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ABSTRACT

The Intensive Care Unit (ICU) is a hospital department that provides intensive treatment to patients with
severe and life-threatening conditions. The primary function of the ICU is to deliver care which cannot be
administered in other areas of the hospital. Patients in the ICU are the most heavily monitored patients
in the entire hospital; for this reasons the ICU is a data rich environment, even to the point of exhaustion.

The vast amount of data obtained from a single patient in an intensive care unit makes it humanly
impossible to organize and interpret it in the required time, thus, scores that model the patient severity
and can be related with the mortality have been created. The primary motivation of this scores was to
derive further insight of the patient condition and improve patient care.

Traditionally, this scores are population-based and provide statistically rigorous results for an average
patient, and are useful to guide prognostication, to assess ongoing disease development and organ
function, to compare ICU performance over time and across units and to compare clinical trial population
outcomes but, pitifully, they are not precise enough to draw conclusions about groups of patients that
share a relevant clinical condition, like a particular disease, and even less to be used for individual
prediction of outcomes.

When standard scores do not fit the data of a specific population well enough, two approaches to adapting
them for use among patients with the specific condition have been used. One approach would be to
modify the traditional score by adapting them for use specifically among patients that share a condition,
which we will be referring as adjusted models. The other approach would be to develop entirely new
models based on a population that shares a common characteristics and that incorporates additional
variables that could potentially enhance accuracy, which we will be referring as customized models.

Sepsis patients are a specific population that is especially vulnerable, since they present a high in-hospital
mortality of 25—-30% and patients with sepsis are frequently cared for in ICUs, either because sepsis itself
led to their admission or because sepsis developed as a complication of their admission for other reasons;
moreover, it has been reported that sepsis survivors had substantially increased risks of all-cause
mortality, as well as major health complications at 1 year after discharge when compared with the general
population.

For sepsis patients within the ICU, mortality prediction has been accessed through both adjusted and
customized models; however, approaches addressed so far have focused on the in-hospital mortality
prediction, and no methods have been proposed to identify and predict long-term risk and mortality in
sepsis patients that are being taken care of in the ICU.

According to the above, in this work, we present the development of a model that goes beyond the
prediction of in-hospital mortality and alert those patients who may have a poor prognosis after being
discharged from the hospital, and we formulate our research question as follows: Among adult ICU
patients, is it possible to identify those who are at risk of dying one year after their sepsis related
admission using demographic variables, comorbidities and physiological data obtained during the first 24
hours of their ICU stay?



In order to answer such a question, we used three approaches. First we developed a custom one-year
mortality prediction model using a Stochastic Gradient Boosting (SGB) technique. The model was based
on the data of 5650 ICU patient’s admissions that were retrospectively identified as having sepsis, and
used 132 predictors, obtained from variables found in the literature review or suggested by experts. In
the first approach, we also used two techniques to measure the importance of the used predictors, and
we found 17 predictors that allowed us to develop an SGB model with a performance similar to the
complete model (which uses all the 132 predictors).

In the second approach, we developed a methodology that allows the stratification of patients according
to their one-year mortality risk. For this, we extended our study cohort using two additional retrospective
criteria for sepsis identification and focusing only on the variables that were relevant (according to the
results of the previous approach) or that were routinely taken to patients within the ICU, obtaining 15082
admissions; From said cohort we developed two scores systems that are correlated with the one-year
mortality risk of the patients.

Although the developed customized models for sepsis patient within the ICU proved far outperform
adjusted scores for the one-year mortality prediction task, they continue to be population-based and
therefore they provide “the average best choice” for sepsis patients. For this reason, in the third approach,
we also propose and evaluate the generation of personalized models based on patient similarity metrics.
The goal of this personalized models is to identify patients who are similar to a new patient and derive
insights from the data of those similar patients to provide personalized predictions.

Personalized models has been widely used for predictions in several fields, including music, movies and e-
commerce, however, there are still very few studies that focus on personalized prediction models based
on health data prediction. Moreover, no studies have been reported in which personalized models are
developed from a population known to be very homogenous, such as our study population, where it is
known that all patients have infection, organ dysfunction, and ICU stays of more than 24 hours.

The developed models, with the three approaches, showed discrimination superior to adjusted models
based on traditional severity scores and, the population based methodologies also presented adequate
calibration. Specifically, our personalized models demonstrated the value of patient similarity metrics in
outcome prediction modeling and showed superiority when compared to population-based models. Also,
since we focused on long-term mortality prediction, these models successfully identify those patients who
are at risk of dying one year after their sepsis related admission using demographic variables,
comorbidities and physiological data obtained during the first 24 hours of their ICU stay, indicating early,
which patients should be accompanied, observed attentively and provided with additional care that
improve their quality of life.

Finally, in order to enable the clinical use of the machine learning models developed for the prediction of
one-year mortality of sepsis patients within the ICU, we developed a software based on the models that
presented a better performance and the functionalities that are considered useful so that intensivist can
obtain details of the particular condition of each patient and provide better care.



PART 1: CLINICAL SCENARIO

This part of the thesis sets the stage for outcome prediction within the Intensive Care Units, details the
concept of sepsis, raises our research question, and outlines the methodology to answer it. Chapter 1
presents the way in which mortality are currently being predicted within the ICU. Chapter 2 contextualizes
the concept of sepsis and indicates why it is a condition that is worth studying and Chapter 3 presents
how the general perspective detailed in the first two chapters is transformed in a pertinent research
guestion, it also includes our study design and the selected outcome of interest.



CHAPTER 1. INTENSIVE CARE UNITS

1.1 Introduction

An Intensive Care Unit (ICU) is a special area of a hospital that provides intensive treatment to patients
with severe and life-threatening conditions; these patients are constantly monitored and are cared by
highly trained personnel. A large number of physiological and laboratory variables are gathered daily from
the patients in an ICU, which allows caregivers to track their progress.

However, the vast amount of data obtained from a single patient in an intensive care unit makes it
humanly impossible to organize and interpret it in the required time [1]; for this reason, different types
of indicators that seeks to summarize the patient's condition have been developed.

The indicators used in medical practice within the ICU can be broadly divided into: those that synthesize
multiple physiological and demographic data into a single number that represents the severity of the
illness of a patient and those based on a single physiological measure, also known as a biomarker, which
is used for interpretation, evaluation and understanding of different disease processes.

The indicators of the first group are developed from statistical analysis of the data collected for a large
number of patients and seek to express in a single number the severity of a patient's illness; in general
this score increases with the mortality risk. These kind of classification systems are used to determine the
risk in population studies conducted in ICU, and provide a method for benchmarking between intensive
care units of different hospitals [2—6].

The indicators of the second group are proposed when a physiological measurement can be used to
differentiate normal biological processes from pathological ones or to indicate the response to a
therapeutic intervention. They are based on a deep understanding of the causes that vary such
measurement within the organism, and are corroborated by epidemiological studies. The main uses of
these kinds of indicators are predicting prognosis and guide treatment of patients.

In this work, we present the development of a composite set of models for the prediction of long-term
mortality in sepsis patients within the ICU; These models are based on the methodologies used by the
indicators of the first group, but are complemented by physiological measures that have proven their
usefulness as sepsis biomarkers.

1.2 Severity-of-illness scoring systems

Scoring systems used in critically ill patients can be broadly divided into scores that assess disease severity
and use it to predict outcome and scores that assess the presence and severity of organ dysfunction, in
this section we review the most commonly used severity-of-illness scoring systems in each of these two
groups. We present different versions of the scores that have been updated over time, and list the
variables of the most used version of each of the reviewed scores [7].

1.2.1 Outcome prediction scores
The outcome prediction scoring systems were developed to indicate the mortality risk of groups of ICU
patients, they were not designed for individual prognostication, and usually comprises of two parts, 1) a
number assigned to disease severity, commonly known as the score, and a model that gives the probability



of hospital mortality of the patients[7, 8] . The following scores are currently used for assessing the acuity
of a general ICU population.

1.2.1.1 Acute Physiology and Chronic Health Evaluation

The original Acute Physiology and Chronic Health Evaluation (APACHE) was developed in 1981 to classify
groups of patients on the basis of severity of illness. APACHE uses a logistic regression model with hospital
mortality as the outcome variable and a set of predictors including comorbidities, age, gender and 34
physiological measures. APACHE contains two parts: a) a physiology score representing the degree of
acute illness and b) a preadmission health evaluation indicating health status before acute illness [9]. Four
years later appears APACHE I, a simplified version of the previous version, which aims to improve its
clinical acceptability. It uses a point score based upon values of 12 routine physiologic measurements
(taken during the first 24 h after admission), age and previous health status to provide a general measure
of severity of disease. Table 1.1 presents the APACHE Il scoring system.

Table 1.1 Acute Physiology and Chronic Health Evaluation Score Il. The points presented in the table are the values that are

summed to the score when a patient is in a particular group for each of the predictors; for instance, in the temperature of the
patient is above 41°C, a four is summed to the total score.

Points
Variable Unit
6 5 4 3 2 1 0 1 2 3 4
Temperature °C =41 39-40.9 38.5-38.9 36-38.4 34-359 32-339 30-31.9 =29
Mean arterial pressure mmHg =160 130-159 110-129 70-109 50-69 =49
Heart rate bpm =180 140-179 110-139 70-109 55-69 40-54 =39
Respiratory rate bpm =50 35-49 25-34 12-24 10-11 6-9 =5
A-a DO; (if FiO; >=0.5) =500 350-499 200-349 =200
Torr
PaQ: (if Fi0: < 0.5) =70 61-70 55-60 <55
Arterial pH pH =77 7.6-7.69 7.5-7.59 7.33-7.49 7.25-7.32 7.15-7.24 <7.15
HCO: =52 41-51.9 32-409 23-319 18-21.9 15-17.9 <15
Sodium mmol/L =180 160-179 155-159 150-154 130-149 120-129 111-119 <110
Potasium =7 6-6.9 5.5-5.9 3.5-5.4 3-3.4 25-29 =25
Creatinine pmol/L =350 200-340 150-190 60-140 <60
Hematocrit % =60 50-59.9 46-49.9 30-45.9 20-29.9 =20
White Blood Cell Count 1x1000/mm?* =40 20-33.9 15-19.9 3-14.9 129 <1
Glasgow coma score 15 minus actual GCS
Age Years =75 65-74 55-64 45-54 =44
Biopsy-proven cirrhosis
Portal hypertension
prior episodes of
hepatic failure
New York Heart
Association Class IV
Severe COPD Admission Adrﬁlssfnn
Presence type: type:
Hypercapnia, Emergency Elective
home 02 use
pulmonary
hypertension
dialysis
Immunocompromised

APACHE IIl appears in 1991 and largely uses the same variables as APACHE Il; however, it uses a different
way to collect the neurological data -no longer using the Glasgow Coma Scale (GCS), and also adds
particularly two important variables: The patient’s origin and the lead-time bias. Most recently, APACHE
IV was developed using a database of over 100,000 patients admitted to 104 ICUs in 45 hospitals in the
United States between 2002 and 2003. In APACHE IV predictor variables are similar to those in APACHE II,
but it includes new variables such as urine output, blood urea nitrogen, albumin, bilirubin and glucose;
Chronic health conditions (lymphoma, leukemia and metastatic tumor) treatments (Thrombolytic
therapy, Mechanical ventilation) and administrative information (ICU admission diagnosis, ICU admission
source and Length of stay before ICU admission) were also added. [7, 8, 10].



1.2.1.2 Simplified Acute Physiology Score
The Simplified Acute Physiology Score (SAPS) was developed in 1984, and was intended as a simplification
for the original APACHE that differs from APACHE Il in the number of variables. SAPS reduces the number
of the physiological parameters to 13 and introduces age as new parameter. Later, in 1993, SAPS Il was
developed and includes 17 variables: 12 physiological variables, age, type of admission, and 3 variables
related to underlying disease. The SAPS Il score was validated using data from consecutive admissions to
137 ICUs in 12 countries. Table 1.2 presents the SAPS Il scoring system [5, 7].

Table 1.2 Simplified Acute Physiology Score II.

P

oints
26 18 16 15 13 12 11 9 7 6 5 4 3 2 ] 1 2 3 4 5 6 7
<39

=39

terial mimHg <70 70-99 100-198 =200

bpm <40 4069 70-119 120-158 =180

<100 100-199 =200

Urine output L/day <0.5 0.5-0.99 =1

<0.6 0617 ~18
TLe <1 1199 =20
Sodium <125 125-144 =145

Potassium mmolfL

Bilirubin mg/dl <40 40-59.9 =60

Age Years =80 7573 70-74 60-69 4059 <40

Metastatic  Hematological

AIDS
malignancy

Comorbidities |  Prasence
Type of Scheduled

Medical Emergency
admissian surgical

While SAPS Il was developed on ICUs in Western Europe, SAPS lll included a world-wide database of
16,784 patients; additionally, SAPS Il includes 20 variables divided into three parts related to patient
characteristics prior to admission, the circumstance of the admission, and the degree of physiological
derangement within 1 hour before or after ICU admission. Unlike the other scores, SAPS Il includes
customized equations for prediction of hospital mortality in seven geographical regions: Australasia;
Central, South America; Central, Western Europe; Eastern Europe; North Europe; Southern Europe,
Mediterranean; and North America [7, 8].

1.2.1.3 Oxford Acute Severity of Iliness Score

The Oxford Acute Severity of lliness Score (OASIS) was developed in 2013. It has equivalent discrimination
and calibration of the APACHE IV from which it was derived. OASIS score uses the worst measurements
from the first 24 hours of ICU admission [11], and uses 81,000 admissions from a large multi-center
database collected by the Cerner corporation (Kansas City, MO, United States). To select subsets of the
available features OASIS uses a genetic algorithm, and uses a customized Particle Swarm Optimization
method to calculate the score. As consequence, two logistic regressions using OASIS as a covariate were
developed for both ICU and hospital mortality[12]. Table 1.3 presents the OASIS scoring system.



Table 1.3. Oxford Acute Severity of lliness Score

Points

Variable Unit

10 6 5 4 3 2 1 0 1 2 3

Pre-ICU length of stay hours <0.17 0.17-4.94 4.95-24 >311.80 24.01-311.80

<24 =90 78-89

813 14 15

Age Years 24-53  54-77

Glasgow coma scale 37

Heart rate bpm <33 33-88 89-106 107-125  >125

Mean arterial pressure mmHg <20.65 20.65-50.99 51-61.32 61.33-143.44 >143.44

Respiratory rate Bpm <6 13-22 22-30 31-44

Temperature °C 33.22-35.93 <33.22 35.94-36.39 36.40-36.88 36.89-39.88 >39.88

Urine output Cc/day <671 671-1426.99 1427-2543.99 2544-6896 >6896

Mechanical ventilation No
Presence
Elective surgery No

Yes

1.2.1.4 Severity score comparisons

Table 1.4. describes the original performance of the outcome prediction scores described above. It
includes the year of publication, the size of the development population, the moment in which the data
are taken and their respective performance measures for hospital mortality discrimination. The predictive
ability of the presented scores is measured with the Area Under the Receiver Operating Characteristic
(AUROC) curve which is a performance measurement for binary classification problems that indicates how
much model is capable of distinguishing between two classes. The AUROC returns a value between 0 and
1, the higher the AUROC the better the model. An AUROC close to 0 indicates that the model swapping
the predictions (prediction ones as zeros and vice versa); an AUROC of 0.5 means that the model has no
class separation capacity and an AUROC close to 1 indicates that the model has good measure of
separability.

The AUROC performance presented in Table 1.4. shows the most recent versions of the APACHE score
have a lower performance than previous version, however the test dataset is much bigger. In the case of
SAPS scores, it can be observed that the SAPS Il performance is lower that the SAPS Il and the testing set
it smaller, however, the important advance in this version is the reduction of data collection time (around
two hours instead of the usual 24) and the inclusion of mortality prediction models for specific geographic
regions. Despite the fact that OASIS is the most recent scoring system, among those reported, it is
observed that its performance is the least, however, it is important to note that the objective of OASIS (13
variables) development was to create a score with discrimination and calibration similar of the APACHE
IV (142 variables) but with less variables.

Table 1.4. Original performance of the outcome prediction scores.

Selection of Area Under
Score Sco.re Y?ar Training Testing variables and their Collection of data Receiver {.Jp‘eratmg
Version published dataset dataset cights Characteristic curve
welg (Hospital Mortality)
APACHE 1981 805 Panel of experts First 32 hin ICU
APACHE II 1985 5,815 Panel of experts First 24 hin ICU 0.86
APACHE = APACHE Il 1993 8,720 8,720 Multiple logistic First 24 h in ICU 0.90
regression
Multiple logistic . "
APACHE IV 2006 66,335 44,223 i First 24 hin ICU 0.88
regression
SAPS 1984 679 Panel of experts First 24 hin ICU
SAPS Il 1993 8,369 4,628 Multiple logistic First 24 h in ICU 0.86
SAPS regression
SAPS Il 2005 13,427 3,357 Multiple logistic 0\, _ymission + 1h 0.85
regression
Genetic algorithm
OASIS OASIS 2013 56,700 24,300 and Particle Swarm First 24 h in ICU 0.837
Optimization




Table 1.5. Studies which evaluated APACHE scores in an independent sample.

Score Author Country Years Patients AUROC

Khwannimit Thailand 2004-2005 1,316 0.888

Vassar us 1990-1991 2,414 0.87
Ho Australia 2005 1,311 0.858
Ho Australia 1993-2003 11,107 0.846
Schneider Australia and New Zealand  2001-2010 636,428 0.842

Brinkman Denmark 2006-2010 44,112 0.84
Katsaragakis Greece 1992-1997 661 0.839
Beck UK 1993-1996 16,646 0.835
Markgraf Germany 1991-1994 2,661 0.832

Duke Australia 2005-2007 1,843 0.82

APACHE I Nouira Tunisia 1994-1995 1,325 0.82
(22 studies) Peek Netherlands 1999-2003 42,139  0.818
Beck UK 1993-1996 1144 0.806
Capuzzo Italy 1994-1997 1,721 0.805
Harrison UK 1995-2003 141,106  0.804

Sakr Germany 2004-2005 1,851 0.8

Bastos Brazil 1990-1991 1734 0.79
Moreno Portugal 1994-1995 982 0.787
Livingston Scotland 1995-1996 9,848 0.763

Christensen Denmark 2007 469 0.73
Kim Korea 2009 826 0.729
Patel us 1996-1997 302 0.702

Duke Australia 2005-2007 1,843 0.91

Zimmerman us 1993-1996 37,668 0.89

Vassar us 1990-1991 2,414 0.89
Paul Australia and New Zealand  2004-2009 152,456 0.885

Shann Australia 2005-2006 16,356 0.88
Keegan us 2006 2,596 0.868
APACHE IlI Beck UK 1993-1996 16,646 0.867
(14 studies) | schneider  Australia and New Zealand  2001-2010 636,428  0.854
Beck UK 1993-1996 1144 0.847
Markgraf Germany 1991-1994 2,661 0.846
Harrison UK 1995-2004 141,107  0.832
Pettila Finland 1995 520 0.825

Bastos Brazil 1990-1991 1734 0.82
Livingston Scotland 1995-1996 10,326 0.795
Kuzniewicz us 1999-2003 11,300 0.892

'?;’:ti::el:; Brinkman Denmark 2006-2009 55,661 0.87
Keegan us 2,006 2,596 0.861




Table 1.6. Studies which evaluated SAPS scores in an independent sample.

Score Author Country Years Patients AUROC
Khwannimit Thailand 2004-2005 1,316 0.911
Soares Brazil 2003-2005 952 0.88
Kuzniewicz USA 1999-2003 11,300 0.873
Reiter Austria 1998-2001 30,099 0.87
Aegerter France 1999-2000 13739 0.87
Duke Australia 2005-2007 1,843 0.87
Katsaragakis Greece 1992-1997 661 0.87
LeGall France 1998-1999 38,745 0.858
Beck UK 1993-1996 16,646 0.852
Capuzzo Italy 2006-2007 684 0.851
Brinkman Denmark 2006-2011 44,112 0.85
Markgraf Germany 1991-1994 2,661 0.846
Nouira Tunisia 1994-1995 1,325 0.84
Peek Netherlands ~ 1999-2003 42,139 0.831
SAPS II Metnitz Global 2002 16,784 0.83
(30 studies) | paajand Norway  2008-2010 10,135  0.83
Poole Italy 2007 3,661 0.83
Metnitz Austria 1997-1998 2,901 0.83
Sakr Germany 2004-2005 1,851 0.83
Harrison UK 1995-2005 141,108 0.822
Moreno Europe 1994-1995 10,027 0.822
Strand Norway 2006-2007 1,873 0.82
Moreno Portugal 1994-1995 982 0.817
Capuzzo Italy 1994-1997 1,721 0.816
Metnitz Austria 1997 1,733 0.81
Apolone Italy 1994 1393 0.8
Livingston Scotland 1995-1996 10,334 0.784
Lim Korea 2008-2009 633 0.76
Christensen Denmark 2007 469 0.74
Patel us 1996-1999 304 0.672
Khwannimit Thailand 2007-2009 1,873 0.933
Duke Australia 2005-2007 1,843 0.88
Soares Brazil 2003-2005 952 0.87
Silva Junior Brazil 2008-2009 1,310 0.86
Poole Italy 2007 28,357 0.855
Sakr Germany 2004-2005 1,851 0.84
(lffétljlsd‘i!s] Capuzzo Italy 2006-2007 684 0.835
Poole Italy 2007 3,661 0.83
Metnitz Austria 2006-2007 2,060 0.82
Strand Norway 2006-2007 1,873 0.81
Keegan us 2006 2,596 0.801
Lim Korea 2008-2009 633 0.78
Christensen Denmark 2007 469 0.69




Table 1.7. Studies which evaluated OASIS scores in an independent sample.

Score Author Country Years Patients AUROC
Johnson us 2001-2008 21,416 0.790
OASIS
(3 studies) Johnson England 2007-2011 3,366 0.776
Zhang China 2012-2014 470 0.760

Several studies have analyzed the outcome prediction scores. In a recent PhD thesis by Johnson some
performance studies are presented [13]. The inclusion criteria for a validation study was a cohort with at
least 100 patients, a general ICU population (no disease specific evaluation) and evaluation of the model
on an independent cohort. Table 1.5 and Table 1.6 summarizes the studies for APACHE and SAPS scores.

In addition, the external performance studies conducted in order to validate OASIS are presented in Table
1.7; OASIS uses a large multi-center population of ICU patients admitted to hospitals in the United States
and additionally includes two external validation studies; the first one uses the Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC) Il database, a publicly available ICU database sourced from the Beth
Israel Deaconess medical center in Boston, Massachusetts; and the second one takes place at a large
tertiary teaching hospital in Oxford, England; an additional study that evaluates OASIS over an
independent general ICU population of 470 patients is also presented [14].

The distribution of the AUROC performance for the studies is presented in Figure 1.1. It can be observed
that there is no significate difference between the APACHE and SAPS scores. Figure 1.2 presents the
number of different countries in which studies are reported, it can be observed that beside being the
score that are appear in more performance studies, SAPS Il is also, the score reported in a greater number
of countries.

080
|

AUROC

—— o

T T T T T T
APACHE Il (22 studies) APACHE Wl (14 studies) APACHE IV (3 studies) OASIS(3 studies) SAPS Il (30 studies) SAPS I (13 studies)

Figure 1.1. Boxplot of the AUROC performance of the studies on independent cohorts for APACHE, SAPS and OASIS scores.



1.2.1 Organ dysfunction scores
Other type of severity-of-illness scoring systems are designed to access the degree of organ dysfunction
rather than to predict the outcome of a patient. This section describes two of the most several organ
dysfunction scores used in ICU patients [7].

15

Number of different countries in which studies are reported

APACHE Il APACHE Il APACHE V SAPS Il SAPS OASIS

Figure 1.2. Number of different countries in which studies are reported.

1.2.1.1 Logistic Organ Dysfunction Score

The Logistic Organ Dysfunction Score (LODS) was developed in 1996, and uses a database of 13,152
admissions from 137 ICUs in 12 countries. LODS includes 12 variables to represent the function of six
organ systems (neurologic, cardiovascular, renal, pulmonary, hematologic, hepatic). It takes the worst
value for each variable in the first 24 hours of admission. Each system uses a score from 0 (that means no
dysfunction) to 5 (that represents maximum dysfunction). Since LODS is a weighted system, it is possible
to combine the total degree of organ dysfunction across the six organ systems in a single score that can
be used as covariate in a logistic regression model to convert the global score into a probability of
mortality [7, 8, 15]. Table 1.8 presents the LODS scoring system.

Table 1.8. Logistic Organ Dysfunction Score

Points
Organ System Variables Unit
5 3 1 0 1 3 5
Mec::siia/IF\zjt:raticn With no
Pulmonary ) . % < 150 =150 ventilation,
or Continued positive CPAP
airways pressure (CPAP)
Hematologic Platelet 10°/mm? <50 =50 =50
Total leucocyte count 10°/mm? <1.0 1.0-2.4 2.5-49.9
Hepatic Bilirubin pumol/L <34.2 234.2
Prothrombin time. Seconds (s) and % <25% <3s or >25% >3s
Cardiovascular Systolic blood pressure; mmHg =70 <70 <239 240-269 =270
Heart rate bpm <30 40-69 70-89 30-139
Neurologic Glasgow Coma Scale 35 6-8 T 913 14-15
Creatinine level umol/L ) <106.08 106.08-140.55  >141.44
Renal Total urine output mL/24 h <0.5 0.5-0.74 0.75-0.99
Ureic nitrogen mmol/L <6 6-9.98 9.99-19.98 219.99




1.2.1.2 Sequential Organ Failure Assessment

The Sepsis-related Organ Failure Assessment score was first developed in 1994; however, it eventually
became known as the Sequential Organ Failure Assessment (SOFA) as it was applied outside of septic
populations. Each function of the six organ systems (respiratory, cardiovascular, renal, hepatic, central
nervous, coagulation) is scored from 0 (normal function) to 4 (most abnormal), which result in a possible
score of 0 to 24. SOFA score takes the worst value on each day is recorded, and the cardiovascular
component is assessed by a treatment-related variable (dose of vasopressor agents) instead of the
composite variable [7, 8, 16]. Table 1.9 presents the SOFA scoring system.

Table 1.9. Sequential Organ Failure Assessment

Points

Organ System Variables Unit
0 1 2 3 q
<200 + irat <100+ irat
Pulmonary Pa02 /Fi02 mmHg >400 <400 <300 =200 *respiratory SO0 respiratory
support support
Coagulation Platelet 10*°/mm? >150 <150 <100 <50 <20
Hepatic Bilirubin umol/L <20 20-32 33-101 102-204 >204
Mean Arterial Pressure mmHg =70 <70
D ine dose>5
Circulato Dopamine dose 501'::mr|1:iene‘3<seo 1 :: Dopamine dose>15 or
v Treatment of hypotension ug/kg/min <5 or dobutamine pNorep ine h?iné < epinephrine>0.1 or
any dose P 02 - norepinephrine>0.1
Neurologic Glasgow Coma Scale 15 13-14 10-12 6-9 <6
Renal Creatinine level umol/L <110 110-170 171-299 300-440 or >440 or
enal
Total urine output mL/24 h <500 <200

1.2.1.3 Quick Sequential Organ Failure Assessment
To facilitate recognition in prehospital, ward, and the emergency department, the Third International
Sepsis Consensus Definitions Task Force [17] recommended a new severity of illness classification system,
called "gSOFA" for quick sepsis-related organ dysfunction assessment score. The score ranges from 0 to 3
points. The presence of 2 or more qSOFA points near the onset of infection was associated with a greater
risk of death or prolonged intensive care unit stay. Table 1.10 presents the gSOFA system.

Table 1.10. quick Sequential Organ Failure Assessment

. . Points
Organ System Variable Unit 0 1
Pulmonary Respiratory rate bpm <22 =22
Cardiovascular Systolic blood pressure mmHg >100 <100
Neurologic Glasgow Coma Scale 15 <15

1.2.1.4 Organ dysfunction scores and new definition of sepsis

Recently, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) update the
definitions for sepsis and septic shock. The Task Force recommendations is that Sepsis should be defined
as life-threatening organ dysfunction caused by a dysregulated host response to infection [17].

In the absence of a gold-standard diagnostic test for sepsis, the Task Force evaluates four clinical criteria
in order to operationalize the new definition. They include SOFA, LODS, systemic inflammatory response
syndrome (SIRS). the most important findings were: among ICU encounters with suspected infection, the
predictive validity for in-hospital mortality of SOFA was not significantly different than the more complex
LODS; but was statistically greater than SIRS and qSOFA. For this reason, the Sepsis-3 consensus



recommend that for clinical operationalization, organ dysfunction can be represented by an increase in
the SOFA score of 2 points or more which is associated with an in-hospital mortality greater than 10%.
Among encounters with suspected infection outside of the ICU, the predictive validity for in-hospital
mortality of gSOFA was statistically greater than SOFA and SIRS, supporting its use as a prompt to consider
possible sepsis [18].

1.3 Mortality prediction in the ICU

Patient mortality is one of the most important clinical outcomes within an ICU. Traditionally, models
associated with severity scores are used to assess the in-hospital mortality, such models are based on the
analysis of large populations, and often provide statistically rigorous results for an average patient but are
also expensive, time-consuming, and prone to selection bias, moreover, these indicators lack the precision
required for use at the individual level and they yielded widely dissimilar performances when applied to
different groups of patients, Table 1.11 presents as example six studies which compare severity score
based models on different populations [19-24].

Table 1.11. Studies which evaluated Scoring Systems for disease specific samples.

Author | Year Objective Patients Main result
Assess the validity of mortality The overall mortality prediction was adequate for all
prediction scoring systems in patients six systems, discrimination was best for customized
admitted to the ICU with severe sepsis MPM 1124 (AUROC: 0.826); the other performances
Arabi 2003 and septic shock. The evaluated scores 250 are: MPM 1124 (AUROC:0.823); MPM 110
were: APACHE II, SAPS II, MPM 110 and (AUROC:0.806); customized SAPSII (AUROC:0.799);
MPM 1124 and customized versions of SAPSII (AUROC:0.797); and APACHE I
SAPS Il, MPM [124. (AUROC:0.782).

Compare the efficiency of APACHE IV
with that of MELD scoring system for
Hu 2013 prediction of the risk of hospital 195
mortality after orthotropic liver
transplantation
Evaluate the utility of three ICU scoring
systems: SAPS II, SAPS Ill, and APACHE I,

APACHE IV (AUROC: 0.937) showed better
discrimination than MELD (AUROC: 0.694)

The SAPS Il (AUROC: 0.81) presents the better

Haq 2014 . X o . 951 performance followed by SAPS II(AUROC: 0.75) and
to predict hospital mortality in patients APACHE II (AUROC: 0.74).
above 90 years.
The accuracy of the studied scoring systems for
Compare the predictive accuracy of four predicting ICU mortality in acute respiratory distress
predictive scoring systems in a single- syndrome patients is limited. The performance of the
Saleh 2015 center ICU subpopulation with acute 110 APACHE 11/l scoring systems was superior to that of
respiratory distress syndrome: APACHE other systems in terms of predicting the mortality,
11, APACHE IlI, SAPS Il and SOFA. and the combination of scores improved the
performance.
Api'?;g rR/'r;iZh;A"PaS“fsiZ:?negiS:Qms SAPS || (AUROC: 0.942) had the highest accuracy
Sun 2017 305 followed by the APACHE IV (AUROC: 0.934) and

in predicting short-term mortality of

. - . SOFA(AUROC: 0.920) scores.
adult patients with acute myocarditis.

Severity of illness scores had lower AUROC values for
10,004 hospital mortality in patients > 70 years of age
Determine the predictive value of ! compared with patients <70 years of age. AUROC
) o Patients <70 .

outcome severity scores for mortality in values were equivalent for the APACHE IlI (<70: 0.85;
cardiac intensive care unit patients who 4771 270: 0.78), APACHE IV (<70: 0.86; 270: 0.79) and

are 70 or older. Patie,nts 570 SOFA (<70: 0.86; >70: 0.80), and AUROC values for
B these scores were higher compared with OASIS (<70:

0.83; 270: 0.76).

Jentzer | 2018




It is important to highlight the work of Jentzer et al, since they present the largest published study
comparing outcomes between patients 270 years of age with patients <70 years of age in a contemporary
population. In such work, the authors concluded that AUROC values were equivalent for the APACHE-III,
APACHE-IV and SOFA scores for in-hospital mortality, but it can also be observed that severity scores have
lower discrimination for mortality in patients 270 than in older patients, which indicates that mortality
prediction models based on traditional severity scores present errors at patient data away from the
average.

Efforts have been made to develop mortality prediction models with improved performance, and three
strategies (That can be mixed with each other) stand out. The first one is based on the creation of specific
models for groups of patients that shares a common characteristic (like diagnostics, service type or a
similarity metric). The second one hinge on advanced machine learning algorithms different than logistic
regression, and the third one relies on patient similarity. Table 1.12 presents some of these studies [1, 2,

25-32].

Table 1.12. Studies in the field of mortality prediction.

