
DATMA: Distributed AuTomatic 

Metagenomic Assembly and Annotation framework 

Autor 

Bernardo Andrés Benavides Arévalo 

 

 

Universidad de Antioquia 

Facultad de Ingeniería, Doctorado en Ingeniería 

Electrónica 

Medellín, Colombia 

2019 



DATMA: Distributed AuTomatic  

Metagenomic Assembly and Annotation framework 

 

Bernardo Andrés Benavides Arévalo 

 

 

 

Tesis Doctoral 

como requisito para optar al título de: 

Doctor en Ingeniería Electrónica 

 

 

 

Asesor   

 

 

Ph.D. Felipe Cabarcas Jaramillo 

 

 

 

 

 

Universidad de Antioquia 

Facultad de Ingeniería. 

Medellín, Colombia 

2019. 



iii

Declaration of Authorship

I, Bernardo Andrés BENAVIDES ARÉVALO, declare that this thesis titled “DATMA:

Distributed AuTomatic Metagenomic Assembly and Annotation framework” and

the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-

gree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed my-

self.

Signed:

Date:





v

Abstract

Bacterial populations have colonized almost every possible niche on Earth, includ-

ing those considered harsh for most organisms. These extreme physical conditions

make it hard to get genetic information from the organism community. Next-generation

sequencing has provided a large amount of DNA data that can be used by researchers

to study environmental samples using culture-independent shotgun metagenomic

experiments. Metagenomics has made it possible to explore the large variety of mi-

croorganisms present in many complex ecosystems, like soils, oceans, biosolids, hot

springs, among others. Moreover, it has allowed the identification of novel bacterial

and archaeal species, generating complete or near-complete genomes. It has helped

filling blind spots into underrepresented or missed taxonomical clades.

One of the main challenges in the metagenomic analysis is the assembly process.

Microbial communities are complex, bacteria have different genome size and abun-

dances, some regions of their genome are very similar, and metagenomic sequencing

results in a mixture of reads from the several microorganisms present in the commu-

nity. Despite the development of dozens of implementations for de novo assembly for

metagenomics, they have not eliminated the high risk of assembling reads from dif-

ferent organisms as a single chromosome, which creates chimeric molecules. One

alternative to address this is to separate reads in groups (binning) before the assem-

bly process. Given that most assemblers consider that the reads belong to a single

species, by grouping highly similar reads in bins, the assembly complexity and the

probability of creating chimeric contigs are significantly reduced.

In this dissertation, we introduce a binning strategy to group reads from the

same molecule into the single bin. We named our method CLAME. We showed that

CLAME decreases the complexity of metagenome, and allows recovering almost

complete bacterial genomes. We also introduce DATMA, an integration of CLAME

into a distributed workflow for metagenomics analysis. DATMA is a pipeline for

fast metagenomic analysis that orchestrates the following: sequencing quality con-

trol, 16SrRNA-identification, reads binning, de novo assembly and evaluation, gene

prediction, and taxonomic annotation.

We show CLAME and DATMA functionality analyzing complex metagenomes

and recovered from them most of its species and, more important DATMA automat-

ically extracted an almost complete genome from the predominant species.
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1

Chapter 1

Introduction

The world is dominated by microorganisms that, although we cannot see, are an

essential part of all biomes on Earth. They contribute with the photosynthesis, help

to produce nutrients for plants and animals. Many of them are used to create phar-

maceutical drugs, enzymes, and other bioactive compounds. Moreover, the billions

of microorganisms that live in the human gut help us to digest food, break down

toxins and fight off disease-caused by others microbes. Unfortunately, it is hard to

obtain information about their genetic composition because most of them cannot be

cultivated [89], [102], [114].

One alternative to study these microorganisms is to use their deoxyribonucleic

acid (DNA) to identify and classify them directly from an environmental sample.

Next-Generation Sequencing (NGS) platforms can sequence DNA from environ-

mental samples without the need for isolating the species. These experiments are

called metagenomics, and they allow the study of microorganisms without the need

for prior cultivation.

Thanks to metagenomics, complex ecosystems like soil, seawater, biosolids, etc.,

have been studied (e.g. [37], [66], [10]). It has been possible to report microorgan-

isms genomes from these environments (e.g. [86], [38]). Since metagenomic NGS

approaches generate millions of short DNA reads from large genomes, one of the

main challenges is to reconstruct genome or genomes from these pieces. This thesis

proposes a technique to address this challenge.

1.1 Computational Challenges in Metagenomics

The primary challenge in metagenomics is to characterize the taxonomic diversity

of microbial communities. Several review papers (i.e., [121], [32]) describe all the

challenges present in a complete metagenomic analysis. In this work, we address

the problem of assembling metagenomic reads and describe the main computational

challenges of metagenomics.
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1.1.1 Metagenome Assembly

We focus this thesis on current DNA sequencing technology that reads short se-

quences of DNA bases (typically 150-1000 base-pairs.) It is the sequencing technol-

ogy that dominates the market. Short-read sequencing means that genomes in the

sample are highly fragmented, and the challenge is to recover them using these small

fragments. Oxford Nanopore technologies [111] are developing strand sequencing,

a method for DNA analysis that could potentially sequence completely intact DNA

strands/polymers passed through a protein nanopore. To date, however, the use of

such technologies in metagenomic settings has been limited because of the complex

sample processing requirements, their error rate, and cost.

Metagenome assembly is complicated since the number of species and strains

and their relative abundance is unknown. Furthermore, we are interested in cases

in which mapping reads to a reference genome is not possible (because most species

are still unknown) and metagenomic assembly is accomplished de novo by recon-

structing genomes directly from the information of overlapping reads. Despite the

development of dozens of implementations for de novo assembly for metagenomics

(e.g., MetaVelvet [73] and metaSPAdes [78]), they have not eliminated the high risk

of assembling reads from different organisms as a single chromosome, which cre-

ates chimeric molecules [105]. In our experiments, for example, their performance

does not generate the expected results, probably because of the complexity of our

samples.

1.1.2 Metagenomic Binning

Since most assemblers (i.e. [125], [77]) consider that the reads belong to a single

species, the assembly complexity and the probability of creating chimeric contigs

can be significantly reduced by grouping highly similar reads in bins. The problem is

that the classification of sequences within a metagenomic dataset is very challenging,

mainly when the experiment includes unknown microorganisms that lack genomic

reference. Moreover, the shotgun process makes that the genomes present in the

metagenome result fragmented in millions of short sequences, making it difficult to

find a biological feature that allows binning them. While dozens of supervised and

unsupervised binning methods (e.g. [122], [118], [123]) are available, there is still

room for improvement.

1.1.3 Computational requirements in metagenomics

The vast amount of information of DNA provided by next-generation sequencing

brings enormous challenges referred to data processing, storage, management, and

interpretation. It may require distributed algorithms, new compressing methods,
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and sophisticated store strategies that allow processing, save and access to this infor-

mation in reasonable time and memory. Therefore, an essential challenge in metage-

nomic studies is to build efficient and robust computational tools that can deal with

the massive amount of sequence data and obtain accurate microbial identification of

hundreds or thousands of species in a reasonable time and memory consuming.

1.2 Problem Statement

A primary objective in metagenomics is to classify DNA sequence fragments based

on their DNA molecule precedence. This task, known as binning, is challenging

for the following reasons. On the one hand, most organisms on an environmental

sample lack taxonomically related sequences in existing reference databases, since

around 99% of bacteria found in environmental samples have not been sequenced.

Consequently, binning methods usually fail to align with confidence the metage-

nomics reads against a reference dataset. On the other hand, current sequencing

technology generates reads whose average length vary between 100 to 1000 pair

bases, depending on the sequencing platform used. Hence, binning methods suffer

from a lack of resolution due to insufficient phylogenetic information in each read.

Although several algorithms and tools perform binning, they are not accurate when

the data size increases or the biodiversity of the sample is different of their assumed

models, and therefore the challenge of binning metagenomic reads is still an open

problem.

1.3 Key Contributions

In this section, we highlight the key contributions of this dissertation.

• A methodology for binning metagenomic reads: We developed a new bin-

ning method that groups metagenomic reads in bins using their biological and

shotgun sequencing properties without the need of a reference genome. We

implemented this methodology in a program named CLAME.

• CLAME software: CLAME, from the Spanish words "CLAsificador MEtage-

nomico," is a C++ program that bins DNA sequences using a graph represen-

tation of the metagenome dataset. We compared CLAMEs performance, and

speed to bin metagenomic reads against different states of the art binning pro-

grams and demonstrated that CLAME can group most reads from the same

molecule faster than the other tools and in many cases better.

• A flexible pipeline for metagenomic data analysis: We designed a Distributed

AuTomatic Metagenomic Assembly and Annotation framework (DATMA). It
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is a bioinformatics tool that can be used to study complex metagenome in an

automated fashion using multiple computing resources. Using DATMA, we

analyzed several metagenomes and proposed two novel draft genomes.

• Xanthomonadaceae_UdeA_SF1 draft genome: We recovered a high-quality

draft genome reconstructed from a Colombian’s Andes hot spring metagenome.

The genome seems to be from a new lineage within the family Rhodanobac-

teraceae of the class Gammaproteobacteria, closely related to the genus Dok-

donella. This draft genome is available on the NCBI project PRJNA431299.

• Anaerolineaceae_UdeA_SF1 draft genome: We used DATMA to study the San

Fernando biosolid metagenome. DATMA allowed us to recover an Anaerolin-

eaceae draft genome. Genome annotation shows that the draft genome seems

to be close to the family Anaerolineaceae and it has a relation with the genus

Pelolinea and Leptolinea. This low-quality draft genome is available on the

NCBI project PRJNA529916.

1.4 Outline

The remainder of this thesis is organized as follows: Chapter 2 gives the theoreti-

cal background of DNA sequencing, metagenomics significance, and an overview of

representative metagenomic projects and typical analysis pipelines. Then, in Chap-

ter 3, we introduce CLAME, a new alignment-based binning algorithm. We show

its computational performance, limitations, and its strategy to address computa-

tional challenges related to downstream analysis. Next, we introduce DATMA a

Distributed Automatic Assembly and Annotation Tool for Metagenomics in Chap-

ter 4. Then, in Chapter 5, we present our experimental setup and results. We

conclude in Chapter 6 and outline future work in Chapter 7.

1.5 Related Publications and Software Development

The work in this dissertation has resulted in several publications and software tools.

Chapter 3

1. Benavides A, Alzate JF, Cabarcas F. Using graph theory for metagenomic

binning. III Congreso Colombiano de Biología Computacional y Bioinfor-

mática (CCBCOL-2015), September 2015.

2. Benavides A, Isaza JP, Niño-garcía JP, Alzate JF, Cabarcas F. CLAME: a

new alignment-based binning algorithm allows the genomic description

of a novel Xanthomonadaceae from the Colombian Andes. BMC Ge-

nomics; 2018;122; doi:10.1186/s12864-018-5191-y.
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3. Jaime Lotero, Andres Benavides, Anibal Guerra, Sebastian Isaza. UdeAlignC:

Fast Alignment for the Compression of DNA Reads. IEEE COLOMBIAN

CONFERENCE ON COMMUNICATIONS AND COMPUTING (COLCOM

2018). May 2018.

Chapter 4

1. Benavides A, Sanchez F, Alzate J.F and Cabarcas F. DATMA: Distributed

AuTomatic Metagenomic Assembly and Annotation framework. PeerJ

Journals. Submitted with Corrections May 2019 (Peer-reviewed, Correc-

tions).

Chapter 5

1. Benavides A, Bedoya K, Alzate JF, Cabarcas F. ATMA: A data analysis tool

for metagenomics allows recovering an Anaerolineaceae draft genome

from the San Fernando biosolid. XIII Latin American Workshop and Sym-

posium on Anaerobic Digestion (DAAL 2018). October 2018.
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Chapter 2

Background

2.1 Deoxyribonucleic acid

Deoxyribonucleic acid (DNA) is the molecule that contains the instructions for the

functions and development of all the cells of living organisms. It is formed by the

union of nucleotides, which are composed of a monosaccharide sugar, a phosphate

group and a nitrogen base that can be guanine (G), adenine (A), thymine (T), or

cytosine (C). The number of nitrogen bases and their order is what differentiates

each organism on earth. A string of these bases forms the complete chain of DNA

(e.g., Human DNA consists of about 3× 109 base pairs).

2.1.1 Sequencing

DNA sequencing is the process of determining the precise order of nucleotides within

a DNA molecule. Sanger and Coulson described plus and minus the first sequenc-

ing method. Sangers approach [97] is considered the first-generation technology,

and it is the base for the Next-Generation Sequencing (NGS) technologies such as

Roche [94], Illumina [45], Pacific Bioscience (PacBio) [82], Ion Torrent [107], Oxford-

Nanopore [81] among others. Table 2.1 summarizes the main features of these NGS

platforms.

Current NGS technologies provide only fragmented DNA rather than the whole

chain. Such fragments are called reads, and the FASTQ format [19] is a de facto

standard for storing such DNA reads. FASTQ files store the DNA chains like strings

of ASCII characters that represent the DNA bases. Each record contains the name the

read, the bases sequence, and quality scores for each one of them. Quality scores tell

us the level of confidence of every base identified by the sequencing machine. The
′N ′ character represents unidentified bases. Figure 2.1 illustrates the DNA structure,

the sequencing process, and the FASTQ format.
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TABLE 2.1: Features of some next-generation sequencing platforms

Platform Model
Read

Length
(bp)

Run
Time

Output
per run

Costs
per Mb
(US$)

Reported Problems

Roche/454
GS-FLX Titanium

2008 ∼400 1 day ∼400 Mb 12
Homopolymer
stretches

Illumina Hiseq
3000/400

2015 150 4 days 750 1500 Gb NA GGCxG motifs

PacBio RS II 2013 ∼15000 4 hours
1 Gb per

SMRT cell*
0.6

Quite high random
error rate

Ion Torrent PGM 2012 400 4 hours >1Gb 1
Homopolymer
stretches

Oxford nanopore
MiniON

2018 >10000 NA NA NA
High random error
rates

∗Single-molecule real-time (SMRT)

Bacterial DNA Plasmids

T C A T A A C

A G T A T T G

G T

C A

T G C A

@R1 lenght=10
ACGTATTGCA
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?=A8>B+8FD
@R2 lenght=15
TGAGCGGAACGATCG
+
?DBB<CC<BABECA?
. . .

G

C

A G T A T T G C AC

A G T C C G T C AC T C C G T

A G G G T C C C AC

A G G G T C C C AC

A G T A T T G C AC

A G T C C G T C AC T C C G T

A
G

T
A

T
T

G
C

A
C

a)

c)

b)

FIGURE 2.1: DNA and sequencing process. a)DNA structure, b)se-
quencing process, c)FASTQ representation

2.2 Metagenomics and Related Projects

In genomics, when the sequencing subject is not from an individual organism pre-

viously isolated, but from a microbial community, it is called a metagenomic ex-

periment. Metagenomics allows the direct genetic analysis of genomes contained

within environmental samples without the prior need for cultivating. The goal of

a metagenomic project is usually to address the questions of who is present in an

ecological community and what they are doing. According to the aims and the in-

formation to get two kinds of experiments can be conducted: target metagenomic

and whole-genome projects.

2.2.1 Target metagenomic projects

Targeted metagenomic experiments are limited to sequencing a particular maker

rather than the whole DNA chain. Most of these projects (e.g., [103], [100]), use the
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16S ribosomal RNA gene marker, to obtain a community/taxonomic distribution

profile. 16S rRNA gene is a well-conserved sequence that exists in most microbial

genomes, specifically bacteria, and archaea, and allows identification of microbes

within different taxonomic groups in a complex community.

2.2.2 Whole genome projects

Whole genome-based approaches are not limited by sequence conservation or primer

binding and allow the sequencing most genomes within an environmental sample.

Full shotgun metagenomics enables scientists to identify and annotate diverse arrays

of microbial genes that encode many biochemical or metabolic functions.

This dissertation is about whole genome projects rather than target metagenomic

projects. Therefore we will refer to the whole-metagenomic project as metagenomic

analysis or simply metagenomics.

2.3 Overview of Metagenomic Analysis

Most next-generation sequencing metagenomic experiments (see Figure 2.2) re-

quire: remove low-quality bases, bin reads (optional), and assemble reads into molecules

(contigs) to assign them a taxonomic classification using reference databases or pre-

dict Open reading frames (ORFs). Tools like Trimmomatic [12], SolexaQA [21] (qual-

ity control tools), Velvet [125], MetaVelvet [73], SPAdes [77], metaSPAdes [78], (as-

sembly tools), CLARK [80], Kaiju [65] (annotation tools), Prodigal [44], GeneMark

[9] (gene prediction tools), among others, can be used to address these tasks. Many

of them have been integrated into full pipelines like MetAMOS [109], RAST server

(MG-RAST) [120], IMG/M server [17], MetaWRAP [113], SqueezeMeta [105], MetaMeta

[90], and MOCAT [54]. These pipelines allow processing a metagenomic dataset au-

tomatically. But currently, there is not a standard tool designed to study a metage-

nomics dataset and the design of accurate algorithms and tools is an open field of

research.

