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The role of Ti in improving the thermodynamics of hydrogen desorption in crystalline sodium
alanate(NaAlH,) has been investigated by using the density functional theory. The total energy
calculations reveal that Ti prefers to occupy the Na site over that of the Al site when the atomic
energies are used as the reference. However, the use of the cohesive energies of Al, Na, and Ti leads
to the Al site being the least unfavorable one. Irrespective of whether Ti occupies the Na or the Al
site, the energy necessary to remove a hydrogen atom from Ti substituted sodium alanate is
significantly lowered from that of the pure alanate. The understanding gained here may help in
designing hydrogen storage materials suitable for industrial applicatio@®0® American Institute

of Physics[DOI: 10.1063/1.1953882

Interaction of hydrogen in matter has been a topic ofthe role of Ti in lowering the hydrogen desorption tempera-
interest for more than a century. While the early interest inture. It is necessary, for instance, to clarify the effect of Ti on
hydrogen was motivated by the deleterious effeittas on  the different contributions for the hydrogen binding energy
the mechanical stability of materials, the recent interesand what is important in the design and synthesis of new
stems from the hope that hydrogen may be used in clean adidht metal hydrides suitable for hydrogen storage.
renewable energy production processes as well as an energy In this letter, we provide a theoretical study of the role of
carrier? It is generally acceptédthat the biggest hurdle in Ti in diminishing the hydrogen binding energy in the crys-
achieving successful hydrogen-based economy lies in ouslline sodium alanatéNaAlH,). This effect is one of the
ability to find a safe, efficient, and cost-effective means formain contributions which causes a decrease in the hydrogen
storing hydrogen. In respect to that, a great deal of attentiodesorption temperature. Using the state-of-the-art theoretical
has been paid to the study of complex alkali alanategalculations, we show that Ti weakens the strength of the
(MAIH 4,M=Li,Na) (Ref. 4 mainly due to their high hydro- covalent bond between Al and H atoms, thus allowing the
gen content. In these compounds, however, the hydrogen atydrogen to desorb at a lower temperature. Such bond weak-
oms are held by strong ionic and covalent bonds resulting irning is shown by evaluating the electron localization func-
higher dissociation temperatures and slower hydrogetion (ELF) (Ref. 16, as well as the electronic density of
absorption/desorption kinetics than those ones desired fatates(DOS) for both the intrinsic crystal and when a Na
practical applications. Such limitations were demonstrated tatom is replaced by a Ti. This result is further established by
be overcome by the addition of Ti-based catalystis im-  calculating the energies needed to remove a hydrogen atom
portant finding has led to a great deal of excitement. Howfrom both the NaAlH and Ti-doped NaAlkj. We have found
ever, a full understanding of how and why Ti accomplishesthat it is 4.0 eV for the former and 1.9 eV for the latter. In
this task is still lacking. the following, we provide the details of our theoretical cal-

A number of experiments involving x-ray Diffraction, culations and a discussion of our results.
neutron and Raman scattering, and electron spectroscopy In order to study the electronic structure and total ener-
have yielded conflicting results. While some of them suggesgjies, we constructed a>22x 1 supercell consisting of 96
that Ti occupies the Na sites in the bulk lattfceothers atoms(NaygAl 16Hg4). To model Ti substituted at the Na and
report the presence of Ti on the surface in the form of amora| sites, we have used théNa<Ti)Al;gHe, and Nag
phous Ti-Al alloys’ A recent experimental result has even (Al Ti)Hq, supercells, respectively. The hydrogen vacancies
suggested that Ti must diffuse in the bulk during theare modeled by the NgAl1gHgs and (NayeTi)Al1gHss SUper-
absorption/desorption cyc_hrild.The role of Ti in lowering  cg|is. The calculations were carried out within the framework
the hydrogen desorption is also unclear. Some studies hayg generalized gradient approximaticiGGA) to density
found that the improvement of the hydro_er; cycling kineticsgnctional theory(DFT) (Ref. 17 using projector augmented
is due to surface-localized cata_ly_nc spe &8 while othe_rs plane wave(PAW) method® as implemented inAsP code?®
speculate about the effect of Ti in the bliRhe energetics  \we ysed a cutoff energy of 500 eV for the plane-wave basis.
of the prefe4rle5nt|a| sites for Ti have been investigated, g calculations, self-consistency was achieved with a tol-
theore'ﬂcally? "“”However, no calculations are available that orance in the total energy of 0.1 meV. The DOS were calcu-
determine the energy needed to remove a hydrogen atofgeq by means of the modified tetrahedron method of Bléchl
from pure, as well as Ti doped, sodium alanate. Thus, theos; 512030 the ELF were calculated according to Ref. 16.
retical studies are still required in order to fully understandyy,o geometry optimization has been ddiic coordinates
andc/a ratio) by minimizing the Hellmann—Feynman forces
dElectronic mail: rajeev.ahuja@fysik.uu.se on the atoms and stresses on the supercell. The structures are
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fully optimized without any symmetry constraint. The calcu-
lated lattice constanta=4.95 A andc=10.89 A, as well as
the Na—Al and Al-H distances of 3.50 A and 1.64 A in pure
sodium alanate, compare very well with the corresponding
experimental values of 4.98 A, 11.15 A, 3.52 A, and 1.63 A,
respectively.