Author Year Strategy Objective Patients Main result
The discrimination analysis demonstrated
excellent prediction performance for in-
Pollack 1988 | Specific population Develop a Pediatric Risk of Mortality (PRISM) scare. 2642 hospital mortality with an AUROC of 0.92.
In 1996 the third version of the PRISM score
was published.
Prove Fhat Iocg\ c-ustom\zed modeling will provide more accura.lte For all three patient subsets, the AUROCs of
mortality prediction than the current standard approach using . L
o . the local customized models were significantly
existing scoring systems. . higher than those of the reference scoring
Logistic regression (LR}, Bayesian networks (BN) and artificial neural systems.
. Specific population, networks(NN)were‘empIo\,fed fcl:rthecustom'model development. | AKI: 1,400 -AKI [SAPS: 0.6418): LR (AUROC 0.738), BN
Celi 2012 . . Three groups of patients with different conditions were analyzed: | SAH: 223
Machine learing acute kidney injury (AKI), subarachnoid hemarrhage (SAH) and | CS: 3,261 (AUROC 0.761), NN (AUROC 0.875)
elderly patients undergoin;’cardiac surgery (CS) ‘ -SAH (SAPS: 0.84): LR [AUROC 0.945), BN
The best fitted models were tested on an un‘seen data set and (AURDC 0.958), NN (AUROC 0.868)
compared to either SAPS for the ICU patients, or the EuroSCORE for -CS (EuroSCORE: 0.648): LR (AUROC 0.854), BN
~ . ' (AURQC 0.931), NN (AUROC 0.941)
the cardiac surgery patients.
The proposed model had good overall
Johnson 2012 Machine learning Develop an in-hospital prediction model using a Bayesian ensemble 8,000 perfor.mance, with a median AUROC of 0.86,
scheme. achieving much better performance than the
SAPS reference model (AUROC of 0.667).
Adjust a one-year mortality prediction model for patients requiring The a.dJUStEd p‘rcbab\\\t\_f mc-d-el can accurately
Carson 2012 | Specific population | prolonged ventilation (at least 21 days of mechanical ventilation) 260 \dentlfy‘ patle.ms, requiring prolulnged
after acute illness using a multicentered study design. mechanical ventilation who are at high risk of
1-year mortality with an AUROC of 0.79.
Compared with conventional severity scores
Develop an in-hospital mortality model based on a method for (SAPSII: AUROC 0.78) models, Super Learner
selecting via cross-validation the optimum algorithm among all offers improved performance for predicting
weighted combinations of a set of candidate algorithms (Super hospital mortality in patients in ICUs. Super
Learner). The used variables were the same as SAPS Il and SOFA. Learner algorithm achieved the same
Pirracchio 2014 Machine learning Twelve candidate algorithm were evaluated: Penalized Generalized 24508 performance as the best of all 12 candidates.
Linear Model (GLM), Bayesian GLM, GLM, Stepwise regression, -Super Learner: AUROC 0.88
Neural network, Spline regression, Random forest, Generalized -Bayesian additive regression trees: 0.86
Additive Model, Bagging, Boosting, Bayesian additive regression -Random forest: 0.88
trees and Pruning. -GLM: 0.84
Develop customized mortality prediction models, using the clinical | MICU:5819 | Custom models based on ICU-specific data
Lee 2015 | specific population variables employed in the SAPS, for each of the four service types: | SICU:5198 | provided better mortality prediction than
medical ICU (MICU), surgical ICU (SICU), coronary care unit (CCU), | CCU:2144 | traditional SAPS scoring using the same
and cardiac surgery recovery unit (CSRC). CSRU:4329 | predictor variables.
Using a subset of similar patients rather than a
larger, heterogeneous population as training
data improves mortality prediction
Develop personalized 30-day mortality prediction models based on performance at the patjeqt level.
. PR . o . The three types of predictive models that were
Machine learning cosine-similarity-based patient similarity metric. deployed outperformed  the predictive
Lee 2015 . . .2 | Death counting among similar patients (DC), Logistic regression 17152 .
Patient similarity based on similar patients (LR) and Decision tree based on similar performances of adjusted SAPS (AUROC:
patients (DT) were deployed 0.658) and SOFA (AUROC: 0.633). The peak
: AUROC of the assessed models were:
-DC: AUROC0.797
-LR: AUROC0.83
-DT: AUROC 0.753




Table 12. (Continued). Studies in the field of mortality prediction.

Author Year Strategy Objective Patients Main result
Reproducing cohorts using textual descriptions
To reproduce studies from 2015 to 2017 (including the cohort of patient selection criteria is difficult
selection criteria) that have reported performance of mortality From 1985 (reproduced cohorts were usually bigger than
Johnson 2017 Machine learning prediction models based on the Medical Information Mart for t0 29572 the reported cohort). In 32 of the 38
Intensive Care (MIMIC) database, and compare them against reproduced experiments the gradient boosting
gradient boosting and logistic regression models. approach outperformed the reported models.
The RF-PSM led to good mortality prediction
Develop personalized 30-day mortality prediction models based on performance for several predictive models,
random forest (RF) proximity measure as a patient similarity metric although it failed to induce improved
. . (RF-PSM). performance in RF and CSRF.
Machine learning, ) . - .
Lee 2017 Patient similarity Five models were deployed: Death counting (DC), logistic regression 17152 -DC: AUROC 0.801
(LR), decision tree (DT), random forest (RF). and case-specific -LR: AUROC 0.824
random forest (CSRF). -DT: AUROC 0.779
-RF:0.839
-CSRF: 0.832
Main results obtained from the in-hospital and
To benchmark results for mortality prediction using deep Learning the 1-year mortality prediction outcomes
models, ensemble of machine learning models (Super Learner were:
algorithm), SAPS Il and SOFA scores. Various outcomes were -in-hospital:
evaluated: Short term mortality (2-day and 3-day), in-hospital SAPSII: AUROC 0.8035
. . mortality, long-term mortality (30-day and 1-year). Various features Logistic regression: AUROC 0.8235
Purushotham | 2018 Machine learning sets and time windows were used; we are analyzing the results 35627 Super Learner: AUROC 0.8673
based on the feature set that consists of processed features and the Multimodal Deep Learning: AUROC 0.8664
time window of 24 hours, since the way in which these -1-year:
characteristics are extracted is similar to that of the other articles SAPSII: AUROC 0.7614
reported. . Super Learner: AUROC 0.8467
Multimodal Deep Learning: AUROC 0.8450
To build and evaluate various machine learning models (27 models Highest prediction accuracy and AUC was
were evaluated; the most remarkable were deep feedforward . . .
Specific population neural network, logistic model trees and simple logistic) to predict achieved by logistic model trees and Simple
Barrett 2019 . Y Ls . . . . 5436 Logistic algorithms, while deep feedforward
Machine learning one-year mortality in patients diagnosed with acute myocardial
infarction or post myocardial infarction syndrome in the MIMIC-III neul:a! network had less accuracy and
precision.
database.

Three of the reported works, evaluated various machine learning models on the same cohort an assessed
mortality prediction. Pirracchio et Al. [27] used a Super Learner (SL) algorithm to predict in-hospital
mortality, SL is a supervised learning algorithm that is designed to find the optimal combination from a
set of prediction algorithms, meaning, that the SL is an ensemble machine learning technique that uses
multiple learning algorithms to obtain better prediction performance, and in theory it perform at least as
well as the best member of the library of prediction algorithms that it uses. In their work, Pirracchio et Al.
used twelve prediction algorithm: Penalized Generalized Linear Model (GLM), Bayesian GLM, GLM,
Stepwise regression, Neural network, Spline regression, Random forest, Generalized Additive Model,
Bagging, Boosting, Bayesian additive regression trees and Pruning, which means that, in order to build the
SL, the performances of each of the twelve prediction algorithms were assessed, and, in a test done with
non-processed variables, it was found that best performing algorithm was the random forest and the
worst performing one was neural network.

Purushotham et Al. [30] benchmarked the performance of the deep learning models with respect to
traditional severity scoring systems and the super learner described by Pirracchio et Al. on the Medical
Information Mart for Intensive Care Il (MIMIC-1ll) database. The evaluated deep learning models were:
Feedforward neural networks (FFN), recurrent neural network (RNN) and multimodal deep learning model
(MMDL). In their work Purushotham et Al. used various mortality prediction benchmark tasks: In-hospital
mortality, short-term mortality (2-day and 3-day mortality) and long-term mortality (30-day and 1-year);
they also selected three sets of features: Feature set A, consisting of the 17 processed features used in
the calculation of the SAPS-II score; feature set B, consisting of 20 raw values related to the SAPS-Il score
and feature set C, consisting of 136 raw features. For all the mortality prediction tasks evaluated with
feature set A there is not much difference between the MMDL model and the super learner performances,



however when raw features are used the MMDL model consistently obtains the best results. Indicating
that deep learning models benefit from large number of raw features.

Barret et Al. evaluated various machine learning models, including a deep learning model on a specific
population: ICU patients with acute myocardial infarction and post myocardial infarction syndrome [31].
In their study Barret et Al. analyzed data from 5436 patients and found out that, from the 27 used
algorithms, the best performing ones were logistic model trees and simple logistic model.

Another remarkable study was presented by Johnson et Al. [28]. and focus on the reproducibility of
mortality prediction studies within the ICU. In their study Johnson et Al. reproduced 38 experiments that
use MIMIC database, and compare the performance reported in the studies against gradient boosting and
logistic regression models using a simple set of features. The outcome for prediction was define by the
study, and was one of the following: in-hospital mortality, 30-day post ICU admission mortality, 48-hour
post ICU discharge mortality, 30-day post ICU discharge mortality, 30-day post hospital discharge
mortality, 6-month post hospital discharge mortality, 1-year post hospital discharge mortality, and 2-year
post hospital discharge mortality. The cohorts were also defined by the study, since Johnson et Al.
attempted to reproduce each of the cohorts used in the studies. Unlike the studies reported above, in
which multiple machine learning algorithms were evaluated on the same cohort, in this work two
algorithms were evaluated on multiple cohorts with the same features. On the 38 reproduced
experiments all the non-linear prediction models (gradient boosting) outperformed the linear prediction
models (logistic regression), and, in average, the discrimination performance difference was 2.42%, which
indicates that the mortality prediction can be approached quite linearly. On the other hand, the gradient
boosting exhibited better results than those published in the review studies in 32 of the 38 experiments;
and the logistic regression showed better results in 27 experiments, 16 of which were approached with
non-linear models in the original studies.

It can also be observed that in the field of personalized predictive modeling based on patient similarity for
mortality prediction in the ICU, Lee et Al. deployed a cosine-similarity-based patient similarity metric to
identify patients that are most similar to an index patient and subsequently custom-build a 30-day
mortality prediction model which outperformed the results obtained with models fitted with all the data
and traditional severity of disease scores [2], in their experiments 5000 was determined to be the
minimum number of similar patients for logistic regression to ensure sufficient variability in categorical
predictors within training data (these minimum numbers of similar patients could be different for other
datasets and predictors) and the best performance (highest AUROC) were achieved with logistic
regression when 5000 or 6000 most similar patients were used for training the personalized model. One
of the main conclusions of this work is that using a subset of similar patients rather than a larger,
heterogeneous population as training data improves mortality prediction performance at the patient
level. In this study, predictors equally contribute to the patient similarity metric, the patient cohort is a
representation of patients with a wide variety of diagnoses and conditions and a personalized model is
fitted for each index admission. In a later work, Lee et Al. [29] used a random forest proximity measure as
a patient similarity metric in the context of personalized mortality prediction within the ICU, this work
used the same population and methodology that their previous one, and it can be observed that, in
comparison with the death counting (DC), logistic regression (LR), and decision trees (DT) results from
their previous work that studied a cosine similarity as patient similarity metric, the predictive performance
was similar, moreover, random forest and case-specific random forests did not benefit from
personalization via the use of the random forest patient similarity metric. The above, and the fact that the



random forest modeling approaches did not benefit from personalization via the use of the random forest
similarity measure, indicate that selecting an appropriate similarity metric is not a straightforward task.

1.4 Conclusion

General severity of illness scores can be useful to guide prognostication, to assess ongoing disease
development and organ function, to compare ICU performance over time and across units, to compare
clinical trial population and outcomes. The general traditional scores were developed to be used in mixed
groups of ICU patients, for this reason their accuracy in subgroups of patients can be questioned; even
more since the begging of severity of illness scores it is clear the need to create specific scoring systems
according to the characteristics of the patients, that is why scores like APACHE and SAPS were developed
for adult population while the PRISM was constituted as a pediatric score and the SAPS Il include specific
coefficients to geographic regions.

In a survey Bouch listed the characteristics for an ideal scoring system [33]:

On the basis of easily/routinely recordable variables

Well calibrated

A high level of discrimination

Applicable to all patient populations

Can be used in different countries

The ability to predict functional status or quality of life after ICU discharge.

ok wnN PR

Studies presented in Table 1.11 suggest that no scoring system currently incorporates all these features,
specifically the items 4 and 5 are challenging to fulfill, that is why machine learning approaches and
disease-specific scoring systems, like the ones presented in the Table 1.12, are increasingly being
developed. Specifically, from the works that evaluated multiple models it can be interpreted that deep
learning models require large training and feature sets to report improvements, which can be seen in the
fact that in the Barret et Al. study [31] (performed on a specific population) the simple logistic and logistic
trees methodologies outperformed the deep learning models; but in the Purushotham et Al. [30] study
(performed on a general population) the deep learning models exhibited the best results. In addition to
this, it can also be observed from Table 1.12 that the ensemble methodologies based on trees (like
random forest and gradient boosting) consistently report good performances.

The customize models have proved to perform better than the general population approach, however
these studies continue to be population-based and therefore they generally provide “the average best
choice”. One developing idea in this field is personalized predictive modeling based on patient similarity.
The goal of this approach is to identify patients who are similar to an index patient and derive insights
from the data of similar patients to provide personalized predictions. This approach has been widely used
for personalized predictions in other fields, including music, movies and e-commerce, however, there are
still very few studies that focus on personalized prediction driven by patient similarity metrics within the
ICU.



CHAPTER 2. SEPSIS

2.1 Introduction

In this chapter we seek to show how the outcome prediction problem for sepsis patients within the ICU is
currently being addressed, for this, we first present the current definition of sepsis, the incidence of the
condition and the estimates for its mortality. We also present four criteria for sepsis identification based
on retrospective analysis of ICD codes and administrative data generated at the end of the hospital stay.
Then we indicate the long-term outcomes for patients with sepsis, and finally we present studies focused
on the mortality prediction exclusively for sepsis patients is within the ICU.

Sepsis is a word derived from the ancient Greek [on{iic], which means the decomposition of animal- or
plant-based organic materials by bacteria. The modern concept was introduced in 1991 in a consensus
conference held by the American College of Chest Physicians (ACCP) and the Society of Critical Care
Medicine (SCCM) where sepsis was defined as the host's inflammatory response to infection [34, 35].

From that moment sepsis was considered a condition resulted from a host’s systemic inflammatory
response syndrome (SIRS) to infection. When organ dysfunction occurred, it was considered severe sepsis,
a condition that, if aggravated, could turn into septic shock, defined as “sepsis-induced hypotension
persisting despite adequate fluid resuscitation.” [36, 37]. Table 2.1 presents the summary of definitions.

Table 2.1 Definitions for systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic shock

Term Definition
Two or more of the following criteria:
*Body temperature 238°C or <36°C
Systemic
inflammatory eHeart rate > 90 bpm
response syndrome
(SIRS) eRespiratory rate > 20 bpm or PaCO; < 32 mmHg
*\White blood cell count >12.0x10%/L or <4.0x10°%/L or >10% immature band forms
Sepsis SIRS + Infection
Severe sepsis Sepsis + Organ Dysfunction
Septic Shock Sepsis with arterial hypotension despite adequate fluid replacement

The SIRS criteria have been used for identification of potentially septic patients because they can facilitate
enrollment for research purposes; however, their utility is limited by the lack of specificity since up to 90%
of patients admitted to the ICU fit the criteria for SIRS [38]. The above, and the advances into the
pathobiology, management, and epidemiology of sepsis led to the reexamination of the definitions. As
consequence, in The Third International Consensus Definitions for Sepsis and Septic Shock, a task force
proposed a new definition that incorporate the current understanding of sepsis biology, defining sepsis
as a “life-threatening organ dysfunction caused by a dysregulated host response to infection”[17, 18].

Under this new definition, sepsis involves organ dysfunction, indicating a pathobiology more complex than
infection with an accompanying inflammatory response. It makes the term “severe sepsis” superfluous



[17], and septic shock is defined as a subset of sepsis with profound circulatory, cellular, and metabolic
abnormalities [39].

For clinical operationalization, sepsis can be diagnosed when organ dysfunction happens, represented by
an increase in the Sequential Organ Failure Assessment (SOFA) score of 2 points or more, consequent to
an infection [40]. Septic shock can be identified using the clinical criteria of hypotension requiring
vasopressor therapy to maintain mean arterial pressure (MAP) at least of 65mmHg and having a serum
lactate level greater than 2 mmol/L after adequate fluid resuscitation [39]. Table 2.2 summarizes these
definitions.

Table 2.2 New definitions for sepsis, organ dysfunction, and septic shock.

Term Definition
Sepsis Life-threatening organ dysfunction caused by a dysregulated host response to infection
Organ dysfunction Change in total SOFA score22 points consequent to the infection

Subset of sepsis patients with persisting hypotension requiring vasopressors to maintain

Septic Shock
P MAP265mmHg and having a serum lactate level >2mmol/L despite volume resuscitation.

2.2 Sepsis criteria

To operationalize the new definition of sepsis, presented in the previous section, the task force of Third
International Consensus Definitions for Sepsis and Septic Shock recommends to replace the SIRS criteria
with the SOFA score [40].However, despite the efforts of the task force for standardize a sepsis diagnostic,
there remains some controversy around the new definitions [41-46]: new definitions did not involve low
or middle income countries; as result, SOFA is a score is routinely calculated in some, but not all, ICUs;
the decision of replace SIRS with SOFA was based on a retrospective study conducted with ICU patients
with sepsis in which it was observed that 1 out of 8 patients with sepsis and multiorgan failure did not
have at least 2 SIRS criteria, and, semantically, it cannot be ignored that in 7 out of 8 cases the patients
met the “at least 2 SRIS” criteria. Even the experts in sepsis pathobiology of the consensus recognized
some limitations since some of the definitions and clinical criteria were generated through voting, and
unanimity was not always presented.

In a respond to the debate, Singer (one of the specialist of the sepsis-3 task force), argues that the main
reason why SIRS was not included in the operationalization of the new sepsis definition was based on
pathophysiology, because SIRS criteria are not particularly good in distinguishing a normal and
appropriate host response to an infection from an inappropriate response resulting in a more serious
infection [41].

Sepsis-3 definition appears to be an improvement over the previous iterations and the main purpose of
using SOFA score for operationalizing sepsis is to diagnose the condition. In contrast to SIRS, the new
definition is all-inclusive as it reflects new onset organ dysfunction. On the other hand, for retrospective
studies it is possible to identify sepsis by using different criteria that uses ICD codes and administrative
data generated at the end of the hospital stay.

2.2.1 Explicit sepsis
The current definition of sepsis indicates that the condition is life-threatening organ dysfunction caused
by a dysregulated host response to infection, for this reason the codes of the International Classification



of Diseases (ICD) which best frame the new definition are 995.92 for severe sepsis and 785.52 for septic
shock. These codes are extremely specific to sepsis, but have very low sensitivity.

2.2.2 Angus criteria

The Angus criteria is a validated protocol that uses administrative data to identify sepsis patients. The
algorithm for the Angus [47] criteria first looks to identify patients coded for severe sepsis or septic shock.
If patients do not have this code, all discharge diagnoses are reviewed for an infection code, if present
then procedure codes/diagnoses codes are checked for organ dysfunction codes [38]. Table 2.3 presents
the ICD-9-CM-based classification of acute organ dysfunction used by the Angus Criteria.

Table 2.3. Angus ICD-9-CM-based classification of acute organ dysfunction. Where 3- or 4-digit codes are listed, all associated
subcodes were included.

Organ System  ICD-9-CM Code ICD-9-CM Code Description
785.5 Shock without trauma
Cardiovascular
458 Hypotension
Respiratory 96.7 Mechanical ventilation
348.3 Encephalopathy
Neurologic 293 Transient organic psychosis
348.1 Anoxic brain damage
287.4 Secondary thrombocytopenia
287.5 Thrombocytopenia unspecified
Hematologic
286.9 Other/unspecified coagulation defect
286.6 Defibrination syndrome
570 Acute and subacute necrosis of liver
Hepatic
573.4 Hepatic infarction
Renal 584 Acute renal failure

2.2.3 Martin criteria

The criteria developed by Martin et al.[48] sorts patients either by codes for septicemia, septicemic,
bacteremia, disseminated fungal infection, disseminated candida infection or disseminated fungal
endocarditis in addition to an organ dysfunction code or an explicit diagnosis: severe sepsis or septic shock
[38]. Table 2.4 presents the ICD-9-CM-based classification of acute organ dysfunction used by the Martin
Criteria.

2.2.4 Sepsis-3

In a recent study Desautels et al. aimed to study and validate a sepsis prediction method, for the new
Sepsis-3 definitions based on retrospective data [49]. For this they took the earliest culture draw or
antibiotic administration as the time of suspicion of infection, and then they define a window of up to 48



hours before this time and 24 hours after this time. The SOFA score, at the beginning of this window, was
compared with its hourly value throughout this window; and when the hourly value was 2 2 points higher
than the value at the start of the window the particular admission was designate as septic.

Table 2.4. Martin ICD-9-CM Based Classification of Acute Organ Dysfunction Associated with Sepsis.

Organ System  |CD-9-CM Code ICD-9-CM Code Description
518.81 Acute respiratory failure
518.82 Acute respiratory distress syndrome
518.85 Acute respiratory distress syndrome after shock or trauma
Respiratory
786.09 Respiratory insufficiency
799.1 Respiratory arrest
96.7 Ventilator management
458 Hypotension, postural
785.5 Shock
785.51 Shock, cardiogenic
785.59 Shock, circulatory or septic
Cardiovascular
458 Hypotension, postural
458.8 Hypotension, specified type, not elsewhere classified
458.9 Hypotension, arterial, constitutional
796.3 Hypotension, transient
584 Acute renal failure
580 Acute glomerulonephritis
Renal
585 Renal shutdown, unspecified
39.95 Hemodialysis
570 Acute hepatic failure or necrosis
Hepatic 572.2 Hepatic encephalopathy
573.3 Hepatitis, septic or unspecified
286.2 Disseminated intravascular coagulation
286.6 Purpura fulminans
Hematologic
286.9 Coagulopathy
287.3 Thrombocytopenia, primary, secondary, or unspecified
Metabolic 276.2 Acidosis, metabolic or lactic
293 Transient organic psychosis
348.1 Anoxic brain injury
348.3 Encephalopathy, acute
Neurologic
780.01 Coma
780.09 Altered consciousness, unspecified
89.14 Electroencephalograph




In this work, we will use these four criteria to identify the admissions that will be part of our study cohort.
Since each of these identification methodologies are based on different ICD-9 codes for the determination
of organ dysfunction, it is expected that they yield widely different patient groups; however they all fulfill
the current definition of sepsis: “life-threatening organ dysfunction caused by a dysregulated host
response to infection”, making them appropriate for our study.

2.3 Global Incidence and Mortality of Hospital-treated Sepsis

So far we have presented the definition of sepsis, and how the condition can be identified both at the
time of attention and retrospectively, however, we have not yet seen why sepsis is considered a delicate
health problem. In this chapter we present the incidence and mortality of hospital-treated sepsis
elucidating why its study is relevant.

At the annual congress of the European Society of Intensive Care Medicine (ESICM) in October 2002, the
Surviving Sepsis Campaign was formed with the objective to raise awareness to reduce sepsis mortality.
At that time, sepsis was considered a leading cause of death in the intensive care unit with a worldwide
documented incidence of 1.8 million each year; however, it was considered that this number is
confounded by a low diagnostic rate and difficulties in tracking sepsis in many countries, and the Surviving
Sepsis Campaign estimates that with an incidence of 3 in 1000 the true number of cases each year could
reach 18 million, and the mortality rate was of almost 30% [50].

The Surviving Sepsis Campaign outlined a six-point action plan (Table 2.5) aimed at improving the
management of sepsis, and increase awareness among health care professionals, governments, the public
and funding bodies.

Table 2.5. The Surviving Sepsis six-point action plan

Issue Details

Increase awareness of health care professionals, governments, health and funding agencies,

Awareness . . . . . )
and the public of the high frequency and mortality associated with sepsis
Diagnosis Improve the early and accurate diagnosis of sepsis by developing a clear and clinically relevant
€ definition of sepsis and disseminating it to our peers
Treatment Increase the use of appropriate treatments and interventions by disseminating the range of

care options and urging their timely use

Encourage the education of all health care professionals who manage sepsis patients by
Education providing leadership, support and information to them about all aspects of sepsis management,
including diagnosis, treatments and interventions, and standards of care

Provide a framework for improving and accelerating access to post-ICU care and counselling

Counsellin
€ | for sepsis patients

Recognize the need for clear referral guidelines that are accepted and adopted at a local level

Referral in all countries by initiating the development of global guidelines

Existing epidemiologic studies suggest that sepsis remains a huge burden across all regions, despite that
a sustained Surviving Sepsis Campaign achieved a continuous quality improvement in sepsis care [51].
Sepsis incidence rates are up to 535 cases per 100,000 person-years and rising [52], and although



outcomes have improved, in-hospital remains high at 25—-30% [52]. Patients with sepsis are frequently
cared for in ICUs, either because sepsis itself led to their admission or because sepsis developed as a
complication of their admission.

A recent metaanalysis by Fleischmann et al. estimated the worldwide incidence and mortality of sepsis;
they systematically searched 15 international citation databases for population-level estimates of sepsis
incidence rates and mortality in adult populations published in the last 36 years [53]. One of the main
findings reported is that studies on population level incidence and mortality rates for sepsis and severe
sepsis are scarce, and none exist for low- and middle-income countries. For the High-income countries
(when the only the last 13 years were analyzed) an aggregate global estimator of 437 sepsis cases per
100,000 person-years is reported. For the case of severe sepsis population incidence rate of 270 cases per
100,000 person-years was estimated when more recent investigations were analyzed. The mortality rates
estimated from hospital-treated cases are 17% for sepsis and 26% for severe sepsis from studies published
between 2003 and 2015.

This estimated indexes only covers the high-income countries, which only represent 13% of the world’s
population. If the reported rates also apply for the countries low- and middle-income countries, a total
annual number of 31.5 million sepsis and 19.4 million severe sepsis cases would be expected to be treated
in hospitals around the globe each year, and it may cause or contribute to up to 5.3 million deaths
worldwide per annum. However, the true incidence and burden of sepsis in low- and middle-income
countries remains uncertain because of a lack of information on sepsis epidemiology and may even be
higher since infectious diseases are considerably more prevalent in these areas of the world and cause a
substantially higher proportion of deaths [53].

Specifically for Colombia, in 2011, Rodriguez et al. published a study with the aim of determine the
epidemiologic characteristics of sepsis in a hospital based population in Colombia. This study was carried
out using data from ten general hospitals in the four main cities of Colombia between September 1, 2007
and February 29, 2008. A total of 2,681 patients were recruited from emergency rooms, intensive care
units, and general wards. The 28-day mortality rates of patients with infection without sepsis, sepsis
without organ dysfunction, severe sepsis without shock, and septic shock were 3%, 7.3%, 21.9%, and
45.6%, respectively; study reports a monthly incidence of 3.61 cases of sepsis per 100 hospital admissions
[54].

In a secondary analysis on the same cohort, Ortiz et al. focused on the patients admitted to the intensive
care units and reported an overall 28-days mortality rate at the time of discharge of 33.6%, and could go
up to 45.1% for patients with septic shock [55].

2.4  Long-term Outcomes from Sepsis

The data presented in the previous section focus on the short-term mortality; however, in recent years
interest in understanding the impact of critical illness on long-term outcomes has increased. Studies
examining long-term outcomes of severe sepsis, acute lung injury, and lung transplantation suggest that
critical illness is associated with long-term consequences that persist beyond ICU and hospital stay [56].

In 2003 Weycker et al. [57] estimated the long-term mortality and medical care charges among patients
with severe sepsis and concluded that their mortality and economic costs are high, during the period of
acute illness as well as subsequently. The study identified 16,019 patients who were treated in hospital
for severe sepsis and reported that 21.2% of subjects died in hospital, 51.4% died after one year and 74.2%



died after five years; with respect to medical charges, the mean total charges for the index admission
were $44,600 (USD), at 1 year, mean cumulative medical care charges totaled $78,500 (USD); at 5 years,
the total was $118,800 (USD).

In [56], authors suggested that mechanisms underlying increased long-term mortality remain poorly
understood, and besides the fact that long-term mortality following severe sepsis is high, and fewer than
half of patients who experience severe sepsis are alive at 1 year, other outcomes like neurologic
impairments, respiratory impairment and renal failure are also important because they may increase risk
of death and reduce quality of life.

In 2010, Iwashyna et al. [58], reported that severe sepsis was associated with substantial and persistent
cognitive impairment and functional disability among survivors. And Winters et al [59] concluded that
patients with sepsis showed ongoing mortality up to 2 years and beyond after the standard in hospital
mortality end point. Patients with sepsis also had decrements in quality-of-life measures after hospital
discharge.

In 2013 Wang et al. [60] concluded that sepsis is independently associated with increased risk of mortality
after hospital treatment; Individuals with the disease exhibited increased rates of death for up to 5 years
after the illness event. This is evidenced by the fact that One-year, 2-year and 5-year mortality among
individuals with sepsis were 23%, 28.8% and 43.8%, respectively; and the death rates in the same periods
of those patients who never developed sepsis were 1%, 2.6% and 8.3%.

In 2015 Ou et al [61] reported that sepsis survivors had substantially increased risks of all-cause mortality,
as well as major adverse cardiovascular events like ischemic stroke, hemorrhagic stroke, myocardial
infarction, heart failure, and sudden cardiac death or ventricular arrhythmia at 1 year after discharge
when compared with matched population control subjects; sepsis survivors had higher risks.

2.5 Outcome prediction for sepsis patients in the intensive care unit

From chapter 1, it is clear that, traditionally approaches to ICU outcome prognostication has relied on
static models generated from analyzing large, heterogeneous, multi-center patient datasets, such one-
size-fits-all approaches perform well for the average patient; but tend to present problems when the
characteristics of the patients move away from the mean. According to this, in section 1.3, we showed
that efforts have been made to generate mortality prediction models that use data from patients who
share the same characteristic (for example, the same diagnosis).

The mortality prediction problem exclusively for sepsis patient within the ICU has been addressed mainly
with two approaches: One approach is to modify the models by adapting them for use specifically among
patients with sepsis. The second one is to develop entirely new models, incorporating additional variables
that could potentially enhance accuracy.

The first approach was proposed by Le Gall et al. in 1995 and then assessed by Arabi et al. in 2003 [62,
63]. In his 1995 work, Le Gall showed that SAPS Il and Mortality Prediction Model Il at 24 hours (MPMj4
I1) did not fit the data well when used exclusively on severe sepsis patients, and proposed a methodology
for the adjustment of those models to the severe sepsis and septic shock population. To adjust of these
two scores for patients with severe sepsis, Le Gall et al. developed new logistic regression equations using
only either the SAPS Il or the MPM Il,4 scores obtained from the group of patients with severe sepsis.
Consequently, each new logistic regression model would contain a single variable plus the constant term.



The idea behind this approach is that the original score, which produced a probability of hospital mortality
for general ICU population, would be mathematically translated into an adjusted probability of mortality
based only on the experience of patients with severe sepsis. This adjusted versions of the SAPS Il and
MPM Il,4 presented better discrimination and calibration than the original models.

The performance of the adjusted mortality prediction scoring system proposed by Le Gall. Et al, and
another four scores (APACHE II, SAPS II, Mortality Prediction Model Il at admission (MPM llg), MPM ll,4)
were evaluated in a cohort of 250 patients with suspected severe sepsis and septic shock by Arabi et al.
[62]. They concluded that the overall mortality prediction was adequate for all six scores, however,
calibration was inadequate for APACHE Il, SAPS Il, MPM llp and MPM Il,4. On the other hand, the adjusted
version of SAPS Il and MPM Il exhibited improved calibration that the original versions.

In addition to the adjustment of existing models, particular scores for the prediction of mortality in
patients with severe sepsis and septic shock have been developed [64, 65]. Carrara et al. presented a
development of a model exclusively for septic shock patients derived from hemodynamic variables,
clinical information and laboratory results of the first 48 hours after shock onset and to predict mortality
in the following 7 days. Other study, conducted by Zhang and Hong, presents a novel prediction score
developed and validated specifically for patients with severe sepsis. Said model is based on Least Absolute
Shrinkage and Selection Operator (LASSO) methodology and variables that are routinely used in clinical
practice within the ICU grouped in the following categories: demographic data, laboratory variables, vital
signs, comorbidities, vasopressors, Glasgow Coma scale and urine output. The LASSO score showed the
best discrimination in the validation cohort as compared with other scores such as SAPS I, acute
physiological score Il (APS lll), Logistic organ dysfunction system (LODS), SOFA, and OASIS.

In the hospital in general, important studies have been carried out in which exclusive models were
developed for the prediction of mortality in patients with sepsis [66—68]. For the studies the cohort was
not composed exclusively of ICU patients, and although some of the patients received ICU care, the
selection criteria are fundamentally different from those of the other studies in which the patients were
evaluated for sepsis at the time of admission to the ICU.

Lagu et al. developed a multilevel mixed-effects logistic regression model to predict in-hospital mortality
in patients with sepsis using only administrative data; Predictors included patient demographics (age, sex,
race, insurance type), site and source of sepsis, presence of 25 individual comorbidities, treatment
(mechanical ventilation, vasopressors and admission to the intensive care unit). In the validation cohort,
the model developed by Lagu et al. presented discriminatory ability statistically similar to traditional
severity of disease scoring system, APACHE I, SAPS Il and MPM lll. The best performance on the validation
cohort was obtained with the SAPS Il score.