2.4 Metagenomic Binning

Although each part of the analysis of metagenomic data is crucial and complex, char-

acterizing the taxonomic diversity of microbial communities is one of the primary

objectives of metagenomic studies. This objective, called binning, is essential be-

cause an accurate classification helps assemble, annotate the reads, and even better

gene cluster. Binning methods can be categorized, based on the methodology and

final objective, as taxonomy-dependent or taxonomy-independent (Figure 2.3).
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Metagenomic sample

Sequencing method

Raw reads

Quality control

Assembly Binning

Annotation
ORF prediction

Analysis report

Soil, Seawater, Waste-
water, etc

Roche/454, Illumina/Hiseq, PacBio 
RS II, Ion Torrent PGM, Oxford 

nanopore MiniON

BiMeta, MetaProb, CompostBin, 
AbundanceBin, MetaCluster, 

metaBAT2, MaxBin2, CONCOCT

Paired-end reads, Single Reads

Trimmomatic, Prinseq, SolexaQA

Velvet, MetaVelvet, SPAdes, 
metaSPAdes

CLARK, Kaiju, Prodigal, 
GenMark 

Krona, MEGAN, MG-
RAST

FIGURE 2.2: Typical workflow and tools for metagenomics

Metagenome
Reads or Contigs

MG-RAST
Camera
Megan
Sort-Items
Marta
Amphora
TreePhyler
Papera
Kraken

RAIPhy
Phylopytha
NBC Classifier
TACOA
Phym
INDUS
ClaMS

SPHINX
PhymmBL

TETRA
SOMs
CompostBin
AbundanceBin
MetaCluster
CONCOCT
MaxBin2
MetaProb

Taxonomy-dependent

Taxonomy-independent

Hybrid

Alignment Based

Composition Based

FIGURE 2.3: Taxonomy-dependent and Taxonomy-independent bin-
ning methods

2.4.1 Taxonomy-dependent binning methods

Taxonomy-dependent methods involve supervised learning procedures. They clas-

sify reads by comparing them against sequences in reference databases, or pre-

computed models. Reads that classify under a similar taxonomic category conform
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a bin. The accuracy of the classification depends on obtaining enough levels of sim-

ilarity, between reads and sequences/models in the reference databases. Accord-

ing to the methodology used, Taxonomy-dependent methods are subdivided into

alignment-based and composition-based methods.

2.4.1.1 Alignment-based binning methods:

Alignment-based tools such as Megan [43], MG-RAST [120], Camera [99], MetaBinG

[46], align reads to sequences from a database like NCBI [74], PFAM [25], UniProt

[112], EMBL [27], or DDBJ [11]. Most of them use Basic Local Alignment Search

Tool BLAST [2] to calculate a similarity metric, called bit-score, which is then used

to assign reads into specific bins. Other tools like SOrt-ITEMS [69], MetaPhyler [61],

MARTA [41], combine the bit-score with other alignment parameters, like the per-

centage of identities, positives, and gaps penalties, to improve the classification and

avoid incorrect assignments. A limitation of the BLAST-based approaches is that

they require a huge compute power for aligning millions of reads against a large

number of sequences belong to reference databases.

To reduce the computation time, tools like AMPHORA2 [122] and WebCARMA

[31], compare only regions of the genome against pre-built markers. AMPHORA2,

for example, uses 31 bacterial protein-markers and 104 archaea genes, while Web-

CARMA uses protein conversation regions reported in the PFAM database. Both

tools generate a phylogenetic tree based on Hidden Markov Models (HMM). These

approaches are faster than BLAST strategies; however, they have problems when

they classify reads from species far from the prebuild models.

2.4.1.2 Composition-based binning methods:

Tools like PhyloPythiaS+ [34], NBC-classifier [95], TACOA [24], and RAIphy [72]

use reads properties (i.e., Guanine-Cytosine GC-percentage, codon usage, oligonu-

cleotide usage) to classify them into a specific group. These tools use Support Vec-

tor Machines (SVMs), Naive-Bayesian models or Markovian properties, to store the

compositional properties.

In an initial step, these methods build a specific model based on one or more

compositional properties of known genomes. This phase is usually executed once,

but comprising a high computational cost, which can increase quickly if the model

needs to be retrained. Moreover, composition-based binning methods assume that

a single compositional model can represent all the genomes complexity. However,

specific genomes are characterized by distinct regions of heterogeneity as compared

to the rest of the genome [115]. Therefore, these methods usually generate a high

number of false positives.
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2.4.1.3 Hybrid binning methods:

Tools like PhymmBL [14], and SPHINX [68] are Hybrid binning methods that use

the advantages of alignment-based methods and composition-based methods to im-

prove the classification. SPHINX, in its first phase, uses tetra-nucleotide frequency

propriety to compare the structure of a given read and then uses SOrt-ITEMS strat-

egy to align them to a reference sequence. PhymmBL combines the composition-

based methodology of Phymm along with BLAST to improve the confidence of tax-

onomic assignments. However, the computational time and a large number of false

positives are drawbacks for these methods.

2.4.2 Taxonomy-independent methods

Taxonomy-independent methods group reads in a given dataset based on their mu-

tual genetic similarity and do not involve a database comparison step. They deter-

mine the distribution of each species in the sample by observing the frequency of

k-bases in the query sequence. Methods under this category include BiMeta [116],

MetaProb [33], TETRA [106], CompostBin [16], AbundanceBin [124], and MetaClus-

ter 5.0 [118], MaxBin2 [123], CONCOCT [1].

BiMeta first bins DNA sequences according to the overlap information between

them. Then it merges the groups by using an observation on the l-mer frequency

distribution of the sets of non-overlapping reads. AbundanceBin models the number

of reads of different species using Poisson distributions to avoid generating a high

number of bins. Later it groups reads with similar abundance levels. This kind

of methods works efficiently with samples having high abundance levels variation,

but its binning efficiency decreases with metagenomes having species with similar

abundance distribution.

To improve resolution in the dataset, some tools bin contigs rather the raw reads.

For example, MetaProb uses assembled contigs to compute l-mer frequencies and

generate probabilistic sequence signatures. Then it bins contigs with the same signa-

ture into the same group. CONCOCT applies Gaussian mixture models (GMMs) and

Bayesian information criteria (BIC) to cluster contigs into groups based on sequence

composition (kmer frequencies) and coverage across multiple samples. MaxBin2

employs coassembling sequencing reads of various metagenomic datasets. It first

measures the tetranucleotide frequencies of the contigs and their coverages for all

involved metagenomes. Then it classifies contigs into individual bins according to

an ExpectationMaximization (EM) algorithm. Since contig-based binning methods

require a previous assembly, they can propagate the error generated in this stage.

Moreover, some metagenomes are too complicated that it is not possible to assemble

all the reads without an initial binning step.
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The focus of our work was to develop an unsupervised reads-base binning method

for metagenomics that works accurately for shotgun DNA reads. In this study, we

compared our approach against MetaProb [33], BiMeta [116], AbundanceBin [124]

and MetaBinG [46] tools. We also analyzed the results generated by binning the

reads and assembling every bin against the results generated by the contig-based

binning methods. We used metaBAT2 [49], MaxBin2 [123], and CONCOCT [1] tools.

We selected the reference programs from several factors: whether they are actively

maintained, how recently they were published, and whether another program has

superseded them.
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Chapter 3

CLAME, A binning tool for

metagenomics

In this Chapter, we introduce CLAME, (from the Spanish words: CLAsificador para

MEtagenómica), a new binning method that groups metagenomic reads in bins us-

ing their biological and shotgun sequencing properties. The fundamental idea of

CLAME is that exact matches, of a large number of bases, between reads, is very

unlikely if they do not come from the same DNA molecule. Furthermore, assuming

that in a metagenome there is at least one genome sufficiently covered, and given

that the sequencing errors is low (on platforms like Illumina Miseq or Roches 454),

most sequences from a DNA chromosome will have exact matches between them.

Moreover, we have observed that reads from conserved regions tend to align several

times with other sequences, and reads with sequencing errors or chimeras, tend to

align few times with other reads. It allows discriminating them and avoids merging

regions belong to different genomes.

We performed a set of experiments to evaluate the classification performance of

CLAME on several datasets with different complexities. We also assessed state-of-

art binning tools and compared our results against these tools. The results show

that our approach consistently outperforms other binning tools like MetaProb [33],

BiMeta [116], AbundanceBin [124], and MetaBinG [46]. We also compared their com-

putational performance and showed that CLAME bins metagenomic reads faster

than the other tools.

3.1 Methods

CLAME starts by aligning each sequence against all the other reads, looking for

reads with similar DNA composition (Read alignment stage). It creates a graph rep-

resentation, G= (V, E), of the metagenome in which reads are nodes (v ∈V), and the

overlapping relation between each pair is an edge between them (e ∈E). Ideally, two

reads from different DNA chromosomes will not align together, at least not in a con-

siderable number of bases, and thus, the graph will represent the different organisms
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or chromosomes as organized subgraphs. The binning will, therefore, follow natu-

rally by traversing the graph, creating a bin for each connected subgraph (Subgraph

traversal and bin generation stage). However, conserved regions, such as the riboso-

mal RNA genes, may generate edges between reads with different species member-

ships. Using various experiments, we showed that these cases can be analyzed as

outliers into a normal distribution. Consequently, CLAME uses the median absolute

deviation (MAD) statistic metric to rate the sequence abundance, redefine the graph,

and produce the final bins (Edge analysis stage). We show CLAME methodology in

Figure 3.1 and explain each stage in the following subsections. Appendix A shows

the pseudocode algorithms for each function of CLAME.

TAACTG
CTGGGA

V E Total

0 R1,R6,R7 3

1 R0,R2,R7,R13 4

......

13 R1, R7, R12 ... R8,R16 8
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16 R3,R5,R13 8

Temp Stack
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FIGURE 3.1: CLAME methodology. a) Read alignment stage: The
metagenome is composed of reads from different genomes (red, blue,
and green blocks); each read, is aligned against all the reads. b) Sub-
graph traversal and bin generation: An adjacency list represents a
graph G=(V, E), where each vertex v in V denotes a read and each
edge e in E indicates that two reads align in at least b bases. The
bins are generated by traversing the graph and reporting each sub-
graph into a temporal stack (e.g., R0, R1, R6, R13 ... R15). c) Edge
analysis stage: Reads that belong to a shared region can connect the
subgroups (i.e., R13 from red group aligns with the R3 and R15 from
the green group). These connections usually make that the number-
of-edges histogram departs from a normal like form. Edges analysis
removes sequences with extreme values (i.e., R13), and report the fi-
nal bin (e.g., R0, R1, R6, R7, R2, and R12). CLAME traverses the graph

several times until grouping all the reads.
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3.1.1 Read alignment stage

Read alignment stage computes the alignment of all versus all the reads and creates

the edges of the graph (see Figure 3.1(a)). Algorithms like Needleman-Wush [75]

and Smith-Waterman [101] were designed to find the optimal local alignment. These

algorithms compute the best alignment by accepting insertions and deletions into

each base pairs. It is an intense-computational task, which has been tackled by many

researchers (e.g. [71], [104]). Since, these algorithms require O(n2) computational

time, where n is the number of bases of the reads, they are very slow for big datasets.

Hatem et al. [40] performed a comprehensive review of the most relevant single-

threaded tools for short sequence alignment. They focused on the analysis of the

performance-sensitivity trade-off, (number of sequences rightly aligned VS speed).

The study concludes that fast aligners follow the Seed and Extend strategy [2]. This

methodology first produces a reference structure from the target dataset (e.g., the

entire human genome). Then it extracts a small substring from the query sequence

(e.g., the first b bases of a read) and searches it across the reference to find an exact

coincidence (Seed stage). If a match exists, the whole read is then aligned (Extend

stage) using an algorithm that supports mismatches, insertions, and deletions, and

starting at the reported position in the reference. If the Seed stage found more than

one coincidences, the Extend process is developed for all them, and the best match-

ing is reported. If there is not any coincidence the read is not extended, and it is

reported as unaligned.

Although an optimal solution is right for several genomic and metagenomic

tasks, it is not necessary to identify if two reads have similar DNA composition.

Note that if two sequences share enough region (we select a suitable seed size), the

Seed-search stage is enough to detect some possible alignment. CLAME takes ad-

vantage of this fact and improves the execution time over the tools reviewed by only

implementing Seed-search strategy. We summarize this methodology in the next

paragraphs and invite the reader to consult our UdeAlignC tool [63]. It is a fast

alignment algorithm that implements the complete version of Seed and Extended

approach. We demonstrated that UdeAlignC algorithm is 2x faster than the state of

the art tools while precision (measured as the number of sequences rightly aligned)

is only reduced by 5.6%. We also showed that the GPU-accelerated version has a

speedup of up to 12x compared with the sequential version.

3.1.1.1 Seed-search strategy

The seed-search strategy is traditionally developed using a suffix-trie, which repre-

sents all the substrings of a reference text S into a tree graph (e.g., S= ACAAACATAT

in Figure 3.2). This tree allows that a query text or a substring Q from it can be
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searched by means a backward search (e.g., Q= ACAA in Fig 3.2). Backward search

traverses the suffix-trie, starting from the root (indicated by the symbol $), matching

successive symbols of the query, with the leaves (nodes) on the tree. If the length of

the path is equal to the size of Q (|Q|), it means that the substring Q occurs in the

text S.

A C T

A

C T

A A

A C

A A

C A

A A

$ C

A

$

A

$ A

A

C

A

$

C T$ A

A

C

A

A

A

C

A

$

A

A

A

C

A

$

C

A

$

A

C

A

$

FIGURE 3.2: Suffix trie for the text S = ACAAACATAT and the Back-
ward search for Q =ACAA. Read path indicates the exact overlap

3.1.1.2 FM-index

Backward search requires a Suffix-trie representation of the reference text. The most

popular Suffix-trie based aligners (i.e., Bowtie 2 [57] and BWA [60] tools) use an

FM-index tree [29]. Paolo Ferragina and Giovanni Manzini designed this data struc-

ture. They showed that this representation allows searching a query text of size Q

in a reference text using O(|Q|) time and considerable few memory. Central to the

FM-index is the Burrows-Wheeler transform (BWT) generated from a Suffix array

(SA). In Appendix C, we illustrate the complete construction of an FM-index and the

formal backward search strategy to detect overlaps using metagenomic sequences.

Next, we explain CLAME’s Read-alignment stage utilizing a state of the art library

that produces an FM-index and enables substring queries.
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3.1.1.3 Succinct Data Structure Library (SDSL)

There is a set of open-source versions of the FM-index algorithm available in public

repositories (e.g., [88], [70], [26]). CLAME uses the Succinct Data Structure Library

(SDSL) [96]. The authors have demonstrated that, in contrast with proposed imple-

mentations in literature, SDSL Library provides high quality, efficient construction,

and excellent run-time performance.

SDSL library provides more than 40 data-structures and algorithms implemented

into flexible C++ templates that offer a set of efficient methods for storing, traversing,

and seeking information inside such structures. We performed a benchmark mea-

suring index size and search times over the set of data structures and algorithms

offered by the library. We used a human genome as a reference to build several FM-

index. Then we queried a set of reads, taken randomly from the genome, on each

three. We summarized the result in Figure 3.3 and showed the complete description

in the UdeAlignC report [63]. We found that a suffix array with a sample density of

8 bits, stored in a Huffman Wavelet Tree [36] (the yellow line in the figure), produced

the best results. Consequently, we selected this structure in CLAME.
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FIGURE 3.3: Results of different data-structures benchmarks from
SDSL library applied to genomic information. The vertical axis repre-
sents the size of the original genome divided by the size of the index,
and the horizontal axis shows query latencies on each data-structure.

We varied the density of the saved index across the plot.
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3.1.1.4 Seed-search strategy implementation

CLAME supports DNA-sequences files in FASTA and FASTQ formats. To build an

FM-index using these metagenomic reads, CLAME produces a long text by concate-

nating the bases from the raw reads; it includes the symbol & to separate the bases

from one sequence of another. It also avoids that a query search can be wrongly

reported by the alignment between the beginning and end of two different reads.

Read alignment stage reports only exact matches.

The concatenated sequences generate the text (S) that is the argument of the

genFM9 function of CLAME, which produces the FM-index representation of the

raw reads. Later, CLAME calls the map2FM9 function that implements the back-

ward strategy, to align each sequence against the entire dataset. To reduce the com-

putational time, CLAME uses the first, and last b bases of each read in forward and

reverse complement. The parameter b is the number-of-bases threshold defined by

the user and represents the seed size. Although CLAME only uses queries of b-size,

since the FM-index contains all suffixes for each read, the alignment is checked on

the entire length of the target sequence.

FM-index representation of all reads allows that each query sequence can be

processed individually using the backward search process. CLAME uses the Open

Multi-Processing Programming Model (OpenMP) [52] to distribute one each query

search per thread and speedup the alignment process.

CLAME uses a Key-Mapped structure to save the reads alignments, where the

number of the sequence corresponds the key-value, and a list with the overlaps is the

map-value (see Table 3.1). It requires O(np) space of memory, where n is the number

of reads, and p is the maximal number of alignments per sequence. The worst-case

occurs when p=n, for all the reads, it implies O(n2) space of memory, which is a con-

straint for large datasets or computers with low memory capacity. Subsequently, the

number-of-bases threshold (b) plays an important role. In the experimental section,

we show that a low b-value generates a high number of alignments and increase the

memory consume. We recommended starting with a considerable b-value (70bp is

the default) and then iterate with minor values. We illustrate this methodology in

Chapter 4.

3.1.2 Subgraph traversal and bin generation

The MatrixQuery matrix, generated in the Read alignment stage, is a graph repre-

sentation, in an adjacency list format, of the relation of the reads. For example, the

MatrixQuery in Table 3.1 shows that the read R0 aligns with the reads R1, R6, and

R7. CLAME traverses the graph using a greedy breadth-first search strategy [87]. It

employs two vectors: the query vector (Qv) and the Stack vector (Sv), both of size
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TABLE 3.1: MatrixQuery container. Key-value represents the se-
quences, and Map-value represents the reads overlaps. It is a graph

representation of the metagenome in adjacency list format.

Key
(reads)

Map
(reads overlaps)

0 [1,6,7]
1 [0,2,7,13]
2 [1,7,12, , 8, 16]
. . . . . .
n [1,5,13]

n (n=number of reads). The first saves the visited nodes and the second stores the

temporal the bin (a set of reads before of Edge analysis stage). Two pointers, put and

get, allow adding and removing nodes into Sv.

