618 0.0163 0.8654 0.0000 

6 0.0000 0.0169 0.0374 0.0152 0.0000 0.9305 

 

Cluster two prototype had low values for 𝛽 and 𝑁𝑃 because there were not many species calls. However, this 

recording had a high value for 𝐻𝑡  and entropy for the medium band because it presented rain, which produced 

a series of temporal pulses (increasing temporal entropy) and occupied most of the spectrum.  
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Figure 3.5 Mean vectors for the resulting clusters and the clusters’ prototypes in the Jaguas application. 

Cluster three prototype also presented rain, but this time no biophonic sound, which explained the low value 

for 𝛽.  
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Cluster four prototype had a couple of totally occupied frequency bands and some others partially occupied by 

periodical calls. 

Although cluster five seemed to be the most interesting for high frequency analysis, we only found one peculiar 

compound call occupying the band between 7 kHz and 11 kHz. This recording also had constant, periodical and 

sporadic calls but with low intensity.  

Finally, cluster six prototype was very similar to cluster one’s, but with higher intensity and variety of calls.  

In conclusion, cluster 1 and 6 are the most acoustically complex, because they presented more occupied bands, 

but the found calls tended to be periodical or constant. Clusters 5 and 4 had singing species but in less intensity 

and continuity. Lastly, clusters 2 and 3 had the least number of singing species but presented geophonic sound 

which produced high temporal entropy (for cluster 2) or high values for the 𝐴𝐷𝐼𝑠, given that biophony was not 

constant and therefore their presence meant more information.  

Certainly, higher values of ADI do not mean high occupation for the respective frequency bands, but higher 

randomicity of sounds, which can be due to rain or to the presence of different species in the band; whereby 

these values must be interpreted carefully. 

Finally, looking at the transition matrix, we conclude that all clusters are stable, meaning that the probability of 

transition to a different cluster is relatively low (around 8% for the highest values). Cluster six seems to be the 

most stable and the most isolated cluster, given that from the other states is practically impossible to pass to 

this state (see column six in Table 3.7). However, this is one of the most likely starting points with a probability 

of 22.73 %. 

The physical interpretation of the obtained clusters is made more clearly in the next section. 

 

3.1.6. Model Implementation Results 
 

In this stage, the Viterbi algorithm is applied to the dataset and the results for the cluster assignation to the 

observed samples are presented. Firstly, we inspected the cluster composition using the classification of the 

training samples, or how the ecosystem types of the training samples were distributed into the final clusters in 

Figure 3.6. It shows that cluster 1 and 6 were mostly assigned to forest samples, but both had a high percentage 

of pasture observations; cluster 2 had the highest percentage of stubble samples, but also had an important 

share of forest. On the other hand, cluster 3 and 4 had a majority of stubble samples but were also assigned to 

a big share of pasture samples. Lastly, cluster 5 had the highest percentage of assigned pasture observations 

and probably is the cluster that best represent the typical pasture soundscape.  
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Figure 3.6 Training distribution of ecosystem types in the resulting clusters. 

Notice that there is a high percentage of pasture samples in most clusters (in all of them, except for cluster 2), 

meaning that the pasture habitat presents many soundscape patterns, probably because its acoustical 

components are constantly changing through time or the local physical structure allows the propagation of 

many sound sources.  

Next, each of the clusters was labeled with the ecosystem type presenting the highest proportion in it (the 

cluster’s label is shown in  

Table 3.8). Then, using these labels and the cluster’s assignation to the complete dataset (training and testing), 

a compound confusion matrix was constructed for assessing the generalization capacity of the model. The 

matrix can be observed in Table 3.9. 

Table 3.8 Cluster’s label according to their training data distribution in the Jaguas case.  

Label Forest Stubble Pasture 

Clusters number 1, 6 2, 3, 4 5 

 

Table 3.9 Normalized confusion matrix for the training and testing Jaguas datasets. Notice that the sum of the rows equals 
one. Greener cells indicate higher values, redder cells indicate lower values.  