We first investigate the energetics of preferential sites for
Ti atoms. It is done by evaluating the cohesive energy of the
NaygAl 16Hga (NaysTi)AlgHes and Nag(Al4sTi)Hgys super- ‘
cells. Such energy is defined as the total energy of the syster
minus the sum of individual energies of atoms. By setting the
cohesive energy of pure alanate to zero, we found the value
of —=1.47 eV and -0.54 eV when Ti occupies the Na and Al
sites, respectively. The negative signs mean that the Ti-dope;
(NaAlH,) is more stable than the pure one. It should be
pointed out that such a stability analysis is made by taking
the isolated Ti, Na, and Al atoms as a reference. Further-
more, the Ti atoms prefer to replace the Na atoms, and this
energy is 0.93 eV lower than that when Ti replaces the Al (a)
atoms. These results are in agreement with the calculation
of Iniguezet al**@ However, we should also point out that
different conclusions can be reached about the site prefer
ence of Ti if one uses the cohesive energies of Na, Al, and Ti
as a reference, as has been done by Loetikl**® How-
ever, the energies necessary to remove hydrogen following
Ti doping are less, irrespective of whether Ti occupies the Na
or the Al site. In addition, it is necessary to perform the
surface total energy calculations before concluding if Ti
would prefer to occupy the bulk sites. Such a study is in
progress and the results will be reported in due course.

Next, we discuss the effect of Ti doping on the electronic
structure of sodium alanate. We do this by comparing the
ELF as well as the electronic DOS for NAl;¢Hes and
(NaysTi)AlgHg4 supercells. The ELF has been recognized as
a powerful tool to visualize different types of bonding in
solids and molecule?.’ﬂ'zzAccording to its definition, the
ELF can assume values in the range of 0-1, where 1 corre
sponds to perfect localization and 0.5 to the case of uniform(p)
gas. In Fig. 1a), we display the two-dimensional distribution
of ELF on (001) p|ane, where the color bar runs from the FIG. 1. (Color onling .The two-dimen_sional distribution of ELF o(®©01)
lowest (dark blug to the highes{red values. One can ob- E:‘rnﬁjgflr’grtnh(t"ﬁe'\'lzﬁ';gﬂ?“kab'rgébt)oTt'r'laﬁngeﬁ';'f;‘eZ)“f’/‘;ﬁg!s' The color
serve the high ELF within the Al[Hunit which confirms the '
expected covalent boding between H and Al atoms. The very
low values of the ELF between AlHand N4 reflectits ionic  found that the Al-H bond length varies between 1.63 A and
bonding. When Ti replaces a Na atom, the ELF profile1.70 A.
changegsee Fig. 1b)]. One can see a more or less uniform  |n Figs. 2a)—2(h), we show the total and partial DOS for
distribution of ELF in the interstitial region between the Ti both the NagAl gHgs and (NaysTi)AlgHgs supercells. The
and AlH, unit (with values in between 0.3 and 0.6 hisisa  pristine sodium alanate is an insulator characterized by a
typical picture of the metalliclike bondin?ﬁ.Such nature of pand gap of nearly 5.0 eV. The uppermost region of the va-
Ti—AlH, bond is because the ionization potential of Tilence band(VB) is mainly composed by hybridization be-
(6.83 eV is higher than that of N&5.13 eV}, so it is ener-  tween H & and Al 3p stategsee Figs. &) and 2d)], which
getically less favorable for Ti to transfer its electron to AIH is consistent with the covalent bond within the Alidnit.
as Na did. As a consequence, the nature of the Al-H bond i$he bottom of the conduction band just above the Fermi
also changed. One can observe that the ELF in the interstitisaével is formed primarily by N& and p antibonding states
region between Al and Kthe ones that are nearest neighbors[see Fig. 20)]. This is consistent with the ionic bonding
of Ti atom) is clearly diminished. This shows the weakening between Na and Aliiunit discussed above. As Ti replaces
of the strength of covalent bonding between them. Indeedhe Na site, Ti state appears in energy gap reducing the band
the bonding shows metallic character and the hydrogen agap and these states originates fromdTstates[see Fig.
oms nearest to Ti have weaker binding energy. They carg(f)]. This is consistent with the above finding that the bond
therefore, be desorbed at lower temperatures. Another conseetween the Ti and Aliunit is not ionic. The effect on the
guence of this ELF profile modification is the distortion ob- Al-H bond can be seen in Figs(@ and Zh). Here, we have
tained for the AIH tetrahedral structure. Here, we have plotted the partial DOS for the Al and H atoms belonging to
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insulator where the hydrogen is bonded to Al covalently and
Na and AlH, units are bound ionically. As Ti replaces the Na
site, the strength of the covalent bond between Al-H is
weakened and this is what results in a lower hydrogen bind-
ing energy. As a consequence, they can be desorbed at a
lower temperature. The reason why Ti weakens the Al-H
) bond strength is that the ionization potential of(§i83 eV}
WD is higher than that of N&5.13 e\). Thus, the bonding be-
16 tween Ti and AlH unit is weaker than that between Na and
: AlH, as it is energetically less favorable for Ti to transfer its

8 electron to AlH, as Na did. Thus, one can lower the desorp-

L tion temperature by weakening the Al-H bond. This result is
further confirmed by calculating the energy needed to re-
move one hydrogen atom from both the intrinsic and Ti-
doped sodium alanate. We have found that it costs 4.0 eV for
the former, whereas it costs only 1.9 eV for the latter.
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