Subgraph traversal starts at first key-value into the MatrixQuery. It is added into

the query vector Qv to be marked as visited. Then it and its alignments (the list

in the map-value) are copied into the Stack vector Sv (put-pointer increases e times,

where e is the number of edges). Further, each node in the stack is checked into the

Qv vector to know if it was visited. If the node was visited, the next node from the

stack is taken (get-pointer increases one position). Else, it is added to Qv, and its

edges are passed to Sv (put-pointer increases e times). The process finishes when no

more nodes can be inserted into Sv (get-pointer coincides with put-pointer). Finally,

the Stack vector contains the temporal bin (a subgraph), and the Edge analysis starts

to remove the outliers. The Graph traversal process finishes when all the nodes are

into the query vector (Qv), which indicates that they were visited. Edges analysis

stage removes some reads and generates the final bin. Once all nodes (reads) have

been visited, the bins and their reads are saved on output FASTA or FASTQ files. The

user can define a minimum bin size (number of reads into the bin) to avoid reporting

small bins.

3.1.3 Edge analysis stage

The adjacency list, generated in the Read-alignment stage, allows reporting the reads

number-of edges histogram (Figure 3.1(c)). It is computed by counting, for each key-

value, the number of reads in the map-value field into MatrixQuery (e.g., Table 3.1

indicates that read R0 has three edges that connected it with the reads R1, R6, and

R7). We have observed that the number of edges distribution should be normal like,

after separating repeat regions, and that it is similar for each molecule (each bin) into

a metagenomic experiment.
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Normal distribution for the number of edges can be explained using the cen-

tral limit theorem (CLT) [6]. The different abundance level of each species in the

metagenome, the shotgun sequencing process and the number of reads generated in

it, make that read alignment of all reads versus all reads can be view as a process

of random variables independently drawn from independent distributions. Under

these conditions, the CLT establishes that the sum of these distributions must con-

verge in a normal distribution. We have observed this behavior in our experiments

(see experimental subsection) by plotting the number-of edges histogram.

The histogram enables identification of the following problems in the bins. i)

nodes with a total of edges higher than the mean: they usually represent repeated

regions in the same genome or zones that are common to several species. ii) nodes

with a total of edges less than the mean: we have observed that they are produced

mainly by chimeric reads or sequencing errors. Both of these problems make that

reads from different DNA molecules end up being related. To separate the graph,

we must keep only nodes such that the number of edges histogram follows a normal-

like distribution. Therefore, we must detect extreme values, unusually large or small

amounts when compared with others into the bin, and remove them. In the next

sections, we demonstrate that we can process these nodes as outliers.

3.1.3.1 Outliers definition

An outlier is an observation that appears to deviate markedly from other members in

the sample. The classical approach to screen outliers is to use the Standard Deviation

(σ) method. It defines observation as an outlier if it is outside the intervals ±3σ,

(other authors, i.e., [58] [67] use 2.5σ or even 2.0σ around the mean). However, the

authors indicate two main problems when using the mean as the central tendency

indicator. i) Outliers affect the mean and standard deviation. ii) Outliers cannot

be detected for small samples. These problems can be resolved by substituting the

mean by the median as follows.

3.1.3.2 The median absolute deviation (MAD) scale estimator

MAD is a robust nonparametric spread estimator. It uses the median instead of

mean to estimate the amount of data dispersion. The median (M), like the mean, is a

measure of the central tendency of a random variable, but, as opposed to the mean,

it is very insensitive to outliers and the sample size. The MAD is defined as:

MAD = median(|xi −median(xi)|) (Eq. 3.1)
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For a normal distribution, the MAD can be used as a consistent estimator of the

population standard deviation as:

σ
′
= b.MAD (Eq. 3.2)

where b is a constant scale factor, for normally distributed data b=1.4826.

This reworked form of σ
′

allows flagging outliers by considering distances from

the median (M). The decision criterion (for the value of 3) becomes:

M − 3.σ
′
< xi < M + 3.σ

′
(Eq. 3.3)

3.1.3.3 Outliers relation with the maximal and minimal number of edges by node

Since the distribution on the number of edges per node departures from a normal,

because of the noise produced by the similarity of regions of the genome with other

genomes or repetitive zones, we can use MAD (according to the Eq. 3.2) to compute

the population standard deviation of the number of edges per read in the bin and

detect outliers. Consequently, we use the distances from the median (according to

the Eq. 3.3), to mark sequences out of the three standard deviations as outliers, and

separate them. After separating outliers, it is common that the number of edges into

the bin becomes normally distributed.

The characteristics of a normal distribution (see Figure 3.4) and because it is not

possible to have nodes with the number of edges less than zero, allow defining the

parameter p (in Eq. 3.4) as the measure of normality for the bin. A p-value close

to one indicates that 95% of edges per node are not more than three standard de-

viations from the mean; as a result, the bin must have a near-normal distribution.

The p-parameter also allows iterating on the outlier process removing new reads

until reaching a p-value close to 1.0; it can also stop when the bin is too small to be

reported.

Table B.1, in Appendix B, illustrates the Edge analysis process for the example in

Figure 3.1. The experimental section exhibits MAD convenience to remove outliers

and produce "pure" bins (in which most of the reads are from the same molecule).

p =
3.σ

′′

µ′′ (Eq. 3.4)

where the µ” and σ” are the mean and standard deviation of the bin, after the

outliers removing process.

CLAME implements the Edge-analysis stage in the binning function, which de-

velops the MAD process. It removes outlier reads from the Stack vector Sv. The

process starts assessing the normality of the bin using the p-parameter (according to

the Eq. 3.4). If the p-value is higher than a fixed tolerance, (CLAME’s tol-parameter
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with a default value of 0.5), means that distribution is not normal and the reads

marked as outliers must be removed from Sv. If the p-value is less than the toler-

ance value, the Edge analysis process finishes, and the balanced nodes into of Sv are

printed.

0
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FIGURE 3.4: Probability density function for a normal distribution

3.2 Experimental Evaluation

In this section, we describe several controlled experiments that we used to validate

and asses the performance of our method. We illustrate the application of CLAME

on two real metagenomes in Chapter 5.

3.2.1 Simulated simple metagenome

We created a synthetic metagenome dataset using 289,917 reads of Brucella canis

and 375,122 reads of Mycobacterium tuberculosis genomes, both generated with the

ROCHEs 454 titanium platform and associated with the NCBIt’s BioProjects PR-

JEB4803 and PRJEB8877, respectively. The reads were quality trimmed at Q30 using

RAPIFILT, our custom tool to clean the reads; we introduce it in Chapter 4. The

cleaned reads were concatenated on a simple multi-Fasta file to get a total of 665,039

mixed reads that formed the Brucella-Mycobacterium synthetic metagenome.

We started the analysis using different number-of-bases alignment parameter b,

and showed its effect on the read alignment stage and bins production. Then, to

clarify the profile of the number of edges, we set the number-of-bases alignment

parameter to b = 70bp and ran the edges analysis stage.

Finally, we compare our results against MetaProb [33], BiMeta [116], Abundance-

Bin [124], and MetaBinG [46] tools. We set up to two the number of bins or species

for the tools that these numbers have to be specified. Quality control for each bin-

ning tool was again checked by matching the content (read codes) of each bin against

the original raw files.
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3.2.2 Simulated multi-species metagenome

We created a metagenomic dataset based on bacterial genomes of five species, which

we selected to mimic the biological diversity found in the San Fernando hot spring

metagenome (which we describe in Chapter 5). We downloaded the raw reads from

the NCBI database and merged them to produce the final dataset with 601,628 reads

(150.14 Mbp). Table B.2, in Appendix B, shows the number of raw reads, the NCBI

reference, the taxonomy, and the total of reads used from each genome.

We used the 16S rRNA gene, which is a highly conserved zone between differ-

ent species of bacteria, to illustrate how shared regions affect the bin generation by

connecting two subgraphs from different species. We executed CLAME on two sce-

narios (i.e., with 16S rRNA sequences and without 16S rRNA sequences). In the first

case, we used the value b = 70 bp as the number-of-bases alignment and binned the

whole metagenome. For the second scenario, we first mapped the metagenome into

the Rfam database [35]. We used genFM9 fuction to build the FM-index of the Rfam

sequences. Then we used the map2FM9 fuction to align the sequences and manually

remove them fromm the pool dataset. Finally, we used CLAME to bin the balance

sequences.

We executed MetaProb [33], BiMeta [116], AbundanceBin [124], and MetaBinG

[46] tools with this metagenome. For the binning tools in which the number of bins

or species have to be specified, we set this parameter to five. Quality control for each

tool was checked, by matching the content of each bin against the original raw file.

3.2.3 Mock-Even community metagenome

The Mock-Even sample makes part of the Human Microbiome Project (HMP) [110]

and has been studied using MOCAT [54] and MetAMOS [109] frameworks. We

downloaded the raw data (1,386,198 sequences) from NCBI, SRA accession number

SRR072233. We also download the references sequences of the species that form this

metagenome from MOCAT web page. To rate the contribution of each species in the

sample, we used Bowtie 2 [57] to map the raw reads against the contigs reported by

MOCAT. Table B.3, in Appendix B, summarizes the abundance of the five dominant

organisms in the sample.

We removed low-quality reads (Q < 30 and length < 70bp) and sequences that

align with the 16S-rRNA ribosomal Rfam database. Then the reads were binned with

CLAME using b = 40bp, only bins with more of 2000 read were kept. Quality control

for each tool was checked by matching the content of each bin against the original

raw file codes using Bowtie 2. Moreover, we use CheckM tool [85] to estimate con-

tamination of each bin by detecting the presence of single-copy of essential genes.

It also reports the genome completeness according to the number of genes presents
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in the bin. Furthermore, the tool measures the Strain Heterogeneity by indicating

which percent of the essential genes come from near species.

Finally, we used MetaProb [33], BiMeta [116], AbundanceBin [124], and MetaBinG

[46] tools to bin this metagenome and compare all the results. For the binning tools

in which the number of bins or species have to be specified, we configured this pa-

rameter to five.

3.2.4 Brocadia caroliniensis metagenome

We used a metagenome recovered from a full-scale glycerol-fed nitritation-denitritation

separate centrate treatment process (NCBI project PRJNA228949). The original pa-

per [84] reports that 2,448,982 reads were manually analyzed to generate 209 con-

tigs (with size > 500 bp) which integrate the draft genome for Brocadia caroliniensis

species.

We removed low-quality reads (Q < 30 and length < 70bp) and sequences that

align with 16S-ribosomal Rfam database. We set b = 70 bp as the number-of-bases

alignment parameter and ran the edges analysis stage. Then, we assembled the

reads from the main bins, using SPAdes tool (default parameters). Then we used

Quast tool [39] to assess the contigs quality, abundance, and coverage of the genome

recover against the reported Brocadia genome. Additionally, we used CheckM [85]

tool to estimate contamination of each bin by detecting the presence of single-copy

of essential genes and measure the completeness according to the number of genes

presents in the bin.

Finally, we compared our results and performance versus the report generated

by MetaProb [33], BiMeta [116], AbundanceBin [124], and MetaBinG [46] tools.

3.2.5 Computational performance

We started assessing the computational requirements and precision of our alignment

strategy. We aligned the reads of each experiment against Rfam 16S rRNA ribosomal

database. We downloaded the Rfam sequences (1,690,540 reads, 6.3 Mbp) and used

the genFM9 function of CLAME to produce the FM-index of the database. Then

we used the function map2FM9 to map the sequences of each experiment against

this structure. We reported the number of reads that aligned with the reference and

compared these results against the report generated by BLAST [2] BWA [60] and

Bowtie 2 [57] tools.

Later, we evaluated the computational time and memory consumption of CLAME

to study the Brocadia metagenome. We have observed similar results with the other

datasets. We analyzed two scenarios i) when the FM-index needs to be build and ii)
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using an FM-index from previous construction. Then, to illustrate CLAME scalabil-

ity, we executed all the experiments using several CPUs. We used OpenMP version

4.4 [52] with 1, 2, 4, 8, 16, 32, and 64 threads on each dataset. Finally, we compare

CLAME computational requirements against other states of the art binning tools.

We executed all the experiments on a computer equipped with 64 Intel(R) Xeon(R)

CPU X7560 @ 2.27GHz and 500 GB of RAM, and Linux-Centos-7.2 OS. We used Ex-

trae 3.7 [28] and Paraver 4.8 [83] tools to measure computational performance. We

measured the computation time using PAPI instrumentation tool [62]; we inform the

average of five execution for each experiment. We employed the Valgrind [76] tool

to measure CLAME memory usage; we report the maximal memory consumption

of each dataset.

3.3 Results

3.3.1 Binning performance

3.3.1.1 Simulated-simple metagenome

Table 3.2 illustrates the relation among the number-of-bases alignment parame-

ter b, the bins size, and the species contribution for the Brucella-Mycobacterium

metagenome. It shows that, a reduced number of bases (b ≤ 35bp) groups all the

reads into the same bin. When this value increases the bin size decreases but the

"bins quality," referred to as the number of reads from different species into the same

bin, improves. Finally, a significant value for this parameter (b > 100bp)) makes that

the metagenome results fragmented into too many small bins.

TABLE 3.2: CLAME report for the simulated-simple metagenome

Number-of-
bases

alignment (bp)

Total
Bins

Bin Size
(Number of reads)

B. canis contribution
(Number of reads into

the biggest bin)

M. tuberculosis contribution
(Number of reads into the

biggest bin)

20 1 645434 282666 362768
35 1 642867 282921 359946
70 2 625946 (bin0+bin1) 279362 (bin0) 346584 (bin1)

100 2 607212 (bin0+bin1) 271173 (bin0) 336039 (bin1)
150 3 559068 (bin0+bin1+bin2) 245171 (bin0) 311866 (bin2)
200 13 300714 (bin0++bin12) 6720 (bin1) 265792 (bin9)

Since the high-quality sequencing process, and the taxonomic distance of the

two species (phylum level, which suggests few shared regions), the graph result

into two subgraphs (bins) after of the Read alignment stage (for b ≥ 70bp). We have

observed that this value produces suitable results in most of our experiments. We

set b = 70bp as the default value for the number-of-bases alignment parameter in

CLAME; however, it can vary according to the metagenome complexity.



28 Chapter 3. CLAME, A binning tool for metagenomics

Figure 3.5 illustrates the number of edges histogram, using b = 70bp, for the

simulated metagenome (red line), we manually highlighted the reads from M. tuber-

culosis (blue line), and B. Canis reads (blue line). It shows that the distribution of the

metagenome results of the contribution of each species distribution. It also indicates

normal-like distribution (if we exclude the nodes with very few connections), that

follows the number of edges for each one of the species.

FIGURE 3.5: Number-of-edges histogram for the simulated-simple
metagenome

Table 3.3 shows the total of bins generated and the Edges Analysis report (with

and without the MAD process) produced by CLAME (b = 70bp). When the MAD

analysis is disabled all the reads no matter the number of edges, are reported. When

it is enabled only reads in the range, 6 to 94 for the bin0 and 3 to 194 for the bin1 are

considered. This process reduces the bin size but improves the statistical values of

each bin (p-value is close to 1.0).

Table 3.4 compares CLAME’s results against MetaProb [33], BiMeta [116], Abun-

danceBin [124], and MetaBinG [46] tools. It shows that although most of them pro-

duced individual bins for B. canis and M. tuberculosis species, only our strategy cre-

ated bins that contained reads from only one species. Moreover, it was the fastest

tool.
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TABLE 3.3: Edges analysis report for the simulated-simple
metagenome

MAD Bin
Bin Size

(Number of reads)
mean std p=3std/mean

Outlier
boundaries

OFF
(tol=inf)

Bin0: M. tuberculosis 353876 51.89 35.07 2 0 to inf
Bin1: B. canis 280014 14.33 13.02 2.7 0 to inf

ON
(tol=0.5)

Bin0: M. tuberculosis 346584 49.63 14.95 0.9 6 to 94
Bin1: B. canis 279392 39.16 14.23 1.1 3 to 194

TABLE 3.4: Bins reported by each tool on the simulated metagenome

Tool Bins Total reads by bin B. Cannis M. Tuberculosis Time (m)

CLAME (b=70) 2
346584 0 346584

8
279392 279392 0

BiMeta 2
8990 8683 307

49
656049 366439 289610

MetaProb 2
368642 2901 365787

12
296397 287062 9335

AbundanceBin 2
659892 288233 371659

85
5142 1684 3458

MetaBinG* 2
300615 5215 295400

97
338650 267794 70856

∗We used the CPU version

3.3.1.2 Simulated multispecies metagenome

Table 3.5 illustrates the bins generated, using b = 70bp, for the total of reads previous

to remove the 16S rRNA sequences. It also shows the contribution of each species

within the bins. Given the taxonomic distance of the species (class level) of this

experiment, some bins contain sequences from different species.

Table 3.6 shows the total of bins generated by CLAME, using b = 70bp, after

removing the 8900 sequences that aligned with the 16S-ribosomal Rfam database. It

shows that, in this case, CLAME did not mix reads from different species.

Figure 3.6 shows the number of edges histogram. We manually underline the

contribution of the five species in the histogram. It shows a normal distribution for

the Dokdonella, Synechocystis, Hymnobacter, and Rhizobium species in the range 0

TABLE 3.5: Binning report for the raw reds that compose the multi-
species metagenome

Bin
Bin Size

(Number of reads)
Synecho-

cystis
Dokdo-

nella
Hymnobacter

Micro-
bacteriaceae

Rhizobium

0 366818 59650 306927 187 0 54
1 24339 0 0 0 24339 0
2 6939 0 6939 0 0 0
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TABLE 3.6: Bins composition for the simulated multispecies
metagenome

Tool Bins
Total reads

by bin
Synecho-

cystis
Dokdo-

nella
Hymno-

bacter
Micro-

bacteriaceae
Rhizo-
bium

Time
(m)

CLAME
(b=70bp)

7

21182 21182 0 0 0 0

3

18054 18054 0 0 0 0
209642 0 209642 0 0 0
12152 0 12152 0 0 0
13927 0 13927 0 0 0
10405 0 10405 0 0 0
24315 0 0 0 24315 0

to 100 edges; Microbacteriaceae edge-distribution exceed the 100 edges.