True Label Dataset 
Predicted Label 

1 (Forest) 6 (Forest) 5 (Pasture) 2 (Stubble) 3 (Stubble) 4 (Stubble) 

Forest 
Training 0.39 0.4 0.02 0.15 0.02 0.01 

Testing 0.46 0.43 0 0.07 0.04 0 

Pasture 
Training 0.13 0.07 0.53 0 0.16 0.1 

Testing 0.2 0 0.44 0.01 0.3 0.05 

Stubble 
Training 0.01 0.02 0 0.35 0.31 0.3 

Testing 0 0.01 0 0.28 0.41 0.3 
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A well generalized model would have similar values for training and testing data, which seems to be the case, 

although there is some variation for pasture samples. If the model is intended for classification, a diagonal 

confusion matrix is ideal. For our case, we found that 81% of the forest samples were classified in the forest 

clusters (1 and 6), 51.2% of the pasture samples were classified in the pasture cluster (5) and 96.6% of the 

stubble samples were classified in the stubble clusters (2, 3 and 4). In conclusion, forest and stubble were the 

easiest ecosystem types to be classified given the proposed methodology, but pasture was the hardest one to 

identify. Considering that ecosystem type classification is a complex task even for ecologists, because they can 

share multiple characteristics, we deemed these results very promising. 

Finally, the temporal change in the sites is explained by Figure 3.7. In it, the classification for the complete 

dataset (training and testing) is displayed through time.  

We can observe that site 5256 was the most stable site, but also had less samples than the others. This site was 

the furthest monitored point, and was in the depths of the forest, therefore it corresponded to the least 

disturbed habitat. Most of its samples were classified in cluster 6, proving that the better preserved the forest, 

the more different communities and more stability through time. 

Cluster six was also assigned to the last samples of site 5260 during the first months of 2017. This indicates 

increase of calls intensity. For the past samples in this site, the associated cluster was number one, with a few 

exceptions in April and November, when cluster two had some apparitions, maybe due to rain.  

Cluster two was mostly present in site 5255, which is a stubble site, but then disappeared in November of 2016 

and made way for cluster 4 from that moment. This could indicate that for the first six months of monitoring, 

there was not much biophonic activity, but the following six months more species started to sing, probably 

because of a climatic factor.  

  

Figure 3.7 Temporal Classification of samples per site in the Jaguas case. 
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Cluster four and one alternated from November of 2016 to February of 2017 in the pasture site with recorder 

5257. However, in the first and last monitored months, cluster five was more dominant. This site seemed to 

vary its acoustical activity by seasons, but apparently there were always some singing species in this place.  

The same cannot be said about site 5253, which seemed to be a rather lacking space of biophonic activity, but 

with more presence of geophony. Finally, pasture site 7125 could have sometimes dominance of geophony 

(explained by cluster 3) or some biophonic activity (indicated by cluster 5).  

Summing up, forest presented more occupied bands, indicating more species singing constant and periodical 

calls. Pasture seemed to be more of a passage area, where geophony dominated for some seasons, but species 

calls were still noticeable. Lastly, stubble sites did not present continuous and periodical sounds, but rather 

random sounds, probably due to geophony influence; also, did not seem a preferred space for making calls, 

given that not many frequency bands were occupied. 

 

3.2. Dry Tropical Forest Transformation Application 
 

This database was provided by the institute Alexander von Humboldt5. The original project was aimed to 

understand the biodiversity changes due to landscape transformation and succession in the Colombian tropical 

dry forests (Rodríguez-Buritica, 2017). Given the dimension and the heterogeneity of the dataset, in this work 

we only selected a subgroup of recordings from the Cañas river basin in the Guajira and Arroyo river basin in 

Bolivar. 

3.2.1. Database Description 
  

From December of 2015 to March of 2017, a series of recording sessions were realized in different points of 

the Cañas river basin and the Arroyo river basin in the Colombian Caribbean region. The sessions were 

established to record continuously for five days, then stop for another five days and restart this process during 

approximately one month. This process was repeated for other months during this period. However, in practice 

we found that this protocol was not strictly followed, or some recordings were missing, which negatively 

affected the model performance. A complete description of the selected recording sessions is presented in 

Table 3.10. 

The recorders were programmed to register acoustical activity every 10 minutes. The resulting audio files were 

monoaural, presented a digital format of 16-bit PCB (𝐷 = 16), a sampling frequency of 48,000 Hz (𝐹𝑠 = 

48,000 Hz) and lasted five minutes (𝑑 =  300 𝑠𝑒𝑐). In general, the exact monitored sites were not repeated 

between sessions, except for sessions 3 and 7, sessions 4 and 5, sessions 10 and 12 and session 11 and 13. 

For this application, we chose the recording sessions made by the same model of recorders: Wildlife Acoustics 

SM3. We found that SM2 recorders were also present in the original dataset and configured with the same 

settings as SM3 recorders, which actually produced significant differences in intensity (Eldridge et al., 2018). 

                                                                 
5 http://www.humboldt.org.co/es 

http://www.humboldt.org.co/es
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The recording sessions were also selected to obtain a balanced model respecting the ecosystem 

transformation, which is the ecosystem type for this case.  