In 2014 Osborn et al. used the data from 23438 patients with suspected or confirmed sepsis from 218
hospitals in 18 countries to generate the Sepsis Severity Score. Even though the purpose of such a model
is to predict in-hospital mortality for patients with sepsis during their ICU stay, not all the patients analyzed
for its developed come from the Intensive care unit, moreover, the patient location at symptom onset is
one of the predictors. Other predictors are the Geographic region, organ failure (Cardiovascular,
Pulmonary, renal, hepatic, hematologic), conditions related to the vital signs (hyperglycemia, tachypnea,
hypothermia, hyperthermia, hypotension), laboratory measures (Lactate, and white blood cell count),
medicine intake (fluids and vasopressors) and treatments and conditions (mechanical ventilation, altered
mental status and chills with rigor). The Sepsis Severity Score accurately estimated the probability of



hospital mortality in severe sepsis and septic shock patients. It performed well with respect to calibration
and discrimination.

Based on the results from Lagu et al, and Osborn et al; in 2016 Ford et al. developed a Severe Sepsis
Mortality Prediction Model and Score that only used administrative data. Data from 108448 patients were
used for the development of the mentioned score. Predictors included were demographics (age, gender
and race), measures of acute illness severity (Mechanical ventilation, shock, hemodialysis and ICU care),
and 20 comorbidities (anemia, depression, diabetes, drug and substance abuse, chronic lung disease,
congestive heart failure, hypertension, hypothyroid disease, liver disease, lymphoma, metastatic
carcinomas, neurologic conditions, obesity, paraplegia, perivascular conditions, psychiatric diseases,
pulmonary circulatory, renal failure, malignant solid tumors, weight loss). The sepsis severity model and
score presented an excellent discrimination performance and were well calibrated and far exceeded the
performance obtained with the Osborn score. Table 2.6 presents an abridgment to the cited works.

2.6 Conclusion

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; in
recent years’ clinicians have become aware of the importance of the long-term outcomes associated with
this conditions. In Section 2.3 some studies were shown that indicate that Patients with sepsis have
ongoing mortality beyond short-term end points, and survivors consistently demonstrate impaired quality
of life. Even more, sepsis survivors suffer from additional morbidities such as higher risk of readmissions,
cardiovascular disease, cognitive impairment and of death, for years following sepsis episode; despite this
mortality prediction models for patients within the ICU focus on the short term mortality prediction (7-
day mortality and in-hospital mortality).

All the works reported in Table 2.6 presented better performance than traditionally severity of disease
scores, which supports the conclusion in chapter 1, and indicates that also for patients with sepsis the
customize models perform better than the general population approaches; however, the use of in-
hospital mortality as an end point for clinical studies are not enough to understand the effect of sepsis on
mortality and quality of life, and the current understanding of the risk factors and mechanisms underlying
long-term sequelae in patients that suffered from this condition is limited. Therefore, identify risk factors
during an ICU stay that reverberate and even could predict long-term outcomes will help physicians offer
better treatments.



Table 2.6 Sepsis severity of disease related works.

Author  year Objective Analysis tools Qutcome Patients Main result
To develop customized
versions of the The customized models
Simplified Acute .
Physiolo, Score I In-hospital were well calibrated and
Le Gall 1995 v ey Logistic regression models P‘ 1130 outperform the
(SAPS 1l) and the 24- mortality T .
} discrimination  obtained
hour Mortality with the traditional scores
Probability Model I '
(MPM 11-24)
To assess the in-
hDSp,Ita_I mortality The overall mortality
prediction for four A
. . prediction was adequate
traditional severity of )
. P for all six systems, however
disease  classification In-hospital customized models
Arabi 2003  systems (APACHEII, Logistic regression models P‘ 250 )
mortality showed improved
SAPSII, MPMII-at . . S
o calibration. Discrimination
admission, MPMII-after .
was best for customized
24 hours) and the two
. MPM [1-24.
customized models
from [15].
166931 Not
) exclusively The proposed sepsis
To develop a sepsis ) .
. ICU patients mortality model has
model for the in- In-hospital accordin, discrimination similar to
Lagu 2011  hospital mortality that Logistic regression model P‘ € . ) )
uses onl mortality Angus and calibration superior to
administrative data Y Criteria. 36%  those of existing severity
’ received ICU  scores (APACHEI, MPMIII).
care
The Sepsis Severity Score
accurately estimated the
To d.evelop a sepsis . 23438 Not probability of hospit§|
severity score that L . In-hospital . mortality in severe sepsis
Osborn 2014 . . Logistic regression model ) exclusively . !
estimates  the in- mortality : and septic shock patients.
X . ICU patients .
hospital mortality. It performed well with
respect to calibration and
discrimination.
To develop a prediction
model of 7-day The developed model
tality  f ital tperf the traditional
mor ity from - vita Linear regression model with 7-day outpertorm the ral : |oha
Carrara 2015 signs and parameters regularization (elastic net) mortalit 26 scores for mortality risk
routinely collected g ¥ assessment in ICU(SOFA,
during the first 48 hours SAPSI)
after septic shock onset
563155 Not
T°|-ddivelopé |n:erna::y I(e:ﬁclustl.velz The model was well-
va! ate, and externa .y pa I,en s calibrated and the AUC
validate a severe sepsis In-hosnital according analvsis suobort  the
Ford 2016  mortality prediction Logistic regression model p‘ Angus y p!).
) mortality L models ability to
model and associated Criteria. 35% L .
. o . discriminate patient
mortality prediction received at mortalit
score. least 1 day of ¥
ICU care
The LASSO score had good
discrimination and
To devel f libration i doml
inhospital  mortaliyy  LeatAbsoluteShrinkageand celected subsample and
Zhang 2017 P A Selection Operator (LASSO) P 3206 ple
prediction specifically mortality outperform traditional

for patients with sepsis

regression

severity of disease scores
(SAPSII, APSIII, LODS, SOFA,
OASIS, qSOFA)




CHAPTER 3. RESEARCH QUESTION

3.1 Introduction

Chapter 1 outlines how data gathered from patients in an intensive care unit is used in the form of scores,
and also presents the most commonly used severity-of-illness classification systems. Traditional scores
can be useful to guide prognostication, to assess ongoing disease development and organ function, to
compare ICU performance over time and across units and to compare clinical trial population outcomes
but they were not designed for individual prognostication. In order to increase the performance of
outcome prediction scores and use them at the individual level, specific models according to groups of
patients that shares a common characteristic have been developed.

In chapter 2 presents the modern concept of sepsis, the methods used for the clinical operationalization
of the diagnosis and its incidence and hospital; it also describes several retrospective studies to identify
sepsis by using different criteria that uses ICD codes and administrative data generated at the end of the
hospital stay. Finally, it describes the long-term outcomes for sepsis and report studies focused on
outcome prediction for sepsis patient within the ICU , which used in-hospital mortality as an end point.

In this chapter, the context presented in the previous chapters is used to structure the research question;
the objectives and the outline of the methodology used in this thesis are also presented.

3.2 Research Question

In accordance with chapter 2, Sepsis is a life-threatening organ dysfunction caused by a dysregulated host
response to infection [17] and patients who suffer it are often in a very delicate condition, with mortality
rates around 26% [51]. Multiple models have been developed to predict outcomes exclusively of sepsis
patients, which have proven to perform better that traditional severity-of-illness classification systems
[62, 64—69]. However, these customize models are focused on the short-term mortality prediction. In
recent years clinicians have become aware of the importance of the long-term outcomes associated with
sepsis; only half of patients are alive at 1 year after a sepsis episode and the surviving patients are in risk
of suffer other conditions like neurologic and respiratory impairments, renal failure, ischemic stroke,
hemorrhagic stroke, myocardial infarction, heart failure, and sudden cardiac death or ventricular
arrhythmia [56-58, 60, 61, 70].

Currently, the risk factors and mechanisms underlying long-term sequelae in patients that suffered from
sepsis is limited, according to the above

3.3 Objectives

In order to answer the research question, the following objectives were proposed:

3.3.1 General objective

Generate, from demographic and physiological parameters, a methodology that stratifies the severity of
commitment of a patient admitted to an intensive care unit, with sepsis; in order to initiate an early and
appropriate treatment from their individual characteristics.



3.3.2 Specific objectives

1. Generate a segmentation that allows stratifying a patient into risk groups according to their
characteristics of clinical relevance.

2. Develop a statistical model that relates the parameters of clinical relevance with the mortality of
patients in each of the risk groups.

3. Evaluate the developed model, both from its statistical performance and its clinical usefulness.

4. Develop assistance software that allows clinicians to establish a risk score to understand the
severity of each patient's condition and generate early alarms for the start of treatment.

3.4 Methodology

The activities developed to answer the research question were divided, as the Figure 3.1 shows, in four
different stages.

The first stage is the customize mortality prediction modeling. It includes several steps: review the core
literature, propose the input variables and to define the outcome of interest. The input variables proposed
were chosen from the bibliographic revision, the criterion of the expert intensivists and the availability in
the used database (which will be described in detail in the next chapter). At this stage, a first study cohort
composed was selected and termed cohort A. Cohort A is composed of 5650 sepsis patients (explicit or
according to Angus criteria) that had the majority of the variables of interest. The main outcomes of this
stage are an ensemble model for the one-year mortality prediction of sepsis patients with in the ICU that
outperformed traditional severity-of-illness scoring systems; and a subset of predictors that are truly
related with one-year mortality. The subset of relevant variables was obtained using two methodologies:
1) Least Absolute Shrinkage and Selection Operator (LASSO); 2) Stochastic Gradient Boosting relative
variable importance.

The second stage is the stratification of patients in risk groups. In this stage the definitive cohort
(composed of 15082 admissions) was obtained, each admission included in the cohort meets the following
characteristics:

e Aretrospective sepsis diagnostic according to the explicit, Angus, Martin and Sepsis-3 criteria.

e Patients older than 16 years

e The majority of variables that were find to be relevant for the one-year mortality in the stage 1.
This subset of predictors was complemented with variables that are frequently used within the
ICUs.

e The Elixhauser comorbidity description (details of this will be presented in future chapters)

In this stage we generated two customized scoring systems for the assessment of the one-year mortality
risk of sepsis patients within the ICU. The first score was based on dichotomization of the variables, and
the second one used multiple cutoff points for each continuous numerical variable (i.e. the laboratory
measurements, the routine charted data and the admission age).

The third stage is the personalized predictive modeling based on patient similarity, in which we use patient
similarity metrics to identify a precision cohort for an index admission, this precision cohort is used to
train a personalized model. For the construction of the precision cohort two parameters were adjusted:
the modeling of the interaction between admissions and the number of similar admission used for the
precision cohort. The number of admission used for the precision cohort was varied from 1000, to 13000;



and in order to model the relations between admission, five patient similarity measures were proposed
and evaluated:

1. Cosine similarity (CS): in this approach the data of each admission is represented as an Euclidean
feature vector, and the similarity of two admissions is computed as the angle between the two
vectors.

2. Equally contribution similarity (ECS): In this approach a similarity term composed only by
categorical data (like comorbidities, gender or treatments) is computed in an independent way
and multiplied with the CS. The inclusion of such a term achieves that only the admissions that
share a common characteristic are connected.

3. Weighted Contribution Similarity (WCS): This similarity measure is based on the idea that different
conditions carry different mortality risk. For this reason, in this approach each variable of the
categorical data is weighted. Three sets of weights were evaluated.

To determine the optimal combination of the mentioned parameters, personalized logistic regression
models were generated for each pair of similarity measure and number of similar patients over a
validation subset composed of 10% of the population. Personalized Stochastic Gradient Boosting (SGB)
models were also generated with the parameters that presented the best performance.

In addition to the above, we evaluated a deep learning approach, which is composed of a multilayer neural
network that is regularized by the patient similarity measure used for the personalized SGB models. In
this stage our goals were: 1) Analyze the impact and relevance of the patient similarity metrics when
patients are related by a common characteristic (a sepsis diagnosis) and a challenging outcome is
evaluated (one-year mortality). 2) Evaluate if a single-time-trained non-linear method (a multi-layer
neural network) that incorporates a similarity-based regularization could increase the prediction
performance at the patient level and compete with a personalized model.

In the last stage we develop a software that could be used in the clinical environment with the models
generated in the stages 2 and 3.

3.5 Significance of the research: Impact and products

The emergence of machine learning techniques in the field of health is a fact. Specifically, in the field of
Intensive Care, it is undeniable that the potential for its application is immense; for instance, the
development of a model that takes into account the peculiarities of sepsis and identify sensitively and
early poor long-term patient’s outcome, could become a very useful tool to help the clinical group to
understand the severity of the disease and could help to the generation of alerts that favor early onset of
therapeutic measures; thus helping to improve the prognosis of patients with sepsis admitted to an
intensive care unit. Moreover, the identification of those patients who are at risk of dying one year after



their sepsis-related ICU admission constitutes the first step in understanding the risk factors and
mechanisms underlying long-term sequelae in patients that suffered from this condition.

Among adult ICU patients, is it possible to identify those who are at risk of dying one year after their sepsis
related admission using demographic variables, comorbidities and physiological data obtained during the first
24 hours of their ICU stay?
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Figure 3.1. Methodology.

It is also expected that the developed tool will support intensivists in decision making within an intensive
care unit; since the proposed model will allow the development of software that indicates which
demographic variables, comorbidities and physiological data are relevant to the one-year mortality of
each particular sepsis patient. We also consider that this project would help the strengthening of the



scientific community and the generation of new knowledge, because, currently, there is no methodology
for the identification the long-term mortality in ICU patients with a sepsis diagnostics and there are no
studies that indicate the usefulness of similarity metrics in cases in which patients have a common
characteristic, such as the diagnosis.



PART 2: STUDY COHORT

In the first part of this thesis we indicated that we are interesting in identify patients who are at risk of
dying one year after their sepsis related admission. Part 2 focuses in how we obtained an appropriate
study cohort. Chapter 4 presents the database from which we take the admissions that compose our study
cohort, called Medical Information Mart for Intensive Care (MIMIC); it also provides a list of existing
clinical databases already in use for research. Chapter 5 Presents the details of the study cohorts that we
selected, such as the admission inclusion criteria, and the variables used for subsequent analysis.



CHAPTER 4. CLINICAL DATABASE

4.1 Introduction

As stated in chapter 1, the critical condition of an intensive care unit patient requires close and constant
monitoring, which generates a large volume of data that can be used for the development and evaluation
of applications, systems and models based on computational tools, such as machine learning-aided
medical software. Despite the obvious usefulness of patient driven data accumulated with clear structure
that make it meaningful and usable, currently in Colombia, many hospitals do not have established
databases that archived and organized detailed patient data into central repositories, and those who have
them do not make efficient use of their data. On the other hand, meaningful clinical conclusions can only
be obtained with a sufficiently representative sample to generalize the results.

In this chapter we describe in detail the used database, MIMIC-Ill (Medical Information Mart for Intensive
Care), a large, single-center database comprising information relating to patients admitted to critical care
units at a large tertiary care hospital, and we also present other databases that are readily accessible.

4.2 The Medical Information Mart for Intensive Care (MIMIC)
Database

MIMIC dataset (Multi-parameter Intelligent Monitoring for Intensive Care) is widely used for researchers,
evaluators of algorithms and physiological data analysis systems in the ICU. Its first version includes data
from 100 patients, each record has between 24 and 48 hours of data recorded from patient monitors
(Electrocardiogram, blood pressure, respiration and oxygen saturation) accompanied by detailed clinical
data derived from the patient’s medical record and notes during monitoring, which provides the context
of each patient condition [71].Figure 4.1 shows a 3-hour extract of several physiological measurements,
an alarm is highlighted in red around the systolic blood pressure.
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Figure 4.1. Excerpt from a MIMIC record. Taken from [71].

MIMIC includes patients that were believed to be hemodynamically unstable; therefore, they are
considered to adequately represent the range of pathologies that result in abrupt changes in blood
pressure. MIMIC is of particular interest in research regarding heart rate, blood pressure, respiratory
dynamics and their interactions [71]. However, MIMIC patients do not represent the entire population in



ICU; as result, a larger bank of information became necessary in order to develop and evaluate systems
that could assist ICU clinical staff in decision-making and the outcome prediction,.

A new database version MIMIC-Il [72-74] was created to take advantage of technological advances in
telecommunications and storage systems. It has more than 20,000 patients and in addition to the clinical
history and physiological variables, includes laboratory data, therapeutic interventions, progress notes,
radiology reports and ICD9 diagnostic codes. MIMIC-Il is a great research resource due to four factors:

e |tis open, since it allows researchers from all over the world to access it free of charge after they
request access.

e It has data with high temporal resolution.

o |t keeps patient confidentiality.

MIMIC-II dataset were collected in four intensive care units: medical (MICU), surgical (SICU), coronary care
unit (CCU), and cardiac surgery recovery unit (CSRU) at Beth Israel Deaconess Medical Center in Boston,
MA, USA during the period from 2001 to 2008. MIMIC-II records were deidentified by removing protected
health information. Also, all hospital admissions and ICU stays of each patient were time-shifted to a
hypothetical period in the future [72].

MIMIC-II consists of two main components, clinical data and physiological signals. Clinical data included
demographic information, drug doses, nursing notes, discharge summaries, nurse verified hourly vital
signs and laboratory test results, and were organized in a relational database, Table 4.1 describes different
clinical data types in MIMIC-II by giving examples of each type. The signals, which include the continuous
records of vital signs, were stored in an open format, which makes it possible to read them under any
operating system. Figure 4.2 presents an extract of the waveform signals that can be found in MIMIC-II.
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Figure 4.2. Waveforms signals from MIMIC-II. Taken from [72].



Table 4.1. Clinical data types in MIMIC-II

Clinical Data Type Examples
Demographics Age, gender, date of death, ethnicity
Hospital admission | Admission and discharge dates, ICD-9 codes
Free-text Reports of imaging studies and 12-lead ECGs, nursing notes
Intervention Ventilator settings, Intravenous medications
Laboratory tests Blood chemistries, hematology, urinalysis, microbiologies
Severity scores SAPS |, SOFA, Elixhauser comorbidities
Fluid balance Solutions, blood transfusion, urine output, estimated blood loss

MIMIC-II includes 26.870 adult hospital admissions and 31.782 adult ICU stays. MICU patients constitute
the largest group among the four care units. The overall median ICU and hospital lengths of stay were 2.1
and 7 days, respectively. The overall in-hospital mortality was 11.5%, however the mortality of the CSRU
patients was very low. Table 4.2 presents some MIMIC-II statistics for the adult population stratified with
respect to the four critical care units.

Table 4.2. Adult patient statistics in MIMIC-II

MICU SICU CSRU CCuU Total
) o 10313 6925 5691 3941 26870
Hospital admissions
(38,4%) (25,8%) (21,2%) (14,7%) (100%)
L 12648 8141 6367 4626 31782
Distinct ICU stays
(39,8%) (25,6%) (20,0%) (14,6%) (100%)
Age 64,5 61,1 67,1 71,4 65,5
6301 4701 4147 2708 17857
Gender (Male)
(49.8%) (57.7%) (65.1%) (58,5%) (56.2%)
ICU length of stay (days) 2.1 2.4 2.1 1.9 2.1
Hospital length of stay (days) 7 8 8 5 7
. . 1645 842 213 392 3092
Hospital mortality
(16.0%) (12.2%) (3,7%) (10.0%) (11,5%)

MIMIC-II has been used for a large number of analytical studies, which include epidemiological studies,
development of clinical decision rules, reducing false alarm within the ICU and prediction of important
physiological values and adverse events [75-79]. Although MIMIC Il is innovative and unprecedented, it
still has some limitations. The administration of oral medications is not automatically entered, but is part
of the nursing notes. The data are exclusively from the stay in the ICU, so sometimes the context that
would provide knowledge of the history prior to admission to the intensive care unit is missing. The
information in the database reflects the actual protocols of the Beth Israel medical center, so it is possible
that researchers from other institutions do not find in MIMIC Il information regarding specific procedures
that are not performed in the hospital where the data was collected.

In order to solve some of these limitations, in November 2015 MIMIC-III [80] was launched, whose name
changed from "Multi-parameter Intelligent Monitoring for Intensive Care" to "Medical Information Mart
for Intensive Care". This new version provides demographic information, vital signs, medications,
laboratory measurements, observations and notes charted by care providers, fluid balance, procedure
codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and mortality (both inside
and outside the medical center).



The data of MIMIC-IIl was obtained from two sources, one is external, the Social Security Administration
Death Master File which is used to obtain the out-of-hospital mortality dates; and the other is from the
hospital's information systems. Figure 4.3 presents an overview of the MIMIC-III database. The hospital
data comprises seven important blocks:

e Bedside monitoring that includes vital signs, trends, alarms and waveforms; although only a
subset of patient records include physiological waveforms obtained from bedside monitors (such
as electrocardiograms, blood pressure waveforms, photoplethysmograms, impedance
pneumograms);

e Chart data that includes fluids balance, medicine administration and progress notes

e lLaboratory and microbiology tests.

e Billing that include disease, drugs and procedures codes.

e Demographics that include admission and discharge dates, dates of birth and death, religion,
ethnicity and marital status.

e Notes and reports that includes discharge summaries and imaging reports.

MIMIC-III records was deidentified using structured data cleansing and date shifting. The deidentification
process removes or changes fields such as patient name, telephone number, address, and dates. In
particular, stay date fields were shifted into the future by a random offset for each individual patientin a
consistent manner in order to preserve intervals, resulting in stays which occur sometime between the
years 2100 and 2200. Dates of birth for patients aged over 89 were shifted to obscure their true age, these
patients appear in the database with ages of over 300 years.
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Figure 4.3. Overview of the MIMIC-II critical care database. Taken from [80].



The description of the adult population is presented in Table 4.3. MIMIC Il contains data associated with
53,423 different ICU stays from 49,785 hospital admissions for 38,597 distinct patients older than 16 years
who entered the ICU between 2001 and 2012. The median age for adult patients is 65.8 years, 55.9% are
male and in-hospital mortality rate is 11.5%. The median length of stay in the ICU is 2.1 days, and the
median length of hospital stay is 6.9 days. A mean of 4579 charted observations and 380 laboratory
measurements are available for each hospital admission. The second most common International
Classification of Diseases code for patients aged 16 years and above was 038.9 (‘Unspecified septicemia’),
accounting for 4.2% of all hospital admissions [80].

Table 4.3. Details of the MIMIC-IIl adult patient population.

MICU SICU CCuU CSRU TSICU Total
H ital admissi 19770 8110 7258 9156 5491 49785
ospital admissions
P (39,7%) (16,3%) (14,6%) (18,4%) (11,0%) (100%)
. 21087 8891 7726 9854 5865 53423
Distinct ICU stays
(39,5%) (16,6%) (14,5%) (18,4%) (11.0%) (100%)
Age 64,9 63,6 70,1 67,6 59,9 65,8
10193 4251 4203 6000 3336 27983
Gender(Male)
(51,6%) (52,4%) (57,9%) (65,5%) (60,7%) (55.9%)
ICU length of stay (days) 2,1 2,3 2,2 2,2 2,1 2,1
Hospital length of stay (days) 6,4 7,9 5,8 7,4 7,4 6,9
. . 2859 1020 817 424 628 5748
Hospital mortality
(14,5%) (12.6%) (11,3%) (4,6%) (11,4%) (11,5%)

4.3 Other medical databases

4.3.1 PCORnet

PCORnet [81], the National Patient-Centered Clinical Research Network, is a large network that collects
data routinely gathered in a variety of healthcare settings, including hospitals, doctors’ offices, and
community clinics. PCORnet objective is to empower individuals and organizations to use data to answer
practical questions that help patients, clinicians, and other stakeholders to make informed healthcare
decisions [82].

PCORnet is a Distributed Research Network that captures clinical data and health information that are
created every day during routine patient visits. In addition, PCORNet is using data shared by individuals
through personal health records or community networks with other patients as they manage their
conditions in their daily lives.

Currently, PCORnet represents more than 100 health institutions across the United States and have data
on more than 100 million Americans. Data from all of these patients are potentially available for
observational research.

4.3.2 NHS Open data

The National Health Services (NHS England) is a governmental entity that retains one of the largest
repositories of data on people’s health in the world. One of NHS England projects is Open data a publicly
released information, often from the government or other public bodies, which is made freely available



to everyone to use, its main objective is to increase transparency and trace the outcomes and efficiency
of the British healthcare sector. An example of the use of Open data is LG Inform, an application which
pulls together disparate data about local services, including open data from UK local authorities, and
provides users with meaningful information about a local area and allows users to review and compare
services between authorities using charts, tables and maps [82].

4.3.3 The elCU Collaborative Research Database

The elCU Collaborative Research Database (elCU) [83] is a multi-center intensive care unit database with
high granularity data for comprises 200,859 patient unit encounters for 139,367 unique patients admitted
between 2014 and 2015 to one of 335 units at 208 hospitals located throughout the United States. elCU
was made available to the public in 2018 and include vital signs, laboratory measurements, medications,
care plan information, admission diagnosis, patient history, time-stamped diagnoses and similarly chosen
treatments. The data are organized into tables which broadly correspond to the type of data contained
within the table. The elCU database resulted from the alliance of Philips Healthcare which provides a
telelCU, a centralized model of care where remote providers monitor ICU patients continuously, providing
both structured consultations and reactive alerts, service known as the elCU program; and the Laboratory
for Computational Physiology at MIT which has previously shared MIMIC database.

4.3.4 Biologic Specimen and Data Repositories Information Coordinating Center

The National Heart, Lung, and Blood Institute (NHLBI) is an US National Institute of Health that provides
global leadership in the prevention and treatment of heart, lung, and blood diseases and supports basic,
translational and clinical research in these areas. In 2008, the NHLBI established the Biologic Specimen
and Data Repositories Information Coordinating Center (BioLINCC) to expand the utilization of two unique
research resources developed and maintained by the NHLBI: the NHLBI Biologic Specimen Repository
(Biorepository) and the NHLBI Data Repository. Many of the clinical studies in the Data Repository have
associated biospecimen collections stored in Biorepository [84].

The main objectives behind the BioLINCC is to maximize the scientific value of the Biorepository and Data
Repositories, and to promote the availability and use of other NHLBI-funded population-based
biospecimen and data resources. The mission of the NHLBI Biorepository is to acquire, store and distribute
quality biospecimens to the scientific community using standardized processes and procedures approved
by the NHLBI, the Biorepository has several plasma, serum and whole blood collections from
epidemiologic studies conducted in blood donors and transfusion-recipients. Research on these
biospecimens enabled key advancements in transfusion safety including evaluation of donor screening
assays for viral agents such as HIV, hepatitis B and hepatitis C, and risk estimations for transfusion-
transmitted viral agents. The NHLBI has supported data collection from participants in epidemiology
studies and clinical trials for over six decades. These data have often been sent to the NHLBI at the
conclusion of the study and placed in the Data Repository. The Data Repository is managed by the
Epidemiology Branch in the Division of Cardiovascular Sciences and includes individual level data on
hundreds of thousands of participants from 200 Institute-supported clinical trials and observational
studies [85].

Within BioLINCC there are three studies with both resources Specimens and Datasets that are partially
related to sepsis; the first one focus on determine if dietary supplementation of omega-3 fatty acids, y-
linolenic acid and antioxidants to patients with early acute lung injury or sepsis-induced respiratory failure
would increase ventilator-free days; the second one was intended to assess the efficacy and safety of oral
rosuvastatin in patients with sepsis-induced Acute Lung Injury and test the hypothesis that rosuvastatin



therapy would improve the clinical outcomes of critically ill patients with sepsis-associated acute
respiratory distress syndrome, both of this studies are framed into the Acute Respiratory Distress Network
(ARDSNet), a randomized controlled trial conducted from 1996 through 2006. The third study aims to
determine whether or not treatment with hydroxyurea titrated to maximum tolerated doses would
reduce the frequency of vaso-occlusive crises by at least 50% in this case sepsis is one of the reportable
events.

4.3.5 Intensive Care National Audit & Research Centre Case Mix Programme
The Intensive Care National Audit & Research Centre (ICNARC) is an independent charity established in
1994. The Case MixProgramme (CMP) is a national, comparative audit of patient outcomes from adult,
general critical care units in England, Wales and Northern Ireland coordinated by the ICNARC. Data
collected for the CMP take the following forms [86]:
e Patient identifiers: admissions are identified by an admission number and an alphanumeric unit
code
e Demographics: date of birth, gender and postcode
e Stay variables: Raw physiological data are collected to enable calculation of the APACHE-II,
APACHE-III, SAPS-1l and MPM-II scores and hospital mortality probabilities. Both the lowest and
highest recorded values during the first 24 hours in the CMP unit are collected.
e Qutcome: Survival data are recorded at discharge from the unit and from the hospital.
e Activity: length of stay in the ICU and in the hospital are recorded along with information about
transfers between units or hospitals.
The vast amount of data have been used to produce numerous local and national analyses, specifically,
there are four reports of analysis on the Case Mix Programme database focused on sepsis. The first one
studies the admissions with neutropenic sepsis in adult, general critical care units between the April 1 of
2007 to September 30 of 2010. The second one studies the admissions with severe sepsis in adult, general
critical care units from the January 1 of 2008 to the December 31 of 2009. The third one reports the
number of sepsis admissions to critical care and their mortality between the April 1 of 2010 to March 31
of 2013. The final one presents the length of stay, survival and organ support of admissions with septic
shock in 2012.

4.4 Conclusion

High-quality clinical databases are of value in clinical practice, in managing services and in developing
health technologies. The use of inappropriate, unrepresentative or poor-quality data can lead to imprecise
and inaccurate conclusions; for this reason, selection of the optimal database for a particular question is
a crucial part of relevant analyses.

The selected database for this work is MIMIC-Ill which data comes from a single institution (Beth Israel
Deaconess Medical Center in Boston Massachusetts). However, despite the limitation of being single-
centered, the main advantages of MIMIC-IlIl are: (1) Right now the only freely accessible critical care
database of its kind. (2) the dataset spans more than a decade, Figure 4.4. (3) It has detailed information
about individual patient care that includes time-stamped nurse-verified physiological measurements and
out-of-hospital mortality dates. For this reasons MIMIC-III (and specially it previous version MIMIC-II) are
widely used internationally.
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Figure 4.4. Period in years in which the admissions of the different versions of MIMIC were taken.

Within the other medical databases described before three contains intensive care data BioLINCC, CMP
and elCU. BioLINCC data comes from randomized controlled trials and prospective cohort studies for this
reason data presents considerable clinical detail and includes clinical physiology, severity of illness, and
patient outcomes, however, this data are collected specifically for the purposes of answering a research
guestion, this means that for each study only the variables and outcomes related to the question are
recorded, in particular the BioLINCC studies that focus on sepsis includes data of a subset of patients with
respiratory dysfunction and do not record long-term mortality. CMP only registers the physiological data
associated with four severity-of-illness classification systems, moreover, only the lowest and highest
values during the first 24 hours are recorded, which means that other statistical descriptors like the mean
could not be used in works with this database; on the other hand, CMP do not contains outcomes beyond
ultimate hospital discharge.

The elCU dataset is the most like MIMIC and its main advantage if the fact that it is multi-centered;
however, some features of this database makes it not suitable for this project. elCU database is sourced
from the elCU Telehealth Program (a model that allow caregivers from remote locations to monitor
treatments for patients, alert local providers to sudden deterioration, and supplement care plans) which
makes the amount of data obtained from each patient less than the amount of data that is obtained within
the Beth Israel Deaconess Medical Center ICUs, this is evidenced, for example, in the fact that for the elCU
database a total of 158 distinct types of laboratory measurements are captured and for MIMIC-1II 753
laboratory measures were recorded. Second, and most important, elCU reports the health status at
hospital discharge but do not include out-of-hospital mortality dates and for this study in particular, an
important advantage of MIMICIII is that besides in-hospital mortality, MIMIC-III provides mortality dates
through the Social Security Administration Death Master File.



CHAPTER 5. STUDY COHORT

5.1 Introduction
This chapter describes how we obtain the admissions of MIMIC-Ill that present a diagnosis of sepsis from
the identification criteria presented in chapter 2. After that, we detail the exclusion criteria and the
variables taken into account for the creation of two different study cohorts. At the end of the chapter, we
present a description of the population of the study cohorts.

5.2 Retrospective sepsis identification in MIMIC-II|

Chapter 2 presents four methods of retrospective identification of sepsis, this section will describe how
these criteria are implemented within MIMIC-III.

Figure 5.1 shows the ICD-9 code structure. It has an alphabetic or numeric as first digit, whereas the
remaining digits are numeric, the complete code has a minimum of three digits and a maximum of five
digits. The first three digits indicate the category; the following decimals represent the cause, the origin,
the anatomical site or the manifestations. We performed a preprocessing of the MIMIC-111 ICD-9 codes in
order to extract extracts the characters that represent the broad categories of diagnosis (when the first
three digits are searched for) or specific diagnosis or procedures (when four or five digits are searched

for).
XXX XX

Category Etiology
Anatomic site

Manifestations

Figure 5.1. ICD-9 code structure

On the other hand, the codes for extracting admissions based on the explicit sepsis, Angus criteria and
Martin criteria were build up from the “diagnoses_icd” and “procedures_icd” MIMIC-1ll tables; this tables
contains the International Classification of Diseases Version 9 (ICD-9) codes for diagnoses and procedures
for each hospital admission.

5.2.1 Explicit sepsis

In MIMIC-III, the identification of admissions that presents explicit sepsis is done using the “diagnoses_icd”
table, which contains ICD diagnoses for patients, specifically ICD-9 diagnoses. In this table either of two
ICD-9 diagnosis codes are looked for: 995.92 for severe sepsis or 785.52 for septic shock. Figure 5.2
presents the SQL query that was used to identify the explicit sepsis patients; it brings back 4085 unique
hospital admissions (field hadm_id).