FIGURE 3.6: Number-of-edges histogram for the simulated multi-
species metagenome

Table 3.7 shows the statistics values for the simulated multi-species metagenome.

MAD statistic analysis shows that most of the bins are in the range 0 to 100 number

of edges, except the Bin2, which contain the Microbacteriaceae species. The p-value

indicates a normal distribution in each bin. Since the few species in the genome, the

removing 16S rRNA sequences process was enough to get "pure" bins and not MAD

analysis was necessary.

Table 3.8 compares CLAMEs results against MetaProb [33], BiMeta [116], Abun-

danceBin [124], and MetaBinG [46] tools. It shows that our method was the fastest

tool, and the only that does not combine reads from more than one species into

the same bin. However, CLAME could not recover the Hymnobacter species and
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TABLE 3.7: Statistics values for the multispecies metagenome

Bin
Bin Size

(Number of
reads)

mean std Median MAD p=3std/mean
Outlier

boundaries

0 21182 18.76 5.44 28.5 21.12 0.87 3 to 36
1 18054 18.83 6.03 28.5 21.13 0.96 3 to 44
2 209642 88.72 20.49 135 100.08 0.69 28 to 152
3 12152 25.90 7.27 25 7.413 0.84 4 to 47
4 13927 23.66 5.81 34.5 25.57 0.73 4 to 46
5 10405 23.56 7.83 23 5.93 0.99 6 to 40
6 24315 1462.94 610.98 1518 634.55 1.25 3 to 2859

the Rhizobium species. In Chapter 4, we show that an iterative process, removing

binned reads and reducing the bases parameter, can recover some part of them.

3.3.1.3 Mock-Even community metagenome

Table 3.9 illustrates the total of bins and the MAD statistics values generated by

CLAME (b = 40bp) for the leftover reads after removing low-quality bases and 16S

rRNA ribosomal sequences. It also shows the iterative process, developed by the

Edges analysis stage, to redefine the bin by removing outliers until to get a near-

normal distribution (using CLAME’s tol = 0.5).

Figure 3.7 shows the abundance level of each species reported by CLAME. We

manually highlighted the contribution of the five main species in the histogram.

It shows a normal distribution, in the range 0 to 60 edges, for the sequences be-

long to Acinetobacte, Bacteroidetes, Staphylococcus, and Propionibacterium species.

Deinococcus species indicates a scattered distribution. It agrees with the outliers

boundaries reported by CLAME.

Table 3.10 reports the species contribution into each bin. It indicates that CLAME

recovered most of the reads belong to predominant species (Deinococcus-Deinococcus,

and Proteobacteria-Acinetobacter) into two main groups (the first with 409,719 reads

and the second with 58,301). However, the bins show sequences from different

species into the same bin. It is essential to mention that this is not a controlled

metagenome, and therefore we cannot be sure of the origin of each read.

To improve the annotation, we used CheckM [85] tool to assess the bin contam-

ination in terms of single-copy of essential genes. Table 3.11 summarizes these re-

sults. It illustrates that all the bins show near-zero contamination level. It also shows

that the most significant bin contains some 50% of the genome of the Deinococcus

bacteria. Bin0 and Bin2 comprise less than 10% of the Proteobacteria-Acinetobacter

and Bacteroidetes-Bacteroides genomes. Bin3 and Bin4 are too small to provide some

gene. CLAME could not bin the other species. These results confirm the ability of

our method to discriminate the most relevant reads from the predominant species
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TABLE 3.8: Report for multispecies metagenome using several bin-
ning methods

Tool Bins
Total

reads by
bin

Synecho-
cystis

Dokdo-
nella

Hymno-
bacter

Micro-
bacteriaceae

Rhizo-
bium

Time
(m)

CLAME
(b=70bp)

7

21182 21182 0 0 0 0

3

18054 18054 0 0 0 0
209642 0 209642 0 0 0

12152 0 12152 0 0 0
13927 0 13927 0 0 0
10405 0 10405 0 0 0
24315 0 0 0 24315 0

BiMeta 1 601624 112805 376022 37599 37599 37599 32

MetaProb 5

361966 1 341866 108 7236 12755

11
27977 508 12139 1707 214 13409

113349 111889 695 641 6 118
38400 294 729 34383 2446 548
59932 113 20593 760 27697 10769

AbundanceBin 5

41326 32546 8780 0 0 0

68
512104 502795 9309 0 0 0

86501 42296 44205 0 0 0
324135 11975 312160 0 0 0

1645 77 0 0 0 0

MetaBinG* 5

410033 30727 302805 23480 19944 33081

120
73263 799 57637 3915 9490 1423
61401 56764 2344 772 1211 310
24966 18955 3042 1079 870 1021
10826 12 3800 6444 436 134

∗We used the CPU version

TABLE 3.9: Total of bins and statistic values for the Mock-Even
metagenome

Bin
Bin Size

(Number of
reads)

mean std Median MAD p=3std/mean
Outlier

boundaries

0

1070791 186.75 797.68 36 41.5128 12.8141 3 to 119
732305 33.611 30.6895 21 14.826 2.73924 3 to 50
275187 21.3269 10.9219 20 20 11.8608 1.53636 3 to 40

58301 20.7973 9.10806 20 10.3782 1.31383 5 to 35

1
472795 395.609 1182.59 158 75.6126 8.9679 41 to 309
409719 150.683 58.9758 145 60.7866 1.17417 41 to 266

2

63057 1987.07 2745.61 747 607.866 4.14522 310 to 1962
46508 665.996 420.036 678 700.529 1.89206 310 to 1956
29959 810.747 450.652 709 481.845 1.66754 310 to 1552
13747 792.279 336.759 791 382.511 1.27515 310 to 1364

3
18705 5243.36 3168.59 3010 2007.44 1.81291 1553 to 6803
10334 2431.09 666.083 3550.5 2740.96 0.821954 1553 to 6603

4 8371 8715.06 265.39 8769 203.116 0.0913558 8505 to 9175



3.3. Results 33

FIGURE 3.7: Number-of-edges histogram for the Mock-Even
metagenome

and show the limitation of our approach to detect species in minor abundance. We

show in Chapter 4 how we improve the study of this metagenome by using an

iterative process removing the studied reads and binning the balance sequences, re-

ducing the b parameter.

Table 3.12 compares CLAME results and performance versus MetaProb [33],

BiMeta [116], AbundanceBin [124], and MetaBinG [46]. It shows that all the tools

binned Deinococcus species, but they failed with the species in minor abundance.

MetaProb and BiMeta recovered the most predominant species, but both tools show

contamination in the bins and required more time than our method. These results

TABLE 3.10: Bins composition for the Mock-Even community
metagenome

Tool Bins
Total
reads

by bin

Deinococcus
Deinococcus

Proteobacteria
Acinetobacter

Bacteroidetes
Bacteroides

Firmicutes
Staphylococcus

Actinobateria
Propionibacterium

Time
(m)

CLAME 5

58301 1986 18304 8791 5726 6661

23
409719 361271 9918 2271 302 5473
13747 6345 526 334 3914 107
10334 9165 244 127 141 73
8371 650 125 34 1234 7328
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TABLE 3.11: Completeness and Contamination levels for Mock-Even
metagenome

Bin Size Completeness Contamination Strain Heterogeneity Lineage

0 58301 7.84 0.47 0.00 Proteobacteria
1 409719 54.68 0.00 0.00 Deinococcus
2 13747 4.17 0.00 0.00 Bacteroidetes
3 10334 0.00 0.00 0.00 Deinococcus
4 8371 0.00 0.00 0.00 Actinobateria

TABLE 3.12: Binning report using different binning tools on the
Mock-Even metagenome

Tool Bins
Total

reads by
bin

Deinococcus
Deinococcus

Proteobacteria
Acinetobacter

Bacteroidetes
Bacteroides

Firmicutes
Staphylococcus

Actinobateria
Propionibacterium

Time
(m)

CLAME 5

58301 1986 18304 8791 5726 6661

23
409719 361271 9918 2271 302 5473

13747 6345 526 334 3914 107
10334 9165 244 127 141 73

8371 650 125 34 1234 7328

BiMeta 5

70135 1 1540 1467 21235 0

235
323284 14162 94544 93404 11038 1258
319872 154135 2621 7499 798 73163
250189 522 62440 11048 60594 38
408053 317452 217 5 3 3717

MetaProb 3
269431 235623 23451 1267 6745 2345

34148152 124167 15668 346 2348 5623
70774 56489 12589 1245 126 325

AbundanceBin 1 1386198 486683 161464 113507 93820 78223 2600

MetaBinG* 5

72216 45 66221 463 1033 5

205
46016 125 162 43514 22 11

405800 384768 18 132 0 1020
52101 1716 2 8 13 45107
58216 3 3256 75 45820 0

∗We used the CPU version

show the complexity of this metagenome. We study this metagenome with more

detail in Chapter 4.

3.3.1.4 Brocadia caroliniensis metagenome

Figure 3.8 shows the number of edges histogram generated by CLAME (b = 70bp).

It indicates that although most sequences are singletons (reads that do not align with

any other), there are a secondary concentration in the range 20 to 60 edges.

Table 3.13 illustrates the total of bins and the MAD statistics values generated by

CLAME (b = 70bp) for the leftover reads after removing low-quality bases and 16S

rRNA ribosomal sequences. We also show the iterative process of removing outliers,

developing by the Edges-Analysis stage, to get bins with a near-normal distribution

(we used tol = 0.5). Note that the outlier boundaries for the bin 0 agree with the

limits observed in the edges histogram plot.

Table 3.14 shows the assembly metrics for the contigs generated from each bin.
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FIGURE 3.8: Number-of-edges histogram for the Brocadia
metagenome

TABLE 3.13: Binning report for the Brocadia metagenome

Bin
Bin Size

(Number of
reads)

mean std Median MAD p=3std/mean
Outlier

boundaries

0
663229 73.15 212.32 30 14.83 8.71 11 to 74
607483 29.78 12.20 28 13.34 1.22 11 to 68

1
54879 552.83 540.38 347 342.48 2.93 75 to 1374
45017 452.428 334.882 347 317.28 2.22 75 to 1219

4918 630.26 232.96 970.5 719.43 1.11 431 to 1095

2 7788 1546.71 634.93 2271 1694.61 1.23 75 to 3430

We have included Quast report about genome coverage and CheckM report refer-

ent to bin completeness and contamination level. The results show that the contigs

from the principal bin cover, at least one time, some 97% of the Brocadia genome.

Moreover, these contigs contain more than 90% of the universal genes with a con-

tamination level of less than 11%. The other bins represent a small fraction of the

genome, but they are too short to detect any gene. These results show the effectivity

of CLAME to recover the dominant genome from a metagenome.

We compare our results against MetaProb [33], BiMeta [116], AbundanceBin [124],

and MetaBinG [46] tools. Table 3.15 shows the results of each tool, the number of

bins, and the number of reads that map to Brocadia genome. The table also shows

the time required for the tools to generate the bins. It indicates that our method was

the fastest of all and produced the bin with most of the genome into a single bin.
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TABLE 3.14: Assembly metrics and genome coverage for the Brocadia
metagenome

Size
Bin

Total
Contigs
per bin

Contigs metrics Mapping Report Recovered genome

Largest
(bp)

N50
(bp)

Genome
(Mbp)

ORFS
Genome

Fraction (%)
Duplication

ratio
Complete-
ness (%)

Contami-
nation (%)

Lineage

0 677 88819 18421 3.96 4330 97.21 1.02 93.96 10.05 Brocadiaceae
1 80 1613 252 0.02 76 0.03 1.55 0.00 0.00 Brocadiaceae
2 12 1347 945 0.06 16 0.07 1.13 0.00 0.00 Brocadiaceae

TABLE 3.15: Analysis report using different binning tools on the Bro-
cadia metagenome

Tool Bins
Total reads by

bin
Brocadia

reads
Time (m)

CLAME 3
607483 590534

104918 4918
7788 7788

BiMeta 2
229783 346

11734
2219199 589520

MetaProb 886000

5x1 0

41
4x1 1
3x1 1

2x287 18
1x1934327 589520

AbundanceBin 1 1934912 589520 2295

MetaBinG* 4

780749 78758

278
454970 12764
130449 11508

16158 16158

3.3.2 Computational performance

3.3.2.1 Read-Alignment stage accuracy and performance

Table 3.16 compares the construction time, the RAM required and the data com-

pression ratio of our genFm9 program against representation generated by BWA

(index option), Bowtie2 (bowtie2-build function), and BLAST (makeblastdb com-

mand) tools for the Rfam 16S rRNA ribosomal database. It shows that although

genFM9 strategy required more RAM than the other programs, it had the best data

compression ratio. It is an essential feature because of the vast number of reads in

metagenomic experiments. Moreover, it was close to 2x faster than Bowtie2 and

BWA, which implement the same strategy.

Figure 3.9 shows the computation statistics and the number of the alignments,

against the Rfam database, reported by map2FM9 function (b = 20bp), BLAST (PI =

70), BWA (default parameters), and Bowtie 2 (with default parameters). It illustrates

that map2FM9 function is the one that uses more memory, but it is close to 2x faster

while having similar results than the other tools.
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TABLE 3.16: Compressed representation for 16S-risbomosal Rfam
database

Time
(m)

RAM
(MB)

Ratio=
(Uncompressed/Compressed)

genFM9 2.39 3153.92 3.04
Bowtie 2 18.42 1038.80 0.54
BLAST 3.57 59 1.10
BWA 5.52 630.85 0.68

a)

b)

c)

FIGURE 3.9: map2Fm9, Bowtie2 and BLAST performance about
a)computation time, b)memory usage, and c)number of alignments

3.3.2.2 CLAME: Computation time

Table 3.17 shows CLAME execution time using b=40bp for the Brocadia metagenome.

We illustrate two scenarios: i) CLAME generates the FM-index, ii) CLAME loads an

FM-index. The table shows that the alignment stage (composed by the genFM9 and

map2FM9 functions) requires some 90% of the time in both cases. However, the to-

tal time decreases near 25% when an FM-index is loaded. It also shows that the

map2Fm9 function is the most demanding task.

Figure 3.10 compares CLAME sequential execution against the parallel imple-

mentation of the alignment stage. It shows that the computational time decreases

when we use several threads to execute the map2FM9 function. We achieve the

maximal speedup to eight threads. When the number of threads increases, the FM-

index construction, that is a sequential process, becomes the stage that takes more

time, some 64% of the execution. It also shows that when the FM-Index is loaded,

total time decreases near 40%.
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TABLE 3.17: Global performance of CLAME

CLAME Function
Time (s)

Built FM9 Load FM9

readDNA_sequencesFile 6.96 7.12

alignment
genFM9 147.36 13.32
map2Fm9 372.73 372.51

binning 8.05 7.41
TOTAL 535.1 400.36

a)

b)

FIGURE 3.10: Sequential versus OpenMP execution of CLAME.
a)multithreading execution, with FM-index generation, b)multi-

threading execution, loading an FM-index

3.3.2.3 CLAME: Memory performance

Figure 3.11 shows the memory consumption for the main stages of CLAME. It

shows that the alignment stage (genFM9 and map2FM9 functions) requires the most

percentage of memory. It also indicates that the RAM consumption reduces when

CLAME uses an existing FM-index.

Figure 3.12 shows the memory necessary to load an FM-index and save the con-

tainers: Bases, MatrixQuery, Query vector Qv, and Stack vector Sv. It shows that

the FM-index structure requires most of the memory. We also illustrate the mem-

ory behavior for several values of the number of bases parameter. Since Bases, Sv,

and Qv arrays depend only on the number of sequences in the metagenome, the size

of memory changes only due to the MatrixQuery requirements. It decreases as the

number-of-bases parameter increases.
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FIGURE 3.11: Memory performance of CLAME for a)multithreading
execution, with FM-index generation, and b)multithreading execu-

tion, loading an FM-index

a)

b)

FIGURE 3.12: Memory performance for the CLAME read alignment
stage using a different number of bases parameter. a)with FM-index

generation, b)loading an FM-index

3.3.2.4 CLAME: Speedup performance

Figure 3.13 shows CLAMEs speedup for the different datasets. It shows scalability

up to eight threads. After eight threads, the scalability is not linear because the size

of the problem since Brocadia dataset is the biggest it stays linear the longest.

3.3.2.5 CLAME vs other state of the art binning tools

Figure 3.14 shows the computational time and memory consumption required by

CLAME, MetaProb [33], BiMeta [116], AbundanceBin [124], and MetaBinG [46]. It
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a)

b)

FIGURE 3.13: CLAME speedup using different experiments. a)
withFM-index generation, b)loading an FM-index

shows that CLAME faster than the other taxonomy-independent tools (MetaProb,

BiMeta, and AbundanceBin) and have similar behavior than MetaBinG, which is a

Taxonomy-dependent binning tool. It also shows the high level of memory required

by CLAME.

a)

b)

FIGURE 3.14: CLAME performance against other states of the art bin-
ning tools. a) computational time, b) Memory consume
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3.4 Conclusions

Even though metagenomics allows studying a community without the need of cul-

tivating the species, these datasets contain a mix of the sequences from all organ-

isms in the sample, and it is very challenging to know the origin of each read.

We showed that using a very restricted alignment most reads, from a single DNA

molecule, could be assigned to the single bin. Moreover, for closely related species

in a metagenome, with a significant difference in concentration, the Edges analysis

stage can bin them in different groups.