Table 3.10 Description of the selected recording sessions for the Humboldt Application. The rows are colored according to 
their transformation value. 

Session 
Number 

Region Transf. Recorder Location 
Initial Date 

(AAAAMMDD) 
Final Date 

(AAAAMMDD) 
Number of 
Recordings 

1 Guajira High 5067 
11.213 N, 
73.434 W 

20151212 20160123 3,239 

2 Guajira High 5071 
11.214 N,  
73.44 W 

20161221 20161231 786 

3 Bolívar High 5071 
9.896 N, 

75.162 W 
20160305 20160326 1,332 

4 Bolívar High 5069 
9.893 N, 

75.139 W 
20160224 20160228 574 

5 Bolívar High 5071 
9.893 N, 

75.139 W 
20170123 20170204 1,087 

6 Bolívar High 5071 
9.888 N,  

75.141 W 
20170213 20170314 628 

7 Bolívar High 302143 
9.896 N, 

75.162 W 
20170123 20170224 2,476 

8 Guajira Low JSC5069 
11.197 N, 
73.436 W 

20151212 20160123 3,237 

9 Guajira Low 302143 
11.198 N, 
73.435 W 

20161221 20170114 1,103 

10 Bolívar Low 5071 
9.908 N, 

75.187 W 
20160224 20160227 576 

11 Bolívar Low 5071 
9.899 N, 

75.192 W 
20160214 20160217 576 

12 Bolívar Low 302151 
9.908 N, 

75.187 W 
20170202 20170313 2,597 

13 Bolívar Low 302298 
9.899 N, 

75.192 W 
20170123 20170206 1,440 

14 Bolívar Low 302298 
9.903 N, 

75.185 W 
20170212 20170306 1,571 

15 Guajira Medium 5072 
11.167 N, 
73.444 W 

20151212 20160102 2,010 

16 Guajira Medium 302151 
11.168 N, 
73.431 W 

20161221 20170120 2,219 

17 Bolívar Medium 5070 
9.94 N, 

75.170 W 
20160214 20160316 1,865 

18 Bolívar Medium 5067 
9.936 N, 

75.159 W 
20160214 20160326 2,535 

      Total 29,851 
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For the classification of the sites, the institute Alexander von Humboldt collected forest/non-forest layers from 

satellite imagery in the period between 1990 and 2012. Then, forest patches (of 30m x 30m dimension) were 

classified as “retained” if they were old forests, “lost” if they were younger forest than 4 years old, or “new” if 

they were older forest than 4 but younger than 22 years old. Consequently, high transformation zones 

corresponded to more proportion of lost forest than retained or new, low transformation zones presented 

higher proportion for retained or new forest and medium transformation zones were an approximate balance 

between forest and non-forest (see the third column of Table 3.10).  

 

3.2.2. Preprocessing Results 
 

Using the 𝑃𝑆𝐷𝑛 algorithm, a total of 2,861 recordings were removed from the analysis due to heavy wind or 

rain, for 9.58% of the total recordings. 

 

3.2.3. Features Extraction Results 
 

Similar parameters to Jaguas’ were chosen for computing the set of features. Given that this is a comparative 

study, notice that the details for feature calculation are not relevant as long as the main concept is respected, 

and it is uniformly applied to the data samples.  

For this case, the discarded metrics from Table 3.4 were not computed to speed up the process. This omission 

was made on the assumption that the correlation converges as the number of samples increase. Then, since 

Jaguas case had a considerable number of samples, the obtained correlation represented a generalized 

measure that could be applied to other applications. Also, 𝐻𝑣  was replaced by 𝐻𝑚  because in a previous result, 

the former had presented a lower 𝑀𝐴𝑃𝐶. This change should not affect the results, because these features 

were highly correlated.  

In this application the ACIft index presented nan values as well. For this reason, 7 more recordings were 

discarded. In total 9.6 % of the initial database recordings was rejected in the previous and current stage. 

Finally, the averages were computed over the days with at least 120 recordings (the proportion of minimum 

required recordings was maintained; remind that in this study the number of recordings per day doubled 

Jaguas’). A total of 143 daily samples were obtained. These samples were also standardized using (2.31). 

 

3.2.4. Feature Selection Results 
 

An additional correlation analysis between the remaining features was executed. Although Jaguas correlation 

analysis showed a general relation between features, the small number of samples for this case could lead to 

an increase of 𝑃𝐶𝐶 for some features. Indeed, we found that the 𝑃𝐶𝐶 for M and 𝑅𝑀𝑆 was higher than 0,9 as 
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well as the 𝑃𝐶𝐶 for ACIft and FM (the respective Jaguas’ 𝑃𝐶𝐶𝑠 were 0.72 and 0.81). Consequently, we removed 

M and ACIft from the analysis.    