SELECT hadm_id

FROM mimiciii.diagnoses_icd WHERE (icd9_code = '99592" OR icd9_code = '78552"') GROUP BY hadm_id;

Figure 5.2. Query to obtain the explicit sepsis admissions.



5.2.2 Angus criteria

For the identification of sepsis admissions using the Angus criteria [47] in MIMIC-1ll, We look for hospital
admissions that presents at least one of 2097 bacterial or fungal Infection related ICD-9 codes
(“diagnoses_icd” table). Additionally, we identify the hospital admissions that presents any organ
dysfunction; i.e, any of 37 unique ICD-9 codes based on the classification of acute organ dysfunction codes
presented in chapter 2 for the Angus criteria (34 related to diagnosis and 3 related to mechanical
ventilation procedure). The admissions that present a sepsis episode according to the Angus criteria are
those that present both infection and organ dysfunction. Figure 5.3 presents the SQL query that was used
to identify the Angus criteria sepsis patients, it brings back 15.149 unique hospital admissions.

(SELECT hadm_id

FROM mimiciii.diagnoses_icd WHERE (substring(icd9_code,1,3) IN ('@01'," ','003','004"','005",'008"','009"','010",
'e11','e12','013','014','015","'016", '017",'018",'020", ‘021", '022",'023",
'824','025','026",'027'," '@31','@32','033",'034", '35, '036', '037',
'@38','039','040','041',"'090","'091",'@92",'093",'094",'095",'@96", '097",
'e9s8’,'1ee','101','102',"103","104", '110", '111",'112", '114",'115", '116",
'117','118','320",'322"," '325','428','421','451",'461",'462", '463",

2

'464','465"','481"','482"','485","'486",'494"','510",'513",'540",'541",'542",

il

's66','567','590",'597",'601", 614", '615","'616", 681", '682",'683", 686", '730") OR

substring(icd9_code,1,4) IN ('5695','57208','5721','575@",'599@",'711@",'7907", '9966",
'9985"','9993"') OR
substring(icd9_code,1,5) IN ('49121','56201','56203','56211","'56213",'56983"')))
INTERSECT
(SELECT hadm_id
FROM mimiciii.procedures_icd WHERE substring(icd9_code,1,4) IN ('9678"','9671",'9672")
UNION
SELECT hadm_id
FROM mimiciii.diagnoses_icd WHERE (substring(icd9_code,1,3) IN ('458','293",'570",'584") OR

substring(icd9_code,1,4) IN ('7855','3483",'3481','2874","2875",'2869"','2866','5734')));

Figure 5.3. Query to obtain the sepsis admissions according to the Angus criteria. The first SELECT statement retrieves the
admission with infection, the second SELECT statement brings back the admissions in which the mechanical ventilation procedure
was presented, the third SELECT statement retrieves the admissions that present any diagnosis associated with the Angus acute
organ dysfunction codes. The union of the second and third SELECT statements are intersected with the first SELECT statement to
obtain the hospital admissions that have sepsis according to the Angus criteria.

5.2.3 Martin Criteria

For the identification of sepsis admissions using the Martin criteria [48] in MIMIC-III, first we search for
septicemia, septicemic, bacteremia, disseminated fungal infection, disseminated candida infection,
septicemic plague or disseminated fungal endocarditis codes in the “diagnoses_icd” table. To do that, we
obtain hospital admissions that presents at least one of 20 different sepsis related ICD-9 codes. Then, we
identify the hospital admissions that presents any organ dysfunction, for this we obtain the hospital
admissions that presents any of 63 unique ICD-9 codes based on the classification of acute organ
dysfunction codes presented in chapter 2 for the Martin criteria (58 related to diagnosis and five related
to mechanical ventilation, hemodialysis and electroencephalogram procedures). The admissions that
present a sepsis episode according to the Martin criteria are those that present both sepsis and organ



dysfunction. Figure 5.4 presents the SQL query that was used to identify the Martin criteria sepsis patients,
it brings back 6931 unique hospital admissions.

(SELECT hadm_id
FROM mimiciii.diagnoses_icd WHERE (substring(icd9_code,1,3) = '@38"' OR
substring(icd9_code,1,4) IN ('@202','7907','1179','1125') OR
substring(icd9_code,1,5) = '11281'))
INTERSECT
((SELECT hadm_id
FROM mimiciii.diagnoses_icd WHERE (substring(icd9_code,1,3) IN ('584','58@','585",'578','293") OR
substring(icd9_code,1,4) IN ('7991','458@','7855','4580",'4588",'4589",'7963","5722","5733",
'2862",'2866",'2869",'2873",'2874","'2875","'2762",'3481",'3483"') OR
substring(icd9_code,1,5) IN ('51881','51882','51885','78609','78551','78559','78001','78009')))
UNION
(SELECT hadm_id

FROM mimiciii.procedures_icd WHERE (substring(icd9_code,1,4) IN ('967@','9671",'9672",'3995", '8914'))))

Figure 5.4. Query to obtain the sepsis admissions according to the Martin criteria. The first SELECT statement retrieves the
admission with sepsis, the second SELECT statement retrieves the admissions that present any diagnosis associated with the
Martin acute organ dysfunction codes. The third SELECT statement brings back the admissions in which the mechanical ventilation,
hemodialysis or electroencephalogram procedures were implemented. The union of the second and third SELECT statements are
intersected with the first SELECT statement to obtain the hospital admissions that have sepsis according to the Martin criteria.

5.2.4 Sepsis-3

The identification of Sepsis-3 admission was made in [1] by Desautels et al, who shared with us the 2577
Sepsis-3 admissions. In their work, they take the earliest culture draw or antibiotic administration as the
time of suspicion of infection, and then they define a window of up to 48 hours before this time and 24
hours after this time; The SOFA score at the beginning of this window was compared with its hourly value
throughout this window, and when the hourly value was 2 2 points higher than the value at the start of
the window the particular admission was designate as septic.

5.3 Study cohorts

From the identified sepsis patients, two different study cohorts were gathered. The first one (cohort A)
was used to generate a customize one-year mortality prediction model of patients with sepsis admitted
to an ICU; for this cohort, by recommendation of the experts, we use the Angus and the explicit sepsis
criteria. The Angus implementation of the 2001 international consensus conference definition of severe
sepsis offers a reasonable approach to identifying patients with severe sepsis, it is a validated protocol
and of the four criteria used in this work is the one that returns a greater number of admissions. On the
other hand, the explicit sepsis criterion is the only one that is based on the clinical judgment of an expert,
since it indicates that a treating doctor considered that a patient had severe sepsis or septic shock during
his/her hospitalization.

The second cohort (cohort B) was used to developed both a system for the stratification of patients in risk
groups and a method for the personalized predictive modeling based on patient similarity. For the second
of these tasks it was necessary to have a large cohort in order to increase the possibility of finding similar
admissions. According to the above, this cohort was selected from all methodologies for identifying
patients with sepsis.



5.3.1 CohortA

It was selected from the 58977 MIMIC-IIl admissions, all the ones that complying with the following: i)
ICD-9-CM codes for both a bacterial or fungal infections and a diagnosis of acute organ dysfunction
according to the Angus criterion ii) Explicit sepsis related diagnosis: severe sepsis and septic shock. 15254
admissions. Table 5.1 depicts predictor variables for cohort A.

Table 5.1. Extracted predictors for cohort A.

Parameter Unit Parameter Unit
LABORATORY MEASUREMENTS COMORBIDITIES
Platelet Count 10°/L Diabetes
Bilirubin mg/dL Immunosuppressive diseases
Creatinine mg/dL Malignancy
Fraction of Inspired Oxygen (FiO2) % Hematologic malignancy
Partial pressure arterial oxygen and fraction of inspired oxygen ratio (Pa02/Fi02) | Ratio Metastatic cancer
White Bloed Cell (WBC) count 10°/mm? Heart failure
Potassium mEq/L Pulmonary diseases Binary
Sodium mEg/L Vascular diseases (Presence)
Bicarbonate mEgq/L Coronary diseases
Lactate mg/dL Obesity
Arterial pH pH Alcohol abuse
Hematocrit % Collagen diseases
Hemoglobin mg/dL Drug abuse
ORGAN DYSFUNCTION Malnutrition
Cardiovascular ROUTINE CHARTED DATA
Neurologic Temperature °C
Hepatic Binary Heart Rate bpm
Hematologic (Presence) | Arterial Blood Pressure Systolic mmHg
Renal Arterial Blood Pressure Diastolic mmHg
Mechanical Ventilation Arterial Blood Pressure Mean mmHg
DATA TAKEN AT THE TIME OF ICU ADMISSION Urine Output mL
Gender F,M Base Excess mEq/L
Admission Type M,SS,US Glucose mg/dL
Age Years Peripheral capillary oxygen saturation (Sp02) %
Glasgow Coma Scale (GCS) Ilnsteger ¥ Partial pressure of oxygen in arterial blood (Pa02) mmHg

The variables of cohort A were obtained from various clinical and administrative values and were selected
based on bibliographic revision, the criterion of the expert intensivists and the availability in the MIMIC-
Il database:

e Laboratory measurements: platelet count, bilirubin, creatinine, fraction of inspired oxygen, partial
arterial pressure oxygen and fraction of inspired oxygen ratio, white blood cell count, potassium,
sodium, bicarbonate, lactate, arterial pH, hematocrit and hemoglobin.

e Routine charted data: temperature, heart rate, arterial blood systolic pressure, arterial blood
diastolic pressure, arterial blood mean pressure, urine output, base excess, glucose, peripheral
capillary oxygen saturation and partial pressure of oxygen in arterial blood.

e Datataken at the time of ICU admission: gender, admission type, age and minimum Glasgow coma
scale. Fourth the following comorbidities were extracted: diabetes, immunosuppressive diseases,
malignancy, hematologic malignancy, metastatic cancer, heart failure, pulmonary diseases,



vascular diseases, coronary diseases, obesity, alcohol abuse, collagen diseases, drug abuse and
malnutrition.

e The specific acute organ dysfunctions presented in each admission: (cardiovascular, neurologic,
hepatic, hematologic, renal, respiratory).

Cohort A was extracted from the mentioned 15.254 admissions; For this, we selected the admissions with
a hospital stays longer than 24 hours, resulting in a dataset with 13.836 patients. Then, only the
admissions that had at least 70% of the laboratory measurements and at least 70% of routine charted
data listed before were included in the study cohort A, getting 5.650 admissions. Figure 5.5 presents the
accrual of admissions included in the study cohort and Figure 5.6 shows the distribution of admissions
according to the used sepsis criteria.

15254 Admissions with a diagnosis of sepsis

9604 Excluded

4456 Less than 70% of laboratory measurements
— 3730 Less than 70% of routine charted data
1149 Aged <16 years

269 Hospital stay shorter than 24 hours

5650 Admissions included in the cohort A

Figure 5.5. Accrual of admissions included in the study cohort A.

Ansus 3787 1837 26

Figure 5.6. Venn Diagram of the study cohort A according to the used sepsis criteria.

Of all variables listed in Table 5.1, only four presented more than 5% of missing data being Bilirubin the
most critical with 34% of absent values, followed by Fraction of Inspired 02 with 15%, Lactate with 13%
and Base excess with 7%. The way in which the missing data are treated will be presented in Chapter 6.



To end this section it is worth noting that in the case of the cohort A, the majority of admissions were
excluded due to the fact that at least 70% of routine charted data or laboratory measurements were not
available; however, the studies conducted with this cohort (which will be presented in detail in later
chapters) showed that not all included variables were relevant for the prediction of one-year mortality of
ICU patients with sepsis. For this reason, the admissions of the cohort B were based on the variables that
were relevant to the analyzes performed on the cohort A, and on those variables that most patients had.

5.3.2 CohortB

From the 58977 MIMIC-IIl general population admissions, we selected all the ones that fulfill any of the
four criteria presented in section 6.2. As result, 16.219 admissions were obtained; from these, we exclude
the newborn patients (obtaining 16.080 admissions); finally, we only selected hospital admissions that
where longer than one day, obtaining 15.751 admissions.

Since the objective of the studies carried out on the cohort B was to generate models based on the
similarity between patients, we also included all the comorbidity categories present in the Elixhauser
Comorbidity Index; a method of categorizing comorbidities of patients based on the ICD diagnosis codes.
Each Elixhauser comorbidity category is dichotomous, which means it is either present or it is not. The
Index can be used to predict hospital resource use and in-hospital mortality [87, 88]. According to the
above, we extracted the clinical and administrative variables presented in Table 5.2.

After the variable extraction process, the admissions that did not have vital signs or laboratory
measurements during the first 24 hours were also excluded, resulting in a study cohort of 15.476
admissions. Then, only the admissions that had at least 70% of the laboratory measurements and at least
70% of vital sings data listed before were included in the study cohort B, getting 15.082 admissions. Figure
5.7 presents the accrual of admissions included in the study cohort B and Figure 5.8 shows the distribution
of admissions according to the used sepsis criteria.

16219 Admissions with a diagnosis of sepsis

1137 Excluded
329 Hospital stay shorter than 24 hours
N 275 Not have vital signs or laboratory measurements during the first 24 hours
239 Less than 70% of laboratory measurements
155 Less than 70% of vital sings data
139 Newborn patients

15082 Admissions included in the cohort B

Figure 5.7. Accrual of admissions included in the study cohort B.



Table 5.2. Extracted predictors for Cohort B

COMORBIDITIES

DATA TAKEN AT THE TIME OF |CU ADMISSION

Congestive heart failure
Cardiac arrhythmias
Valvular disease
Pulmonary circulation
Peripheral vascular
Hypertension
Paralysis

Other neurological
Chronic pulmonary
Diabetes uncomplicated
Diabetes complicated
Hypothyroidism
Renal failure

Liver disease

Peptic ulcer

Aids

Lymphoma
Metastatic cancer
Solid tumor
Rheumatoid arthritis
Coagulopathy
Obesity

Weight loss

Fluid electrolyte
Blood loss anemia
Deficiency anemias
Alcohol abuse

Drug abuse
Psychoses

Depression

Binary (Presence)

TREATMENTS

Renal replacement therapy

Mechanical ventilation

Binary (Presence)

Admission type M,SS,US
Gender F, M
Age Years
GCS 3-15
LABORATORY MEASUREMENTS
Arterial pH pH
Anion gap mEa/L
Bicarbonate mEqg/L
Bilirubin mg/dL
Creatinine mg/dL
Chloride MEgq/L
Hematocrit %
Hemoglobin mg/dL
Lactate mg/dL
Platelet Count 10°/L
Potassium mEqg/L
Partial thromboplastin time (PTT) s
International normalized ratio (INR) Ratio
Prothrombin time (PT) s
Sodium mEaq/L
Blood urea nitrogen (BUN) mg/dL
White Blood Cell (WBC) count 10%*/mm3
ROUTINE CHARTED DATA
Urine output mL
Heart rate bpm
Arterial Blood Pressure Systolic mmHg
Arterial Blood Pressure Diastolic mmHg
Arterial Blood Pressure Mean mmHg
Respiratory rate bpm
Temperature °C
Peripheral capillary oxygen saturation (Sp02) %
Glucose mg/dL

Of all variables extracted for cohort B, only three presented more than 5% of missing data being Bilirubin
the most critical with 35% of absent values, followed by lactate with 21%, pH with 21% and ptt with 7%,

inr-pt with 7%.

5.3.3 Data Preparation

Similar to the SAPS score, the routine charted data and laboratory measurements for both cohorts were
extracted during the first 24 hours of each ICU stay; the other predictor variables represent single values
throughout the entire duration of a patient ICU stay. Since the variables are not measured with the same
frequency (Figure 5.9 depicts the time window for two of the variables as an example), we calculated

statistical indices that allowed their description.




Martin Sepsis-3

Explicit

Figure 5.8. Venn Diagram of the study cohort B according to the used sepsis criteria.

For the cohort A we extract mean, maximum, minimum, variance and range for all the laboratory and
routine charted variables. For the cohort B we only extracted maximum, minimum and mean values for
vital signs, and maximum and minimum values for laboratory measurements. The reduction in the number
of statistical indicators of cohort B was made because the analyzes performed on the cohort A indicated
that the inclusion of the range and the variance did not significantly improve the performance of the
mortality prediction models, and the clinical operationalization within the average intensive care units
indicates that these values (and more complex ones such as kurtosis or skewness) could not be calculated.
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Figure 5.9. Example variables. Grey box represents the 24-hour window in which the data are extracted and evaluated.



5.4 Patient characteristics in the study cohorts

Table 5.3 . provides for cohort A a breakdown of the adult population by care unit. Cohort A contains data
associated with 5.650 distinct hospital admissions for patients aged 16 or above who were given a severe
sepsis or septic shock explicit diagnostic, or retrospectively identified as septic with the Angus criteria. The
median age is 67.54 years, 54.58% of the patients are male, in-hospital mortality is 22.6% and one-year
mortality is 43.36%. The median length of an ICU stay is 5.9 days and the median length of a hospital stay
is 11.88 days

Table 5.3. Details of the cohort A patient population by first critical care unit on hospital admission. CCU is Coronary Care Unit;
CSRU is Cardiac Surgery Recovery Unit; MICU is Medical Intensive Care Unit; SICU is Surgical Intensive Care Unit; TSICU is Trauma
Surgical Intensive Care Unit.

MICU SICU CCuU CSRU TSICU Tota
Hospital Admissions 3138 765 735 404 608 5650
(55.54%) (13.54%) (13.01%) (7.15%) (10.76%) (100%)
Different ICU stays 3402 934 828 483 695 6342
(53.64%) (14.73%) (13.06%) (7.62%) (10.96%) (100%)
Age, median years 67.5 64.72 71.75 70.36 61.63 67.54
Gender(M) 1642 393 406 248 395 3084
(52.32%) (51.37%) (55.23%) (61.38%) (64.96%) (54.58%)
ICU length of stay, 5.06 6.68 5.81 8 7.88 5.9
median days ) ) ) ) )
Hospital length of stay, 10.29 14.99 10.63 15.88 17.13 11.88
median days
Hospital mortality 757 165 168 76 111 1277
(24.12%) (21.56%) (22.85%) (18.81%) (18.25%) (22.6%)
. 1459 301 346 161 183 2450
One-year mortality (46.49%) (39.34%) (47.07%) (39.85%) (30.09%) (43.36%)

Table 5.4 provides for cohort B a breakdown of the adult population by care unit. Cohort B contains data
associated with 1.582 distinct hospital admissions for patients aged 16 or above who were given a severe
sepsis or septic shock explicit diagnostic, or retrospectively identified as septic with the Angus, Martin or
Sepsis-3 criteria. The median age is 68.47 years, 53.87% of the patients are male, in-hospital mortality is
19.63% and one-year mortality is 42.92%. The median length of an ICU stay is 4 days and the median
length of a hospital stay is 11.51 days.

Table 5.4. Details of the cohort B patient population by first critical care unit on hospital admission. CCU is Coronary Care Unit;
CSRU is Cardiac Surgery Recovery Unit; MICU is Medical Intensive Care Unit; SICU is Surgical Intensive Care Unit; TSICU is Trauma
Surgical Intensive Care Unit.

MICU sicU CCU CSRU TSICU Total
Hospital Admissions 8303 2197 1932 1325 1325 15082
(55.05%)  (14.57%) (12.81%) (8.79%) (8.79%)  (100%)
Different ICU stays 9343 2645 2231 1552 1599 17370
(53.79%) (15.23%) (12.84%) (8.93%) (9.21%) (100%)
Age, median years 67.78 55.93 72.84 71.84 65.85 68.47
Gender(M] 4328 1183 1039 782 794 8126
(52.13%) (53.84%) (53.77%) (59.02%) (59.92%) (53.87%)
ICU length of stay, 3.28 5.24 42 5.8 6.02 4
median days
Hospital length of stay, 9.68 15.13 10.65 15.16 15.65 11.51
median days ] ]
Hospital mortality 1748 413 385 195 220 2961
(21.05%)  (18.79%)  (19.93%) (14.72%) . (1660%)  (19.63%)
One-year mortality 3847 850 887 448 442 6474
(46.33%) (38.69%) (45.91%) (33.81%) (33.35%) (42.92%)




5.5 Conclusions

In chapter 4, we present the MIMIC-III clinical database. It contains data associated with 49,785 different
hospital admissions for patients older than 16 years. The median age for adult general population is 65.8
years, in-hospital mortality rate is 11.5%, the median length of stay in the ICU is 2.1 days, and the median
length of hospital stay is 6.9 days.

When comparing the general population with the population of selected sepsis cohorts, it can be observed
that patients with sepsis have a hospital mortality, a median ICU length of stay and a median hospital
length of stay that are close to twice the values for the general population.

The foregoing is true for both cohort A and cohort B; Moreover, it can be observed that although the
sepsis identification methodologies yielded a different set of admissions, the inclusion of Martin and
Spsis3 criteria do not significantly change the description in the cohorts.

In chapter 2, we presented some studies that indicates that patients with sepsis show ongoing mortality
beyond the hospital discharge [56, 89—91]; which is ratified in the selected study cohorts, since one-year
mortality rate is twice the in-hospital mortality rate.

From the accrual of admissions presented for cohorts A and B, it can be seen that the percentage of
excluded admissions in cohort A is much higher than the percentage of excluded admissions the other
one; the main reason is the condition that the admissions must have at least 70% of the data (both
laboratory and routine charted). According to the above, the great difference between the number of
admissions excluded is due to the fact that in the first cohort we sought to analyze variables selected by
two criteria: the bibliographical review and the experts’ opinions and in the second cohort we focused on
variables that were relevant for 1-year mortality prediction in patients with sepsis within the ICU (see
chapter 6) or that were routinely measured.



PART 3: CUSTOMIZED MODELS

This part presents our first approaches for the development of one-year mortality prediction models for
sepsis patients within the intensive care unit (ICU). The works presented in this part lead to the generation
of customized models, since they exclusively use the data of our study cohorts, in addition we generate
obtained adjusted models based on traditional severity of disease scoring systems to benchmark the
performance of our models. Chapter 6 present the development of a Stochastic Gradient Boosting model,
and the obtaining of a set of variables that are truly related to the long-term mortality of sepsis patients
within the ICU. Chapter 7 presents the development of two customized scores that indicate a patient's
one-year mortality risk.



CHAPTER 6. MODEL FOR ONE-YEAR
MORTALITY PREDICTION IN PATIENTS
ADMITTED TO AN INTENSIVE CARE
UNIT WITH DIAGNOSIS OF SEPSIS

6.1 Introduction

In previous chapters we showed that that sepsis is a life-threatening organ dysfunction due to a
dysregulated host response to infection and it is an important public health problem, which generates
high costs for the health system and carries a high morbidity and mortality; moreover; sepsis survivors
had higher risks of all-cause mortality at 1 year after discharge compared to the general population. In
this chapter we present the development of a model that goes beyond the prediction of in-hospital
mortality and alert those patients who may have a poor prognosis one-year after being discharged from
the hospital.

The model for the prediction of one-year mortality of sepsis diagnosed patients within the ICU was
developed using the admissions of the study cohort A and was based on an advanced ensemble supervised
learning method denoted as Stochastic Gradient Boosting (SGB). SGB combines boosting with bootstrap
averaging and has built-in feature selection since it reports the relative variable importance. In addition
to this, we also used selected relevant predictors by using a method that performs both variable selection
and regularization called Least Absolute Shrinkage and Selection Operator (LASSO).

Thereby, we developed and evaluated five SGB models: one with all the predictors available in the study
cohort A, two of them with the predictors selected with each of the methods (SGB and LASSO), another
one with the union of the selected predictors, and the final with the intersection of the selected
predictors.

All five developed models outperformed commonly used severity-of-disease scoring systems (SAPSII,
SOFA and OASIS). As comparison measurements between the developed model and the traditional
systems we used the accuracy and the AUROC; the Hosmer-Lemeshow goodness of fit test was used on
the model to verify its ability to provide a risk estimate that corresponds to the observed mortality
(Calibration). The calibration of our models were adequate since the p-value for the Hosmer-Lemeshow
goodness of-fit were considerably greater than 0.05. This model would help identify those patients at
greatest risk, and will be the first step to detect signs of alarm from a worse long-term outcome.



6.2 Methodology

In this approach we used the 5.650 admissions of the study cohort A. According to what was presented in
the previous chapter, the analyzed variables were extracted during the first 24 hours of each hospital stay;
and, since the variables are not measured with the same frequency, we calculated statistical indices that
allowed their description: mean, maximum, minimum, variance and range. As result, data of the cohort
A, were converted into 132 predictors as follow:

e 110 are the statistical descriptions of the laboratory measurements and the routine charted
data,

e 17 are the presences of comorbidities and organ dysfunctions,

e 2 are the numerical values for age and Glasgow Coma Score (GCS).

e 3 corresponded to the gender and admission type categorical data, since each of these variables
were binarized using one hot encoding.

In order to explain the data extraction process, we present examples of how variables from the five
categories listed above were obtained, based on the actual data of a single particular patient with a sepsis
related admission. In Table 6.1 we present some information that can be obtained directly from the
MIMIC-III database. From this information we obtain the gender (assigning a 1 if the patient is “Male”
and a zero if the patient is “Female”), the admission type (which is one hot encoded to two variables
“Emergency” and “Elective”), the admission age (subtracting the date of birth from the admission time)
and the one-year outcome (subtracting the death time from the discharge time).

Table 6.1. Admission information for the example patient.

30-01-35 20:50 08-02-35 2:08 08-02-35 2:08 EMERGENCY SEPSIS M 04-04-47 0:00

For the comorbidities we extract all the diagnoses that were made during the sepsis related admission;
Table 6.2 presents the International Classification of Diseases Version 9 (ICD-9) codes that were registered
for the sepsis related admission for our example patient; the three first columns can be obtained from
directly from MIMIC-III, the fourth column is the assignation to an Elixhauser comorbidity group, not all
the ICD-9 codes are related with a comorbidity group, and some of them are related with more than one

group.

For the calculation of the minimum Glasgow Coma Scale (GCS), data associated with the three
components (Eye opening response, verbal response and motor response) of the score for the first 24
hours of admission can be extracted directly from MIMIC-III, then, we add the numerical values of the
three components and obtained the minimum one. Table 6.3 presents the information related to the GCS,
the first three columns can be obtained directly from MIMIC-III, the fourth column is the associated
behavior. It is important to note that MIMI-IIl provides the numeric value for the behavior and its
interpretation; in orange we highlighted the data associated with the worst GCS that would be 13.

For each of the continuous numerical data of the laboratory measurements and the routine charted data
we obtained all the records that were made to a patient within 24 hours after admission, and the we



calculated the maximum, minimum, mean, variance and range. In Table 6.4 we present the values
registered for the heart rate values for the example patients, in orange we highlighted the maximum a
minimum value that were 83 and 66; the mean was 14.9, the range was 17 and the variance was 3.8.

Table 6.2. Comorbidity information for the example patient, it can be observed that in this admission eight comorbidities were

registered.

ICD9-Code P”D,th Of, Brief definition Associated Elixhauser comorbidity group
the diagnosis
388 1 Other specified septicemias No associated Comorbidity group
78552 2 Septic shock No associated Comorbidity group
20391 3 Hypertenswe chronic kidney dlseasg, unspecified, with chronic kidney Mhearrasiem e renel e
disease stage V or end stage renal disease
42731 4 Atrial fibrillation Cardiac arrhythmias
70709 5 Pressure ulcer, other site No associated Comorbidity group
5119 6 Unspecified pleural effusion No associated Comorbidity group
6823 7 Cellulitis and abscess of upper arm and forearm No associated Comorbidity group
99859 8 Other postoperative infection No associated Comorbidity group
845 9 Intestinal infection due to Clostridium difficile No associated Comorbidity group
5720 10 Abscess of liver No associated Comorbidity group
99592 11 Severe sepsis No associated Comorbidity group
V0980 12 Infec.tion with microorganisms without mention of resistance to T et e
multiple drugs
25000 13 Dlabetgs_ mellitus without mention of complication, type Il or e R
unspecified type, not stated as uncontrolled
2859 14 Anemia, unspecified Deficiency anemias
43889 15 Other late effects of cerebrovascular disease No associated Comorbidity group
2749 16 Gout, unspecified No associated Comorbidity group
41401 17 Coronary atherosclerosis of native coronary artery No associated Comorbidity group
185 18 Malignant neoplasm of prostate Solid tumor
4439 19 Peripheral vascular disease, unspecified Peripheral vascular
2449 20 Unspecified acquired hypothyroidism hypothyroidism
Other specified surgical operations and procedures causing abnormal
E8788 21 patient reaction, or later complication, without mention of No associated Comorbidity group
misadventure at time of operation

We used two techniques in order to select the most important predictors for the one-year mortality
prediction model: Least Absolute Shrinkage and Selection Operator (LASSO) and the Stochastic Gradient
Boosting (SGB) variable importance. Since LASSO is based on maximum likelihood logistic regression it is
susceptible to missing values, for this reason we used mean imputation. As an ensemble method based
on decision tree aggregation, SGB can be fitted with even with the presence of missing values, therefore,
there was no need for data imputation with this methodology. SGB variable importance is a procedure
that indicates the contributions of each of the predictors to the model; therefore, it is possible to choose
the most relevant predictors that represent the majority of the performance of the model.



After the feature selection process with, we developed five SGB models, two of them with the predictors
selected with each of the methods, the third with the intersection of the predictors, the fourth with the
union of the selected predictors with both methodologies and the last with all 132 predictors. The
Hosmer—Lemeshow test assess whether or not the observed event rates match predicted event rates in
subgroups of increasing probability of the one-year mortality.

Table 6.3. Glasgow Coma Scale related information for the example patient.

Chart time Value Value number Behavior
30-01-35 22:00 4 Spontaneously 4 Eye opening response
30-01-35 22:00 6 Obeys Commands 6 Motor response
30-01-35 22:00 4 Confused 4 Verbal response
31-01-35 08:00 3 To speech 3 Eye opening response
31-01-35 08:00 6 Obeys Commands 6 Motor response
31-01-35 08:00 4 Confused 4 Verbal response
31-01-3512:00 3 To speech 3 Eye opening response
31-01-3512:00 6 Obeys Commands | 6 Motor response
31-01-3512:00 5 Oriented | 5 Verbal response
31-01-35 16:00 3 To speech 3 Eye opening response
31-01-35 16:00 6 Obeys Commands 6 Motor response
31-01-35 16:00 5 Oriented 5 Verbal response
31-01-35 20:00 3 To speech 3 Eye opening response
31-01-35 20:00 6 Obeys Commands 6 Motor response
31-01-35 20:00 5 Oriented 5 Verbal response




Table 6.4. Heart rate measures for the first 24 hours after the admission of the example patient.

Chart time Value Units of Chart time Value Units of
measure measure
31-01-3516:45 72 BPM
31-01-3517:00 75 BPM 31-01-35 14:00 69 BPM
31-01-3518:00 79 BPM 31-01-35 14:30 75 BPM
31-01-351:00 72 BPM 31-01-35 15:00 73 BPM
31-01-356:00 82 BPM 31-01-35 15:15 72 BPM
31-01-357:15 73 BPM 30-01-35 22:00 79 BPM
31-01-3511:00 79 BPM 31-01-35 2:00 79 BPM
31-01-3511:15 80 BPM 31-01-35 3:00 75 BPM
31-01-3512:00 77 BPM 31-01-35 4:00 77 BPM
31-01-3515:20 72 BPM 31-01-35 19:00 78 BPM
31-01-3515:30 73 BPM 31-01-35 20:00 77 BPM
31-01-3515:35 74 BPM 31-01-35 8:00 72 BPM
31-01-35 16:00 73 BPM 31-01-3512:45 78 BPM
31-01-3513:00 73 BPM
31-01-358:45 71 BPM 31-01-3513:15 73 BPM
31-01-359:00 76 BPM 30-01-35 23:00 75 BPM
31-01-3510:00 79 BPM 31-01-35 0:00 68 BPM
31-01-3510:30 75 BPM

6.2.1 SGB

SGB is a treebased ensemble-based algorithm, capable of manage qualitative and quantitative variables,
and remain robust to missing data and outliers. SGB model has been successfully applied in various fields
such as rockburst damage prediction, travel time prediction, land cover mapping and berries skin
flavonoid contents [92—-95], and even for prediction of mortality in head injury [96], where the Boosted
Tree Classifier method achieved both the highest AUROC and accuracy rate.

Ensemble based algorithms consist of multiple base models, each one of those provides a different
solution to the problem. The solutions of all the base models are finally combined (usually by weighted
voting or averaging) into a single final model output, that is usually a more stable and accurate prediction
[97]. The ensemble algorithms begin with a training dataset:
o x )

which Where y; is the response variable and x; = {x;, x5, ..., X} is a feature vector with n variables and
the whole dataset is composed of N observations; and the goal is to find a function F*(x) that maps x to
y and minimizes a loss function ¥(ly, F (x)) [98].



Stochastic Gradient Boosting (SGB) is a type of ensemble algorithm based on Gradient Boosting [99], a
function approximation method that estimates F*(x) using an additive expansion:

M
FG) = ) BrhGxian) (1
m=0

Where h(x;a) is a simple parameterized function of the input variables x, characterized by a set of
parameters a = {a, a,, ... }. The individual terms of the function h(x; a) differ in the values chosen for
the parameters a,,. The expansion coefficient {8,,}3 and the model parameters {a,,,}} must be jointly
fitted to the training data [98].