Since NGS technologies generate small DNA fragments, sequence alignment is a

fundamental task to reconstruct long DNA sequences. CLAME uses read alignment

to produce the relationship graph. A naive implementation of this task compares

all the reads versus all the reads, which has O(n2) complexity. We show that using

an FM-index structure, to represent the dataset, it is possible to reduce the com-

putational complexity by allowing to match each read against the whole structure

without the need of comparing all possible read pairs. Moreover, a multithread im-

plementation allows distributing the tasks to increase the speed.

While several metagenomic binning tools were unable to separate the synthetic

and real problems that we tested, we show that CLAME was faster and most cases

better on these problems. However, the binning performance look reduces when

the abundance of species is low, or there is some previous knowledge about the

species into the metagenome. In this scenery, reference-based methods look more

appropriate. CLAME also shows that it is faster than another state of the art binning

tools, there is still work needed in all the components of CLAME to reach satisfactory

speedup and low memory consuming. It is clear that a more efficient construction of

the FM-index and a compact representation of the MatrixQuery container are neces-

sary to reduce memory requirements. Moreover, although Edges-Analysis and Bins

generation functions are not computational time demanding tasks, in contrast with

the read alignment stage, they limit the global speedup and need to be improved in

a future version.

In Chapter 3, we introduce CLAME implementation, the different approaches

designed to reduce the analysis time and its computational restrictions. Chapter 4

shows that by grouping sequences with similar DNA composition, CLAME reduces

the dataset complexity and improves the assembly and annotation. In Chapter 4,

we also present the integration of CLAME into a full framework for metagenomics

and compare our methodology against another state of the art pipelines. We show

the utility of CLAME to recover novel species from real datasets in Chapter 5.
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Chapter 4

DATMA, A Distributed AuTomatic

Metagenomic Assembly and

Annotation framework

In Chapter 3, we introduced CLAME and showed as it displays promising results

reducing the complexity of metagenomes and helping researchers to study metage-

nomic datasets. However, CLAME requires many manual steps, making it hard to

use, especially with large projects. In this Chapter, we introduce DATMA, an inte-

gration of CLAME with other omics tools into a distributed workflow for complete

metagenomic analysis. We used different experiments to illustrate DATMA’s perfor-

mance and compare its results against other metagenomics frameworks.

4.1 DATMA stages

Figure 4.1 illustrates DATMA’s structure and the tools available in each stage of the

process. In the following subsections, we will describe each one of these stages.

4.1.1 Reads Quality Trimming and Filtering

DATMA receives FASTQ, FASTA, or Standard Flowgram Files (SFF). For reads’ qual-

ity control, it uses Trimmomatic [12] or RAPIFILT, which is a custom tool. This stage

trims low-quality bases at both ends of the reads and removes the ones that are too

short from the dataset. Afterwards, it uses FastQC [3] to plot the quality statistics.

For pair-end reads, DATMA uses FLASH2 [64] to extend the reads and merge

them into a single (FASTA or FASTQ) file, before passing them to the next stage.

If the fragment length is too large to be combined, we force the merging, only for

binning purposes, by adding three extra N characters between the end of the first

read and the beginning of the second one, which is in reverse-complement (e.g.,

ATCGTNNNTTATC).
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Metagenomics 
Sample

Quality Filter
16S 

Detection

Annotation

CLAME Binning

Assembly

HTML
Report

Final Report

ORF 
Prediction

Taxonomical 
Annotation

Paired
read

Merge reads

SFF
ILLUMINA
FASTQ
FASTA

RAPIFILT
Trimmomatic
FastQC

Flash

RFAM
NCBI
RDP
SILVA

RDP 
Classiffier

Prodigal
GeneMark

b={70,50,30}

Krona

CheckM
BLAST
KAIJU

SPAdes
Velvet
MEGAHIT
Quast

FIGURE 4.1: DATMA automatically executes. (i) sequencing qual-
ity control (red blocks) (ii) 16S rRNA genes sequences detection (blue
blocks), (iii) CLAME binning (yellow blocks), (iv) de novo assembly,
ORF detection, taxonomic analysis (violet blocks) and (vi) data man-

agement report (green blocks)

4.1.2 16S rRNA genes sequences detection

In a metagenomic dataset, ribosomal sequences can be used to profile the bacteria

species in the sample and estimate their abundance. DATMA uses the BWA tool [60]

to map the raw reads against a ribosomal database and remove ribosomal sequences

from the pool of reads to improve the binning. This process reduces the probability

that these conserved regions connect reads from different species on the same bin.

DATMA aligns the reads to a reference 16S rRNA gene-database, the user can select

any of NCBI-16S rRNA database [74], RDP [20], Greengenes [22], Rfam [35], RNAm-

mer [56] or SILVA [92] (Table B.4, in Appendix B, details each one of them). Finally,

the detected sequences are classified using the RPD-tool classifier [117].

4.1.3 CLAME binning

DATMA uses CLAME tool to bin DNA sequences. DATMA, by default, starts with

70 (bp) as CLAME’s b-parameter. Then, it iterates with other values (e.g., using 50 bp

or 30 bp) to explore the metagenome in detail. It is important to highlight that lower-

ing the b-value increases the probability of reads from different molecules reported

on the same bin. The user can modify the b-parameter using the configuration file

(see DATMA’s user manual available in DATMA’s GitHub).

https://github.com/andvides/DATMA
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4.1.4 Assembly and contigs’ evaluation

DATMA assembles (de novo) all bins produced by CLAME. The user can select

among different assembly tools: Velvet[125], SPAdes [77] or MegaHit [59]. After

assembly Quast tool [39] evaluates the contigs and report their metrics. Finally,

DATMA uses CheckM program [85] to assess the quality and contamination of the

bins.

4.1.5 ORF detection and taxonomic analysis

DATMA uses the assembled contigs to predict protein-coding-genes; the user can

select between Prodigal [44] or GeneMark [9] for this task. Next, the contigs are

annotated using BLAST [2] and a local NT-database. DATMA also provides the

Kaiju tool [65] for sensitive taxonomic classification.

4.1.6 Final report

DATMA reports the statistics of each workflow stage into an HTML file. It uses

Krona [79] to represent the taxonomical classification into an interactive plot. Using

the Krona report, the user can explore each bin classification at different taxonomic

ranks and select between individual annotation of each bin or combine data from all

bins. Figure D.1, in Appendix D, shows an example of the output file generated by

DATMA.

4.2 Workflow design

DATMA is a command line application written in Python and tested in Linux. We

provide an installation script in our GitHub to automatically install DATMA source

codes and the tools that make up part of the workflow. We tested it on Ubuntu

16.04 and included a user manual for custom compilation and installation of source

codes on other Linux distributions. By default, DATMA configures all tools called in

the workflow according to the authors recommended parameters, but these values

can be modified using a configuration file. In this file, the user specifies the input

sequence file, the output directory, the workflow stages, the database directories, the

number of threads to use, CLAMEs parameters, etc. The minimum configuration

file should contain the input-sequence file, the sequence type (i.e., FASTA, FASTQ,

or SFF) and the output directory. We show a complete configuration file in DATMA’s

user manual.

Although there are several workflow engines (e.g., Snakemake [51], Nextflow

[108], Ibis [5], and Swift [119]) that we could have used to create DATMA, most of

them require that the user learns a set of rules, rewrites the code to include additional

https://github.com/andvides/DATMA
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API functions, or specifies the parallel sections. We selected COMPSs [4] framework

for its simplicity and because of the parallel distributed execution of the workflow

stages. COMPSs offers a simple programming model, that does not require the use

of APIs to modify the original user applications, and enables the execution of the

same code on different back-ends. It uses a sequential description of the work, and

it identifies and launches asynchronous parallel tasks automatically. A complete

description of COMPSs and its performance is in [4].

COMPSs allows DATMA to be executed in single or distributed mode. In sin-

gle mode, the framework executes all the stages into the same computer. In dis-

tributed mode, DATMA uses a master-worker execution strategy, to distribute ap-

plication tasks across the different computer nodes available. It executes the quality

control, 16S rRNA identification, and CLAME binning stages in the master node

(these stages can be multi-threaded). Once the bins are generated, DATMA assem-

bles and annotates them using the available nodes. It requires two configuration

files (resources.xml and project.xml) within the execution environment. The first file

contains the information of the available computing resources, and the second file

has information about the computing resources to be used for a specific execution.

The user manual has an example of each file.

4.3 Experimental evaluation

4.3.1 Metagenomic experiments

We used the experimental dataset explained in Chapter 3 to illustrate DATMA per-

formance and functionality. Since the simplicity of the simulate simple (Brucella-

Mycocobacterium) metagenome, we did not study it in this chapter. We included a

second controlled experiment that helps us to understand the San Fernando biosolid

metagenome (we describe it, in Chapter 5). We created it based on bacterial genomes

of five species, which were selected to mimic the biological diversity found in the

biosolid metagenome. We downloaded the raw reads, for each species, from the

NCBI database. To simulate different abundance levels, similar to the real biosolid

metagenome, we randomly took varying amounts of sequences from each dataset.

The final dataset (with 1,600,000 reads and 239.5 Mbp) was produced by concatenat-

ing the selected sequences into a single multi-FASTA file. Table B.5, in Appendix B,

shows the number of raw reads, the NCBI reference, the taxonomy, and the total of

reads used from each genome.

We compared DATMA’s results and performance against MetaWRAP [113] and

SqueezeMeta [105] frameworks. For the experiments, we set the number of threads

to four for all the datasets and pipelines. Similar to MetaWRAP, we configured

DATMA to use SPAdes [77] as the assembly tool; however, the user can select a
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different assembler using the DATMA’s configuration file. Since most of our exper-

iments are from one sequencing run per sample, we use SqueezeMeta in a sequen-

tial mode. This framework illustrates the execution of a pipeline without a binning

stage.

4.3.2 Computational performance evaluation

To illustrate the computational performance of DATMA we executed the experi-

ments within two different scenarios: i) single mode, using only the Master ma-

chine, and ii) distributed mode, using the Master machine with multiple workers

like a grid of computers. We simulated the grid of computers using tree servers

(Master, Worker1, and Worker2) connected via a secure shell connection. Table B.6,

in Appendix B, illustrates the computer specifications of each server. To simulate a

more significant number of workers, like a bigger grid of computing, we allow for

several tasks to run on the same computer. Applications were configured to use four

threads on all the experiments.

4.4 Results

4.4.1 Simulated multi-species metagenome

We configured DATMA to remove low-quality reads (Q < 30, size < 70bp). Since

it is an Illumina dataset, DATMA automatically merges the reads. We configured

DATMA to use: Rfam as 16S rRNA database, CLAME (with b = 60,40, and 20bp),

SPAdes, Prodigal, and a local NT to annotate the contigs using BLAST. We provide

the complete configuration file in DATMA GitHub.

Table 4.1 shows the assembly metrics and CheckM report for the first five bins.

It indicates that our DATMA framework recovered some 60% of the Dokdonella

and Synechocystis genomes, which are the predominant species (see Table B.3 in

Appendix B). The contamination level, close to 0% for the bins with the strains,

shows the outstanding performance of CLAME to bin sequences from the same

DNA molecule. It was corroborated by Quast report which suggests that CLAME

organized the proposed strains into a reduced number of contigs. DATMA also re-

covered some of 60% of the Hymenobacter genome. However, it was produced us-

ing a reduced number of bases (b = 20bp), which increased the contamination level.

We found that CLAME binned the species in minor abundance into short contigs too

small to detect any gene. It is a consequence of our binning approach.

We studied the metagenome with the alternative frameworks.Table 4.1 illus-

trates that MetaWRAP [113] shows better completeness than DATMA for the Dok-

donella and Synechocystis genomes, but the contamination levels are higher than the
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TABLE 4.1: DATMA report for the simulated multispecies
metagenome

Bins
Total

Contigs
per bin

Contigs metrics Recovered genome Time
(m)Largest

(bp)
N50
(bp)

Genome
(Mbp)

ORFs
Complete
-ness (%)

Contami
-nation (%)

Lineage

DATMA 5

217
2

90
57

454

228117
101157

66750
18084
51141

56638
89021
29632
31413

4440

3.22
0.1

1.24
1.03
1.33

2768
86

1215
932

1517

52.71
10.34
32.90
24.48
59.01

0.58
0.00
0.00
0.00

10.34*

Rhodanobacteraceae-Dokdonella
Rhodanobacteraceae-Dokdonella
Cyanobacteria-Synechocystis
Cyanobacteria-Synechocystis
Cytophagales-Hymenobacter

45

MetaWRAP 3
163

47
1568

119264
335615

7776

41053
183659

1870

3.65
4.54
2.84

3472
3792
3641

99.67
99.19
61.67

0.22
1.05
1.00

Cyanobacteria-Synechocystis
Xanthomonadaceae
Cytophagales-Hymenobacter

110

SqueezeMeta
NA
(†)

3735
2845
740

9303

7656
12600
5937
9072

792
1194
1197
804

2.47
2.59
0.69
5.62

3713
2822

737
9134

76.53
82.09
12.93

100.00

3.82
0.44
0.00

46.93

Bacteroidetes
Cyanobacteria
Firmicutes
Proteobacteria
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∗It correspond a bin generated using b = 20bp
†We manually selected the contigs from the annotation report

reported by our tool. Moreover, it only can annotate the Dokdonella reads until fam-

ily level while DATMA could assign them in species level. MetaWRAP overcame the

other tested tools for the Hymenobacter genome. SqueezeMeta [105] shows a large

number of contigs annotated into the Proteobacteria phylum, but it could not clas-

sify any of them into a family clade. In this experiment, DATMA was the fastest

tool.

4.4.2 Controlled-Biosolid experiment

We set DATMA with default parameters. It removed low-quality (Q < 35) bases

at both ends, and the reads with less than 70 bases were discarded. The remain-

ing 1,590,225 sequences were merged using the FLASH2 tool [64]. Then, the 16S

rRNA ribosomal sequences were separated using BWA to map the reads against the

Rfam database [35]. DATMA reported that a total of 25,629 sequences aligned to the

database. Then, CLAME binned the 1,564,596 leftover reads. We configured it with

60bp as the initial alignment threshold and set DATMA to iterate using 40bp and

20bp. We reported the bins with more than 20,000 reads.

Table 4.2 shows the assembly metrics, reported by Quast tool [39], and con-

tigs’ quality in terms of the universal single-copy genes using CheckM [85]. It also

compares DATMA results against the report generated by MetaWRAP [113], and

SqueezeMeta [105] frameworks. MetaWRAP presented higher completeness for

Actinobacteria Streptomyces, Chloroflexi Pelolinea, and Proteobacteria Pseudomonas,

while DATMA was better for Firmicutes Aneurinibacillus. In the case of Cyanobacteria-

Prochlorococcus, CheckM does not have results, which explains why DATMA was

better than MetaWRAP which relies on CheckM to create the bins. Because DATMA

employs a rigorous binning process, it has the lowest contamination, except for the

Firmicutes-Aneurinibacillus, but this could be an annotation problem of CheckM
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TABLE 4.2: DATMA report for Controlled-Biosolid experiment

Total
Bins

Total
Contigs
per bin

Contigs metrics Recovered genome Time
(m)Largest

(bp)
N50
(bp)

Genome
(Mbp)

ORFs
Complete
-ness (%)

Contami
-nation (%)

Lineage

DATMA 5

123
719
278
185

5

398431
115473

52700
213722
161499

58415
15215
14522
66050

161499

3.99
6.59
2.78
4.14
0.25

4008
6147
2519
3667
550

97.03
88.52
37.59
43.86
20.61

3.14
4.35
0.74
0.00
0.00

Firmicutes-Aneurinibacillus
Actinobacteria-Streptomyces
Actinobacteria-Streptomyces
Proteobacteria-Pseudomonas
Chloroflexi-Anaerolinea

41

MetaWRAP 4

46
1049

66
7

955344
30625

187207
1422612

232540
7890

56363
567500

6.45
6.18
2.89
3.51

6111
5681
2896
3078

100.00
96.28
91.29
91.81

0.10
2.18
1.61
7.45

Proteobacteria-Pseudomonadaceae
Actinobacteria-Streptomyces
Firmicutes-Aneurinibacillus
Proteobacteria

153

SqueezeMeta
NA
(†)

8870
6041
4044

684

6129
31923
5211
5298

768
1209
1074
1308

5.23
6.08
3.46
0.81

8784
5949
4029
683

88.64
99.82
95.16
40.36

5.23
1.82
9.48
0.91

Actinobacteria
Proteobacteria
Firmicutes
Chloroflexi

57

†We manually selected the contigs from the annotation report

since all the reads are from a single genome. SqueezeMeta, which does not include a

binning process, has higher contamination than the other frameworks; even though

its assembly had higher completeness than DATMA for Actinobacteria-Streptomyces

and higher completeness than MetaWRAP for Firmicutes-Aneurinibacillus. Finally,

DATMA was the fastest tool.

4.4.3 Mock-Even community metagenome

We configured DATMA with default parameters to remove low-quality reads (Q <

30 and length < 70 bp), leaving a total of 1,371,533 reads after this stage. Rfam

database [35] was used as a reference database to identify 16S rRNA ribosomal se-

quences. DATMA separated 67,600 reads that aligned to the 16S rRNA regions. The

1,303,933 leftover reads were aligned with CLAME starting with b=40bp and iterat-

ing with b = 30bp and b = 20bp. We set DATMA to report only bins with more than

2000 reads.