Next, we calculated the F-value for the obtained features given the transformation of the training samples. 

Figure 3.8 shows the resulting F-values. 

 

Figure 3.8 F-value for the selected features in the Humboldt application. 

Observe that the features with highest F-value correspond to temporal complexity or intensity metrics; 

conversely, frequency complexity measures (as 𝑁𝑃 and ACItf) presented the lowest values, indicating that the 

number of singing species did not differ much between transformations. Note also that the highest F-values 

are much lower than Jaguas’, which could be due to the dataset size difference or the difficulty in this case for 

identifying ecosystem types from acoustical measures. In Figure 3.9 we inspected the boxplots of the three 

highest scored features. 

The boxplots confirmed that it was very difficult to separate transformation types given the soundscape 

features. Low and medium transformations seemed to present similar values for CF and 𝐻𝑡  but differed a little 

in their 𝑅𝑀𝑆 values. Nonetheless, transformation high and low were very similar for this last feature. 

Apparently, the low transformation could be easily confused with the other transformations on the acoustic 

level. 
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Figure 3.9 Grouped boxplots by ecosystem type for the three soundscape features in the Humboldt application 

Lastly, we computed the 𝐴𝐷𝐼𝑠 values maintaining the analysis up to 11 kHz. Soundscape studies usually limit 

to this frequency band, because higher frequencies present little information (Gage & Axel, 2014; Pijanowski, 

Farina, Gage, Dumyahn, & Krause, 2011; M. Sankupellay et al., 2016). The final feature vector is described in 

Table 3.11. 

Table 3.11 Final feature vector for characterizing a daily sample in the Humboldt application. 

Soundscape 

feat. 
Biodiversity features 

𝑅𝑀𝑆 𝐻𝑡 CF 𝐴𝐷𝐼1 𝐴𝐷𝐼2 𝐴𝐷𝐼3 𝐴𝐷𝐼4 𝐴𝐷𝐼5 𝐴𝐷𝐼6 𝐴𝐷𝐼7 𝐴𝐷𝐼8 𝐴𝐷𝐼9 𝐴𝐷𝐼10 𝐴𝐷𝐼11 

 

3.2.5. Model Set Up Results 
 

In this case the 𝑁𝑚 values were tested in the range between one and five, and the Nc values were tested in the 

range between three and fifteen, because higher Nc values were slowing down the Baum-Welch algorithm. The 

resulting MSEs are displayed in Table 3.12. 

As shown in Table 3.12, the best Nc x 𝑁𝑚 combination was 10 x 4. In this case, five states were replications of 

the others, then the model was reconfigured for having only five states and the Baum-Welch was repeated 20 

more times. This process was repeated until the states were unique. At the end, only three states remained. 

Figure 3.10 and Table 3.13 summarize the final model. Figure 3.10 shows the mean vectors for each cluster and 

Table 3.13 presents the transition matrix 𝐴 and initial probability 𝜋 of the resulting model. 

Although there were three final states, states two and three were very similar; the main difference between 

them was that state two had lower ADI values for the lowest frequency bands, whereas state three had lower 

ADI values for the highest frequency bands. These values indicate that state two presented a little more 
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information in the upper bands and state three had more information at the lowest bands. Besides, state two 

presented a lower 𝑅𝑀𝑆 value, which is related to intensity, meaning that either the sound sources were further 

than in state three, or the soundscape was quieter. In general, these two states should present monotonous 

soundscapes, either for continuous sounds or silence. 

Table 3.12 MSE values for all the possible combinations of Ng and 𝑁𝑚  in the Humboldt application. The table cells are colored 
according to their values. Greener cells indicate lower MSE and redder cells indicate higher MSE. 

Values for Nc 

Values for 𝑵𝒎 

1 2 3 4 5 

3 1,192.40 1,192.40 1,150.22 1,065.53 1,114.81 

4 1,192.40 1,192.40 1,117.79 1,077.29 1,071.45 

5 1,192.40 1,192.40 1,126.38 1,043.69 1,077.86 

6 1,192.40 1,192.40 1,111.73 1,011.58 1,079.30 

7 1,192.40 1,192.40 1,105.63 1,023.93 1,019.30 

8 1,192.40 1,192.40 1,112.03 1,052.14 1,040.70 

9 1,192.40 1,192.40 1,097.48 1,023.84 1,034.57 

10 1,192.40 1,192.40 1,112.92 996.51 1,031.56 

11 1,192.40 1,192.40 1,112.61 1,035.74 1,026.51 

12 1,192.40 1,192.40 1,087.09 1,011.76 1,034.42 

13 1,192.40 1,192.40 1,098.34 1,003.85 1,037.21 

14 1,192.40 1,192.40 1,113.04 1,025.92 1,055.41 

15 1,192.40 1,192.40 1,096.56 1,047.31 1,037.45 
 

 

Figure 3.10 Mean vectors for the resulting clusters in the Humboldt application. 