The algorithm stars with guess of F,; after that the expansion coefficient, the parameters and the function
are calculated iteratively for m = 1,2, ---, M as following:

(B, am) = arg rg’igl YA (i Fme1 () + Bh(x;; @) (2)
and

En(x) = Fp_1(x) + Bmh(x;; an) (3)

E,, represents the function in the m' iteration and B,, and a,, are the expansion coefficient and the
parameters of the m™ simple model. In order to solve (2) for arbitrary differentiable loss function
‘P(y, F(x)) a two-step procedure have been proposed [99]. For this, first, the function h(x; a) is fitted by
least-squares:

N
o =argmip ) [T~ PhCx; OF (4

In(4) Py is:

oW (y;, F(x)

yim = _[ aF(xl) (5)

]F(x)=Fm-1(x)

Then given h(x; a), the optimal value of f3,, is calculated:

N
B = arg rrbm; (i, Fn-1(x) + Bh(x;; am)) (6)

After that, the updated function E,is calculated:

Ep(x) = Fpoq (%) + Brh(x; ay) (7)

Particularly SGB uses decision trees as base model [100]. Thus, h(x;a) is a L-terminal node small
regression tree (with 3 to 9 splits for this study); at each iteration, the regression tree divides the
explanatory variables space into L-disjoint sub-regions {le}lL=1 in each of which a constant response
value y,,, is calculated, moreover, with regression trees (6) can be solved separately with in each sub-
region R;,, so it solution reduces to:



Yim = arg myin YixieRim Y Vir Fm-1(x;) + ) (8)

Where ¥, is an estimate of the expansion coefficient in a particular sub-region. And the current
approccimation of the function is updated in each corresponding region by:

Fn(x) = Fpe1(x) + v Vi 1(x € Ryp) (9)

Where y;,,1(x € Ryy,) is the a constant response value in a particular sub-region and v is a shrinkage
parameter that controls the learning rate of the procedure. Theoretically v mustbe 0 < v < 1, butit has
been, empirically, it was found that small values (v < 0.1) lead to much better generalization [99].

To improve the performance of the gradient boosting approach, SGB incorporates randomness into the
function estimation procedure, so at each iteration a random permutation {n(i)}’lv is selected (without
replacement and with size N) This randomly selected subsample is then used, instead of the full sample,
to fit the decision tree and compute the model update for the current iteration.

For this study the output variable y is binary, and the loss criterion is the deviance [98]

‘P(y,ﬁ) = 210g(1 + exp(—ZyF)) (10)

The SGB algorithm involves a parameter-tuning process that maximizes predictive accuracy, the three
parameters are: M is the total number of boosting iterations (n.trees), v is the learning rate (shrinkage
coefficient) and L is the number of splits performed on each tree [93]. To determine the optimal
combination of the mentioned parameters, 10 fold cross-validation procedure was applied for each
parameter configuration. In this procedure, the elements of the train subset were randomly divided into
10 groups, nine of these groups were selected for fitting a model and the other one was used for testing
it. The process was repeated ten times, so each group was used for testing and training. By averaging the
results produced in each iteration, an overall quality estimate was obtained. Finally, the combination of
parameters that minimizes the prediction error averaged across all 10 folds was selected as the final
model.

The validation subset was never used in the development of the SGB model, but it was used to evaluate
the performance of the final model. Variable importance was calculated using the improvement based on
the splitting criteria for each predictor, which are aggregated and averaged across the entire boosting
ensemble [92, 93, 100, 101].

6.2.2 LASSO

LASSO [102], is a regression analysis method that performs both variable selection and regularization in
order to enhance the prediction accuracy and interpretability of the statistical model. The method for
two-class classification seeks p(X) the probability of class membership and is based on a hypothesis
function that lies between 0 and 1. For logistic regression [103]:

exp(ﬁo"'ﬁz)

N=—
p( ) 1 +exp(ﬁo+.8{)

(11)



Which is equivalent to:

log (£55) = Bo + BT (12)

Where f is a vector, with as many components as there are predictors, and the objective is to find the
values of f; that results in a p(X) that most accurately classifies all the observed data points. Logistic
regression models can be fitted by maximum likelihood. The log-likelihood can be written:

| =

NEE

{v:(Bo + BTx) —log (1 + eBorFIx))} - (13)

=1

LASSO regularization works by adding a penalty term to the log likelihood function, thus the quantity to
be minimized is:

p
l+zz|ﬁlj| (14)
=

A is a complexity parameter that controls the amount of shrinkage, so, the larger the value of A, the
greater the amount of shrinkage. A is selected using cross validation in a way that the resulting model
minimizes the sample error. The effect of the LASSO penalty term is to set some of the models coefficients
exactly to zero, and thus allowing the variable selection.
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6.2.3 Performance

In order to develop the models, we used the following methodology. First we divided the study cohort A
into 70% for training and 30% for testing. With the training subset we extracted two subsets of features
using the SGB and LASSO methodologies. The parameters of each of those methodologies were tuned
using ten-fold cross validation. Finally, we developed five SGB models with different set of predictors: the
132 predictors, the SGB variable importance selected predictors, the LASSO selected predictors, the union
and interception of the selected predictors with both methodologies. The whole process was repeated
50 times in order to obtain a confidence interval. Figure 6.1 illustrates the methodology.

To evaluate the performance of the five SGB models with the different sets of predictors we use the area
under the Receiver Operating Characteristic curve (AUROC) that is a common indicator of the goodness
of a predictor in a binary classification task, and the accuracy, which is defined as the fraction of correctly
predicted records over the number of records. These measures of the predictive power of SGB models
were compared with three severity-of-disease classification systems: SOFA [104, 105], SAPS2 [5] and
OASIS [106].

Additionally, the developed models calibration was assessed using Hosmer-Lemeshow test. The Hosmer—
Lemeshow test is a commonly used procedure for assessing goodness of fit in binary classification
problems; It is widely used for the evaluation of risk-scoring models in medicine that are developed using
a wide range of sample sizes [107]. The Hosmer—Lemeshow test seeks to prove that a model fits the data,
and it is a chi-square test conducted by sorting the n observations in the data set by estimated probability
of success, dividing the sorted set into g groups and assessing the Hosmer—Lemeshow C statistic:
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Where Og; and Oy ; are the observed number of successes and failures; Es; and Ef; the predicted
successes and failures in the ith group; ég follows a Chi-square distribution with g — 2 degrees of
freedom, therefore the p-value for the test is:

p= fg;xé_z(x)dx (15)

The number of groups g is defined by the user and there is an established dependence of the probability
of correctly rejecting a poorly fitting model (using the Hosmer-Lemeshow test) with the sample size and
the number of groups. By considering this dependence, Paul et al. made some recommendations to select
the number of groups. Specifically for samples sizes between 1000 and 25000 g is given by:
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Where n is the number of observations, and m is the number of successes [107]. However, this
recommendation is based on the simulation of six models, all of which are much simpler than the SGB
models developed in this work.

Finally, since, calibration, and therefore the Hosmer-Lemeshow test, examines how well an observed
number of events (deaths) compare to the number of events estimated by the model across probability
groups, we compared, to give a friendly visual representation, observed versus model-based estimates of
numbers of deaths graphically within deciles (g=10) of estimated probabilities of mortality.



6.3 Results

The SGB models were implemented with the caret [108] and gbm [109] R-packages, LASSO was
implemented using glmnet [110] R-package; both in R software. 10-fold CV procedure was used to tune
the parameters. According to what was previously mentioned, for SGB, three parameters were tuned: M,
v and L. To determine the combination of parameters that present better performance (greater AUROC)
during the CV process, a set of SGB models were tested using different values for M (50, 100, 150, 200,
250, ..., 1900, 1950, 2000), L (3, 5, 7, 9) and v (0.001, 0.01, 0.1).

The first developed model was fitted using all the predictors. Figure 6.2 presents the tuning procedure for
this model parameters that was done using the results of the performance of cross-validation; Each of the
four plots in the figure represents the maximum number of splits performed on each tree (iteration depth,
parameter L); The colored line in each of the four plots represent different shrinkage coefficient (learning
rate, parameter v); The x axis of each plot represent the boosting iteration (parameter M). Each data point
in the figure represents one classifier. The optimal classifier is constructed with 950 trees, an iteration
depth of 9 and a learning rate of 0.01; the AUROC obtained on the 3955 admissions of the training subset
was 0.7715(95% Confidence Interval: 0.762 - 0.786) and the AUROC obtained on the validation subset was
0.805 (95% Confidence Interval: 0.785 - 0.826).
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Figure 6.2 SGB model tuning parameters and AUROC. Each data point in the figure represents one classifier. For example, in the
lower-left plot the purple data point at (400,0.746) indicates a model built with 400 trees, a tree depth is 3 and a learning rate of
0.1, this particular classifier gives an AUC value of 0.746 in the 10-fold cross-validation on the training subset.

A second SGB model that only used a subset variables selected using the relative variable importance
method built in within the SGB. The general effect on the model of each predictor was calculated using
the relative importance, this measures are based on the number of times a variable is selected for
splitting, weighted by the squared improvement to the model as a result of each split, and averaged over
all trees[100, 111]. The most influential predictors were selected by developing a model with the
predictors that had the greatest relative importance, and that in the end presented an AUROC like that of
the complete model. 40 predictors were selected (that represent around 68% of the influence in the



model), the most important one, as expected was admission age with a relative importance around 10%;
the second most relevant predictor was total urine output during the first day of admission, although
urine output is a commonly used indicator for renal disease, it is interesting how much it affects the log-
term mortality; the relative importance of the following predictors are below 4%. The AUROC obtained
on the 3955 admissions of the training subset was 0.7713 (95% Confidence Interval: 0.766 - 0.7763) and
the AUROC obtained on the validation subset was 0.803 (95% Confidence Interval: 0.783 - 0.824).

Figure 6.3 shows the relative importance of the selected predictors with the SGB methodology for the
model developed with all the variables, and the model that only uses the selected ones; since the relative
importance of the variables are scaled so that the sum adds to 100 [100], it is clear that, in the model that
only uses the 40 SGB selected variables the relative importance of each variable increase with respect to

the model with all the variables; however, although there is a change in the relative positions of the
predictors, no particularly sharp change is observed.
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Figure 6.3 SGB relative importance of the predictors for 1-year mortality prediction models. In the left we presented the most
relevant predictors of the complete model (that sums 67%); in the right we present the relative importance of the model developed
only with selected predictors. Abbreviations: Bun: blood urea nitrogen; Max: maximum; WBC: white blood cell; Min: minimum;
SpO2: peripheral capillary oxygen saturation; PaO2/FiO2: partial pressure arterial oxygen and fraction of inspired oxygen ratio;

FiO2: fraction of inspired oxygen; Mechanical vent: mechanical ventilation; DABP: diastolic arterial blood pressure; BP: blood
pressure.
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Figure 6.4 SGB relative importance of the predictors for 1-year mortality prediction models. In the left we presented the relative
variable importance of the model developed with the LASSO selected predictors; in the right we present the relative variable
importance of the model developed union of the selected predictors. Abbreviations: Bun: blood urea nitrogen; Max: maximum;

WBC: white blood cell; Min: minimum; SpO2: peripheral capillary oxygen saturation; PaO2/FiO2: partial pressure arterial oxygen

and fraction of inspired oxygen ratio; FiO2: fraction of inspired oxygen; Mechanical vent: mechanical ventilation; DABP: diastolic
arterial blood pressure; BP: blood pressure; GCS: Glasgow coma scale.

The third SGB model was developed using only a subset of predictors obtained with the LASSO
Methodology. Unlike the methodology based on SGB variable importance, LASSO sets some of the
predictors coefficients to zero, whereby the algorithm returns a set of selected variables. In order to
obtain a subset of values truly related to the one-year mortality, we performed 100 runs with different
splits for the training and validation datasets (always 70% for training), each model was fitted with the
random training subset, thus, on each run we obtained a slightly different subset of LASSO selected
predictors. According to this, we developed the SGB model with the LASSO predictors that were selected



in more than 80% of the runs. The AUROC obtained on the 3955 admissions of the training subset was
0.7714 (95% Confidence Interval: 0.765 - 0.777) and the AUROC obtained on the validation subset was
0.806 (95% Confidence Interval: 0.785 - 0.826).

The fourth SGB model was developed using the union of the variables selected with both SGB variable
importance and LASSO methodologies. The AUROC obtained on the 3955 admissions of the training
subset was 0.7715 (95% Confidence Interval: 0.766 - 0.779) and the AUROC obtained on the validation
subset was 0.808 (95% Confidence Interval: 0.787 - 0.828).

Figure 6.4 shows the relative importance of the variables of SGB model developed with the LASSO selected
variables, and the model with the union of the selected variables with both LASSO an SGB methodologies.
It can be observed that, in contrast to the values reported in Figure 6.3, some predictors that were
selected with LASSO (Alcohol, Obesity, Renal, Gender males among others) but not with SGB variable
importance, do not significantly influence the one-year mortality prediction, being obesity and alcohol the
most extreme cases.

According to the above, the final model was developed with the intersection of the selected predictors
with both methodologies. Figure 6.5 shows the relative variable importance of the model with the
intersection of selected variables, this intersection model leads to the development of a much simpler
model that only has 17 predictors. The AUROC obtained on the 3955 admissions of the training subset
was 0.754 (95% Confidence Interval: 0.746 - 0.759) and the AUROC obtained on the validation subset was
0.791 (95% Confidence Interval: 0.769 - 0.812).
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Figure 6.5 Relative variable importance of the model with the intersection of selected variables



Calibration of the five models were evaluated using Hosmer—Lemeshow Test (with g=25); and the
parameters of all the models were fitted using a 10-fold cross validation process on a training subset;
Table 6.5 summaries the number of variables, the final parameters values and the evaluation measures
of the five models over the 1695 admissions of the validation subset.

Table 6.5 Models performance measures. * the learning rate where maintained constant for all the models in v=0.01

L=9
Complete 132 0.726 0.805 0.058 M=950
L=9
LASSO 30 0.736 0.806 0.353 M=700
L=9
SGB 40 0.736 0.803 0.081 M=800
Union 53 0.731 0.808 0.151 =7
M=950
i L=9
Intersection 17 0.721 0.791 0.212 M=800

It can be observed from Table 6.5, that SGB variable importance and LASSO methodologies allowed to
develop SGB models that preserve the same performance as the model generated with all the predictors
but with as subset of predictors, moreover, it can be seen that the 17 intersection variables are the ones
that are truly related to the one-year mortality in sepsis patients since the model developed with them
achieves a performance similar to other models. For the intersection model, observed versus predicted
of numbers of deaths were compared graphically within deciles of increasing probability of the outcome.
The graph presented in Figure 6.6 indicate that estimated and observed mortality pairs are similar and
shows that the number of outcome events is indeed increasing along the probability deciles.
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Figure 6.6 Comparison of observed versus predicted one-year mortality in the deciles of predicted mortality based on the SGB
model with the intersection variables.



To benchmark the SGB model, we adjusted three severity-of-disease scoring systems (OASIS, SAPS I, and
OASIS) and obtained their AUROC and Accuracy. The adjustment process was proposed by Le Gall et al. in
[63], and consist to modify an existing severity of disease score by adapting them for use specifically
among patients that shares a common characteristic. For instance, When the standard SAPS Il model is
applied to a patient, all of the variables are assigned points, and the resulting sum is the SAPS Il score,
which is then used as a variable in a logistic regression equation to generate the mortality probability. To
adjust a model for patients with sepsis, it is necessary to develop new logistic regression equations using
data only from the group of patients with sepsis. Such new model is a logistic regression that contains a
single variable (The particular score that are being adjusted) plus the constant term. When this process is
applied, the original score, which produced a probability of mortality for general medical population,
would be mathematically translated into an adjusted probability of mortality based only on the experience
of patients with sepsis. Le Gall et al proved that the adjusted models presented better calibration and
discrimination than traditional scores [63]. The performance of the traditional severity of disease
classification systems adjusted for the training subset and evaluated on the validation subset are
presented in Table 6.6.

Table 6.6 AUROC, accuracy and calibration for the 1-year mortality on the validation subset for three adjusted severity of disease
scoring systems and the proposed SGB models with all variables (132 predictors), and the variables from the intersection between
the SGB variable importance selected variables and the LASSO selected variables (17 predictors).

OASIS 0.595 0.632 0.031
SOFA 0.581 0.588 0.321
SAPS2 0.644 0.702 0.003
Intersection SGB 0.721 0.791 0.212
Complete SGB 0.726 0.805 0.058

6.4 Conclusions

The presented models for the one-year mortality prediction of the patients that are admitted in a ICU with
a sepsis diagnosis; shows that the use of ensemble based algorithms (SGB in this study) and the inclusion
of predictors that are not usually taken into account in the traditional severity-of-disease classification
systems (for example minimum lactate), outperform some traditional severity of disease scoring system
for long-term mortality prediction task.

The fact that the developed SGB models presented a higher accuracy and AUROC over the validation
subset ratifies that custom mortality prediction models for a specific disease presents a better
performance that traditional severity of disease scoring systems, which could lead to better management
of illness within the ICU. Although the SGB models presents a good interpretability, since they retrieve the
relative importance of the predictors, it is clear that there is a complex interdependence among different
physiological systems in response to sepsis, since the SGB models are composed of between 450 and 1150
trees; for this reason, it would be necessary to develop easy-to-use computer tools that allow these types
of models to be implemented within the ICU.



The 17 predictors of the intersection model, allow to identified features that could become prognostic
markers for the one-year mortality of the sepsis diagnosed patients within the ICU. As expected, older
patients are at greater risk in consequence the most important parameter for the outcome is the age.
Urine output is used as a marker of acute kidney injury, a disease that is associated with substantial in-
hospital mortality [112].

Minimum lactate over the first 24 hours of the ICU admission is the seventh most important variable for
the mortality prediction in this study; Lactate is currently used within the ICU as a diagnostic tool and as
a prognostic marker, since the higher the value, the greater the risk of mortality. However, if the lactate
of a patient does not reach below a threshold, it will also have a higher mortality risk. for this reason, the
minimum lactate during the first 24 hours must also be analyzed in ICUs. Mean lactate is also considered
an important predictor, which agrees with what is reported in the literature, since hyperlactatemia is
related with a poor outcome in ICU [113]. An elevated Blood urea nitrogen (BUN) is associated with
increased mortality in critically ill patients [114].



CHAPTER 7. SCORING SYSTEM FOR THE
ONE-YEAR MORTALITY RISK OF SEPSIS
PATIENTS IN INTENSIVE CARE UNITS
AND STRATIFICATION OF PATIENTS IN
RISK GROUPS

7.1 Introduction

In chapter 6 we showed that the use of machine learning techniques for the development of customized
mortality prediction models, that use only the data of a population that shares a common characteristic,
leads to better performance compared to the general population severity of disease classification
systems. In addition, we found a subset of predictors that are truly related with the long-term mortality
prediction in sepsis patients within the ICU; such subset of predictors was used to develop the study
cohort B, which is composed of 15082 hospital admissions (representing the 93% of the total sepsis
related admission of MIMIC-III), meaning that the conclusions driven from the study cohort B are more
representative that the ones obtained from the study cohort A.

In this chapter, we present the development of two customize scores for the one-year mortality risk of
the patients that are admitted in an ICU with a sepsis diagnosis. The objective of this scores is to the allow
the stratification of patients into risk groups according to their characteristics of clinical relevance,
whereby, the scores would indicate the severity of the condition of the patients.

The predictors that are included in the study cohort B could be which can be roughly grouped in two types,
categorical values and continuous numerical values. The categorical values are represented as binary data,
and in general they indicate if the patient has a particular characteristic (for instance if the patient is male,
or if the patient have hypotension). The continuous numerical variables were divided in groups with
different one-year mortality risk for this we found cut-off points (CP) for each of the variables of this type.

Two methodologies were used to find the CP of the continuous variables; the first one finds a single cutoff
point that binarized each variables in a group whit high risk and a group with low risk. The second one
finds multiple cutoff points for each variable. With each of these methodologies, we developed a score
value for each variable in the model, that was calculated as the value of the coefficients in a prediction
logistic regression model multiplied by 10 and rounding to the nearest integer. In addition, a constant was
added to each integer coefficient to eliminate any negative values. These nonnegative integers are the
point values that make up the one-year mortality prediction score for sepsis patients when summed.



Then, the one-year mortality probability was estimated using the score as the only variable in a logistic
regression model.

7.2  Methodology

In this section we present the methodology followed to generate the scores for the one-year mortality
risk. First we presented a brief description of the study cohort B. Then, we explain in detail the two
methodologies used to select the cutoff points of each score predictor, and we present the results of each
score.

7.2.1 Dataset
In order to calculate the score we obtained the following predictors from cohort B.

e Routine charted data: The maximum, minimum and mean values during the first 24 hours of the
ICU stay of the following vital signs: heart rate, systolic blood pressure, diastolic blood pressure,
mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen saturation.

e Laboratory variables: The maximum and minimum values of following laboratory variables
obtained from the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH,
creatinine, chloride, glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial
Thromboplastin Time (PTT), Prothrombin Time (PT), the international normalized ratio (INR),
sodium, Blood Urea Nitrogen and White Blood Cell Count (wbc).

e Categorical variables: admission type (elective, urgent, emergency), gender, the receipt of either
two treatments (dialysis and mechanical ventilation) and comorbidities according to the
Elixhauser Comorbidity groups (30 comorbidities).

e The predictors: admission age, the minimum Glasgow Coma Scale, and the total urinary output
over the first 24 hours.

Laboratory measurements and routine charted data were converted into 96 predictors; after that, we
used two different methodologies to select the cutoff points of each score predictor. To do that, Study
cohort B was randomly divided into two groups: a training subset with 40% of the admissions and a
validation subset of 60% of the admissions. Methodologies run over training set. Usually, a training cohort
larger than the validation cohort is used, however, after performing multiple tests with different sizes for
the training cohort, we found that a sample of 40% is sufficiently representative of our study population,
and the performance, as measured by the AUROC, does not improve substantially when larger training
subsets (for example 70% or 80%) are used. Figure 7.1, presents the mean AUROC of 100 runs with each
training subset percentage and Table 7.1table y presents the improvement obtained from increasing the
training subset.
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Figure 7.1. AUROC as function of the training subset size.



Table 7.1. Improvement obtained from increasing the training subset

10 0.7633
20 0.7803 2.3
30 0.787 0.86
40 0.7899 0.37
50 0.7907 01

60 0.7921 0.18
70 0.7935 0.18
80 0.7931 -0.05
90 0.7944 0.16

7.2.2 Binary score

This methodology allow us to obtain a cutoff point (from now CP) for each of the continuous numeric
predictor variables; it divide the dataset into two groups based on a set of values for each predictor, those
below the CP and those above; afterwards, we calculated the mortality rate of each group and assessed
the number of admissions in each group. Thus, the CP was selected taking into account the following
criteria:

e C(Criteria 1: The smallest group contains at least 30% of admissions.
e (Criteria 2: The biggest difference between the mortality rates between the groups.

In order to fulfill the criteria 1, we find the 30% and 70% quantiles in the training subset. Then, we generate
aregular sequence between those two values with a length of 1.000, each of the elements of the sequence
is a candidate cutoff point. We calculate the difference between the mortality rates of the populations
over and below the candidate CP, and selected the one that presented a greater difference (criteria 2).

Since the selection of the cutoff points is done over the training subset (6.033 admissions), it varies
according to the random split that was made of cohort B; for this reason, we repeat the process 100 times
and selected as final CP the mean of the values that presented a bigger difference each time.

To illustrate the process for the cutoff point selection, we present in detail the results for the age and the
minimum mean arterial blood pressure; since these variables represent the behavior that variables can
suffer when dichotomized.
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Figure 7.2. Distribution of the 30% quantile, 70% quantile and selected cutoff points for the age over the 100 runs.

Figure 7.2 presents the distribution of the 30% quantiles, 70% quantiles and selected cutoff points for the
age in all the 100 runs. It is clear that the selected cutoff point is more sensitive to random divisions than
the other two values; however, the average of difference of mortality rates along all the candidate CP
does not show much variation since the values change from 18.67391% to 20.66875%, Figure 7.3 presents
the average difference for the 100 runs for each candidate CP.

23-

Martality rate difference

Figure 7.3. Mortality rate difference for the age along the regular sequence between the 30% quantile and 70% quantile values.



Figure 7.4 presents the distribution of the 30% quantiles, 70% quantiles and selected cutoff points for the
minimum mean arterial blood pressure in all the 100 runs. In contrast to the age, it can be observed that
the selected cutoff point variation over all the runs is small. Figure 7.5 presents the average difference for
the mean arterial blood pressure over 100 runs for each candidate CP.
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Figure 7.4. Distribution of the 30% quantiles, 70% quantiles and selected cutoff points for the minimum Mean Arterial Blood
Pressure over the 100 runs.
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Figure 7.5. Mortality rate difference for the mean arterial blood pressure along the regular sequence between the 30% quantile
and 70% quantile values



The mortality rate vs candidate CP (Figure 7.3 and Figure 7.5) show a different behavior for the example
variables; for the age are positive which means that the population that are in risk is the one that is over
the CP; on the other hand, for the mean arterial blood pressure the differences are negatives which means
that the population at risk is the one that is below the CP. According to the CP selection criteria, we look
for the biggest difference between the mortality rates of the populations over and below the CP, thus the
selected CP is the one with the higher absolute value of the mortality rate difference.

Selected CP allows us binarized all predictors. It means, a one is assigned to each predictor if its value is
within the population with a higher mortality rate. After that, we develop a logistic regression (LR) model
using this binary data in conjunction with the data taken at the time of ICU admission, the comorbidities
and the treatments. The general form of the log-odds, without the intercept coefficient:

L= Bix1 + Baxa + -+ Bnxy (1)

In (1) coefficients B; are the parameters of the model, x; are predictors and n is the total number of
predictors.

In order to obtain point values of the scoring system, the coefficients in (1) were multiplied by 10 and a
constant was added to each integer coefficient to eliminate any negative values, then, they were rounded
to the nearest integer. After the coefficient transformation:

I'= (1081 + @)x; + (1082 + @)Xz + -+ + (108, + @)%, (2)

In (2) o is a constant added to coefficient to eliminate the negative values and is equivalent to the
smallest of the coefficients multiplied by ten. Rearranging the term, we got that:

l = (10ﬁ1x1 + 10,32)(2 + -+ 10ﬁnxn) + Q(xl + Xy + -+ xn) (3)

The transformation process change the log-odds in two ways, of which, the multiplication of 10 with each
of the coefficients 8; do not affect the performance of the model, however the term g(x; + x, + -+ + x3)
could add important variations to the log odds, and it effect increases with the number of predictors; for
this reason the score is defined as follows:

Score = (B xy + B3 xy + -+ Bhxn) — oy + 32 + -+ xp) (4)

Where the coefficients 8] are the B; coefficients multiplied by ten and rounded, the rounding of this
coefficients is done in favor of clinical operationalization and score interpretability and it does not
significantly affect the final performance.

We executed multiple runs for different training subsets (in each run we randomly selected 40% of the
study cohort B as training subset), obtaining different discrimination and calibration performance; and
since the score is based on logistic regression, the coefficients are dependent to the selected training
subset used to construct it; according to this, we present the score parameters obtained with a particular
training subset that reported a discrimination performance close to the mean of the AUROC obtained
with the all the runs and presented an adequate calibration.

The score development methodology presented above, brings back a set of cutoff point that divides the
population into two groups, the difference in the one-year mortality rate between the two groups
indicates how good such a predictor is. For this reason, different thresholds for said mortality rate
difference were evaluated; with an increase in the one-year mortality rate difference threshold, the



number of variables and the performance of the model decrease, making the score simpler but less
discriminative. Figure 7.6 presents the behavior of the performance of the model according to the one-
year mortality rate difference threshold.
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Figure 7.6. Different AUROC for One-year mortality rate difference thresholds.

The coefficients for the one-year mortality prediction score for ICU sepsis patients, the selected cutoff
points (CP), the mortality rates for the population below and above the CP and the point value for each
of the predictor variables that present a mortality rate difference greater than 5 are shown in Table 7.2.

The coefficients and mortality rates for the comorbidities, treatment and demographic variables are
presented in Table 7.3. With the coefficients presented in Table 7.2 and Table 7.3 the score for the one-
year mortality prediction of sepsis patients is calculated as follows:

Score = (B{xy + 7%z + -+ Brxy) — 138(xy + x5 + -+ + xp)

Where ﬁiT are the coefficients presented in Table 7.2 and Table 7.3, and x; are one if the patient is in the
group with higher mortality rate for each variable and zero otherwise. For instance, if the patient
admission age is greater than 73.9 it associated x will be 1, and if the patient minimum diastolic blood
pressure over the first 24 hours of ICU admission is greater than 41 mmHg it associated x will be 0.



Table 7.2. Scoring System for the One-Year Mortality Prediction of Sepsis Patients in Intensive Care Units.

Admission age 35 55 73.91037 145

Anion gap min 39 52 14 138

Anion gap max 40 51 18.8 139
creatinine min 38 53 1431111 138
creatinine max 36 50 1.39 136
hemoglobin max 51 37 10.8702 141

lactate min 40 50 1.622424 142

Partial thromboplastin time min 38 53 32.9498 141
Partial thromboplastin time max 38 50 36.71332 140
International Normalized Ratio min 38 57 1.4 138
International Normalized Ratio max 38 54 1.632727 139
Prothrombin Time min 37 55 14.95947 141
Prothrombin Time max 38 53 16.70015 135
Blood Urea Nitrogen min 35 56 29.76667 142
Blood Urea Nitrogen max 32 53 28.28081 142
Urine Output 52 36 1392.887 141

Diastolic blood pressure min 49 36 41.00909 140
Mean blood pressure min 50 37 53.7633 139
Mean blood pressure avg a7 36 78.75689 137
Temperature min 48 35 36.30914 140

The final score possible maximum number is 85 (however no patient gets the maximum score in the
dataset). The probability of one-year mortality on the validation subset was estimated using the final score
as the sole variable in a logistic regression model, model discrimination was examined and the obtained
AUROC of 0.768 (95% Confidence Interval: 0.761 - 0.778). To access the calibration of the score, Hosmer—
Lemeshow test was used and a value of 0.9 indicating that there is no evidence of poor fit.

The admissions of the validation subset were divided into ten equal size groups according to the increasing
estimated probabilities of one-year mortality given by the model, so that in the first group are those
admissions that have the lowest probabilities of dying, and in the last group are those admissions with
the highest probabilities of dying. For each group the observed and the estimated number of deaths were
calculated and compared graphically and presented in Figure 7.7.



Table 7.3. Comorbidities treatments and demographics variables for the Scoring System for the One-Year Mortality Prediction of
Sepsis Patients in Intensive Care Units

Predictor wr;;tlil;:riz;ece \Tifl:tzlr::ers;: Coefficient
Admission type: EMERGENCY 27 44 143
Gender: male 42 44 140
Congestive heart failure 38 50 141
Cardiac arrhythmias 38 53 140
Valvular disease 42 46 137
Pulmonary circulation 43 46 139
Peripheral vascular 42 a7 141
Hypertension 43 43 134
Paralysis 43 40 138
Other neurological 43 41 141
Chronic pulmonary 42 45 141
Diabetes uncomplicated 43 43 137
Diabetes complicated 43 43 136
Hypothyroidism 43 46 139
Renal failure 40 51 140
Liver disease 42 50 144
AIDS 43 45 139
Lymphoma 42 69 145
Metastatic cancer 40 82 160
Solid tumor 42 59 146
Rheumatoid arthritis 43 42 136
Coagulopathy 40 52 138
Obesity 44 32 135
Weight loss 43 48 139
Fluid electrolyte 40 46 140
Blood loss anemia 43 46 139
Deficiency anemias 43 43 136
Alcohol abuse 44 31 136
Drug abuse 44 21 134
Psychoses 44 30 134
Depression 44 35 136

Renal replacement therapy (RRT) 42 56 143
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Figure 7.7. Comparison of observed versus predicted number of deaths by groups of increasing probability of one-year mortality.

To benchmark the scoring system, the AUROC of 10 adjusted Severity of Iliness Scores on the validation
subset were calculated over 100 runs with different population partitions, the results are presented in
Figure 7.8. In order to evaluate the calibration of the score, we check how the Hosmer-Lemeshow test
performs in the said 100 repeated samples, the we calculated the proportion of p-values which are less
than 0.05. From 100 runs, the Hosmer-Lemeshow test gave a significant p-value, indicating poor fit, on
only 2% of occasions.

The AUROC analysis presented in Figure 7.8, ratifies that a the development of entirely new models, that
incorporate additional variables that enhance discrimination performance. However when analyzing in
detail the information in Table 7.2 it is clear that variables that present a high different between the one-
year mortality rates of the populations below and above the CP do no always report a higher score point;
for instance the maximum Prothrombin Time reports a difference between mortality rates of 15%, but
the score point assigned of 135 is among the smallest; on the other hand, the minimum lactate has a
lower difference between mortality rates but it associated score point is higher (142). The mentioned
above indicates that for some variables there is a more complex relation between the cutoff points and
the mortality rates, as example, one could think in the temperature, a physiological parameter that is



pathologic both above (hyperthermia) and below (hypothermia) a CP which suggest that for parameter
associate with the temperature it could be better to have more than 2 groups. In the next section we
present the multiple cutoff points score, an approach that seeks to implement the aforementioned.
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Figure 7.8. AUROC comparison for the developed score and ten scoring systems.

7.2.3 Multiple cutoff points score

The score presented in previous section dichotomizes each continues predictor, and a subset of the
population with higher risk can be found; however, it is possible that within the same variable there are
several groups with different mortalities, this approach seeks to find the cutoff points that allow the
identification of said groups and shows the improvement with respect to the binary score.

In this methodology, a multiple cutoff points were obtained for each of the continuous numeric predictor
variables. For this, we selected the unique cutoff points from the minimum and maximum values along
with the deciles that divide the range of each variable into continuous intervals with equal probabilities.