Table 4.3 summarizes the number of bins generated, the assembly metrics, the to-

tal ORF detected, and the completeness-contamination level of the bins. It also com-

pares DATMA results and performance versus MetaWRAP [113] and SqueezeMeta

[105] frameworks. The results show that DATMA can obtain more than 60% of three

predominant genomes (Deinococcus -Deinococcus, Proteobacteria-Acinetobacter, and

Bacteroidetes-Bacteroides) with a contamination level less than 7%. MetaWRAP can

recover most of the predominant genomes in the sample, all of them with complete-

ness higher than 80% and contamination less than 1%, except for Firmicutes bacte-

ria. SquuezeMeta, executed in sequential mode, shows a lower performance than

the other tools. Because all the genomes are well-referenced, MetaWRAP overcomes

the other used frameworks. This experiment shows the ability of DATMA to distin-

guish the reads from the predominant species in a short time (most of Deinococcus

genome was recovered with 0.0% contamination level), but indicates the limitation
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TABLE 4.3: DATMA report for the Mock-Even experiment

Total
Bins

Total
Contigs
per bin

Contigs metrics Recovered genome Time
(m)

Largest
(bp)

N50
(bp)

Genome
(Mbp)

ORFs
Complete

-Ness
(%)

Contami
-nation

(%)
Lineage

DATMA 3
119
240
84

58301
13747
10336

4463
3526
1109

2.30
2.26
3.16

2277
8612
5417

54.68
89.08
66.66

0.00
6.98
3.47

Deinococcus-Deinococcus
Proteobacteria-
Acinetobacter
Bacteroidetes-Bacteroides

97

MetaWRAP 5

126
90

489
655
647

122483
110942

66633
31456
8351

43957
38746
11865
5870
2403

3.95
2.54
4.44
2.75
1.41

4246
2611
5095
3363
2589

98.17
93.53
89.31
85.03
56.85

1.21
0.65
0.90
0.21
6.22

Proteobacteria-
Acinetobacter
Actinobacteria-
Cutibacterium
Bacteroidetes-Bacteroides
Deinococcus-
Deinococcaceae
Firmicutes-Streptococcus

236

SqueezeMeta
NA
(†)

36164
26711
7245
6579
5267

389
3894
4194
4605
3504

483
558
786
804
630

14.09
11.69
4.22
3.98
2.32

35713
26262

7170
6420
5123

100
100

88.87
100.00
77.31

505.16
289.42

10.99
70.01
18.38

Firmicutes
Proteobacteria
Bacteroidetes
Actinobacteria
Deinococcus

105

†We manually selected the contigs from the annotation report

of our tool to recover species in lessor abundance into the metagenome (only the

most abundant were reported).

4.4.4 Brocadia caroliniensis metagenome

DATMA was executed with default parameters to remove low-quality bases and

reads that were too short (Q < 30 and length < 70 bp). The 1,860,653 leftover reads

were aligned against the Rfam database [35] to remove 16S rRNA gene sequences.

After removing 12,754 reads, DATMA called CLAME with 1,847,899 sequences us-

ing b = 70bp, as the number of bases alignment parameter. The bins with more than

2000 reads were assembled with SPAdes [77].

Table 4.4 summarizes the number of bins generated, the assembly metrics, the

total ORFs detected, the completeness-contamination of the bins, and the computa-

tional time used by DATMA. It also contrasts these results against the report pro-

duced by MetaWRAP [113] and SqueezeMeta [105] frameworks. MetaWRAP com-

pleteness of the Brocadia genome is higher than the obtained by DATMA; but, DATMA

obtains a better N50. SqueezeMeta annotated most reads as Brocadicae family, but it

generated a larger number of contigs than the other frameworks. DATMA was the

fastest tool.

4.4.5 Computational performance

Figure 4.2 shows the execution time for all the datasets using several scenarios. It

shows that computational time decreases as the number of workers increase. Fig

4.2 also illustrates the memory performance of DATMA. It reports a peak in the



4.5. Conclusions 51

TABLE 4.4: DATMA report for the Brocadia caroliniensis experiment

Tool
Total
Bins

Total
Contigs
per bin

Contigs metrics Recovered genome Time
(m)Largest

(bp)
N50
(bp)

Genome
(Mbp)

ORFs
Complete
-ness (%)

Contami
-nation (%)

Lineage

DATMA 2
677

1382
88819
13527

18421
2456

3.96
2.37

4330
3656

93.96
47.95

10.05
1.78

Brocadiaceae
Brocadiaceae

60

MetaWRAP 2
607
374

58497
29910

9402
10268

3.67
2.81

4273
4015

96.08
77.30

5.00
1.75

Brocadiaceae
Brocadiaceae

135

Squeeze-
Meta

NA(†)
10345
12753
12698

3264
3420
4314

519
360
342

4.13
4.21
4.14

10283
12607
11916

89.47
74.76
65.33

111.28
100.00
84.78

Brocadiaceae
Bacteroidetes
Proteobacteria

85

†We manually selected the contigs from the annotation report

binning stage, but it then decreases when DATMA distributes the next tasks into the

available computing resources.

FIGURE 4.2: It illustrates the computational time of DATMA for all
datasets using several workers

4.5 Conclusions

Distributed AuTomatic Metagenomic Assembly and Annotation framework (DATMA)

is designed to address two typical challenges of metagenomic projects: i) metage-

nomics assembly, a complex task due to the mix of reads from several species, and

ii) the computational time required to analyze the massive amount of data recovered

with NGS technologies.

We showed DATMAs functionality using metagenomic samples with known

species composition. It showed that DATMA automatically, using CLAME, effec-

tively groups reads without mixing from different species. The controlled experi-

ments also illustrated that in contrast with the other frameworks without the bin-

ning stage, the inclusion of a CLAME improves the assembly. We also show that
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DATMA automatically detected the number of assembly-annotation tasks and dis-

tributed them into the computational resources, decreasing the time to analyze a

complete dataset. We reported similar performance with the Mock-Even and Bru-

cella metagenomes, in which DATMA produced comparable results than MetaWRAP

and SqueezeMeta frameworks, but faster.

Even though exploiting parallelism from a problem is a complex task, we show

that by using COMPSs, DATMA can run in parallel on several threads or better on

different computing infrastructures. It is an essential feature of DATMA that dif-

ference our framework from traditional pipelines, which are typically built as stan-

dalone applications or bash scripts, and enable future studies of huge metagenomes.

However, additional work needs to be done to get a versatile pipeline. Memory

usage stays to be the primary constraint for our framework. Moreover, current

DATMAs version includes the stages that we consider are the main into full metage-

nomics, but new tools will be included in next versions.
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Chapter 5

Experimental Setup

In this Chapter, we show how CLAME and DATMA are used to study real metagenomes

and extract the predominant species from them. First, we introduce the San Vicente

hot spring metagenome, from which, we obtained a novel Xanthomonadaceae draft

genome. Then we present the San Fernando wastewater biosolid metagenome, in

which we extracted a novel Anareolinacea draft genome.

5.1 San Vicente hot spring metagenome

San Vicente is a hot spring within the Cerro-Machin-Cerro-Bravo volcanic complex

in Colombian Andes, located at N4◦50.25′ W75◦32.35′ at an altitude of 1,715 masl.

Waters with discharge temperatures above 60◦C (max. 91◦C), pH of 6.7 and high

concentrations of chlorides characterize hot springs.

Hot spring bacteria have unique biological adaptations to survive the extreme

conditions of these environments; these bacteria produce thermostable enzymes that

traditionally are used in biotechnological and industrial applications. However, se-

quencing those bacteria is complicated, since it is not possible to culture them. As

an alternative, genome shotgun sequencing of whole microbial communities can

be used. The problem is that the classification of sequences within a metagenomic

dataset is very challenging, mainly when they include unknown microorganisms

since they lack genomic reference.

In this section, we show that CLAME allowed us to recover a high-quality draft

genome of a Gammaproteobacteria closely related to Dokdonella genus, which seems

to represent a new lineage within the family Rhodanobacteraceae. This draft genome

was validated using several genomic strategies and summited on the NCBI’s project

PRJNA431299.

5.1.1 Methods

To reduce the complexity of the community, we incubated a sample of the San Vi-

cente hot spring (discharge temperature 64◦C) in a non-selective mineral medium,
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maintained at 45◦C with white light during 15 days. Then, we extracted the DNA

community using PowerMax Soil DNA Isolation Kit supplied by MOBIO Corpora-

tion [23], following the instructions of the manufacturer. The sample was sequenced

using ROCHEs 454 Titanium technology in 3/4 PTP at the Centro Nacional de Se-

cuenciación Genómica - CNSG, Universidad de Antioquia, Medellin, Colombia. We

recollected a total of 926,130 reads, with a 300bp average length.

We set DATMA to trim low-quality (Q < 35) reads and keep sequences with at

least 70 bases long. CLAME was configured to start with 70 bp and iterate with 50,

40 and 20 base pairs. We set the bin size to 10,000 reads and selected SPAdes [77]

tool to assembly the bins. Putative open reading frames (ORFs) were detected us-

ing Prodigal [44] tool. Taxonomic annotation for the contigs was developed using

BLAST [2] and Kaiju [65] tools (both against a local NT database). Bin contamina-

tion was checked by detecting the presence of single-copy of essential genes using

CheckM [85] tool. The complete configuration file for this metagenome is available

in the DATMA GitHub.

The phylogenetic tree, built for the main bin reported by CLAME, was inferred

by using the Maximum Likelihood method with the Jukes-Cantor model [48] and

the process described by Brumm et al. [15]. We replied the Brumm et al., strategy to

obtain the first tree(s), but our analysis involved 29 nucleotide sequences, instead of

26 samples. The ribosomal-sequences were manually curated, annotated and used

to build an evolutionary tree. We conducted our study on MEGA 7.0 [55].

Finally, we used MG-RAST [120], MetaWRAP [113], and SqueezeMeta [105] frame-

works to study the hot spring metagenome and compare our results. All the tools,

except MG-Rast, were executed on a computer equipped with 64 Intel(R) Xeon(R)

CPU X7560 @ 2.27GHz and 500 GB of RAM, and Linux-Centos OS. We set the num-

ber of threads to four for all the datasets and pipelines. Although SqueezeMeta

includes a binning stage, it requires several metagenomics samples. Because we

have only one DNA sample, we executed this tool in a sequential mode, which does

not include the binning stage. We decided to use this framework to illustrate the

execution of a pipeline without a binning phase.

5.1.2 Results

Figure 5.1 shows the Microscopic photograph of the water sample from the San

Vicente hot spring. It shows that a filamentous Cyanobacterium dominated the

sample, and several small cells suggest that a reduction in the complexity of the

community was achieved after the enrichment of the sample at 45◦C for 15 days.

Table 5.1 shows the metrics of bins generated by CLAME, using b = [70, 50, 40,

and 20] bp, we reported only those with at least 10,000 reads. It shows that some

60% of the raw reads were binned into four main bins.

https://github.com/andvides/DATMA
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FIGURE 5.1: Microscopic photograph of cultured water from San Vi-
cente hot spring

TABLE 5.1: DATMA report for the hot spring metagenome

b Bin
Bin Size

(Number of
reads)

mean std Median MAD p=3std/mean
Outlier

boundaries

70 0 361175 80.02 22.43 81 25.2 0.84 29-127
50 1 41177 12.70 4.63 12 4.45 1.09 3-25
40 2 30471 13.43 4.66 13 4.45 1.04 3-25
20 3 48317 97.85 31.26 99 32.61 0.95 16-188

Figure 5.2 shows the edge histogram, produced by CLAME, considering 70

bases alignment. It shows a normal-like distribution in the range of 30 to 130 edges.

This range agrees with the DATMA reports using MAD statistics, which report a

normal distribution in the field 29 to 127 edges for the large bin.

FIGURE 5.2: Number of edges histogram reported by CLAME for the
hot spring metagenome

Table 5.2 summarizes the assembly metrics for the contigs generated from each
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TABLE 5.2: Assembly metrics for the hot spring metagenome

CLAME
(bp)

Bin
Size

(reads)
bp Contigs

Expected
genome

size
(Mbp)

N50
(bp)

ORFS
Contami-

nation
Complete-

ness
Lineage

70 0 361175 142309134 251 2.95 24167 2675 1.2 83.69 Proteobacteria
50 1 41177 15008981 444 2.027 6770 2249 0.0 22.41 Cyanobacteria
40 2 30471 11091561 300 1.49 7861 1583 0.0 26.21 Cyanobacteria
20 3 48317 18655081 219 0.478 6040 465 0.0 17.24 Cyanobacteria

Total 486307 189189763 1245 2027 45846 7027 NA NA NA

bin using SPAdes assembler tool. It also shows the total of open reading frames

(ORFs) detected by Prodigal from these contigs. We have included the CheckM

report; it indicates the contamination level and genome completeness of each bin

according to single-copy of universal genes.

We have included in the Table 5.2 the annotation report generated by BLAST

(against a local NT) for the contigs produced using the reads from each bin. It indi-

cates that most of the contigs from bin 0 belong to Proteobacteria phylum and Xan-

thomonadaceae family. CheckM report shows contamination of less than 2% for this

bin. The number of contigs, the contamination level, the expected genome size (>2.0

Mbp) and completeness ration (>80%), show that the Bin 0 is an excellent candidate

to describe a Xanthomonadaceae genome. Although most of the contigs from Bin 1,

Bin 2, and Bin 3 belong to the Cyanobacteria phylum, they present a completeness

ration less than 20% which is not enough to report a draft genome.

We focus our study on Bin 0. Figure 5.3 details the BLASTn report for this bin.

It indicates that BLAST classified most of the contigs into the Xanthamonadaceae

family belonging to the Proteobacteria phylum. Using the set of standards for the

minimum information regarding a metagenomeassembled genome (MIMAG) pro-

posed by Bowers et al. [13] and the results in Table 5.2 and Figure 5.3, we can use

the contigs from the Bin0 to introduce a High-quality draft genome. We named our

sequences as Colombian thermophile Xanthomonadaceae_UdeA_SF1 draft genome,

and it was made public by submitting it to the NCBIs project PRJNA431299.

Figure 5.4 illustrates the phylogeny tree building from the 16S rRNA sequence

of our Xanthomonadaceae_UdeA_SF1 genome and several families of Proteobacte-

ria phylum. It confirms that our strain is closely related to several uncultured bac-

teria within the family Xanthomonadaceae of the Gammaproteobacteria. Besides,

the phylogeny reconstructed only based on culture-type strains showed that the

obtained 16S rRNA ribosomal sequence is consistently within Order Xanthomon-

adales, separated from the outgroup Alkanibacter difficilis Order Sinobacteriales

and apart from the cluster composed by the Genus Dokdonella and other Xan-

thomonadales such as Rhodanobacter, Dyella, Aquimonas, and Pseudoxanthomonas.

Table 5.3 compares DATMA results against the report generated by MetaWRAP
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FIGURE 5.3: Taxonomic report for the contigs from the Bin0

Rhodanobacter_caeni_<T>I_MJ01

Rhodanobacter_thlooxydans_<T>I_LCS2

Rhodanobacter_lidaniclasticus_<T>I_LCS2
Rhodanobacter_soli_<T>I_DCY45
Rhodanobacter_spathipylly_<T>I_type_strain_B39
Rhodanobacter_terrae_<T>I_GP18-1
Frateurla_terrea_<T>I_VA24
Dyella_marensis_<T>I_type_strainI_CS5-B2

Dyella_koreensis_<T>I_BB4
Dyella_thiooxydans_<T>I_ATSB10

Dyella_terrae_<T>I_JS14-6

Dyella_japonica_<T>I_XD53
Fulvimonas_soli_<T>I_type_strainI_LMG_19981
Pseudofulvimonas_gallinarII_<T>I_type_strainI_Sa15

Aqulmonas_vorall_<T>I_GPTSA_20

Pseudoxanthomonas_taiwanesis_<T>I_CB-226

Silanimonas_lenta_<T>I_25-4

Dokdonella_ginsegisoli_<T>I_Gsoil_191
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FIGURE 5.4: Phylogenetic tree for the 16S-ribosomal assembled gene
(16SProto marks whit red). The values in the branches indicate the
percentage of replicate trees in which the associated taxa clustered

together in the bootstrap test

[113], SqueezeMeta [105], and MG-RAST [120] frameworks. It shows that Xan-

thomonadeceae is the predominant family for all the tools, but only MetaWRAP

and DATMA can recovery more than 80% of this genome. Although MetaWRAP

shows superior completeness ration than DATMA, it also has a contamination level

gather than our tool. We executed SqueezeMeta in sequential mode, which disables
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TABLE 5.3: Analysis report for the hot spring metagenome using dif-
ferent metagenomic frameworks

Total
Bins

Total
Contigs
per bin

Contigs metrics Recovered genome Time
(m)

Largest
(bp)

N50
(bp)

Genome
(Mbp)

ORFs
Complete-

Ness
(%)

Contami-
nation

(%)
Lineage

DATMA 4

251
444
300
219

99677
28143
27804
13966

24167
6770
7861
6040

2.95
2.03
1.50
0.48

2675
2249
1583

465

83.69
22.41
26.21
17.24

1.2
0.0
0.0
0.0

Proteobacteria-Xanthomonadales
Cyanobacteria
Cyanobacteria
Cyanobacteria

27

MetaWRAP 4

282
466
370

1371

268735
138319

42515
15051

97835
23444
9098
2664

3.42
7.22
2.44
3.23

2975
8100
2932
5237

96.35
94.96
87.82
69.78

3.04
2.32
1.41
2.45

Proteobacteria-Xanthomonadaceae
Cyanobacteria
Actinobacteria-Microbacteriaceae
Cyanobacteria

151

Squeeze-
Meta

NA
(†)

25218
12449
3750

6600
6117
4515

609
849
801

12.92
8.31
2.41

24771
12404
3692

100
98.12
88.55

324.09
85.02

7.13

Proteobacteria
Cyanobacteria
Actinobacteria

79

MG-Rast
NA
(†)

73100(*)
6748(*)

NA NA NA NA NA NA
Proteobacteria
Actinobacteria

1
week

∗The values correspond to reads
†We manually selected the contigs from the annotation report

the binning stage and can explain its low performance. MG-Rast classified most of

the reads into Proteobacteria and Actinobacteria phyla. However, DATMA reports

a more significant number of sequences into the Proteobacteria species. Moreover,

because we submitted the raw dataset as private, we only have access to the basic

report of MG-Rast. We decided to conserve these results to evaluate the annotation

report and explain the limitation of a web framework. The table also indicates that

MetaWRAP overcomes the other tools to study the Cyanobacteria and Actinobacte-

ria species, which is in minor abundance for this sample. It is a current limitation

of our tool, which splinted the Cyanobacteria genome into three regions. However,

our tool is who report 0% of contamination. Moreover, DATMA was the fastest tool.