On the other hand, state one presented more randomicity expressed by its high levels of 𝐻𝑡 and 𝐴𝐷𝐼𝑠. 

Therefore, this state should represent more chaotic soundscapes. 

Finally, notice that CF was approximately the same for the three states. This indicates that in general, the signal 

peaks did not separate as much from the effective value (𝑅𝑀𝑆).  

The transition probabilities indicate that state two would be the intermediate state for states one and three, 

given that its transition probability to either of these states was the same. Nonetheless, once the sequence 

reached state one, it was very difficult for it to pass to a different state. Notice that state one was the most 
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stable and isolated cluster but was also the most likely starting point, as happened to cluster six in Jaguas’ case. 

Lastly, state three had a high probability to pass to state two, which makes sense given their similarity, however 

it was almost impossible for this state to pass to state one. 

Table 3.13 Transition matrix (A) of the resulting model in the forest transformation case. The initial probability for each state 
(𝜋) is represented by row 0. Each cell represents the transition probability of the row state (i) to the column state (j). The 
greener the cell color, the higher probability for that transition, and the red cells indicate low transition probability. Notice 
that the row’s sum equals one. 

Current State (i) 
Next State (j) 

1 2 3 

0 0.5556 0.2593 0.1852 

1 0.9268 0.0488 0.0244 

2 0.0714 0.8572 0.0714 

3 0.0000 0.2632 0.7368 
 

3.2.6. Model Implementation Results 
 

In this stage we implemented the Viterbi algorithm to find the final classification and we inspected the relation 

between the obtained clusters and the ecosystem transformations. In Figure 3.11 we used pie charts to 

estimate the transformation composition of each of the resulting states for the training dataset. We found that 

each cluster could be associated to an ecosystem transformation (see Table 3.14), but the average proportion 

for the assigned transformations was 56.57% for all states. In other words, we should not expect that a given 

cluster would produce always the same transformation, although most of the emissions would correspond to 

the assigned label.  

Table 3.14 Cluster’s label according to their training data distribution in the Humboldt case.  

Label Low Transformation 
Medium 

Transformation 
High Transformation 

Cluster number 1 2 3 

 

Given this assignation and looking back at Figure 3.10, we might also conclude that the high and medium 

transformations presented similar soundscapes and the low transformation soundscape tended to be very 

different. However, low transformation had an important presence in the medium and high clusters, which 

made it the most changing soundscape of the three. 

Next, with the ecosystem type assignation to each cluster and the Viterbi algorithm results for both training 

and testing data, we computed the confusion matrices to assess the generalization capacity and classification 

accuracy. The compound matrix is displayed in Table 3.15.  
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Figure 3.11 Training distribution of ecosystem transformations in the resulting clusters. 

Table 3.15 Normalized confusion matrix for the training and testing Humboldt datasets. Notice that the sum of the rows 
equals one. Greener cells indicate higher values, redder cells indicate lower values. 

True Transformation Dataset 
Predicted Label 

3 (High) 1 (Low) 2(Medium) 

High 
Training 0.37 0.31 0.31 

Testing 0.11 0.44 0.44 

Low 
Training 0.17 0.71 0.12 

Testing 0 0.56 0.44 

Medium 
Training 0.05 0.38 0.56 

Testing 0.1 0.2 0.7 
 

The matrix showed that the model was not sufficiently generalized because the dataset was too small. On the 

other hand, the classification results indicated that the model identified 68% of the total low transformation 

samples, 58.8% of the medium transformation samples and only 31.8% of the high transformation samples. 

A temporal analysis was not presented because the locations were not continuously monitored, and the 

sequences were very short (the average sequence lasted 4.63 ± 3.62 days)  

In conclusion, this methodology was not the best for this application. Although the original Humboldt’s study 

analyzed image information for approximately 30 years (Rodríguez-Buritica, 2017), the acoustical analysis 

period was much shorter and irregular, presenting considerable gaps.  GMMHMM is a sequential model, which 

requires long sequences to be properly trained and the dataset was both small and too heterogeneous to have 

long sequences. Consider also that in theory the methodology was applied to the same ecosystem type: tropical 

dry forests but with different ages. From this point of view, it seemed reasonable that the frequency complexity 

(related to the species diversity) did not vary between transformations. Additionally, the transformation 
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classification was applied to large areas, whereas this methodology is rather for local problems given the scope 

of the recorders. 