Then we computed the one-year mortality rate of each of the groups formed by the unique cutoff points
and use agglomerative hierarchical cluster analysis (HCA) with a Euclidian measure of dissimilarity
between each one-year mortality group rate.

After that, we divide each of the continuous numeric predictors in the training subset into discrete values
according to the groups obtained with the HCA, and calculated the one-year mortality rate for the new
groups and for each variables we found the group with the lowest mortality rate and set it as references.
The remaining groups were used along with conjunction with the data taken at the time of ICU admission,
the comorbidities and the treatment information to generate a score with the same methodology
presented in the previous section.

To illustrate the process for the cutoff point finding, we present in detail the results for the age, the
minimum mean arterial blood pressure and the glucose minimum.



The minimum, maximum and the deciles that divide the range of the admission age are presented in Table
7.4. These values divides the population according to the age in 10 different groups, with different
mortality rates, which are shown in Figure 7.9 It can be observed that as expected, in general, the one-
year mortality rate increases with the admission age of the patients; however, there are two details that
indicate that there is no need for all these cutoff points: first the last group (patients between 86.6 years
old and 90 years old) shows a lower mortality rate than the ninth group (patients from 81.8 years old to
86.6 years old); and second, the third and fourth groups present a similar one-year mortality rate,
indicating that patients older than 52.3 years old and younger than 63.3 years old have the same risk.

Table 7.4. Candidate cutoff points and reference values for the admission age.

Viinimum 10 20 30 40 50 0% 80 =To} Maximun

17.0187 44.20862 52.34046 58.24704 63.33326 68.1763 73.28082 77.76584 81.87388 86.61214 90
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Figure 7.9. One-year mortality rate by groups according to the admission age.

According to the above, an agglomerative hierarchical cluster analysis with a Euclidian measure of
dissimilarity between the groups was used to select the final cutoff points for the admission age. Figure
7.10 presents the dendogram of the process. It can be observed that cutting the dendogram at the height
of two will result in five groups (presented in Figure 7.11) from which, the first group will be considered
the reference, meaning that they patients in this group are considered to have the smallest risk.
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Figure 7.11. One-year mortality rate for the final groups of the admission age.

The minimum, maximum and the deciles that divide the range of the minimum mean blood pressure are
presented in Table 7.5. This values divides the population according to the minimum mean blood pressure
in 10 different groups, with different mortality rates that decrease when the values of minimum mean
blood pressure increase (Figure 7.12 A). After the agglomerative hierarchical cluster analysis (Figure 7.12



C), we found out four groups with the one-year mortality rates presented in Figure 7.12 B. It can be
observed that for the minimum mean blood pressure the reference group is the last one.

Table 7.5. Candidate cutoff points and reference values for the minimum mean blood pressure.

Candidate Cutoff points

Minimum 10 20% 30% 40% 50% 60 70 807 90% Maximum
0.79 38.6667 45,333 49 £ 25 57 60 64 70 119
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Figure 7.12. Cutoff selection process for the minimum mean arterial blood pressure.

The minimum, maximum and the deciles that divide the range of the minimum glucosee are presented in

Table 7.6. These values divides the population according to the minimum mean blood pressure in 10
different groups (Figure 7.13 A). After the agglomerative hierarchical cluster analysis (Figure 7.13 C), we



found out four groups with the one-year mortality rates presented in Figure 7.13 B. It can be observed
that for the minimum glucose the reference group is the third one.

Table 7.6. Candidate cutoff points and reference values for the minimum glucose.

Candidate Cutoff points

Minimum 10% 20 30 40 50 60 709 80 90% Maximum
0.85 67 80 88 96 102 109 118 129 147 410
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Figure 7.13. Cutoff selection process for the minimum glucose.

The coefficients for the one-year mortality prediction score for ICU sepsis patients, the selected cutoff
points (CP) for each predictor, the mortality rates among the groups and the point value for each of the
predictor variables are shown in Table 7.7. The coefficients and mortality rates for the comorbidities,
treatment and demographic variables are presented in Table 7.8. The score for the one-year mortality
prediction of sepsis patients is calculated as follows:



Table 7.7. One-year mortality prediction score for sepsis patients within the ICU. Each block represents one of the predictors, the
columns of such block represent the number of groups for a particular predictor; the first row of each block presents the name of
the predictor, the second row indicates the ranges that defines each group, the third row shows the mortality rate of each group,
and the fourth row present the score point values BT. Each of the block have a column with a score point value of 0, which is the

Score = (BT xy + BIxy + =+ BExy) — 1350 + X5 + ++ + x)

reference group for the particular predictor.

Admission age

<52.34 >=52.3 and <63.3 | >=63.3 and <73.2 [ >=73.2 and <81.8 >=81.8
27 38 41 51 58
0 139 142 146 148
pH minimum
<7.23 >=7.23 and <7.32 [ >=7.32 and <7.38 >=7.38
53 43 38 43
139 137 0 137
pH maximum
<7.42 >=7.42 and <7.47 >=7.47
45 40 45
135 0 136
Anion gap minimum
<11 >=11
37 45
0 137
Anion gap maximum
<13 >=13
37 43
0 135
Bicarbonate minimum
<20 >=20 and <23 >=23 and <26 >=26
48 36 39 45
138 0 138 139
Bicarbonate maximum
<23 >=23 and <25 >=25 and <27 >=27
47 39 39 43
137 136 0 135
Bilirubin minimum
<0.6 >=0.6 and <1 >=1
42 40 52
134 0 135
Bilirubin maximum
<0.5 >=0.5 and <0.8 >=0.8
44 39 49
138 0 136
Creatinine minimum
<0.8 >=0.8
36 47
0 133




Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU.

>=0.8 and <
<0.8 12 >=1.2
36 35 47
136 0 135
>=98 and < >=102 and <
<98 102 105 >=105
48 42 39 42
138 136 0 136
>=109 and <
<109 113 >=113
45 37 43
140 0 136
<337 >=337
44 37
134 0
<393 >=39.3
44 37
134 0
>=85 and < >=10 and <
<8.5 10 113 >=11.3
50 45 39 34
141 138 136 0
>=10.8 and < | >=11.8 and <
<10.8 118 13.1 >=13.1
49 43 39 34
142 140 137 0
>=1.2 and <
<1.2 17 >=1.7
36 40 52
0 138 140




Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU.

Lactate maximum

<12 >=1.2
35 45
0 135
Platelet minimum
<104 >=104 and <183 | >=183 and <281 >=281
53 40 40 42
138 134 0 135
Platelet maximum
<235 >= 235 and <302 >=302
44 39 42
136 0 135
Potassium minimum
<3.6 >=3.6 and <4 >=4
41 38 49
137 0 136
Potassium maximum
<4 >=4 and <4.4 >=4.4 and <5.4 >=5.4
39 38 44 50
137 0 137 138
Partial Thromboplastin Time (PTT) minimum
<27 >=27 and <33.1 >=33.1
35 40 55
0 135 139
Partial Thromboplastin Time (PTT) maximum
@ 278 >=27.9 and <373 >=37.3
34 39 51
0 135 136
International Normalized Ratio (INR) minimum
<1 >=1 and <1.3 >=1.3 and < 1.6 >=1.6
39 36 45 57
136 0 135 137
International Normalized Ratio (INR) maximum
<12 >=1.2 and <1.5 >=1.5
34 39 50
0 137 138
Prothrombin Time (PT) minimum
<128 >=12.8 and <13.7 [ >=13.7 and <15.2 >=15.2
36 36 41 54
0 134 136 137
Prothrombin Time (PT) maximum
<134 >=13.4
34 45
0 134
Sodium minimum
<136 >=136 and <139 >=139
43 38 45
135 0 138
Sodium maximum
<140 >=140 and < 144 >=144
44 39 47
136 0 137




Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU.

Blood Urea Nitrogen minimum

<16 >=16 and <28 | >=28 and <44 >=44
29 39 53 59
0 137 140 142
Blood Urea Nitrogen maximum
<16 >=16 and <25 | >=25 and <36 >=36
28 32 43 55
0 135 136 137
White blood cell count minimum
<84 >=<8'1‘;§nd >=12.5
44 40 45
136 0 136
White blood cell count maximum
>=10.
<104 1013';“’ >=13.5
44 38 43
137 0 136
Urine output
>= 1] n >=1805.2 an
<1035 < 2;35.32 ‘ f giws i
57 44 34 29
142 139 137 0
Heart rate minimum
<72 = 7282”" < >= 86
43 41 44
135 0 135
Heart rate maximum
>= >=
<96 <9§0;nd iofzgnd >= 128
42 38 43 49
134 0 137 138
Heart rate mean
>= 83, >= 91,
<8352 iiis " <910828.42nd >= 10245
42 41 43 46
137 0 135 136
Systolic blood pressure minimum
>=78.6 and
<78.6 <100 >=100
53 41 35
138 137 0
Systolic blood pressure
maximum
<161 >=161
44 39
136 0
Systolic blood pressure mean
<109.7 > i(lgs;;;"d >=130.3
50 39 37
134 133 0




Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU.

Diastolic blood pressure minimum
<35 >=35 and <43 >=43 and <50 >=50
53 44 38 32
141 139 138 0
Diastolic blood pressure maximum
< 87 >=87 and <98 >=98
45 39 a1
135 0 134
Diastolic blood pressure mean
<50.5 >=50.5and <63.5 >=63.5
55 42 36
134 133 0
Mean blood pressure minimum
<49 >=49 and <57 >=57 and <60 >= 60
53 43 41 35
134 133 132 0
Mean blood pressure maximum
<102 >=102 and <120 >=120
45 40 40
136 0 136
Mean blood pressure mean
< 84.61 >= 84,61
44 35
135 0
Respiratory rate minimum
<10 >=10 and <12 >=14
44 39 44
136 0 136
Respiratory rate maximum
<25 >=25 and <30 >=30 and <34
38 41 46
0 135 136
Respiratory rate mean
>= . < >= . <
<1631 16121‘ ;"d 192;'_ ;"d >=23.27
351 38 45 51
136 0 137 139




Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU.

< 36.67 >=36.67
46 32
137 0
< 38.39 >=38.39
45 34
136 0
<3631 >=36.31and < >=36.67 and < e
: 36.67 37.18 B
58 47 40 33
143 140 138 0
<88 >=88 and <91 >=91 and <93 >=93 and <95 >=95
52 46 40 38 40
139 138 137 0 137
<98.93 >=98.93
44 42
135 0
>= <
<88 >=88 and < 102 102 and >=118
118
48 42 38 42
137 136 0 135
<125 >=125
41 44
0 138
>=117.26 and < | >=133.8 and <
< . >= )
117.26 133.8 155.5 155.5
45 40 42 44
135 0 136 137




Table 7.8. Comorbidities treatments and demographics variables for the Scoring System for the One-Year Mortality Prediction of
Sepsis Patients in ICU.

Admission type: EMERGENCY 32 43 141
Gender: Male 42 44 138
Congestive heart failure 38 51 138
Cardiac arrhythmias 39 51 137
Valvular disease 42 45 134
Pulmonary circulation 43 46 136
Peripheral vascular 42 a7 138
Hypertension 45 41 132
Paralysis 43 35 135

Other neurological 43 42 139
Chronic pulmonary 42 46 136
Diabetes uncomplicated 43 43 135
Diabetes complicated 43 41 134
Hypothyroidism 42 47 136
Renal failure 40 51 137

Liver disease 41 54 142

AIDS 43 39 137
Lymphoma 43 56 141
Metastatic cancer 40 80 159
Solid tumor 42 58 144
Rheumatoid arthritis 43 39 135
Coagulopathy 41 49 135
Obesity 44 31 132

Weight loss 43 48 135

Fluid electrolyte 39 47 137
Blood loss anemia 43 51 137
Deficiency anemias 44 41 133
Alcohol abuse 44 35 134
Drug abuse 44 23 133
Psychoses 44 27 132
Depression a4 36 134
Mechanical ventilation 42 44 139
Renal replacement therapy 42 57 138

The final score possible maximum number is 145 (however no patient gets the maximum score in the
dataset). The probability of one-year mortality on the validation subset was estimated using the final score
as the sole variable in a logistic regression model, model discrimination was examined and the obtained
AUROC was 0.785 (95% Confidence Interval: 0.783 - 0.794). To access the calibration of the score,
Hosmer—Lemeshow test was used and a value of 0.6 indicating that there is no evidence of poor fit.



The admissions of the validation subset were divided into ten equal size groups according to the increasing
estimated probabilities of one-year mortality given by the model, so that in the first group are those
admissions that have the lowest probabilities of dying, and in the last group are those admissions with
the highest probabilities of dying. For each group the observed and the estimated number of deaths were
calculated and compared graphically and presented in Figure 7.14.
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Figure 7.14. Comparison of observed versus predicted number of deaths by groups of increasing probability of one-year mortality.

Some variables, like the temperature or the glucose, have a non-linear behavior with respect to mortality,
this approach can detect that kind of behavior and generate multiple CP that allow to interpret the
condition of each patient more precisely, in order to prove this, we compared the AUROC the score
generated with binary cutoff points and the AUROC of the score generated with multiple cutoff points of
over 100 runs, the results are presented in Figure 7.15. In order to evaluate the calibration of the score,
we check how the Hosmer-Lemeshow test performs in the said 100 repeated samples, the we calculated
the proportion of p-values which are less than 0.05. From 100 runs, the Hosmer-Lemeshow test gave a
significant p-value, indicating poor fit, on only 4% of occasions.
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Figure 7.15. AUROC comparison between the score generated with binary cutoff points and the score generated with multiple
cutoff point.

7.3 Conclusions

We accessed two severity-of-illness scoring system specifically for patients with sepsis. The scores utilize
6.033 admissions for its development and 9.049 for its validation. The binary cutoff points score contains
52 variables and the multiple cutoff points scores contains 92 variables.

Both scores accurately estimated the probability of one-year mortality in sepsis diagnosed patients within
the ICU and are well calibrated. AUROC analysis shows that the presented scores outperforms other
scoring systems; even more, the predictive capacity of the score is better, in this study, than the SOFA,
that is the scoring systems used for the most recent sepsis and septic shock consensus [17, 18], and the
Sepsis Severity Score (SSS), that is an internationally derived scoring system specifically for patients with
severe sepsis and septic shock.

The strengths of these scores are that they performed well with respect to both discrimination and
calibration. The calibration is especially important as data were collected from a database that spams over
10 years and we use four different sepsis criteria to retrospectively identify the admissions, including the
most recent one. The scores are composed of 52 and 92 variables. The number of variables is more than



traditional scores like SAPSII (20 variables) and SSS (36 variables) but considerably less than most recent
approaches like APACHE IV (142 variables).

The objective of this scores is to early alert of a worse prognostic and to stratify patients according to their
risk that can be done according to the Table 7.9. One-year mortality rate according to the developed scores. As
expected the multiple CP score presented better discrimination and it use will allow a more accurate
interpretation of the condition of each patient, however the binary CP is more easy to implement and can
be used for a quick interpretation of a patient's condition.

Table 7.9. One-year mortality rate according to the developed scores.

10% <=9
25% >9 and <=21
50% >21 and <=32
75% >32 and <=60
80% >60
10% <=38
25% >38 and <=52
50% >52 and <=64
75% >64 and <=90
90% >90




PART 4: PERSONALIZED MODELS

In this part of the thesis we explore the idea that clinical outcome can be personalized and become more
precise. Chapter 8 present de development of personalized logistic regression models for this we identify
and analyze past patients who have admissions similar to a new patient whose outcome is to be predicted.
In chapter 8 we also present an exhaustive evaluation of proposed patient similarity metrics, and
concluded that with the correct among of similar patients, determined by a well selected similarity metric,
the predictive performance can be improved. Chapter 9 presents the development of personalized
stochastic gradient boosting models, that uses the patient similarity metric and the number of patients
that proved to perform better in chapter 8. Chapter 10 presents the development of a graph-based
regularized multilayer neural network, which is also based on the best performing similarity metric.
Chapter 11 present the development of a software based on the characteristics that most contributed to
the discrimination of the long-term mortality of patients with sepsis within the ICU.



CHAPTER 8. ONE-YEAR MORTALITY
PREDICTION IN PATIENTS ADMITTED TO
AN INTENSIVE CARE UNIT WITH
DIAGNOSIS OF SEPSIS DRIVEN BY
ELECTRONIC MEDICAL DATA AND
POPULATION SIMILARITIES

8.1 Introduction

In previous chapters we presented some Severity of lliness Scoring Systems, which are indicators used in
the medical practice of an ICU that seek to synthesize information from various physiological and
demographic data into a single number that represents the severity of the iliness of a patient [2—6]. These
indicators are developed from statistical analysis of data collected for a large number of patients; This is
the case of the systems for severity of disease classification as SAPS and OASIS, among others. In general,
this number increases mortality risk thereof. These classification systems are used to determine the risk
in population studies conducted in ICU, and provide a method for benchmarking between intensive care
units of different hospitals.

Traditional ICU prediction models are based on the analysis of large populations, and often provide
statistically rigorous results for an average patient but are also expensive, time-consuming, and prone to
selection bias; moreover, traditionally approaches to ICU outcome prognostication has relied on static
models generated from analyzing large, heterogeneous, multi-center patient datasets, such one-size-fits-
all approaches perform well for the average patient, but tend to present problems when the
characteristics of the patients move away from the average since these indicators lack the precision
required for use at the individual level, and they yielded widely dissimilar performances when applied to
different groups of patients [62, 115, 116].

In order to mitigate the problems associated with traditional ICU mortality prediction scores, efforts have
been made to generate mortality prediction models that use data from patients who share the same
characteristic (for example, the same diagnosis or service type) [1, 2, 25, 26]. In the case of sepsis, as
mentioned in chapter 2, the performance of mortality prediction systems in patients with suspected
severe sepsis and septic shock have been evaluated in the ICU [62], customized versions for severe sepsis
and septic shock of in-hospital mortality classification systems have also been developed [62, 63], and
even particular scores for the prediction of mortality in patients with severe sepsis and septic shock have
been created [64, 65]. In the hospital in general, important studies have been carried out in which
exclusive models were developed for the prediction of mortality in patients with sepsis [66—68], for this
studies the cohort was not composed exclusively of ICU patients, and although some of the patients



received ICU care, the selection criteria are fundamentally different from those of the other studies in
which the patients were evaluated for sepsis at the time of admission to the ICU. Although this works
report better performance than traditionally severity of disease scores, they focus on the short term
mortality prediction (7-day mortality and in-hospital mortality), and the use of in-hospital mortality as an
end point for clinical studies are not enough to understand the effect of sepsis on mortality and quality of
life [56, 59, 89, 91].

The specific models created according to groups of patients that shares a common sepsis diagnostic have
proved to outperform adjusted scoring systems; moreover the models presented in chapter six and seven,
have a better predictive capacity with respect to both traditional scoring systems and models created
exclusively for patients with sepsis, such as the Severe Sepsis Mortality Prediction Score (SSS) [66].
Besides, even though the SSS scoring system is a severity-of-illness scoring system created specifically for
severe sepsis patients it includes for its development both patients with and without ICU stay.

Itis clear then, that the presented sepsis mortality prediction models and the ones developed in chapters
6 and 7, continue to be population-based and therefore they provide “the average best choice” for sepsis
patients. For this reason, in this chapter we focus on a developing idea in the field of mortality prediction:
personalized predictive modeling based on patient similarity. The goal of this approach is to identify
patients who are similar to an index patient and derive insights from the data of similar patients to provide
personalized predictions. This approach has been widely used for personalized predictions in other fields,
including music, movies and e-commerce, however, there are still very few studies that focus on
personalized prediction models based on health data prediction.

In a 2017 scoping review, Sharafoddini et al. [117] present the state of techniques in the field of patient
similarity in prediction models based on health data. Authors concludes that patient status prediction
models based on patient similarity and health data offer exciting potential for personalizing and improving
health care, that this field could lead to better patient outcomes and that the interest in patient similarity-
based predictive modeling for diagnosis and prognosis has been growing. In contrast, the review includes
only 22 articles from 1339 papers that were screened. The selected articles focus on prediction in the
health domain, devise a model for prediction, embed explicit patient similarity analytics, and utilize health
data for training their model. The dominant focused application areas of the 22 studies reviewed by
Sharafoddini et al. are cardiovascular disease (7 studies), diabetes (4 studies), cancer (3 studies) and liver
disease (3 studies). The main evaluated outcomes of reviewed articles were diagnosis (9 studies), episode
occurrence (4 studies) therapy recommendation (3 studies).

Concretely, in the field of personalized predictive modeling for mortality prediction there was only one
reported article. Lee et Al. [2] deployed a cosine-similarity-based patient similarity metric to identify
patients that are most similar to an index patient and subsequently custom-build a 30-day mortality
prediction model which outperformed the results obtained with models fitted with all the data and
traditional severity of disease scores [2]. In their experiments they define 5000 as the minimum number
of similar patients for logistic regression to ensure sufficient variability in categorical predictors within
training data (these minimum numbers of similar patients could be different for other datasets and
predictors) and the best performance (highest AUROC) were achieved with logistic regression when 5000
or 6000 most similar patients were used for training the personalized model. One of the main conclusions
of this work is that using a subset of similar patients rather than a larger, heterogeneous population as
training data improves mortality prediction performance at the patient level. In this study, predictors



equally contribute to the patient similarity metric, the patient cohort is a representation of patients with
a wide variety of diagnoses and conditions and a personalized model is fitted for each index admission.

According to the above, in this chapter we present the developing of personalized models that predicts
the one-year outcome of sepsis diagnosed patients based on population similarities, moreover, we want
to analyze the impact and relevance of the patient similarity metrics when patients are related by a
common characteristic (a sepsis diagnosis) and a challenging outcome is evaluated (one-year mortality).

8.2 Methodology

For this study we used Study Cohort B, which mean we used the four criteria to retrospectively identify
patients with sepsis within the MIMIC-1Il database, and the following predictors were included:

e Vital signs : The maximum, minimum and mean values of the following vital signs were extracted
during the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic blood
pressure, mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen
saturation.

e |aboratory variables : The maximum and minimum values of following laboratory variables were
extracted from the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH,
creatinine, chloride, glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial
Thromboplastin Time (PTT), Prothrombin Time (PT), the international normalized ratio (INR),
sodium, Blood Urea Nitrogen and White Blood Cell Count (wbc).

e (Categorical variables: The following categorical variables were extracted: admission type
(elective, urgent, emergency), gender, the receipt of either two treatments (dialysis and
mechanical ventilation) and comorbidities according to the Elixhauser Comorbidity groups (30
comorbidities).

e Other predictors: The following predictors were also extracted: admission age, the minimum
Glasgow Coma Scale, and the total urinary output over the first 24 hours.

Our objective is to use patient similarity to identify a precision cohort for an index admission, which is
used to train a personalized model. To do that, we randomly divided the study cohort admissions in a
training group with 90% of the admissions and a validation group with the remaining 10%. Each of the
admissions in the validation group will be considered as an index admission and its particular precision
cohort will be formed by the admissions of the training group that are more similar to said index
admission. For each training group, we evaluate five different patient similarity measure in order to select
those which the best performance with respect to one-year mortality prediction model.

Each of the admissions of the validation group played the role of the index admissions for which the
personalized models were generated. Figure 8.1 depicts the steps executed for processing each admission
from the validation group:

1) All pairwise Similarity measures (with five approaches) between the index admission and every
admission in the training data were calculated.

2) The calculated similarity values were sorted in ascending order.

3) A precision cohort was created with the data of the n most similar admissions. The number of
most similar admission was varied from 1.000, to 13.000 (there are 13.574 admissions in the
complete training group



4) Each precision cohort was used to train a logistic regression model for the index admission
group.).
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Figure 8.1. Overview of the pipeline of the developed model. In Step 1, The index admission is represented by the yellow point; the
training admissions are represented by the points labeled A0 to A9; Thickness of the arcs between index-admission node and

training- group nodes establish the degree of similarity pairwise. In Step 2 and Step 3, the xlj represent the predictors of each

linked training admission, and the yJ represents the one-year mortality outcome. In Step 4, the blue circles represent the
coefficients for the personalized model.

Itis clear that the good performance of this methodology lies in an adequate construction of the precision
cohort. For this it is desirable that each index patient has a large number of patients with which to
compare (i.e. the training subset to be large), for this reason, we decided to use for our study a training
subset formed with 90% of the total admissions of the study B cohort and a test subset with the remaining
10%.

8.2.1 Interaction between admissions
The key aspect of the construction of the precision cohort is the modeling of the interaction between
admissions, thus five types of similarity measures were evaluated:

8.2.1.1. Cosine similarity (CS)

Each admission was represented as an Euclidean vector in the multi-dimensional feature space defined
by the predictor variables, for this, each continuous predictor was standardized. The similarity between
two admissions was defined as follows:

YiL14iB;
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Where A; and B; are the components of the vectors of two different admissions, and n is the number of
predictors (the extracted clinical and administrative variables). This is equivalent to the similarity used by
Lee et al.in [2].

Similarity.q,s =

8.2.1.2. Equally Contribution Similarity (ECS)

Since one of the major challenges for population-based studies is comorbidity, and the separation of
patients based on demographics and site of care have proved to improve the performance of models
[117], we add a similarity term that use a vector composed only by categorical data (comorbidities,
treatments, gender and age discretized in age groups) to the CS:
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Where A; and B; are components of the vectors of two different admissions, n is the number of predictors
and p is the number of categorical predictors. The inclusion of such a term achieves that only the
admissions that share a common characteristic are connected, moreover, the term reduces or increase

Similarity,q, =

the similarity between two patients insofar as they have less or more in common.

8.2.1.3. Weighted Contribution Similarity (WCS)

In ECS all the categorical data equally contribute to the similarity, however, it is clear that different
conditions carry different mortality risk; for this reason, a weighted version of the previous approach was
also evaluated. Three different set of weights were assessed for the weighted contribution similarity.
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Elixhauser Comorbidity Measures

The Elixhauser comorbidity system is a method of categorizing comorbidities of patients based on the
International Classification of Diseases (ICD) diagnosis codes found in administrative data, it is composed
of 30 comorbidity categories, each of which is dichotomous. Studies have found the Elixhauser
comorbidity classification system to be significantly associated with various outcomes including in-
hospital mortality [118, 119] and post discharge all-cause mortality [120, 121].

Table 8.1. Elixhauser comorbidity groups and their score association with death in hospital.

Congestive heart failure 7 AIDS 0
Cardiac arrhythmias 5 Lymphoma 9
Valvular disease -1 Metastatic cancer 12
Pulmonary circulation 4 Solid tumor 4
Peripheral vascular 2 Rheumatoid arthritis 0
Hypertension 0 Coagulopathy 3
Paralysis 7 Obesity -4

Other neurological 6 Weight loss 6
Chronic pulmonary 3 Fluid electrolyte 5
Diabetes uncomplicated 0 Blood loss anemia -2
Diabetes complicated 0 Deficiency anemias -2
Hypothyroidism 0 Alcohol abuse 0
Renal failure 5 Drug abuse -7

Liver disease 11 Psychoses 0
Peptic ulcer 0 Depression -3




In 2009 van Walraven et al. [87] presented a point system for hospital mortality using the Elixhauser
comorbidity measures that summarizes all 30 Elixhauser comorbidity groups as a single number to be
used for predicting in-hospital mortality. The study included 34.5795 adult admissions between 1996 and
2008 and prove that the Elixhauser comorbidity system can be condensed to a single numeric score that
summarizes disease burden and is adequately discriminative for death in hospital. Table 8.1 present the
score developed by van Walraven et al. The reported points were used as weights (6;) in the weighted
contribution similarity metric, the score points that indicate negative association with in-hospital
mortality were set as zero, Table 8.1 presents the van Walraven weighted summary score based on the
30 comorbidities from the Elixhauser comorbidity system.

Severe Sepsis Mortality Prediction Score for Use with Administrative Data

In 2016 Ford et al. [66] developed and validated a severe sepsis mortality prediction score using solely
administrative data. The score was developed using 563155 admissions based on three criteria for severe
sepsis cohort identification (Explicit sepsis, Angus criteria and Martin Criteria). The Sepsis Severity Score
(SSS) presented an excellent discrimination for in hospital mortality. Table 8.2 present de variables of the
SSS used in the weighted contribution similarity measure.

Table 8.2. Variables of the Sepsis Severity Score used in the weighted contribution similarity measure.

Age < 40 reference 0 Diabetes complicated 4
Age>= 40 and <50 8 Hypothyroidism 4
Age>= 50 and <60 10 Renal failure 6
Age>= 60 and <70 12 Liver disease 13
Age>= 70 and <80 15 Peptic ulcer 0
Age>= 80 and <90 18 AIDS 0
Age>=90 23 Lymphoma 11
Gender: Female 6 Metastatic cancer 15
RenaIT:e;I:;vement 10 Solid tumor 10
Mechanical ventilation 23 Rheumatoid arthritis 0
Congestive heart failure 5 Coagulopathy 0
Cardiac arrhythmias 0 Obesity 2
Valvular disease 0 Weight loss 3
Pulmonary circulation 6 Fluid electrolyte 0
Peripheral vascular 7 Blood loss anemia 1
Hypertension 3 Deficiency anemias 1
Paralysis 3 Alcohol abuse 0

Other neurological 4 Drug abuse 1
Chronic pulmonary 4 Psychoses 1
Diabetes uncomplicated 4 Depression 3




Scoring System for the One-Year Mortality Prediction of Sepsis Patients in Intensive Care Units

In the previous chapter we presented the development of a scoring system for the one-year mortality
prediction of sepsis patients in the ICU. The developed score uses the data of 15.082 admissions identified
with four sepsis criteria (Explicit sepsis, Angus criteria, Martin Criteria and Sepsis-3) and it outperforms
traditional severity of disease scoring systems and even outperform the SSS for the one-year mortality
prediction. From the multiple cutoff points score we get the weights that are presented in Table 8.3; for
this we subtract 131 to each of the scoring points so the smallest weight was one.

Table 8.3. Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year
Mortality Prediction of Sepsis Patients in ICU.

Variable Weights(0) Variable Neights(0
Admission type: EMERGENCY 10 Lymphoma 10
Gender: Male 7 Metastatic cancer 28
Congestive heart failure 7 Solid tumor 13
Cardiac arrhythmias 6 Rheumatoid arthritis 4
Valvular disease 3 Coagulopathy 4
Pulmonary circulation 5 Obesity 1
Peripheral vascular 7 Weight loss 4
Hypertension 1 Fluid electrolyte 6
Paralysis 4 Blood loss anemia 6
Other neurological 8 Deficiency anemias 2
Chronic pulmonary 5 Alcohol abuse 3
Diabetes uncomplicated 4 Drug abuse 2
Diabetes complicated 3 Psychoses 1
Hypothyroidism 5 Depression 3
Renal failure 6 Mechanical ventilation 8
Liver disease 11 Renal replacement therapy 7

AIDS 6

8.2.2 Effect of the different similarity measures

We base the studies presented in this chapter on the assumption that, analyzing only similar patients
leads to better outcome prediction performance than analyzing all available patients. However, we do not
have a ground truth about the similarity between patients, accordingly we evaluate the quality of the
proposed patient similarity measures for its ability to generate precision cohorts that lead to the
development of models with better predictive capacity, measured by the AUROC; Thus, in this section we
present the intuition behind the proposed patient similarity measures but we are only going to
determined which of them is the best in future sections in which the performance of the models
generated from these metrics is evaluated.

The patient similarity measures yield values between zero (indicating very dissimilar patients) and one
(indicating identical patients). When the cosine similarity is used in our dataset, each pair of admissions
will have a non-zero number that relates them. In the case of the Equally Contribution Graph and the



Weighted Contribution Similarity each index admission will only be related to those admissions with which
it has something in common; for instance, in the Table 8.4 we present the adjacency matrix constructed
by using the cosine similarity between an index admission a five training admissions, it is clear that the
most similar admission to the index is Adm B, followed by Adm D and the less similar admission is Adm A.

Table 8.4. Cosine similarity example for an index admission.

Index Adm A Adm B Adm C AdmD Adm E
Index 1 0.018 0.252 0.173 0.18 0.023
Adm A 0.018 1 0.13 0.09 0.249 0.135
Adm B 0.252 0.13 1 0.096 0.231 0.244
Adm C 0.173 0.09 0.096 1 0.197 0.311
Adm D 0.18 0.249 0.231 0.197 1 0.403
AdmE 0.023 0.135 0.244 0.311 0.403 1

However, when we analyze the comorbidities, treatments and demographic data, reported in Table 8.5,
we find that:

e The index admission and the Adm B only shares the admission type. In similar way, the index
admission and the Adm E only shares the admission type.

e Theindex admission and the Adm D shares hypertension.

e Theindex admission and the Adm A only have a similar age in common.

e By contrast, the index admission and the Adm C present a similar age, shares the admission type
and have seven comorbidities in common: congestive heart failure, cardiac arrhythmias,
hypertension, renal failure, liver disease, metastatic cancer and fluid electrolyte.

Table 8.5. Comorbidities, treatments and demographic data of the example admissions. The table only presents the variables in
which any of the admissions presents a 1.

Variable Index Adm A Adm B Adm C Adm D Adm E
Admission type: EMERGENCY 0 1 1 0 1
Congestive heart failure 1 0 0 1 0 0
Cardiac arrhythmias 1 0 0 1 0 0
Pulmonary circulation 0 0 0 1 0 0
Peripheral vascular 0 1 0 0 0 0
Hypertension 1 0 0 1 1 0
Chronic pulmonary 0 0 0 1 0 0
Diabetes uncomplicated 1 0 0 0 0 0
Diabetes complicated 0 0 0 1 0 0
Renal failure 1 0 0 1 0 0
Liver disease 1 0 0 1 0 0
Metastatic cancer 1 0 0 1 0 0
Coagulopathy 1 0 0 0 0 0
Fluid electrolyte 1 0 0 1 0 0
Deficiency anemias 0 0 0 1 0 0
Alcohol abuse 0 0 0 1 0 0
Drug abuse 0 0 0 0 0 1
Admission age 73.9351 78.9681 24,7912 73.9131 66.0967 21.5041




With this information, we use the second approach - the equally contribution similarity — As result, we
could construct a different adjacency matrix, presented in Table 8.6 In this case, as expected, the most
similar admission is Adm C.