5.2 San Fernando biosolid metagenome

Waste Water Treatment Plant (WWTP) San Fernando is located in Itagüí-Colombia

and operated by the company Empresas Publicas de Medellín (EPM). This WWTP

services a population of approximately 500,000 people and receives an influent flow

of 1.8m3/s of residential houses, hospital and industrial wastewater. Municipal

wastewater treatment plant produces large amounts of sludge as a byproduct (Biosolid).

The vast diversity of bacteria present in a biosolid makes that traditional biological

methodologies are unsuitable for their identification and characterization.

Analysis of microbial communities in anaerobic reactors traditionally has been

based on molecular tools such as denaturing gradient gel electrophoresis (DGGE),

fluorescent in situ hybridization (FISH), and 16S rRNA clone libraries in bacterial

plasmids [30]. However, these approaches cannot elucidate the whole complexity

of the genetic and functional diversity in microbial structure [47]. Notwithstanding

high-throughput sequencing technologies offer an effective method to characterize
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the phylogenetic composition and metabolic profiling in environmental samples,

few studies have been made in activated sludge and biosolid samples using this

sequencing method (i.e., [126], [53], [93]).

Below we show how DATMA allowed us studying the biosolid metagenome and

recover a Low-quality draft genome that belongs the family Anaerolineaceae closely

related to the genus Anaerolinea. A study of the microbial diversity, as well as the

methanogenesis pathway of this metagenome, is presented in [7].

5.2.1 Methods

We collected two biosolid samples from municipal (WWTP) San Fernando, one of

them in the rainy season (9.1mm/h precipitation, average maximum temperature

27.8◦C, average minimum temperature 17.1◦C, August 2013) and the other in the

dry season (1.9mm/h precipitation, average maximum temperature 28◦C, average

minimum temperature 17.4◦C, February 2012). Dewatered biosolids (about 500 g)

were collected and transferred to the laboratory in refrigeration. The DNA extraction

was done using PowerMax Soil DNA Isolation Kit supplied by MOBIO Corporation

[23]. Then, the samples were sequenced using ROCHEs 454 Titanium technology in

3/4 PTP at the Centro Nacional de Secuenciación Genómica-CNSG, Universidad de

Antioquia, Medellin, Colombia. A total of 6,206,317 reads were analyzed.

We set DATMA with default parameters to remove low-quality sequences (Q <

30 and length < 70 bp). These resultant reads were aligned against the Rfam database

[35] to identify 16S rRNA ribosomal sequences. The leftover sequences were binned

with CLAME using default parameters but reporting bins with more than 5000 reads.

We selected SPAdes [77] as the assembler tool. The whole configuration file for this

dataset is available into the DATMA GitHub.

We focus the study on the main bin generated by CLAME. We assessed the as-

sembly completeness of the contigs generated from this bin using CheckM [85] tool

to detect the presence of single-copy essential genes. We built an evolutionary tree

to complement the annotation report of BLAST. It was constructed using the riboso-

mal sequences for the bin. The tree was inferred by using the Maximum Likelihood

method with the Jukes-Cantor model [48] and the process described by Brumm et al.

[15]. We conserved the same number of replicates (500) and bootstrapped tree topol-

ogy to represent the evolutionary history of the taxa analyzed. We used Brumm

et al., strategy to obtain the first tree(s) but our analysis involved 29 nucleotide se-

quences, instead of 26 samples. We conducted our study on MEGA 7.0 tool [55].

Finally, we used MG-RAST [120], MetaWRAP [113], and SqueezeMeta [105] frame-

works to study the biosolid metagenome and compare our results. All the metage-

nomic pipelines, except MG-RAST, were executed on a computer equipped with 64

Intel(R) Xeon(R) CPU X7560 @ 2.27GHz, 500 GB of RAM, and Linux-Centos OS. We

https://github.com/andvides/DATMA
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TABLE 5.4: DATMA report for the biosolid metagenome

CLAME
(bp)

Bin
Size

(reads)
bp Contigs

Expected
genome

size
(Mbp)

N50
(bp)

ORFS
Complete-

ness
Conta-

mination

Strain
hetero-
geneity

70
0 115754 43499518 2337 3.58 2097 5332 58.83 148.56 79.16
1 84476 35342229 329 1.71 7897 1929 67.24 32.49 98.08

50
2 396449 138490533 4077 13.81 5346 16607 95.45 235.28 14.26
3 14735 5528036 9 0.060 10963 112 0.00 0.00 0.00

25
4 10740 3853093 196 0.37 2155 570 0.00 0.00 0.00
5 12621 4282265 7 15967 3014 18 0.00 0.00 0.00

Total 634775 230995674 6955 15984.82 31472 24568 NA NA NA

set the number of threads to four for all the datasets and pipelines. We configured

SqueezeMeta in merge mode using the two metagenomic samples (rainy and dry)

by separated; it enables the binning stage. However, it generated a No-consensus

output in the merge stage. We reconfigured it in sequential mode and executed on

all the datasets.

5.2.2 Results

DATMA left 5,668,260 reads after the quality control stage. A total of 54,931 se-

quences were automatically identified as 16S rRNA reads and separated from the

dataset. The 5,613,329 leftover sequences were binned with CLAME. Table 5.5

shows the number of bins, with at least 30,000 reads, and the results after assem-

bling those using SPAdes [77]. We have included the CheckM [85] report, to indicate

the contamination level and completeness ration of each bin. According to MIMAG

standards [13] to report a genome, only Bin0 and Bin1 have suitable results to pro-

pose a draft genome. We focus or study over these two predominant bins.

Figure 5.5 shows the BLASTn report for the assembled contigs from the Bin0. It

indicates that some 43% of the contigs were classified into Chloroflexi phylum, but

only close to 38% of them were annotated into a single phylum-family clade. In this

case, the contamination level is too high to propose a draft genome.

Figure 5.6 shows DATMAs annotation report using the BLAST [2] tool for the

second bin (Bin 1). It indicates that BLAST annotated most of the contigs into the

Chloroflexi phylum and Anaerolineaceae family. Moreover, the relation between

the number of ORFs and the genome estimation ( 1 ORF per Kbp) agrees with the

relationship reported for this kind of species (i.e., Pelolinea submarina with 3131

ORFs, 3.5 Mbp and a relation of 0.89 ORFs/Kbp and Leptolinea tardivitalis with

3301 ORFs, 3.69 Mbp and a relation of 0.90 ORFs/Kbp).

CheckM [85] report for this bin indicated that 60% of Universal Single-Copy Or-

thologs are in the contigs. It also shows a contamination level of the 32%, but the

strain-heterogeneity index ( 92%) indicates that most markers present appear to be

from closely related organisms. We highlight that our observation suggests that it
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FIGURE 5.5: Taxonomic report for the contigs from the Bin0 for the
biosolid metagenome

is a novel genome without a near reference. According to the set of standards for

the minimum information regarding a metagenome-assembled genome (MIMAG)

proposed by Bowers et al. [13], the contigs and their metrics are enough to describe

a Low-quality draft genome belongs to the Anaerolineaceae family. We called this

draft genome Anaerolineaceae_UdeA_SF1 and submitted it into the NCBIs project

PRJNA529916.

FIGURE 5.6: Taxonomic report for the contigs from the Bin1 for the
Biosolid metagenome

To improve the taxonomic annotation, we used MEGA 7.0 [39] to build a phy-

logenetic tree using the 16S rRNA sequences for this bin and the Ribosomal data

project database [18]. The evolutionary tree, in Figure 5.7, indicates that the recov-

ered reads are close to the family Anaerolineaceae, and it has a relation with the
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genus Pelolinea and Leptolinea.

16S_Anaerolineaceae_UdeA_SF1

FIGURE 5.7: Phylogenetic tree for the 16S-ribosomal gene (16S_-
Anaerolineaceae_UdeA_SF1). The values in the branches indicate the
percentage of replicate trees in which the associated taxa clustered

together in the bootstrap test

Table 5.5 compares the assembly results of DATMA, MG-RAST [120], MetaWRAP

[113] and SqueezeMeta [105] frameworks. It shows that MetaWRAP reports eight

genomes with some 80% completeness ration and contamination level less than 7%.

However, most of them cannot be assigned with precision into a family clade, and

most important any bin belongs to Anaerolineaceae family. SqueezeMeta shows that

Proteobacteria is the dominant phylum, but any bin belongs Chlorofexi. MG-RAST

indicates that most of the reads classify into of Pseudomonadaceae and Anaerolin-

eaceae families, but because we submitted the data as a private project, any addi-

tional information could be recollected. For this experiment, DATMA was the fastest

tool and the only tool which can recover a draft genome.

5.3 Conclusions

In this chapter, we show that using DATMA, the reads belong to the predominant

species from two real metagenomes can be binned and the respective draft genomes
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TABLE 5.5: Analysis report for the Biosolid metagenome using differ-
ent metagenomic frameworks

Total
Bins

Total
Contigs
per bin

Contigs
metrics

Recovered
genome

Time
(m)

Largest
(bp)

N50
(bp)

Genome
(Mbp)

ORFs
Complete

-ness
(%)

Contami
-nation

(%)
Lineage

DATMA 2
2337

329

11791

43084

2097

7897

3.58

1.71

5332

1929

58.83

67.24

148.56
(79.16%)‖

32.49
(98.08%)‖

Chloroflexi-Anaerolineaceae

Chloroflexi-Anaerolineaceae
125

MetaWRAP 8

495
157
218
463
731
994
420
754

87496
82800
60788
34164
22922
23123
26523
19037

17399
18931
20930

7341
4571
4103
6363
5384

4.92
2.10
2.72
2.57
2.78
3.58
2.17
3.33

4266
2110
2954
3031
3293
4481
2969
3944

94.59
89.03
88.70
87.16
85.49
84.98
83.09
82.64

4.73
1.69
3.22
1.32
3.01
6.70
1.11
3.61

Bacteria
Bacteria
Proteobacteria
Bacteria
Actinobacteria
Proteobacteria-Pseudomonas
Gammaproteobacteria
Proteobacteria-Pseudomonadaceae

485

Squeeze-Meta
NA
†

204323
49288
47728
41526

11961
5376
5055
9084

528
579
519
585

93.69
24.30
21.66
20.69

46730
49227
46730
41342

100
95.83

100
100

2844
1258

675
659

Proteobacteria
Firmicutes
Actinobacteria
Bacteroidetes

626

MG-Rast
NA
†

114806*
95148*

NA NA NA NA NA NA
Pseudomonadaceae
Anaerolineaceae

1
week

‖ Strain-heterogeneity index
∗The values correspond to reads
†We manually selected the contigs from the annotation report

obtained. They were validated further studying the assembly, and we proposed

Xanthomonadaceae_UdeA_SF1 and Anaerolineaceae_UdeA_SF1 draft genomes.

Xanthomonadaceae_UdeA_SF1 genome is around 3 Mbp, with 2,726 predicted

ORFs; it is a small genome size, compared to Dokdonella and Dyella species, both

with genomes around 4.5 Mbp and 3,519 and 3,966 annotated proteins, respectively.

CheckM results showed that although the genome is not complete, it has an esti-

mation of 80% completeness, which is adequate to present a high-quality genome

according to MIMGAG parameters. BLAST annotation indicated that there are not

a very close species to Xanthomonadaceae_UdeA_SF1. It means that our genome

is candidatus for a new species. The evolutionary tree confirmed that the genome

seems to be from a novel lineage within the family Rhodanobacteraceae of the class

Gammaproteobacteria, closely related to the genus Dokdonella.

DATMA also showed a suitable performance to study complex metagenomes as

the San Fernando biosolid dataset. It indicates that Proteobacteria is the dominant

phylum; however, there are several families into it. Chloroflexy is not the dominant

phylum, but it contains the predominant genome. It was detected by CLAME that

grouped most of the reads of this genome into a bin, then DATMA used SPAdes and

Kaiju tools to assemble and annotate it as an Anaerolineaceae family. This annota-

tion was corroborated using the 16S rRNA gene phylogenetic analysis. It showed

that DATMA extracted most reads of a novel taxon of the family Anaerolineaceae of

the class Anaerolineae, closely related to the genus Pelolinea and Leptolinea.

We observed that other metagenomic frameworks show similar results than our
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DATMA pipeline. In particular, for the two presented experiments, the tools that in-

clude a binning stage showed better performance than those without this phase.

MetaWRAP and DATMA showed suitable performance to recover the abundant

species, but DATMA presented the bin with minor contamination. MetaWRAP is

better than the other frameworks for studying the species in low abundance con-

cerning the hot spring metagenome. DATMA is better than the used tools to analyze

the biosolid metagenome and was the fastest tool in all the cases.

MG-RAST requires zero computing power, but it needs to submit the data as

public to access advanced studies, which can be forbidden for some projects. MetaWRAP,

SqueezeMeta, and DATMA can run on a local computer, but since DATMA split the

data into consistent bins and enables the parallel study of the dataset, it results in a

reduced time of analysis. We discuss the advantage of our methodology in Chapter

7 and describe several future studies to improve the current limitation in Chapter 8.
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Chapter 6

Conclusions

In this dissertation, we have presented an algorithm and a framework to analyze

metagenomic datasets. Our main contribution is the design of an efficient method,

called CLAME, that groups metagenome reads from the same molecule into bins.

We have also integrated CLAME into a full pipeline, DATMA, which allows study-

ing complex metagenomes using multi-core processors and several computers(when

available). Our binning approach and complete framework are publically available

and have been assessed using controlled and real metagenomes.

CLAME creates a graph representation of the metagenome, where reads are the

nodes, and the connections represent the reads with highly similar DNA composi-

tion. Later a statistical analysis separates the graph and produces bins. We show that

this methodology bins metagenomic reads without the need of a reference genome.

This feature is essential since most of the unculturable microorganisms do not have

reference genomes. A central limitation in this kind of binning methods is the time

necessary to align the reads. We showed that CLAME, using an FM-index represen-

tation of the metagenome and proper a multi-threaded search algorithm, produces

bins with similar precision that other state-of-the-art alignment tools but faster.

DATMA integrates CLAME binning tool with other state-of-the-art omic’s tools

and enables full analysis of metagenomic datasets. It analyzes CLAME’s bins using

several instantiations into a single computer or distributing them into the different

computing resources. We showed that based on this strategy, DATMA pipeline pro-

vides assembly and annotation faster, and in many cases, better than similar metage-

nomic frameworks.

We showed DATMA functionality analyzing complex metagenomes and recov-

ered from them most of their species and, more importantly, automatically extracted

an almost complete genome from the predominant species. Therefore, DATMA can

be used to improve the metagenomic analysis by grouping reads from DNA frag-

ments of novel species, such as the Xanthomonadal genome presented in the hot

sprint metagenome and the Anaerolineacea genome present in the biosolid metagenome.

These draft genomes are one of the first species members of their families, and it was

only possible to obtain them thanks to CLAME and DATMA.
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Chapter 7

Future Work

Although CLAME and DATMA show a proper performance, in contrast with the

other state of the art tool in most experiments, much remains to be done.

One of the main limitations of CLAME is memory occupancy. FM-index struc-

ture and the format used to represent the resulting overlaps are memory consume.

Therefore, it is necessary to study alternative approaches to reduce the amount of

RAM needed, like those used by BWA and Bowtie, which uses a similar structure,

but that requires less memory. MatrixQuery container used to save the overlaps is

a sparse matrix; hence, it can be stored using a compressed format designed for this

kind of matrices. However, because it is a dynamic matrix, its size is only computed

during execution, it requires a suitable strategy to insert elements. All these modifi-

cations are necessary to use CLAME in a computer with RAM constraints and bigger

datasets.

Besides, CLAME methodology, based on the sequences abundance, can be un-

suitable for experiments in which the species contribution is equality distributed.

We have observed that the main effect of our binning approach on these experi-

ments is splinted the raw reads into several bins. We have perceived that contig-

binning methods perform better in these datasets. However, they require a metage-

nomic assembly, which is challenging. Future strategies can be oriented to bin the

raw reads with CLAME, assemble the bins individually, (it reduces the assembly

requirements), and cluster the contigs using contig-base tools.