Nonetheless, we might conclude that in this application, a high general entropy (temporal and biophonic) would 

represent older forests, whereas younger forests would present mostly monotonous chorus. Besides, both 

studies indicated that the better-preserved habitats would have high transition probability from the assigned 

state and itself, and that their initial probability would be high as well. 
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Chapter 4. Conclusions 
 

4.1. Summary 
 

In this work, a new methodology for assessing ecosystem change through ecoacoustics analysis was proposed. 

Firstly, the elimination of noisy recordings was executed using an automatic threshold on the 𝑃𝑆𝐷 values in the 

600 – 1200 Hz band. Secondly, the most common ecoacoustics indices and other acoustical features for 

soundscape analysis were analyzed using the Pearson correlation coefficient and the calculation of ANOVA F-

value. The first was used to detect similar features and remove the duplicates to avoid redundancy, the second 

led to find the fittest features for the application and comprehend the main acoustical differences between the 

ecosystem types. After selecting the soundscape features, the biodiversity features were computed per band 

as a modification of the ADI. These values allow to recognize the frequency bands with more information or 

entropy, due to either random calls or geophony when generalized across the spectrum. Lastly, the model was 

adjusted using hidden Markov models with Gaussian mixture emissions. This model identified the main 

acoustical patterns that produced the observations. Each of the resulting states could be associated to a specific 

ecosystem type, but this was not the main purpose, but to recognize stationary and transitory acoustical 

patterns, which could be common to all types of habitat. The GMMHMM was also used to analyze the data as 

a time series and recognize the probable transitions between states on a daily basis.  

The methodology was developed for the Jaguas study in the first place. The purpose of this study was to identify 

the acoustical signature of three ecosystem habitats by distributing two recorders per ecosystem type and 

registering the acoustical activity for over a year. The model identified six clusters: two were mostly assigned 

to forest samples, three had mostly stubble data and one presented a pattern almost unique for pasture sites. 

The classification led to a correct recognition of the 81% for forest, 51.2% for pasture and 96.6% for stubble. 

We could also recognize that the forest soundscapes presented more uniformity in their sounds, more occupied 

frequency bands (related to the number of species) and more biophonic intensity. On the other hand, the 

stubble soundscape had more entropy in their sounds, which was related to geophony but less biophonic 

activity. Finally, the pasture sites had the most versatile soundscapes with both geophony and biophony 

alternating during the year. 

A second case in the Colombian Caribbean was used to apply the methodology. In this case, the recordings 

comprised a longer time span, but there were few continuous daily records. Additionally, the ecosystem types 

corresponded to forest transformations, which could be best interpreted as forest longevity. The resultant 

model did not present an accurate generalization capacity, given the heterogeneity and small size of the 

dataset. However, it showed that there was not a striking acoustical difference between high and medium 

transformed forests, whose age is less than 30 years old; but showed that older or low transformed forests 

presented a different acoustical signature to the rest, with more entropy across the spectrum. The model 

identified three underlying states, which we associated to the transformation levels and resulted in the 

recognition of 68% of the low transformed forest samples, 58.8% for the medium transformation and 31.8% 

for the high transformation. 
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In conclusion, this methodology is more appropriate for long term studies with uninterrupted sampling, 

preferably several times per day. It also requires the correct classification of the monitored habitats, for 

obtaining clusters that, associating to the studied ecosystem types, would be easier to interpret. 

 

4.2. Contributions of this work 
 

The proposed methodology made the following contributions to the ecoacoustics field: 

 

4.2.1. Automatic removal of noisy recordings due to geophony 
 

Based on the algorithm proposed by Bedoya et al. for rain detection (Bedoya et al., 2017), we proposed an 

automatic threshold for identifying the recordings with very high levels of geophony that would introduce noise 

to the analysis. We noticed that this threshold did not only discard recordings in which heavy rain was present, 

but it also detected intense wind, which could also mask most of the acoustical activity. Notice that our interest 

was not to discard all recordings with geophonic presence, because these sounds are an important part of the 

soundscape and may explain some characteristics of biophonic behavior (such as the acoustic adaptation 

hypothesis (Sueur & Farina, 2015)). Therefore, this threshold is suggested for soundscape applications and not 

for specific species study, in which biophony needs to be isolated and all geophony should be removed. 