Table 8.6. Equally contribution similarity example for an index admission.

Index Adm A Adm B Adm C Adm D Adm E
Index 1 0.005 0.084 0.129 0.052 0.006
Adm A 0.005 1 0.037 0.023 0.124 0.061
Adm B 0.084 0.037 1 0.029 0.067 0.189
Adm C 0.129 0.023 0.029 1 0.051 0.072
Adm D 0.052 0.124 0.067 0.051 1 0.18
Adm E 0.006 0.061 0.189 0.072 0.18 1

It can also be interpreted from Table 8.4 and Table 8.6 that the index admission and Adm B presented a
similar ICU stay (which means that the laboratory measurements and vital signs presented a similar
behavior) but theirs similarity drops when the ECS is applied since they only have the admission type in
common; it can also be seen, that the similarities of Adm A and Adm E (that presented a low cosine
similarity with the index admission) went to a smaller value.

Index admission and Adm C are expected to remain the most similar when the weighted contribution
similarities (WCS) are applied, but the similarity value that represents the relation between the index
admission and the other ones should change.

On the other hand, when the Severe Sepsis Mortality Prediction Score (SSS) is used to weight the WCS,
the similarity value of Adm B and Adm E are zero because this scoring system do not consider the
admission type. Table 8.7 presents the WCS matrix with the SSS weights.

Table 8.7 Weighted contribution similarity example for an index admission with Severe Sepsis Mortality Prediction Score (SSS)
weights.

Index Adm A Adm B Adm C Adm D Adm E
Index 1 0.013 0 0.147 0.003 0
Adm A 0.013 1 0 0.032 0.166 0.094
Adm B 0 0 1 0 0 0.01
Adm C 0.147 0.032 0 1 0.003 0
Adm D 0.003 0.166 0 0.003 1 0.344
Adm E 0 0.094 0.01 0 0.344 1

When the Elixhauser Comorbidity Measures (ECM) is used to weight the WCS, the similarity value of Adm
A, Adm B, Adm D and Adm E are zero because this weight system do not consider the admission type nor
the admission age and the hypertension weight is zero. Since the ECM weight system is the one with fewer
variables it also generates the sparest matrix of the evaluated WCS. Table 8.8 presents the WCS matrix
with the ECM weights.



Table 8.8 Weighted contribution similarity example for an index admission with Elixhauser Comorbidity Measures (ECM) weights.

0 0 0.149 0 0

1 0 0 0 0

0 1 0 0.254 0.229
0.149 0 0 1 0 0

0 0.254 0 1 0.391

0 0.229 0 0.391 1

When the Scoring System for the One-Year Mortality Prediction of Sepsis Patients (OMPS) is used, all the
training admissions have a non-zero value, since they shared at least one characteristic with the index
admission. Table 8.9 presents the WCS matrix with the OMPS weights.

Table 8.9. Weighted contribution similarity example for an index admission with Scoring System for the One-Year Mortality
Prediction of Sepsis Patients (OMPS) weights

1 0.007 0.08 0.167 0.015 0.006
0.007 1 0.026 0.032 0.093 0.053
0.08 0.026 1 0.03 0.06 0.202
0.167 0.032 0.03 1 0.017 0.081
0.015 0.093 0.06 0.017 1 0.202
0.006 0.053 0.202 0.081 0.202 1

8.3 Results

A first way to determine which similarity metric results in a better precision cohort for each index
admission is to simply use the one-year mortality rate among similar admissions as the prediction. The
number of similar admissions were settled as 5, 10, 50, 100, 200, 300,400 and 500.

Figure 8.2 illustrates the AUROC of death counting as a function of the number of similar admissions used
as training data, the values presented were deployed using 30 independent runs with different randomly
divides portions for training and validation. The maximum mean AUROC of 0.768 (95% confidence
interval: 0.744~0.782) was achieved with 100 most similar admissions obtained with the weighted
contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients
weights. The performance degrades rapidly when too few patients are used for training and gradually
when more admissions are added to the mortality rate calculation.

The shown trend presented in Figure 8.2 shows that predictive performance based on similarity measures
that have the similarity term composed only by categorical data (Equal Contribution similarity and the
three versions of the Weighted contribution similarity) is better than when the mortality rate of the 100
most similar patients is used as prediction; however, it seems to flatten when the cosine similarity is used.

To benchmark the personalized one-year mortality prediction models, the predictive performances of ten
adjusted severity of disease scoring systems (APSIII, LODS, MLODS, OASIS, gSOFA, SAPS, SAPSII, SIRS, SOFA



and SSS) were quantified over 30 independent runs. For each run a different randomly selected training
subset (composed of 90% of the total admissions of the study cohort B) were used to adjust the traditional
severity of disease scoring systems, and the discrimination performance was obtained over the validation
subset (the remaining 10% of admissions); Table 8.10 present this results.
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Figure 8.2. Mortality prediction performance of death counting among similar patients. CS: Cosine similarity; ECS: Equal
Contribution similarity: WCS-ECM: Weighted contribution similarity with Elixhauser Comorbidity Measures (ECM) weights; WCS-
SSS: Weighted contribution similarity with Severe Sepsis Mortality Prediction Score (SSS) weights;, WCS-OMPS: Weighted
contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients (OMPS) weights; AUROC: area
under the receiver operating characteristic curve.

Table 8.10. Score performance of different adjusted traditional severity of illness scores for the one-year mortality prediction of
sepsis patients within the ICU.

Score AUROC 95% Confidence Interval
APSII 0.658 0.631~0.686
LODS 0.631 0.603~0.660
MLODS 0.607 0.578™0.635
OASIS 0.629 0.601~0.658
qSOFA 0.558 0.533~0.584
SAPS 0.626 0.598~0.655
SAPSII 0.700 0.674~0.727
SIRS 0.526 0.498~0.554
SOFA 0.612 0.584~0.641
SSS 0.621 0.593~0.650




The fact that the peak performances presented in Figure 8.2 with all the similarity measures were better
than the performance of the adjusted traditional scoring system presented in Table 8.10, indicates that
simple death counting among only 100 similar patients resulted in good predictive performance.

The result obtained with the death counting approach corroborate the intuitive idea that similar patients
tend to have equal outcomes and proving that the developed patient similarity metrics are adequate for
the effective identification of similar patients. However, this approach does not generate a personalized
model for the index admission.

In order to generate a personalized one-year mortality model for the sepsis patients within the ICU we
used the methodology presented in Figure 8.1. And we executed 30 runs with different randomly selected
training (90%) and validation (10%) subsets. On each run, each of the admissions in the validation group
was considered as an index admission and a set of precision cohorts were obtained and evaluated. Which
this we found the number of similar patients and the similarity measure that presented a better
performance.

Figure 8.3 shows the predictive performance of personalized Logistic regression models as a function of
the number of similar patients used for training. It is important to highlight that, the AUROC in the last
data point (the one on the far right) is equal for all the patient similarity measures, this is because at this
point the models are fitted 13574 admissions, what corresponds to the totality of training subset.
Moreover, the performance in that data point is equivalent to the performance that would be obtained
with the customized multiple cutoff-point score presented in the previous chapter, because such
customized scores were developed using logistic regression, and in their development, the performance
was conserved regardless of the discretization of the variables.

It can also be observed from Figure 8.3 that that predictive performance improved as a subset of similar
patients was used to fit the personalized one-year mortality prediction model. The peak mean AUROC of
0.794 (95% confidence interval: 0.771~0.816) were achieved when 4.000 most similar patients obtained
with the weighted contribution similarity with Scoring System for the One-Year Mortality Prediction of
Sepsis Patients weights were used to construct the precision cohort.

8.4 Conclusions

The vast among of data that is being stored as Electronic Medical Records enables the development of
prediction models based on patient similarities. In this chapter, we presented the utility of similarity
metrics in personalizing one-year mortality risk estimation in the ICU for sepsis patients. The results
showed that using a subset of similar admission rather than a larger population as training data improves
one-year mortality prediction performance, even when the population shares a common characteristic.

Although all the evaluated admissions are from patients with sepsis (which means that they all have an
infection and an organ dysfunction), there was improvement when using similarity metrics, even more a
simple mortality rate among 100 similar admissions resulted in good predictive performance that
exceeded the performance obtained with the scoring systems reported Table 8.10.
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Figure 8.3. One-year Mortality prediction performance of personalized logistic regression trained on similar admissions. CS: Cosine
similarity; ECS: Equal Contribution similarity: WCS-ECM: Weighted contribution similarity with Elixhauser Comorbidity Measures
(ECM) weights; WCS-SSS: Weighted contribution similarity with Severe Sepsis Mortality Prediction Score (SSS) weights; WCS-
OMPS: Weighted contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients (OMPS)
weights; AUROC: area under the receiver operating characteristic curve.

Traditionally the risk prediction in a ICU, is addressed by the clinician based on large population studies of
patients, like severity of disease scores, however the developed models outperformed widely the adjusted
traditional used scores, which could be explained by the following elements:

1. The use of a specific cohort of patients with sepsis.
2. Theinclusion of sepsis related variables, like lactate.
3. The fact that nearby admissions are more comparable and tend to have the same outcome.

The first two elements explain why the logistic regression model fitted with all the training subset
exceeded the performance of the currently used scores, the third one explains the improvements
observed in Figure 8.1 and Figure 8.3.

An important aspect of the personalized logistic regression approach is that it gives particular coefficients
for each precision cohort which could be interpreted as relative variable importance for a particular
patient, meaning that a treating doctor could elucidate the most relevant factor in de prediction, so it has
the potential to provide tailored prognoses, and prescribe more effective treatments.

It is clear that one of the factors that strongly affects predictive performance is the choice the similarity
measure, the results presented in Figure 8.1 and Figure 8.3 shows that the weighted contribution
similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients weights generates
the personalized one-year mortality prediction models with better predictive performance; however the
other weighted contribution similarities did not show a better performance than Equal contribution



similarity, one possible explanation could be that the SSS and ECM weights were based on scores that
were developed for in-hospital mortality, in addition, the OMPS include all the considered comorbidities
and treatments.

Despite the good results reported by Lee et Al. [2], in this study, cosine similarity was, in general, the one
that had a worse performance, indicating that importance of the comorbidities when evaluating the long-
term mortality. Moreover, the predictive performance improvement reported by Lee et Al. was 2.47%
(the best performing model presented an AUROC of 0.83 and the model that used all available data for
training presented an AUROC of 0.81), but predictive performance improvement in our study was 1.15%.
This could be explained by the fact that the population that we evaluated is especially homogeneous; all
of the patients in our study cohort present the same severe diagnosis, sepsis, have a median ICU length
of stay of 4 days, a median hospital length of stay of 11 days and a median age of 68 years old.

This study has demonstrated the value of patient similarity-based models in critical health problems and
shows the superiority of patient similarity-based models over population-based ones. In order to improve
the capabilities of these models we propose as future work, the evaluation of different algorithms on the
precision cohort, the implementation of novel machine learning approaches on graph-structured data like
graph convolutional networks and the evaluation of different similarity measures.



CHAPTER 9. PERSONALIZED STOCHASTIC
GRADIENT BOOSTING MODELS

9.1 Introduction

In previous chapter we presented the developing of personalized models that predicts the one-year
outcome of sepsis diagnosed patients based on population similarities, and we concluded that using a
subset of similar admission rather than a larger population as training data improves one-year mortality
prediction performance, even when the population shares a common characteristic, which means that,
despite the fact that the population that we evaluated is homogeneous (Mainly because the data is taken
from intensive care unit admissions that share a sepsis diagnosis) the similarity measures are relevant for
the long term mortality prediction. We also observed that, from the similarity metrics evaluated, the one
that led to the development of models with better performance was the weighted contribution similarity
with Scoring System for the One-Year Mortality Prediction of Sepsis Patients weights. In the previous
chapter, we also found that the peak AUROC of the personalized logistic regression models were achieved
when the data of the 4000 most similar patients were used for training and the ‘Weighted Contribution
Similarity (WCS)’ metric with the ‘Scoring System for the One-Year Mortality Prediction of Sepsis Patients
(OMPS)’” weights were used; proving that clinical long term mortality prediction can become personalized
by identifying and training the model with data obtained from past admissions similar to a present case
of interest. This idea has also been proven by Lee et al. [122] who suggested that the amount of predictive
utility contributed by a past patient should be directly proportional to the degree of similarity between
the past and index patient, or if it is seen from other perspective, data from dissimilar patients may
actually degrade predictive performance.

In this chapter, we want to evaluate if it is possible to get a more precise long-term outcome prediction
using non-linear models supported on the patient similarity measure that proved to enhance the
predictive capability of the linear models.

According to the above, in this chapter we present the developing of personalized Stochastic Gradient
Boosting models (like the models presented in Chapter 6) that predicts the one-year outcome of sepsis
diagnosed patients based on weighted contribution similarity with Scoring System for the One-Year
Mortality Prediction of Sepsis Patients weights.

9.2 Methodology

For this study we used Study Cohort B, which mean we used the four criteria to retrospectively identify
patients with sepsis within the MIMIC-1l database, and the following predictors were included:

e  First, the maximum, minimum and mean values of the following vital signs were extracted during
the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic blood pressure,
mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen saturation.

e Second, the maximum and minimum values of following laboratory variables were extracted from
the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH, creatinine, chloride,
glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial Thromboplastin Time



(PTT), Prothrombin Time (PT), the international normalized ratio (INR), sodium, Blood Urea
Nitrogen and White Blood Cell Count (wbc).

e Third, the following categorical variables were extracted: admission type (elective, urgent,
emergency), gender, the receipt of either two treatments (dialysis and mechanical ventilation)
and comorbidities according to the Elixhauser Comorbidity groups (30 comorbidities).

e lastly, the following predictors were also extracted: admission age, the minimum Glasgow Coma
Scale, and the total urinary output over the first 24 hours.

Whit this data we developed personalized stochastic gradient boosting models, for this we used a patient
similarity metric to identify a precision cohort for an index admission, which was used to train a
personalized non-linear model.

We randomly divided the study cohort admissions in a training group with 90% of the admissions and a
validation group with the remaining 10%. For each admission in the validation group, that are considered
the index admissions, we executed the following steps (Figure 9.1 presents the overview of this approach):
1. The weighted contribution similarity patient similarity measure with Scoring System for the One-
Year Mortality Prediction of Sepsis Patients weights between the index admission and every
admission in the training data were calculated.
2. The calculated Similarity values were sorted in ascending order.
A precision cohort was created with the data of the 4000 most similar admissions.
4. Each precision cohort was used to train stochastic gradient boosting for the index admission.
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Figure 9.1 Overview of the pipeline of the personalized SGB model. In Step 1, The index admission is represented by the yellow
point; the training admissions are represented by the points labeled Ao to Aio; Thickness of the arcs between index-
admission node and training- group nodes establish the degree of similarity pairwise. In Step 2 and Step 3, the xl.]
represent the predictors of each linked training admission, and the yf represents the one-year mortality outcome. In
Step 4, the green circles represent admissions with a positive outcome and red squares represent admission with a
negative outcome, the upper box illustrates a two-dimensional coordinate system, the dotted represent the
boundaries of each of the trees in the final model ensemble.

In addition to the technique used for the generation of personalized models in this chapter, an important
difference with respect to the methodology followed in Chapter 8, is that both the number of similar
patients analyzed for the generation of each model, and the similarity metric used to determine the
relationship between patients, remained constant, this was done because in the studies with the
personalized logistic regression models we found out that the peak AUROC was achieved when the
weighted contribution similarity measure with Scoring System for the One-Year Mortality Prediction of
Sepsis Patients weights was used as patient similarity measure, and the 4000 most similar patients were
used for training; and since the SGB methodology is computationally more expensive than the logistic



regression, it was unfeasible for us to perform tests as rigorous as those performed in the previous
chapter; In spite of this, the way in which the tests in this chapter were carried out allow us to conclude
whether the inclusion of non-linear methodologies can add value to the prediction of one-year mortality.

The idea behind the selected similarity measure is that different conditions (like comorbidities, treatments
or demographics) carry different mortality risk, therefore, it is necessary a metric that allows grouping
patients who share conditions according to how related these conditions are to one-year mortality. The
following is the used similarity, the weights (6;) are presented in Table 9.1.
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Table 9.1 Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year
Mortality Prediction of Sepsis Patients in ICU.

Variable Weights(6 Variable Neights(6
Admission type: EMERGENCY 10 Lymphoma 10
Gender: Male 7 Metastatic cancer 28
Congestive heart failure 7 Solid tumor 13
Cardiac arrhythmias 6 Rheumatoid arthritis 4
Valvular disease 3 Coagulopathy 4
Pulmonary circulation 5 Obesity 1
Peripheral vascular 7 Weight loss 4
Hypertension 1 Fluid electrolyte 6
Paralysis 4 Blood loss anemia 6
Other neurological 8 Deficiency anemias 2
Chronic pulmonary 5 Alcohol abuse 3
Diabetes uncomplicated 4 Drug abuse 2
Diabetes complicated 3 Psychoses 1
Hypothyroidism 5 Depression 3
Renal failure 6 Mechanical ventilation 8
Liver disease 11 Renal replacement therapy 7

AIDS 6

The non-linear model used, Stochastic Gradient Boosting (SGB), is the model used for the model presented
in chapter 6. Boosting is a powerful machine learning method for selecting features and weight their
predictive contribution to the classifier. It combines the outputs of many weak learners, Tress in the case
of SGB [103, 123, 124], which are combined through a weighted voting to produce the final prediction.
As a decision tree-based ensemble method, boosting allows the use of numeric and categorical predictors
and it is robust to missing values [103], it reduces overfitting problems through the use of a learning rate
(also called shrinkage) [103], it is also more resistant to multicollinearity than other machine learning
methods like neural network [123, 125].



Boosting is based on the idea that the classification error of a model could be reduced if a new weak
learner is added. The way of error reduction is arbitrary so that any loss function can be used depending
on the problem being solved. In gradient boosting, a gradient descent procedure is used to minimize the
loss function. The minimization is realized numerically by applying a steepest descent step that calculating
the negative gradient of the loss function [103, 123].

In order to illustrate how the gradient boosting methodology generates the final model, an example of
visualizing gradient boosting is presented in Figure 9.2. The points in this example comes from the
precision cohort illustrated in Figure 9.1, thus, for the index admission there are five adjacent admissions
(3 that survive and 2 that do not), the objective is to generate a model to classify the green circles and red
squares, which represent admissions with positive and negative outcomes respectively, shown in the two-
dimensional coordinate system. In the first iteration a small tree is generated, this tree divides the two-
dimensional space in two segments and indicates that the admissions with a X value less or equal to 1 are
classified as green circles. However, with first model two green circles (encased in a red dotted ellipse.)
are misclassified. These two green circles are the errors of the first model, for this reason, in the next
iteration the algorithm focus on them and generate a second decision tree to correctly predict them; the
second tree generates a horizontal boundary in such a way that the admissions that have a Y value higher
than 2 are classified as green circles. This second tree separates the three green circles from most of the
red squares. However, there is still a misclassified admission, so the third iteration focus on it, and
generate a third tree that indicate that the admissions with an X value less or equal to 1 are classified as
green circles. The final model is the sum of Tree 1, Tree 2 and Tree 3 and it successfully classifies all the
admission.

It is clear then that gradient boosting has the risk of overfitting. This risk can is mitigated by using some
regularization methods, the first one is the learning rate v, which is a number between 0 and 1 that is
multiplied to the decision tree generated in each iteration, it has been proven that this parameter
improves the model’s generalization ability [103]; the second one is the Stochastic Gradient Boosting
approach. SGB is a method that applies subsampling as a regulation technique to reduce overfitting [103,
126]. At each iteration SGB samples a fraction of the training data without replacement and uses these
subsamples to generate the new tree. Then the improvement of the prediction performance of the new
model can be evaluated by predicting those subsamples which are not used in the building of the tree
[103, 123]. Besides the learning rate v, the SGB algorithm involves other parameters which need to be
tuned in order to maximize the predictive capability of the model, these parameters are: the total number
of boosting iterations (number of trees) and the number of splits performed on each tree [93].

In order to make the generation of personalized SGB models computationally viable, no tuning process
was carried out in the development of the particular models of each index admission; instead we selected
global hyperparameters and used them in all models. According to the tests performed in chapter 6 we
fixed the learning factor as 0.01. To determine and adequate maximum tree depth we generated a SGB
model trained with all the training subset and evaluated tree values for the parameter (5,7 and 9). Finally,
since it is expected and desirable that a model trained on less admission uses less trees, we developed
models using 4000 randomly selected admissions from the training subset which were used to select the
final number of trees.
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Figure 9.2 Gradient boosting example.
9.3 Results

The development of the personalized stochastic gradient boosting models was done on R software, the
caret package [127] was used for the SGB model generation and the proxy package [128] were used to
the computation of the similarity measure.

The general SGB model trained with 90% of the admissions included in cohort B reported a AUROC of 0.81
(95% Confidence Interval: 0.78 ~ 0.82) over the remaining 10% of admissions, for this model the learning
rate was held constant at a value of 0.01; and a 10 fold cross-validation process was used to select the
optimal parameter for the number of splits (tree depth) and boosting iterations, for this the AUROC of



different sets of parameter configuration were computed. The results of the performance of 10-fold ross-
validation are presented in Figure 9.3.

The parameter that presented a better 10-fold CV performance were: number of trees=1800 and tree
depth = 9. However, it can be observed in Figure 9.3 that at 1000 boosting iteration the curve with max
tree depth of 9 flattens; moreover, it is reasonable to think that a model trained with less observations
(4000 for the personalized SGB models) could need less trees; for this reason, we generate another
general SGB model trained with 4000 admissions. This model reported a AUROC of 0.795 (95% Confidence
Interval: 0.787 ~ 0.803) over the remaining admissions, for this model the learning rate and tree depth
were held constant at 0.01 and 9 respectively; and a 10 fold cross-validation process was used to select
the optimal boosting iterations which were set between 600 and 1000 with a stepwise increment of 50.
The results of the performance of 10-fold ross-validation are presented in Figure 9.4, where it can be seen
that the optimal classifier is constructed with 900 trees.

Figure 9.5 illustrates the AUROC of the personalized models generated with both SGB and logistic
regression, the values presented were deployed using 20 independent runs with different randomly
divides portions for training and validation. The mean AUROC of the personalized SGB models were 0.809
(95% Confidence Interval: 0.791 - 0.825) and the mean AUROC of the personalized Logistic regression
models were 0.794 (95% Confidence Interval: 0.78 - 0.807).
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Figure 9.3 SGB model tuning parameters and AUROC. The colored lines indicate different interaction depths (number of splits in
each tree). Each data point in the figure represents one evaluated classifier. For instance, the blue data point at (1000, 0.80)
indicates a model built with 1000 trees each with 3 splits, that gives a AUROC of 0.80 in the 10-fold cross-validation.
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Figure 9.5 AUROC comparison of the personalized model developed with logistic regression and SGB.




9.4 Conclusions

In this chapter we the development of personalized Stochastic Gradient Boosting models. It is important
to note that, besides indicating the one-year mortality probability, this approach gives a relative variable
importance for each precision cohort, so it has the potential to provide tailored prognoses, and prescribe
more effective treatments. As an example we present two particular patients, described in Table 9.2.

Table 9.2 Description of two patients. Only a subset of predictors relevant for the example are presented.

One year outcome Does not survive Does not survive
Gender F M
Cardiac arrhythmias 1 0
Pulmonary circulation 1 0
hypertension 1 0
Diabetes uncomplicated 1 0
Liver disease 0 1
Metastatic cancer 0 0
Solid tumor 1 0
coagulopathy 0 1
Weight loss 1 0
Deficiency anemias 1 0
Alcohol abuse 0 1
Admission age 86.2802 28.6187
Bilirubin maximum 0.9 29.1
Creatinine maximum 1.8 0.8
Hemoglobin maximum 11 13.3
Lactate minimum 2.9 4.9
Lactate maximum 9.6 6.6
Platelet count minimum 272 43
Platelet count maximum 589 123
Partial Thromboplastin Time minimum 28.7 39.2
International Normalized Ratio minimum 1.6 1.9
Blood Urea Nitrogen minimum 35 22
Blood Urea Nitrogen maximum 62 40
Urine Output 1523 705
Heartrate maximum 123 120
Heartrate mean 88.875 104.4328
Systolic blood pressure mean 103.4086 123.0936
Diastolic blood pressure mean 61.60952 63.93333
Mean blood pressure mean 68.78 78.9359
Respiratory rate mean 19.15581 22.3071
Temperature mean 36.5 36.35878
spo2 minimum 90 95
spo2 mean 98.68182 98.52302




Since the personalized SGB model is based on a precision cohort that was constructed specifically for each
index patient, it generates two different models, one for the patient A and other for the patient B, and
besides the probabilities of surviving or not, it also present additional information.
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Figure 9.6 Variable importance for the one-year mortality prediction according to the personalized SGB.

Figure 9.6 presents the 10 most important variables for the personalized models of both patients, and
differences can be seen bottom up. First the relevance of the admission age is greater in patient A (the
older patient). The importance of the blood urea nitrogen is greater in the patient B. There are no variables
related with the blood pressure nor the respiratory rate on patient B. And the metastatic cancer appears
as a relevant variable in patient B although it does not suffer it, this mean that metastatic cancer is an
important predictor in the precision cohort of patient B, which could indicate that this particular
comorbidity is one of the main reasons why a young patient can die within a year.



CHAPTER 10. GRAPH-BASED
REGULARIZED MULTILAYER NEURAL
NETWORK

10.1 Introduction

In this work we are aiming to develop a one-year mortality prediction model for sepsis patients within the
ICU that could be used for particular patient prognostication. The approaches that have been
implemented can be grouped into three categories: the adjustment of traditional severity of disease
scoring systems, the development of entirely new customized models that incorporated additional
variables and the generation of personalized models based on a precision cohort for each new patient.
Within the approaches used so far, the one that performed best was the personalized Stochastic Gradient
Boosting (SGB) models; For the generation of these models, a precision cohort should be constructed, for
this, the 4000 patients most similar to each new patient are selected; the similarity between patients is
calculated using the weighted contribution patient similarity metric; then, with the constructed precision
cohort for the new patient a personalized SGB model is fitted; this means that it is necessary to develop
a model for each patient.

According to the above, in this chapter we want to evaluate the possibility of integrating patient similarity
information in a model that should only be trained once. For this, we build a structure that contains the
vector of characteristics of each patient, and the relationship between patients. Graphs provide a natural
way of representing populations and their similarities. In such setting, each patient is represented by a
node and the similarities are modelled as weighted edges connecting the nodes [129]. So, our problem is
classifying nodes (patients) in a graph; and it can be framed as graph-based learning, where label
information is smoothed over the graph using explicit graph based regularization [130].

In this chapter we developed a Graph-based regularized multilayer neural network. For the graph
construction we used the same weighted contribution patient similarity metric as in the previous chapter.
In order that only the nodes (patients) that are truly similar were connected, we established a similarity
threshold, so that the edges that had a value below such threshold would be eliminated from the graph.

10.2 Methodology

For this study we used Study Cohort B, which mean we used the four criteria to retrospectively identify
patients with sepsis within the MIMIC-11l database, and the following predictors were included:

e  First, the maximum, minimum and mean values of the following vital signs were extracted during
the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic blood pressure,
mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen saturation.

e Second, the maximum and minimum values of following laboratory variables were extracted from
the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH, creatinine, chloride,
glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial Thromboplastin Time



(PTT), Prothrombin Time (PT), the international normalized ratio (INR), sodium, Blood Urea
Nitrogen and White Blood Cell Count (wbc).

e Third, the following categorical variables were extracted: admission type (elective, urgent,
emergency), gender, the receipt of either two treatments (dialysis and mechanical ventilation)
and comorbidities according to the Elixhauser Comorbidity groups (30 comorbidities).

e lastly, the following predictors were also extracted: admission age, the minimum Glasgow Coma
Scale, and the total urinary output over the first 24 hours.

Similar to the previous chapter we randomly divided the study cohort admissions in a training group with
90% of the admissions and a validation group with the remaining 10%; however, since the methodology
developed in this chapter are based on the assumption that similar admissions (nearby nodes in a graph)
are more comparable and tend to have the same outcome (labels) in this approach we represent the data
of the training subset as a graph.

So, we consider a training subset of 13574 admission comprising demographic, physiological predictors,
comorbidities and treatments and we calculated the pairwise similarity between those admissions using
the weighted contribution patient similarity metric. The idea behind this patient similarity measure is that
different conditions (like comorbidities, treatments or demographics) carry different mortality risk,
therefore, it is necessary a metric that allows grouping patients who share conditions according to how
related these conditions are to one-year mortality. The following is the used similarity:

P (6:A)(6;B)) L1AB
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Where 4; and B; are the vectors of two different admissions, n is the number of total predictors and p is
the number of categorical predictors (comorbidities, treatments or demographics), and 6; are the weights

of each categorical predictor. In this study we used the scoring system for the one-year mortality
prediction of sepsis patients weights, presented in Table 10.1

Similarity,,, =

Then we represent the training subset population as an undirected graph G = (V, £, W), where W is the
weighted adjacency matrix describing the graph’s connectivity. Each admission in the training subset is
represented by a node v; € V and is associated with a feature vector x(v;) conformed of the predictors
(such as laboratory tests, vital signs and comorbidities listed above). The edges (vi,/zrj) € & of the graph
represent the similarity between the admission. The graph labels are the one-year mortality of the training
subset, 1 is for those patients who die before one year and 0 for the patients that survive for more than a
year. An overview of the graph generation process is presented in Figure 10.1.

To construct W we set a similarity threshold (w;y), for this we calculated the pairwise similarity of all the
admissions in the training subset; and for each of those admissions we sorted the admissions and found
the value of the 4000 most similar patient, and then we average all those values. The objective of this
procedure is to adapt the results obtained in chapter 8, where it was shown that the best performing
personalized models were achieved when 4000 most similar patients were used to construct the precision
cohort for each patient. According to the above W is defined as:



Similarity if Similarity > w¢p
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0 otherwise

Table 10.1 Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year
Mortality Prediction of Sepsis Patients in ICU.

Admission type: EMERGENCY 10 Lymphoma 10
Gender: Male 7 Metastatic cancer 28
Congestive heart failure 7 Solid tumor 13
Cardiac arrhythmias 6 Rheumatoid arthritis 4
Valvular disease 3 Coagulopathy 4
Pulmonary circulation 5 Obesity 1
Peripheral vascular 7 Weight loss 4
Hypertension 1 Fluid electrolyte 6
Paralysis 4 Blood loss anemia 6
Other neurological 8 Deficiency anemias 2
Chronic pulmonary 5 Alcohol abuse 3
Diabetes uncomplicated 4 Drug abuse 2
Diabetes complicated 3 Psychoses 1
Hypothyroidism 5 Depression 3
Renal failure 6 Mechanical ventilation 8
Liver disease 11 Renal replacement therapy 7

AIDS 6

Our problem can be framed as graph-based learning, where label information is smoothed over the graph
via some form of explicit graph-based regularization. So it can be addressed as semi-supervised learning
afield of study where the goal is to improve generalization (improve the performance) on supervised tasks
using unlabeled data, for this, semi-supervised learning algorithms jointly optimize two training objective
functions: a supervised loss over labeled data and the unsupervised loss over both labeled and unlabeled
data.

There are two semi-supervised learning paradigms, transductive learning and inductive learning.
Transductive learning only aims to apply the classifier on the unlabeled instances observed at training
time, and the classifier does not generalize to unobserved instances. Inductive learning aims to learn a
parameterized classifier that is generalizable to unobserved instances.



In this work we are interested in inductive learning and specifically in those methods that consider that
similar instances are more comparable and tend to have the same labels, therefore, our interest is to use,
beside the supervised loss term, a loss term that considers the similarity between the admissions.
According to the above, we aim to develop a model that incorporates the similarity between patients in
the training process, to be used in new patients; meaning that we are not using unlabeled nodes in the
training process but we are going to evaluate the performance of the model over a validation subset.

The particular algorithm that we use is called label propagation [131]; this algorithm adds a large penalty
when similar instances are predicted to have different labels, the loss function of semi-supervised learning
in the binary case can be written as:
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Figure 10.1 Graph construction process. &/ represent a feature input vector for a particular admission in the training subset and
yJ represent the corresponding output. The nodes Aj represent a particular node in the graph with an associated x/ and y/ (which
is illustrated as the node color, red nodes indicate a label 1, and grey nodes indicates a label 0).

The first term of the above equation is the standard supervised loss function, for instance the squared
loss over the labeled part of the graph, f(-) can be a neural network like differentiable function. The
second term is the graph Laplacian regularization, a;; indicates the similarity between instance i and j, so
this term incurs a large penalty when similar instances with a large a;; are predicted to have different

labels f(x;) # f(xj).