On the other hand, since DATMA distributes the bins to be assembled and an-

notated, two consume time tasks, into several computers; it showed the best time to

study datasets. However, its performance is limited to the number of bins generated

by CLAME. This restriction makes DATMA unsuitable for experiments in which

the species abundance or sequencing depth are not enough to create enough groups

to require all the computational resources. Moreover, because DATMA only dis-

tributed the tasks after the binning stage, the parallelism is confined to the last steps

of the framework. Future versions of DATMA can be adapted to use the complete

computing structure to develop all the stages within the pipeline.
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Finally, we will continue improving our tools to accommodate fast-growing tech-

nologies, including new stages in our pipeline and studying complex dataset. We

have started to explore the Critical Assessment of Metagenome Interpretation (CAMI)

dataset [98]. A challenging dataset that evaluates methods in metagenomics inde-

pendently, comprehensively, and without bias. We hope that the result of this disser-

tation help researchers to study complex metagenomes and discover novel species

from them.
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Appendix A

Pseudocode algorithms of CLAME

Algorithm A.1 Main functions of CLAME

1: Example of DNA-sequences file in Fasta format
>R1
ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTC
>R2
CTCCTGACTTTCCTCG

2: procedure MAIN

3: Input: sequencesFile
4: Input: CLAME_parameters
5: Let: bases, QV, MatrixQuery: Matrices of size n, with n number of reads
6: goto: readDNA_sequencesFile(sequencesFile, bases)
7: goto: alignment(bases, parameters, MatrixList)
8: goto: binning (parameters,queryList,MatrixList)
9: end procedure

Algorithm A.2 Read DNA-sequences

1: procedure READDNA_SEQUENCESFILE(SEQUENCESFILE,BASES)
2: String Line
3: Open(sequencesFile)
4: while Not EOF(sequencesFile) do
5: Input Line
6: if line Not Startwith ’>’ then
7: for all bp in line do
8: bases[i]=bp
9: i=i+1

10: end for
11: else
12: bases[i]=’&’
13: i=i+1
14: end if
15: end while
16: Close(sequencesFile)
17: end procedure
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Algorithm A.3 Read alignment stage

1: procedure ALIGNMENT(BASES,PARAMETERS,MATRIXQUERY)
2: Declare n= parameters.totalReads
3: Declare t= parameters.cpus
4: Declare seedSize=parameters.b

.

. FMindex generation
5: Declare String S
6: S=&bases[0]
7: FM_index=genFM9(S)

.

. Multithread Backward search
8: Declare String Q
9: for i=0; i<n; i=i+t do

10: for all tread in t do
11: Q=substring(bases[i+ThreadID],seedSize)
12: MatrixQuery[i+ThreadID]=map2FM9(Q,FM_index)
13: end for
14: end for
15: end procedure

Algorithm A.4 Subgraph traversal and bin generation

1: procedure BINNING(PARAMETERS, MATRIXQUERY)
2: Declare n= parameters.totalReads
3: Declare tol=paremeters.tolerance
4: Declare Qv, Sv
5: Declare get=&Sv[0], put=&Sv[0]

.

. Graph traversal
6: for i=0; i<n; i=i+1 do
7: if NOt i IN Qv then
8: Qv.append(i)
9: *put++=i

10: while get < put do
11: edges=(MatrixQuery[*get++])
12: for e in edges do
13: if NOt e IN Qv then
14: Qv.append(e)
15: *put++=(e)
16: end if
17: end for
18: end while

19: do . Edge analysis stage
20: p=MAD(Sv)
21: while abs(p)>tol
22: delete get, put
23: end if
24: end for
25: end procedure
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Appendix B

Auxiliar Tables

TABLE B.1: Edge analysis example using MAD to detect outliers. Let
us consider the adjacency list Xi, which indicates the number of edges
per node. It has an original mean = 3.4, a standard deviation std =
1.46, and a median Mj = 3. The p − value = 1.28 indicates a non-
normal distribution. Edge analysis stage subtracts the median from
each observation to get the new median Mi = 1. It will be multiplied
by 1.4826 to find a MAD = 1.48 ( Eq. 3.1 and Eq. 3.2). MAD reports
that the read R13, with total edges, equal 8, is an outlier (according
to the Eq. 3.3) and removes it. Removing this point the new statistic
parameters are: mean = 3.3, std = 1.03 and p−value = 0.93. The new
p − value is close to one, which indicates a near-normal distribution

and stops the Edge analysis process

Read xi Mj abs(xi −Mj) Mi MAD (xi−Mj)/MAD > | ± 3| outlier

R0 3 3 0 1 1.4826 0 NO
R1 4 1 0.67 NO
R2 2 1 0.67 NO
R6 3 0 0 NO
R7 5 2 1.35 NO

R12 3 0 0 NO
R13 8 5 3.37 YES
R9 2 1 0.67 NO

R10 3 0 0 NO
R14 4 1 0.67 NO
R16 3 0 0 NO
R3 4 1 0.67 NO
R5 2 1 0.67 NO

R11 2 1 0.67 NO
R13 4 1 0.67 NO
R15 3 0 0 NO
R17 3 0 0 NO

mean 3.41 3.33
std 1.46 1.03
p=3std/mean 1.28 0.92
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TABLE B.2: Species and total reads used to create the simulated mul-
tispecies metagenome

Species
NCBI

reference
Phylum/Class

Total
reads

Total
bases
(Mbp)

Used
reads

Used
bases
(Mpb)

Genome
size

(Mpb)
Depth(x)

Synechocystis
DRR
106442

Cyanobacteria
Cyanobacteria

589,689 21.9 112,805 41.5 3.5 11.7

Dokdonella
SRR
4217676

Proteobacteria
Gamma-
proteobacteria

376,022 80.5 376,022 80.5 4.6 17.41

Hymnobacter
SRR
1334914

Bacteroidetes
Cytophagia

2,917,298 958.5 37,599 12.3 5.0 2.4

Microbacteriaceae
SRR
5493999

Actinobacteria
Actinobacteria

1,815,433 382.4 37,599 7.9 3.2 2.4

Rhizobium
SRR
5165471

Proteobacteria
Alphaproteo-
bacteria

1,152,754 242.2 37,599 7.9 4.5 1.7

TOTAL 965,711 1685.5 601,624 150.1 20.8 NA

TABLE B.3: Taxonomic composition for the Mock-Even metagenome

Organism Rank Total reads Total bases (Mbp) Percentage

Deinococcus-
Deinococcus

species 486683 249.1 35%

Proteobacteria-
Acinetobacter

species 161464 84.9 12%

Bacteroides species 113507 59.4 8%
Firmicutes-
Staphylococcus

species 93820 49.9 7%

Actinobateria-
Propionibacterium

genus 78223 39.9 6%

Other organisms NA 452501 252 33%
Total 1386198 734.9 100%

TABLE B.4: List of available 16S rRNA databases for the 16S-
identification stage

Database Lab Version Num Seq Size

NCBI NCBI, USA 2018 19757 30 MB
RDP Mothur, USA 2016 13212 20 MB

Greengenes
Greengenes Database
Consortium

2013 1262986 1740MB

Rfam EMBL-EBI, UK 2017 2319743 527 MB
RNAmmer DTU, Denmark 2007 12260 19 MB

SILVA
Microbial Genomics and
Bioinformatics Research Group,
Germany

2017 1861373∗ 2764MB

∗ We conserved only bacteria sequences
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TABLE B.5: Taxonomic composition for the simulated biosolid
metagenome

Species
NCBI

reference
Phylum/Class

Total
reads

Total
bases
(Mbp)

Used
reads

Used
bases
(Mpb)

Genome
size

(Mpb)

Streptomyces-
albus

SRR-
7080885

Actinobacteria
Actinobacteria

2136790 2000 200000 30.2 7.63

Pelolinea-
submarina

SRR-
7174333

Chloroflexi
Anaerolineae

2313660 1200 400000 60.4 3.52

Prochlorococcus.sp
SRR-

7041236
Cyanobacteria
Cyanobacteria

1863742 2000 200000 28.1 1.18 ∗

Aneurinibacillus-
soli

SRR-
7178569

Firmicutes
Bacilli

3135417 1700 200000 30.2 4.12

Pseudomonas-
fluorescens

SRR-
7168455

Proteobacteria
Gammaproteobacteria

1615297 1000 600000 90.6 6.85

Total 11064906 7900 1600000 239.5 23.3
∗ We used a draft genome

TABLE B.6: Computer specifications for the servers used in our grid
computing

CPUs
CPU

model name
RAM
(GB)

Master 14
Intel(R)
Xeon(R) CPU E52620 @ 2.0 GHz

99

Worker1 64
Intel(R)
Xeon(R) CPU X7560@ 2.27 GHz

500

Worker2 80
Intel(R)
Xeon(R) CPU E7- 4870@ 2.4 GHz

69
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Appendix C

FM-index Construction

The next section illustrates the construction of an FM-Index structure, using metage-

nomic sequences.

C.1 Suffix array

If S′ is a string of length |S′|, over the alphabet
∑

, (i.e.,
∑

= A,C,G, T for DNA

sequences), $ a character that not is in
∑

, and S = S′$ the string resulting from

appending $ to S′. The suffix array of a string S denoted SAS , is a permutation

of the integers 1, 2, ...|S| such that SAS [i] = j iff S[j, |S|] is the ith lexicographically

lowest suffix of S.

A suffix array is constructed for a string S[1 :: |S|], by building an array of point-

ers to all suffixes suff [1 :: |S|], suff [2 :: |S|], ..., suff [|S| :: |S|], and sorting these

pointers by the lexicographical (i.e., alphabetical) ordering of their associated suf-

fixes. Table C.1 shows the corresponding suffix array and its construction for the

sequence "AGGAATGGCC." A formal definition and creation of suffix arrays can be

found in [50].

TABLE C.1: Suffix array SAS , for the sequence AGGAATGGCC

Index Suffixes SAs Suffixes alphabetic order

1 AGGAATGGCC$ 11 $AGGAATGGCC
2 GGAATGGCC$A 4 AATGGCC$AGG
3 GAATGGCC$AG 1 AGGAATGGCC$
4 AATGGCC$AGG 5 ATGGCC$AGGA
5 ATGGCC$AGGA 10 C$AGGAATGGC
6 TGGCC$AGGAA 9 CC$AGGAATGG
7 GGCC$AGGAAT 3 GAATGGCC$AG
8 GCC$AGGAATG 8 GCC$AGGAATG
9 CC$AGGAATGG 2 GGAATGGCC$A

10 C$AGGAATGGC 7 GGCC$AGGAAT
11 $AGGAATGGCC 6 TGGCC$AGGAA

SAs= [11, 4, 1, 5, 10, 9, 3, 8, 2, 7, 6]
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C.2 Burrows-Wheeler Transform (BWT)

Burrows-Wheeler transform (BWT) of a string S, denoted BS , is a permutation of the

symbols of S such that: BS [i] = S[SAS [i]− 1], and BS [1] = $, that is, the ith symbol

of the BWT is the symbol prior to the ith suffix in the SAS . It is similar to take the

last column from the sorting pointers in the SAS construction. Table C.2 shows the

corresponding BWT BS for the sequence AGGAATGGCC and its suffix array SAS .

TABLE C.2: Burrows-Wheeler Transform (BWT) for the sequence AG-
GAATGGCC

Index SAs Suffixes alphabetic order Bs

1 11 $AGGAATGGCC C
2 4 AATGGCC$AGG G
3 1 AGGAATGGCC$ $
4 5 ATGGCC$AGGA A
5 10 C$AGGAATGGC C
6 9 CC$AGGAATGG G
7 3 GAATGGCC$AG G
8 8 GCC$AGGAATG G
9 2 GGAATGGCC$A A

10 7 GGCC$AGGAAT T
11 6 TGGCC$AGGAA A

Bs=[C,G, $, A, C, G, G, G, A, T, A]

C.3 FM-index structure

An FM-index, in Table C.3, is a data structure representation to fast substring queries.

An FM-index is created by computing the BWT and adding two additional data

structures:

• C[c] a table that, for each character c in the alphabet, contains the number of

occurrences of lexically smaller characters in the text. From the suffix alpha-

betic order, it corresponds to the index menus one, in which the first character

c occurs (see the Index and the Suffixes alphabetic order rows in Table C.2).

• Occ(c, k) a table that contains the number of times symbol c appears in the

range BS [1; i].

C.4 Text reconstruction from the FM-index structure

Using the FM-index is possible to produce the original string by sorting the BS rep-

resentation, tracing a path from the last prefix to the first prefix and conserving the

corresponding Bs symbol. Figure C.1 illustrates this process.
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TABLE C.3: FM-Index representation for the sequence AGGAATG-
GCC. Upper) BS representation, center) C[c] occurrence table, and

lower) frequency table for each character

Bs=[C, G, $, A, C, G, G, G, A, T, A]

c $ A C G T

C(c) 0 1 4 6 10

Occ(c,k)
Bs[1;i]

C G $ A C G G G A T A

0 1 2 3 4 5 6 7 8 9 10 11

c

$ 0 0 0 1 1 1 1 1 1 1 1 1

A 0 0 0 0 1 1 1 1 1 2 2 3

C 0 1 1 1 1 2 2 2 2 2 2 2

G 0 0 1 1 1 1 2 3 4 4 4 4

T 0 0 0 0 0 0 0 0 0 0 1 1

Bs

C1

G1

$

A1

C2

G2

G3

G4

A2

T1

A3

Sort Bs

$

A1

A2

A3

C1

C2

G1

G2

G3

G4

T1

FIGURE C.1: Reversible process to get the original string from its
BWT. It shows the path $,C1,C2,G2,G4,T1,A3,A1,G1,G3,A2

C.5 Backward search

Backward search, in Eq. C.1, allows mapping any substring P into the original string

S using an FM-index structure.[
top = C[P [i]] +Occ(top− 1;P |i|) + 1

bottom = C[P [i]] +Occ(bottom;P |i|)

]
(Eq. C.1)

top and bottom indicate the starting and ending point in the suffix array; i is a
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counter from the last to the first character of P . For the first iteration top and bottom

correspond to the index for the entire structure. Final value for each pointer indicate

the range in which the pattern P is a prefix of S.

The range size shows the number of times that P pattern is a prefix of S. If

the range becomes empty or the range boundaries cross each other means that the

pattern does not occur on S. The corresponding suffix array indicates that P is the

ith prefix of size |P | for S.

Table C.4 illustrates the Backward search for the sequence P = AGG and the FM-

index BS = [C,G, $, A, C,G,G,G,A, T,A]. It shows that the substring P is a prefix

in the range [3:3] of S. The size range indicates that P occurs once into the string S.

From Table C.2 the corresponding suffix array shows that P is the first prefix of size

three for S.

TABLE C.4: Backward search for the pattern AGG

i P Backward search Range

3 G
top = C[G] + Occ(0;G) + 1 = 6+0+1 =7
bottom = C[G] + Occ(11; G) = 6+4 =10

2 G
top = C[G] + Occ(6;G) + 1 = 6+2+1 =9
bottom = C[G] + Occ(10; G) = 6+4 =10

1 A
top = C[A] + Occ(8;A) + 1 = 1+1+1 =3
bottom = C[A] + Occ(10; A) = 1+2 =3

C.6 Wavelet Tree

Wavelet Tree (WT) is a data-structure that converts strings into balanced binary-trees

to offer reduced select and rank times, primary operations for querying sequences

inside the FM-index. WT is formed by recurrent binary assignation for each mid-

dle of the text. Left branches contain cero symbols, and right leaves carry the one

symbols. Figure C.2 illustrates the Wavelet Tree construction for the BWT showed

in Table C.2. Figure C.3 demonstrates the rank query Occ(c) calculation from the

Wavelet Tree.

C.7 Huffman Wavelet Tree (HWT)

Mĺakinen and Navarro describe a Huffman Shaped Wavelet Tree based on the fre-

quency of symbols. Characters with higher rates are placed in the tree in such a

way that the path from the root to a leaf corresponds to the binary Huffman Code

of the symbol of that leaf. It decreases query time massively for symbols with high

frequency, which for uniform data would result in higher average query time. A

complete description of Huffman Shaped Wavelet Tree process is described in [18].
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CG$ACGGGATA
01000111010

C$ACAA
100100

0

GGGGT
00001

1

$AAA
0111

C
0

G
0

T
1

$
0

A
1

0 1 0 1

0 1

FIGURE C.2: Wavelet Tree for BS = [C,G, $, A, C,G,G,G,A, T,A];
using $=000, A=100, C=010, G=01, T=11

CG$ACGGGATA
01000111010

C$ACAA
100100

0

Occ[0,4]=3

Occ[0,2]=2

Occ[1,2]=1
$AAA
0111

C
0

$
0

A
1

0 1

0 1

FIGURE C.3: Example of rank query Occ[
′A′, 4] computes using the

Wavelet Tree

C.8 RRR representation for a HWT

Generally, Wavelet Tree nodes are stored as RRR sequences [18] for fast binary rank

queries and compression. It uses a global table of pre-calculated ranks, which offers

O(1) rank queries and zeroth-order entropy compression for binary strings. Depth

analysis of this structure and function are distant of our objectives. We invited the

reader to consult the references [42], [8], and [91] to study a detail description about

this process.

Since BWT is more accessible to compress than the original text by applying

Wavelet Tree process and RRR representation, the final structure results in a compact

form of the document. Some authors (i.e., [96] and [88]) refer the resulting structure

as compress suffix array CSA-WT instead of FM-index.
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Appendix D

Auxiliar Figures

It shows an example of the output file generated by DATMA for the Simulated sim-

ple metagenome (see Chapter 3 and Chapter 4)

D.1 DATMA Output

Reads report

Bins report
 FastQC report

Assembly report

Bin Size(reads) bp Contigs Genome ORFS bp Link

all_16S 9957 3576767 NA NA NA NA NA
Bin0 266869 81569006 131 3243019 3124 943731 fullLink
Bin1 335701 135467115 151 4198482 3985 1259949 fullLink
Bin2 1271 531435 2 4217 7 1240 fullLink
Bin3 1252 496908 1 14521 15 4380 fullLink

Bin Id Marker lineage UID genomes markers
marker 

sets
0 1 2  3  4  5+

Complete
ness

Contami
nation

Strain 
heteroge

neity
Bin1 Mycobacterium UID1816 100 690 300  15 674  1  0  0 0 97.54 0.33 0.00
Bin0 Brucella UID3486 87 1402 225  25  1372 5  0  0 0 97.24 0.28 20.00
Bin4 root UID1 5656 56 24  56 0  0  0  0 0 0.00 0.00 0.00
Bin3 root UID1 5656 56 24  56 0  0  0  0 0 0.00 0.00 0.00
Bin2 root UID1 5656 56 24  56 0  0  0  0 0 0.00 0.00 0.00

FIGURE D.1: Reads Quality, CLAME report and Assembly metrics
for every bin
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