Although noise filtering is desired for most ecoacoustic studies, we only found Towsey’s report addressing this 

problem in this field (Towsey, 2013). However, as himself put it, this method was aimed at removing constant 

sounds during a recording, that could correspond to any of the soundscape components, probably leading to 

an important loss of information. Since our method focuses in a frequency band typically occupied by 

geophony, we consider that it gives more information to the user about the type of noise that it is rejecting. 

 

4.2.2. Analysis of ecoacoustic indices similarity 
 

Most of the studies involving ecoacoustic indices are directed towards the identification of certain ecological 

qualities of the monitored habitats. These ecological qualities could include species richness (e.g. (Harris, 

Shears, & Radford, 2016)), ecosystem type (e.g. (Eldridge, Casey, Moscoso, & Peck, 2016)), landscape 

configuration (e.g. (Fuller et al., 2015)) etc. However, we did not find an actual study that compared the indices 

measurements to identify those who provided the same information. In this work, we computed the Pearson 

correlation coefficient for every pair of acoustical features to find the most representative features of all. For 

instance, we found that ADI is highly correlated to AEI, H and 𝐻𝑠, therefore using the four indices for a study 

would be redundant. Although these results, specially Jaguas’, should show a general tendency; smaller scaled 

studies could present considerable differences in the features similarities given the bias of limited sampling. 
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4.2.3. Automatic recognition of daily soundscape patterns 
 

Automatic recognition algorithms have been used mainly on the biophonic level for species identification 

(Bedoya et al., 2014; Eldridge et al., 2018; Tucker et al., 2014), but rarely used for characterization of terrestrial 

soundscape patterns and connection to habitat structure (Bormpoudakis et al., 2013; Ulloa, Aubin, Llusia, 

Bouveyron, & Sueur, 2018). 

When the state of the art of this research was established, only Bormpoudakis et al. work had used clustering 

algorithms for grouping and linking soundscape patterns to ecosystem type (Bormpoudakis et al., 2013). 

However, this study was made on a small dataset, for a very specific time of the day and year and avoided other 

elements of soundscape as geophony and technophony. Therefore, the scope of its findings was very reduced.  

Towards the end of our research, we discovered Ulloa et al. work, which identified regions of interest (ROIs) in 

the recordings, grouped them by unsupervised algorithms and characterized two types of ecosystems by using 

heat maps showing the distribution of the ROIs clusters (Ulloa et al., 2018). This study was also tested on a small 

dataset, for diurnal recordings and focused mainly on biophonic calls, given the procedure for the detection of 

the ROIs. 

Although our methodology highlights the importance of biophonic sounds by extracting a higher number of 

features for characterizing this component (the 𝐴𝐷𝐼𝑠), it does not discard the remaining soundscape 

components (geophony and technophony) from the recordings, because they are a relevant part of the 

ecosystem acoustical signature and model the communication behavior of communities as well. Besides, our 

analysis unit, which is the daily average of the recordings, encompasses all the acoustical information in the 

day, detailing the totality of the acoustical processes in the monitored site. 

 

4.2.4. Temporal relation of soundscape patterns 
 

Many studies have addressed the temporal variation of soundscapes (Bernie Krause et al., 2011; Matsinos et 

al., 2008; Mullet et al., 2016) but none of them has proposed an inner model that explains the relation between 

soundscape patterns and their stationary or transitional probabilities.  

This feature allows our method to identify the temporal stability of soundscape patterns, indicating the 

permanence of singing communities; and the natural sequence of acoustical states, finding the seasonality of 

the ecosystem in the acoustical level. Furthermore, the transition matrix could help us detect forthcoming 

ecosystem changes and take early conservation decisions based on that information.  

 

4.3. Publications 
 

During the development of this master’s project, the author published the following preliminary studies: 
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• Duque-Montoya, D. C., Isaza, C. V., & Cano Rojas, E. (2017). Comparación de vocalizaciones de 
Espadarana prosoblepon en Dos Tipos de Ecosistemas usando Agrupamiento Jerárquico. Revista 
Iberica de Sistemas e Tecnologias de Informacao, 24, 13–21. http://doi.org/10.17013/risti.24.13–21 

This work consisted on the comparison of the vocalizations of two Espadarana prosoblepon populations located 

in different sites, a disturbed and a conserved forest. The results showed that the degradation of this species’ 

habitat affected its calls structure. 

• Duque-Montoya, D. C., & Isaza, C. (2018). Automatic Ecosystem Identification Using Psychoacoustical 
Features. In Proceedings of the International Conference on Pattern Recognition and Artificial 
Intelligence - PRAI 2018 (pp. 1–4). New York, New York, USA: ACM Press. 
http://doi.org/10.1145/3243250.3243251 

In this work, psychoacoustical features and two types of machine learning algorithms were tested for forest 

and stubble discrimination. The results indicated that neural networks and two kernel functions of support 

vector machines were able to recognize the difference between forest and stubble by their psychoacoustical 

description. 

• Daza, J. M., Isaza, C., Bedoya, C., Cano, E., Duque-Montoya, D. C., Gómez, W. E., & Sánchez-Giraldo, 
C. (2018). Automating biological monitoring on the Northern Andes of South America: combining 
biology and machine learning for conservation. In J. Gaikad, B. König-Ries, & F. Recknagel (Eds.), 
Proceedings of the 10th International Conference on Ecological Informatics (p. 17). Jena. Retrieved 
from https://icei2018.uni-jena.de/ 

• Duque-Montoya, D. C., Isaza, C., & Daza, J. (2018). Assessing Ecosystem Change using Soundscape 
Analysis. In J. Gaikad, B. König-Reis, & F. Recknagel (Eds.), Proceedings of the 10th International 
Conference on Ecological Informatics (pp. 229–230). Jena. Retrieved from https://icei2018.uni-
jena.de/ 

• Sánchez-Giraldo, C., Cano, E., Gómez, W. E., Duque-Montoya, D. C., Isaza, C., Bedoya, C., & Daza, J. 
M. (2018). Understanding the Relationship between Soundscape and Landscape Features in a 
Tropical Andean Environment. In J. Gaikad, B. König-Ries, & F. Recknagel (Eds.), Proceedings of the 
10th International Conference on Ecological Informatics (p. 18). Jena. Retrieved from 
https://icei2018.uni-jena.de/ 

The previous three works were presented during the 10th international conference on ecological informatics 

(ICEI 2018) in Jena, Germany. The first presentation showed the general results from the application of passive 

acoustic monitoring and machine learning techniques on the conservation of different sites in the northern 

Andes of south America.  The second presentation highlighted the results of our research group in soundscape 

analysis for ecosystem change assessing. And the third presentation showed a study on the relationship 

between ecoacoustic indices and landscape features in the tropical Andean environment. 

 

4.4. Future Work 
 

Extensive work is still to be done in this field. Firstly, ecoacoustics highlights the importance of three soundscape 

components on the acoustical communities: biophony, geophony and technophony. However, little research 

has been done on the latter two components, as the studies keep focusing in the communities’ communication 

behavior. Additionally, the acoustical properties of each of these components is still unclear. Traditional 

methods have assumed each element to be limited on a certain frequency band, but we know that in practice, 

http://doi.org/10.17013/risti.24.13–21
http://doi.org/10.1145/3243250.3243251
https://icei2018.uni-jena.de/
https://icei2018.uni-jena.de/
https://icei2018.uni-jena.de/
https://icei2018.uni-jena.de/


P a g e  | 46 

 

that is not true, and the three elements constantly overlap on the spectrum. This overlapping is precisely one 

of the explanations for changes in the species communication behavior, whereby a key reason for studying all 

soundscape elements is being practically ignored. 

Secondly, further exploration of the soundscape and ecological processes is required. The studies have focused 

on correlating soundscape and biodiversity or landscape configuration but are not going deeper to describe 

soundscape as a manifestation of the underlying ecosystem processes.  For instance, an interesting study would 

relate soundscape characteristics to species migration, as an evidence to the acoustic adaptation hypothesis 

(Sueur & Farina, 2015) and its importance to ecosystem constitution. 

Nonetheless, the limited scope of acoustical recording is still an obstacle to such studies. This observation leads 

to another necessity in soundscape studies, which is the clear definition of the intrinsic limitations of acoustical 

research. The reliability of soundscape findings can be severely affected by the actual spatial scope of the study, 

which is limited by the physical configuration of the monitored site and the nature of the acoustical signals of 

interest.    

Lastly, the relevance of ecoacoustic indices is still uncertain. The proposal of many similar indices indicates that 

biodiversity abstraction from acoustical complexity is not clear yet. Furthermore, recent studies questions the 

validity of many acoustic indices, either for their theoretical basis (Sandoval, Barrantes, & Wilson, 2018) or for 

their actual applicability (Eldridge et al., 2018). For future applications a decision must be made either to 

continue to find a universal descriptor of ecoacoustic complexity, or to define application-specific features that 

maximize soundscape description. 

Personally, I think that the current state of the art demands for more studies of the last type, for which machine 

learning algorithms present as valuable tools. Nonetheless, a better understanding of specific soundscape 

patterns would lead us inevitably to associate similar findings and slowly construct a formal theory from where 

the definitive ecoacoustical features would emerge. 
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