Itis possible to introduce the label propagation idea in a deep learning scheme. Deep learning consists of
learning a model with several layers of non-linear mapping. In this chapter we use a multi-layer neural
network, and each k" layer is defined as:

hE() =S ij"'ih]’-‘_l(x) bR ifk>1
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S is a non-linear function such as Re-Lu, Wik are the weights associated with each layer, x are the input
vector and b*! are the bias associated with each layer.
The output of the presented neural network for binary classification, assuming N layers of hidden units is
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In the implementation of this approach we use a softmax function after the neural network output, which
is a function that takes as input a vector of 2 real numbers (for binary classification), and normalizes it into
a probability distribution consisting of 2 probabilities. The standard softmax function is defined as:

e’
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The method we use for deep learning via semi-supervised embedding is to add a semi-supervised loss
(regularizer) to the supervised loss on the entire network’s output:

L= LO + ALregp
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Where Lyis the supervised cross-entropy loss, f(+) is the output of a neural network, A is a weighing factor
and a;; is the similarity weight between the i, admission and the j;zadmission. Our approach to this
problem can be framed as graph-based learning, where label information is smoothed over the graph via
explicit graph-based regularization [130, 132]. For this we constructed a graph based on the similarity that
presented the best performance in our previous tests. Such graph is denoted as a square matrix A, which
has as entries each a;;. Figure 10.2 present the overview of the graph-based regulated neural network.

The number of units in the hidden layers were: 20, 15 and 10 respectively and the dropout ratio were 0.5.

For this Laplacian Regularization experiments, we vary the regularization weighting factor A, which takes
the following values:0, 0.0001, 0.001, 0.01, 0.1 and 1;
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Figure 10.2 Outline of the graph-regulated methodology.
10.3 Results

The first step in for the development of the graph-based regularized multilayer neural network is the
construction of the weighted adjacency matrix W. For this we obtain a similarity threshold (w;)
averaging the similarity values of the 4000th most similar patient for each admission in the training subset.
The obtained value was 0.08; the distribution of those values is presented in Figure 10.3.
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Figure 10.3 distribution of the similarity values of the 4000th most similar patient for each admission in the training subset.



Then, the graph-based regularized multilayer neural network was developed using the TensorFlow [127]
library on python, in order to update the network weights iteratively (training) we used the Adam
optimization [133] algorithm which is an is an extension to stochastic gradient descent.

Stochastic gradient descent maintains a single learning rate for all weight updates and the learning rate
does not change during training, on the contrary, Adam optimization computes individual adaptive
learning rates for different parameters.

Unlike the SGB model, where the number of iterations of the algorithm are determinate by the number
of trees in the ensemble; in this deep learning approach, the number of iterations were set to 10000000.
Each iteration involves using the model with the current weights to make predictions on some samples,
comparing the predictions to the ground truth outcomes, calculating the error, and using the error to
update the weights by using the backpropagation algorithm. Each iteration was done with a batch of 30,
this value was settled by trial and error.

Figure 10.4 presents the performance of the Laplacian regularized neural network as function of the
regularization weighting factor A over ten independent runs. The best performance for the Laplacian
regularized neural network was obtained with a regularization factor or 0.1 which reported an AUROC of
0.812 (95% Confidence Interval: 0.808 - 0.814)
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Figure 10.4 Performance of the one-year mortality prediction Laplacian regularized neural network.

10.4 Conclusions

When comparing the graph-based regularized multilayer neural network to the personalized Stochastic
Gradient Boosting (SGB) models presented in the previous chapter an important difference arise between



them, the personalized SGB models creates a particular model for each new patient, which mean that for
every new patient a precision cohort is obtained with the 4000 most similar patients, and a specific SGB
model is trained with that particular cohort; and the graph-based regularized multilayer neural network
generates a single model that is generalizable to unobserved instances, which mean that it is only trained
one time.

When comparing the mean performances of both methodologies it can be observed that the performance
obtained with the graph-based regularized multilayer neural network with a weighting factor A of 0.1 is
slightly better than the personalized SGB models. Figure 10.5 illustrates the AUROC of the best performing
graph-based regularized multilayer neural network and the personalized models generated with both
SGB, it is important to note that the values presented for personalized SGB were deployed using 20
independent runs with different randomly divides portions for training and validation but we only perform
10 runs for the graph-based regularized multilayer neural network with a weighting.
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Figure 10.5 Comparison of graph-based regularized multilayer neural network with a weighting factor A of 0.1 and the SGB
personalized models.

The graph-based regularized multilayer neural network has the advantage of being trained only once (in
comparison of train a particular model for each index patient), however since it is based on a three-layer
neural network loses interpretability. An important factor in favor of the personalized SGB approach is
that it could give a relative variable importance for each precision cohort, so it has the potential to provide
tailored prognoses, and prescribe more effective treatments.

Despite the fact that the performance of the graph-based regularized multilayer neural network cannot
be considered superior to that of personalized SGB, it is clear that it is a promising methodology, and as
future work, more rigorous tests are proposed in which other patient similarity metrics are evaluated, the
similarity threshold is modified and tests are made with different training subsets.



CHAPTER 11. SOFTWARE
DEVELOPMENT

11.1 Introduction

The emergence of machine learning techniques in the field of health is a fact. Specifically, in the field of
Intensive Care, it is undeniable that the potential for its application is immense. Specifically, the
generation of custom models by groups of populations, the use of assembly algorithms and the
implementation of patient similarity based models, contribute elements to the prediction of mortality
that lead to a better identification of patients at risk and therefore to improve health services.

In previous chapters we conclude that the generation of one-year mortality prediction scores exclusively
for sepsis patients within the ICU widely outperforms adjusted traditional severity of illness scoring
systems [7, 8]. In addition, we demonstrated that the use of well selected similarity measure for the
generation of personalized models improves the discrimination performance moreover, the use of non-
linear models, like SGB, could indicate which variables are more important for each personalized model.

In this chapter we present a software development based on the characteristics that most contributed to
the discrimination of the long-term mortality of patients with sepsis within the ICU, and provide
information of clinical utility, according to the criterion of intensivist experts. The goal of this software is
to enable the use of the developed models in a clinical environment and presents three personalized
outputs for each new patient: the one-year mortality rate among the 100 most similar patients, an
estimate of the one-year mortality probability based on a well selected precision cohort, and the 10 most
relevant parameters for the precision cohort. These outcomes are based on the similarity measures
presented in previous chapters, and the complete data of the cohort B.

11.2 Software functionality
According to the results presented in previous chapters, we identify three features to include in the
software:

e Personalized model: the software generates a personalized model that predicts the one-year
outcome of sepsis-diagnosed patients. it generates a precision cohort for the new patient, the
precision cohort is constituted by the 4000 most similar admissions; the similarity between the
new patient and the 15082 admissions available in the database are computed using weighted
contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis
Patients weights.

e Relative variable importance: Each precision cohort was used to train a particular Stochastic
Gradient Boosting (SGB) [123, 134] model for the new patients. Although the resulting SGB model
it is complex, since it is composed of 900 trees, SGB model has good interpretability, being as, it
can identify the variable importance, and because the model is generated from the precision
cohort for each new patient, the model would provide the most important predictors for each
particular case.



e One-year mortality rate among the 100 most similar patients: another way to determine how is
the patient's condition with respect to his closest neighbors is using the mortality rate, for this we
simply use the one-year mortality rate among the 100 most similar admissions, a method that,
when used as prediction for the new patient, proved to outperform adjusted traditional severity
of illness scoring systems.

The developed software is an interactive web application, constructed using the Shiny R package
[135]. And it dynamic is divided in three layers. The first one, the presentation layer, is with which the
user interacts directly and consist of the data input and visualization modules. The second one is the
control layer, in this one the precision cohort is obtained and the models are generated. The final one
is the data layer, and it is where the database composed of all sepsis admissions of cohort B is located.
Figure 11.1 shows the software dynamics, and the interaction between layers.
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Figure 11.1. Dynamics of the software

The interface of the software is composed of two main panels, one for the input of the variables, and
another one for the results display. The software has four modules. The first one enable user to insert
the new patient data, which are assigned to a feature vector, the input data are divided in four
categories:



e Admission data and demographics: categorical variables as admission type (elective, emergency),
gender, birthdate.

e Comorbidities and treatments: Two treatments are included as input variables (dialysis and
mechanical ventilation) and the comorbidities according to the Elixhauser comorbidity groups
[87]1 (30 comorbidities).

e Routine charted data: the maximum, minimum and mean values of the following vital signs were
extracted during the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic
blood pressure, mean blood pressure, respiratory rate, temperature and peripheral capillary
oxygen saturation. Also, the total urine output during the first 24 hours and the minimum Glasgow
Coma Scale Score during the first 24 hours were included as input variables.

e Laboratory based measures: the maximum and minimum values of following laboratory variables
were extracted from the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH,
creatinine, chloride, glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial
Thromboplastin Time (PTT), Prothrombin Time (PT), the international normalized ratio (INR),
sodium, Blood Urea Nitrogen and White Blood Cell Count (wbc).

The second module selects the precision cohort; In this case, the similarity between the new patients
and all the 15082 admissions of the database are computed obtaining a similarity vector that s sorted.
Then, we use the sorted indices to obtain a similarity-sorted database, when the most similar patients
come first. For the similarity computation we used the Weighted Contribution Similarity, a similarity
measure in which each categorical data (like the comorbidities, treatments and demographics) had a
particular weight, contributing more or less to the similarity:
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The weights used for the categorical data are based on the Scoring System for the One-Year Mortality
Prediction of Sepsis Patients in Intensive Care Units and presented in Table 11.1.

The third module computes the one-year mortality rate among the 100 most similar patients; for this
we took the one-year outcome of the top 100 patients in the similarity sorted database (which are a
zero for surviving patients and one for non-surviving patients) sum the all and multiply the result by
100, this is presented in the software as a pie chart.

The last module computes the one-year mortality probability; for this a personalized SGB model is
fitted with the precision cohort (the data of the 4000 most similar patients). Along the mortality
probability we also present the relative variable importance of the top 10 most relevant predictor for
each particular precision cohort.

Table 11.1. Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year
Mortality Prediction of Sepsis Patients in ICU.



Admission type: EMERGENCY 10 Lymphoma 10
Gender: Male 7 Metastatic cancer 28
Congestive heart failure 7 Solid tumor 13
Cardiac arrhythmias 6 Rheumatoid arthritis 4
Valvular disease 3 Coagulopathy 4
Pulmonary circulation 5 Obesity 1
Peripheral vascular 7 Weight loss 4
Hypertension 1 Fluid electrolyte 6
Paralysis 4 Blood loss anemia 6
Other neurological 8 Deficiency anemias 2
Chronic pulmonary 5 Alcohol abuse 3
Diabetes uncomplicated 4 Drug abuse 2
Diabetes complicated 3 Psychoses 1
Hypothyroidism 5 Depression 3
Renal failure 6 Mechanical ventilation 8
Liver disease 11 Renal replacement therapy 7

AIDS 6

Figure 11.2 depicts modules that compose the software; in the input data module, the four collapsible
panels and the feature are presented; in the precision cohort module, the first matrix is the complete
dataset, where the dark orange row represent the indices of each admission, the light orange rows
represent the predictors and the grey row represents the one-year mortality outcomes of each
admission. In the similarity vector the dark orange column represent the indices of the admissions
and the light orange column represents the similarity between each admission and the new patient;
from the sorting process we only use the indices to rearrange the complete dataset and obtain the
database sorted by similarity.

The one-year mortality rate outcome module uses a vector with the one-year mortality outcomes of
the 100 most similar admissions, i.e. the first one hundred columns of the database sorted by
similarity. Finally, the one-year mortality probability outcome uses a precision cohort composed of
the data of the 4000 most similar admissions to the new patient and fit a personalized SGB model,
which is represented by a sum of trees, and return two outputs: the one-year mortality probability,
and the relative importance of all the predictors, the top ten most important predictors are displayed
in a bar plot.
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Figure 11.2. structure of the software developed.



11.3 Results

As mentioned before the software is a web application composed of two panels the first one is used for
the input of the data, and it is composed of 4 collapsible panels that correspond to each of the four
variable categories. Figure 11.3 present the final appearance of said panel.

One-year Mortality Prediction in Patients Admitted to an ICU with Diagnosis
of Sepsis Driven by Electronic Medical Data and Population Similarities

ADMISSION DATA AND DEMOGRAPHICS
COMORBIDITIES AND TREATMENTS
ROUTINE CHARTED DATA

LABORATORY BASED MEASUREMENTS

Calculate one-year Mortality

Figure 11.3. Input panel.

The admission data and demographics collapsible panel is composed of a date input element, where the
user enters the patient birthdate, and it is transformed to the admission age. It also contains two selection
inputs, one for the gender (Male or Female) and one for the admission type (Emergency, Elective). Figure
11.4 presents the final appearance of the admission data and demographics collapsible panel.

ADMISSION DATA AND DEMOGRAPHICS

Birthdate:
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Admission type:
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Figure 11.4. Admission data and demographics collapsible panel.



The comorbidities and treatments collapsible panel is composed of 30 checkboxes based on the
Elixhauser Comorbidity groups and two checkboxes for two treatments dialysis and mechanical
ventilation). Figure 11.5 presents the final appearance of the comorbidities and treatments collapsible

panel.
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Figure 11.5. Comorbidities and treatments collapsible panel.

The routine charted data collapsible panel contain two elements, in the first one there is a selection input
for eight routine charted measures (Heart rate, Arterial Blood Pressure Systolic, Arterial Blood Pressure
Diastolic, Arterial Blood Pressure Mean, Respiratory rate, Temperature, Peripheral capillary oxygen
saturation and Glucose) and three numeric inputs for the minimum, mean and maximum values of each



measurement, each time the user clicks on the "Next measurement" button, the system automatically
stores the values of the current measurement in the feature vector and changes the selection to the next
measurement.

The second element of the routine charted data collapsible panel is composed of two numeric inputs for
the total urine output during the first 24 hours and the minimum Glasgow Coma Scale Score during the
first 24 hours. Figure 11.6 present the final appearance of the admission data and demographics
collapsible panel.

ROUTINE CHARTED DATA

Measurement:

Heart rate [bpm] v
Minimum Mean Maximum Next measurement

0 s 0 : 0 :

Total urine output during the first 24 hours [mL]

Minimum Glasgow Coma Scale Score during the first 24 hours

Save data

Figure 11.6. Routine charted data collapsible panel.

The laboratory based measurements collapsible panel contain a selection input for 17 laboratory test (
Arterial pH , Anion gap , , Bilirubin , Creatinine , Chloride , Hematocrit, Hemoglobin , Lactate , Platelet
Count, Potassium , Partial thromboplastin time (PTT, International normalized ratio (INR), Prothrombin
time (PT) , Sodium , Blood urea nitrogen (BUN) , White Blood Cell (WBC) count) and two numeric inputs
for the minimum and maximum values of each measurement, each time the user clicks on the "Next
measurement"” button, the system automatically stores the values of the current measurement in the
feature vector and changes the selection to the next measurement. Figure 11.7 present the final
appearance of the laboratory based measurements collapsible panel.



LABORATORY BASED MEASUREMENTS

Measurement:
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Figure 11.7. Laboratory based measurements collapsible panel.

The visualization panel contains three elements, the most important one is the one-year mortality
probability, which is obtained from a personalized SGB model and presented in a text. The second one is
the mortality rate among the 100 most similar patients, this result is presented in a pie chart. The final
one is the relative importance of the ten most relevant variables for the precision cohort selected from
the new patient, this information is presented in a column chart and it is obtained with the SGB variable
ranking. Figure 11.8 present the final appearance of the output panel.

11.4 Conclusions

The creation of software enables the clinical use of machine learning models developed for the prediction
of one-year mortality of sepsis patients within the intensive care unit.

The three outputs are personalized for each new patient, since they are based on the Weighted
Contribution Similarity, a measure that proved to generate model with better discrimination capability
that the model fitted with the entire study cohort.

The one-year mortality rate among the 100 most similar patients and the top ten most relevant variables,
help to provide context about the patient's condition, which can be used by medical personnel to
complement their diagnosis and provide better treatment.

The use of a tool like Shiny for the development of a web application ensures that the software can be
used from any operating system, in addition, the fact that this tool has integrated functions for scaling the
content according to the size of the screen allows its use in mobile devices.
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Figure 11.8. Output panel.



PART 5: SUMMARY, CONCLUDING
REMARKS, DIFFUSION AND FUTURE
PERSPECTIVES

This part present the final considerations of our study, we present a summary of the process carried out
in this thesis, we indicate what were our main achievements and we show the limitations of our work and
the future perspectives derived from them.



CHAPTER 12. SUMMARY, CONCLUDING
REMARKS, DIFFUSION AND FUTURE
PERSPECTIVES

12.1 Summary

General severity of illness scores can be useful to several purposes: guide prognostication, to assess
ongoing disease development and organ function, to compare ICU performance over time and across
units, to compare clinical trial population and outcomes. In a survey Bouch listed the characteristics for
an ideal scoring system [33]:

On the basis of easily/routinely recordable variables

Well calibrated

A high level of discrimination

Applicable to all patient populations

Can be used in different countries

The ability to predict functional status or quality of life after ICU discharge.
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None of the current scoring system incorporates all these features; Moreover, items 4 and 5 are
challenging to fulfill, that is why customize scoring systems, are increasingly being developed. The
customize models have proved to perform better than the general population approaches, however these
studies continue to be population-based and therefore they generally provide “the average best choice”.

Personalized mortality predictive modeling based on patient similarity is a developing field that seeks to
identify patients who are similar to an index (new) patient and derive insights from the data of similar
patients to provide personalized predictions. This approach has been widely used for personalized
predictions in other fields, including music, movies and e-commerce, however, there are still very few
studies that focus on personalized prediction driven by patient similarity metrics within the ICU.

In the specific case of sepsis, a condition associated with ongoing mortality beyond short-term end points
(i.e. in-hospital mortality), and additional morbidities such as higher risk of readmissions, cardiovascular
disease and cognitive impairment for survivors; specific models for the mortality prediction within the ICU
have been developed, which presented better performance than adjusted traditionally severity of disease
scores, however, these sepsis-customized models focus on the short term mortality prediction (7-day
mortality and in-hospital mortality). Studies suggest that the use of in-hospital mortality as an end point
for clinical studies are not enough to understand the effect of sepsis on mortality and quality of life, and
the current understanding of the risk factors and mechanisms underlying long-term sequelae in patients
that suffered from this condition still limited. Therefore, identify risk factors during an ICU stay that
reverberate and even could predict long-term outcomes will help physicians offer better treatments.



The first step to build a long-term mortality prediction model for sepsis patients within the ICU is to obtain
quality data. It is clear, that the performance of the models depends on the characteristics of the used
database because machine learning techniques will give poor performance, lead to imprecise and
inaccurate conclusions or even fail to find a good predictive model if the database is too noisy or if it is
not representative of the studied population. Therefore, high-quality clinical databases are of value in
clinical practice, in managing services and in developing health technologies.

The selected database for this work is MIMIC-IIl which data comes from a single institution (Beth Israel
Deaconess Medical Center in Boston Massachusetts). However, despite the limitation of being single-
centered, the main advantages of MIMIC-III are:

e Right now the only freely accessible critical care database of its kind.

e The dataset spans more than a decade.

e |t has detailed information about individual patient care that includes time-stamped nurse-
verified physiological measurements and out-of-hospital mortality dates.

From the MIMIC-III clinical database we extracted two study cohorts, the first one composed of patients
who presented an explicit sepsis diagnosis or fulfill the Angus criteria; and the other conformed with
patients that meet, besides the explicit sepsis and Angus criteria, the Martin and Sepsis-3 criteria. In order
to develop the models, we included basic descriptors (like the minimum, maximum and mean) for each
of the numerical continuous variable (vital signs, laboratory measurements and admission age), however,
we do not include measures of the tailedness of the distributions (like kurtosis or skewness) for two
reasons, first, their inclusion would affect the interpretability of the models, and second, the clinical
operatization of ICU stay in Colombia do not ensure storage of the data at an adequate temporal
resolution to obtain reliable values of these descriptors, that is to say, the medical devices do not usually
automatically register the values of the vital signs as it is done in the Beth Israel Deaconess Medical Center
in Boston Massachusetts.

According to the above, we focus on the development of a model that can be used to patient individual
prognostication and goes beyond the prediction of in-hospital mortality. For this, we divide this project in
four different stages that, progressively, lead to the generation of models that can be used for the
individual one-year mortality prediction of patients with sepsis within the intensive care unit clinical
practice.

In the first stage, presented in chapter 6, we developed a customized Stochastic Gradient Boosting (SGB)
model for the one-year mortality prediction and compared it performance with three adjusted models
based on traditional severity of disease scoring systems. In this stage we used a study cohort composed
of 5650 sepsis patients which presented an explicit sepsis diagnosis or fulfill the Angus criterion for sepsis.
Our customized prediction model proved to outperform adjusted traditional severity of disease scores
since it obtained an AUROC of 0.805 (95% Confidence Interval: 0.785 - 0.826) and the best performing
reference model was the adjusted SAPS Il model that obtained a AUROC of 0.702 (95% Confidence
Interval: 0.683 - 0.719). Besides this, in this stage we also obtained a subset of predictors truly related
with one-year mortality which were selected using the Least Absolute Shrinkage and Selection Operator
and the SGB variable importance ranking. This subset of predictors was composed of 17 variables which
are the admission age the following values from the first 24 hours of admission: total urine output, blood
urea nitrogen maximum, lactate minimum, hemoglobin mean, temperature maximum, glucose minimum,



temperature minimum, spo2 mean, bilirubin maximum, platelet count maximum, systolic blood pressure
maximum, white blood cell count minimum and the following comorbidities and treatment: metastatic
cancer, malignancy, hypertension and mechanical ventilation. The subset of the 17 variables allowed the
creation of a simpler SGB model that maintained the good performance since it reported an AUROC of
0.791 (95% Confidence Interval: 0.769 - 0.812). The calibration of the developed customized SGB models
and the adjusted traditional severity of disease scoring systems were also evaluated; and we found that
all the developed SGB models presented an adequate calibration but of the adjusted reference models,
only SOFA presented an adequate calibration.

In the second stage we developed two customized scores for the stratification of patients in risk groups,
which is presented in chapter 7. In this stage we focus on the subset of 17 variables that were found to
be relevant in the previous stage and complement them with variables that are frequently used within
the ICUs. In addition to this, we increase the criteria for identifying patients with sepsis, and we include
those that meet the Martin and sepsis-3 criteria. As a result, we gathered a study cohort composed of
15082 admissions. With this study cohort, we generated two scoring systems for the assessment of the
one-year mortality risk of sepsis patients within the ICU. The first score was based on dichotomization of
the variables and achieved an AUROC of 0.769 (95% Confidence Interval: 0.761 - 0.778) on a validation
subset composed of 9049 admissions; the second generated score used multiple cutoff points for each
continuous numerical variable (i.e. the laboratory measurements, the routine charted data and the
admission age) and achieved an AUROC of 0.785 (95% Confidence Interval: 0.783 - 0.794). Although the
multiple Cutoff points score presented better discrimination and it use will allow a more accurate
interpretation of the condition of each patient, the binary CP is more easy to implement and can be used
for a quick interpretation of a patient's condition. These developed scores presented adequate calibration
and outperformed adjusted traditional severity of disease classification systems over the same validation
subset.

The third stage was the personalized predictive modeling based on patient similarity. We used a lineal
approach, presented in chapter 8; and a non-lineal approach presented in chapter 9. The development of
the personalized one-year mortality prediction model is based on patient similarity measures and follows
the next outline:

5) All pairwise Similarity measures between the index admission and every admission in the training
data were calculated. In chapter 8 five different measures that model the interaction between
admissions were developed and evaluated, in chapter 9 we only used the weighted contribution
similarity, a patient similarity metric based on the fact that different conditions carry different
mortality risk; the weights for each condition was obtained from the scores developed in the
previous stage.

6) The calculated similarity values were sorted in ascending order.

7) A precision cohort was created with the data of the n most similar admissions. In chapter 8 the
number of most similar admission was varied from 1000, to 13000; in chapter 9, the number of
most similar admissions were settled to 4000, since with this number the peak mean AUROC were
obtained.

8) Each precision cohort was used to train a personalized mortality prediction model for the index
admission. In chapter 8 we used logistic regression model, and in chapter 9 we used SGB. The
mean AUROC of the personalized SGB models were 0.809 (95% Confidence Interval: 0.791 - 0.825)



and the mean AUROC of the personalized Logistic regression models were 0.794 (95% Confidence
Interval: 0.78 - 0.807).

In chapter 10, we evaluated an approach framed as graph-based learning, where label information is
smoothed over the graph via some form of explicit graph-based regularization. For this we construct a
graph based on the weighted contribution patient similarity metric with the same weights that the
previous chapter and use it to train a regularized multilayer neural network model, which reported a peak
AUROC of 0.812 (95% Confidence Interval: 0.808 - 0.815).

In the final stage, presented in chapter 11, we developed a software that could be used in the clinical
environment, this software is based on the characteristics of stages 2 and 3, that most contributed to the
discrimination of the long-term mortality of patients with sepsis within the ICU, and provide information
of clinical utility, according to the criterion of intensivist experts.

12.2 Concluding Remarks

The approach presented in chapter 6, showed that SGB variable importance and LASSO methodologies
allowed the identification of a subset of predictors that are significatively related to the one-year mortality
prediction of sepsis patients within the ICU. The SGB models developed with only the variables selected
with either of those methods preserved the same performance as the one generated with all the
predictors. Also the intersection of the predictors selected by the two methods lead to the development
of a much simpler model with only 17 predictors, that also presented a similar performance to the
complete model.

The main objective of this stage was to present a customized model for the one-year mortality prediction
of the patients that are admitted in a ICU with a sepsis diagnosis; and shows that the use of ensemble
based algorithms (SGB) and the inclusion of predictors that are not usually taken into account in the
traditional severity-of-disease classification systems (for example minimum lactate), improves the
performance of the prediction of prognosis models in patients admitted to an ICU with diagnosis of sepsis.

In the second stage, presented in chapter 7, we present the assessment of two customized severity-of-
iliness scoring system specifically for patients with sepsis. The scores utilized 6033 admissions for its
development and 9049 for its validation. The first score was based on the dichotomization of the
numerical continuous variables; the second score is based on multiple cutoff points for each numerical
continuous variable. Both scores accurately estimated the probability of one-year mortality in sepsis
diagnosed patients within the ICU and were well calibrated.

The strengths of this scores are that they performed well with respect to both discrimination and
calibration. The calibration is especially important as data were collected from a database that spams over
10 years and we used four different sepsis criteria to retrospectively identify the admissions, including
sepsis-3 that is the most recent one. The scores are composed of 52 (for the binary cutoff points score)
and 92 variables (for the multiple cutoff points score). The number of variables are more than traditional
scores like SAPSII (20 variables) and SSS (36 variables) but considerably less than most recent approaches
like APACHE IV (142 variables). The objective of this score is to early alert of a worse prognostic and to
stratify patients according to their risk.

AUROC analysis showed that the developed scores outperformed adjusted traditional severity of disease
scoring systems, even more, the predictive capacity of the score is better, in this study, than the SOFA,



that is the scoring systems used for the most recent sepsis and septic shock consensus [17, 18], and the
Sepsis Severity Score (SSS), that is an internationally derived scoring system specifically for patients with
severe sepsis and septic shock, however, this scores continue to be a population-based approach and
therefore they provide “the average best choice” for sepsis patients. For this reason, we focused on the
developing of personalized predictive models based on patient similarity.

In chapter 8 the utility of similarity metrics in personalizing one-year mortality risk estimation in the ICU
for sepsis patients was proved. The results showed that using a subset of similar admission rather than a
larger population as training data improves one-year mortality prediction performance, even when the
population shares a common characteristic.

Although all the evaluated admissions are from patients with sepsis (which means that they all have an
infection and an organ dysfunction), there was improvement when using similarity metrics, even more a
simple mortality rate among 100 similar admissions resulted in good predictive performance that
exceeded the performance obtained with the adjusted traditional severity of disease scoring systems.

Traditionally the risk prediction in a ICU, is addressed by the clinician based on large population studies of
patients, like severity of disease scores, however the developed models outperformed widely the adjusted
traditional used scores, which could be explained by the following elements:

e The use of a specific cohort of patients with sepsis.

e The inclusion of sepsis related variables, like lactate.

e The fact that nearby admissions are more comparable and tend to have the same outcome.

The first two elements explain why the logistic regression model fitted with all the training subset
exceeded the performance of the currently used scores, the third one explains the improvements
observed when personalized models based on the precision cohort of each patient are used.

An important aspect of the personalized logistic regression approach is that it gives particular coefficients
for each precision cohort which could be interpreted as relative variable importance for a particular
patient, meaning that a treating doctor could elucidate the most relevant factor in the prediction, so it
has the potential to provide tailored prognoses, and prescribe more effective treatments.

It is clear that one of the factors that strongly affects predictive performance is the choice the similarity
measure, for this reason, five similarity measures were tested, of which the weighted contribution
similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients weights generated
the personalized one-year mortality prediction models with better predictive performance; however the
other weighted contribution similarities did not show a better performance than Equal contribution
similarity, one possible explanation could be that the scores from which these weights were derived were
developed for in-hospital mortality and they do not include all the considered comorbidities and
treatments.

Despite the good results for in-hospital mortality prediction using a cosine similarity based approach
reported by Lee et Al. [2], in this study, cosine similarity was, in general, the one that had a worse
performance, indicating that importance of the comorbidities when evaluating the long-term mortality.
Moreover, the predictive performance improvement reported by Lee et Al. was 2.47% (the best



performing model presented an AUROC of 0.83 and the model that used all available data for training
presented an AUROC of 0.81), but predictive performance improvement in our study was 1.15%. This
could be explained by the fact that the population that we evaluated is especially homogeneous; all of the
patients in our study cohort present the same severe diagnosis, sepsis, have a median ICU length of stay
of 4 days, a median hospital length of stay of 11 days and a median age of 68 years old.

In chapter 8 we demonstrated the value of patient similarity-based models in critical health problems and
shows the superiority of patient similarity-based models over population-based ones. In order to improve
the discrimination between those patients who survive more than one year after ICU sepsis-related
admission and those who do not, in chapter 9 we implemented personalized Stochastic Gradient Boosting
models and in chapter 10 we developed a graph-based Laplacian regularized multilayer neural network.
The main difference between those approaches is that the first one creates a particular model for each
new patient; and the second generates a single model that is generalizable to unobserved instances, which
mean that it is only trained one time.

Best overall performance was obtained with the Laplacian regulated neural network, however since it is
based on a three-layer neural network loses interpretability. An important factor in favor of the
personalized logistic regression approach is that it could give a relative variable importance for each
precision cohort, so it has the potential to provide tailored prognoses, and prescribe more effective
treatments.

In the section 1.3 in chapter 1, we reported some of the most relevant studies in the field of prediction of
mortality within the ICU and the main conclusion were:

e Ensemble methodologies based on trees consistently report good performances.

e Mortality prediction can be approached quite linearly.

e Deep learning models require large training and feature sets to report improvements,

e Selecting an appropriate similarity metric is not a straightforward task.

The first two items were addressed and proved in this thesis since, in chapter 6 we developed a model
based on stochastic gradient boosting (SGB), an ensemble tree methodology, that outperformed the
reference adjusted models based on severity scores, and in chapter 7, we presented a scoring system,
based on logistic regression, that accurately indicates the risk of one-year mortality prediction of sepsis
patients admitted to the ICU.

The third item was glimpsed in the fact that no significant difference is observed between the Laplacian
regulated neural network and the personalized SGB models, the foregoing suggests that a future path of
investigation through the ways of deep learning will require a larger study population, and a greater
number of input variables.

The fourth item, it is in which we have our greatest contribution, since we managed to generate a
similarity metric that prove to be relevant to personalized prediction models based on logical regression,
but that also helps to improve the performance of non-linear approaches such SGB and the Laplacian
regulated neural network.

In synthesis, the discrimination analysis over the models presented in chapter 6 and chapter 7 indicate
that customized mortality prediction models for a specific disease presents a better performance that
traditional scores; and the personalized models developed in chapter 8, chapter 9 and chapter 10 surpass
the performance of population-based models; moreover, the results presented shows that this thesis is



methodologically comparable to the state-of-the-art machine learning approaches to the outcome
prediction problem, and specifically in the field of personalized mortality prediction models represents an
advance in the state of the art, since we achieve a similarity metric that improves the performance of both
linear and nonlinear models.

Despite the good performance of the models developed, it is clear that, each of these models are difficult
to interpret; therefore, it is necessary to develop easy-to-use computer tools that allow these types of
models to be implemented within the ICU.

In chapter 11 we presented the creation of a software that enables the clinical use of the machine learning
models developed for the prediction of one-year mortality of sepsis patients within the intensive care
unit. The software present three outputs that are personalized for each new patient, since they are based
on the Weighted Contribution Similarity, a measure that proved to generate model with better
discrimination capability that the model fitted with the entire study cohort.

From this outputs, the one-year mortality rate among the 100 most similar patients and the top ten most
relevant variables, help to provide context about the patient's condition, which can be used by medical
personnel to complement their diagnosis and provide better treatment; and the one-year mortality
probability indicates the individual risk of each patient according to their precision cohort.

Wrapping up, in this thesis we developed models that successfully identify those patients who are at risk
of dying one year after their sepsis related admission using demographic variables, comorbidities and
physiological data obtained during the first 24 hours of their ICU stay. The clinical usefulness of this is
immense since it has been proved that patients with sepsis have ongoing mortality beyond short-term
end points, and survivors consistently demonstrate impaired quality of life, and models that the ones
presented in this thesis allow the early identification of those patients at higher one-year mortality risk,
therefore, these patients could be observed attentively and they could be given additional care that will
improve their quality of life.

The customized scores presented in chapter 7 generate a segmentation of the sepsis patients in five
groups according to their one-year mortality risk. Since the customized scores were developed using
exclusively the data from patients with ICU sepsis-related admissions, they have better discriminatory
ability than the adjusted models based on traditional scores, moreover, since our output variable focuses
on long-term mortality, the presented customized models also outperform models that are been currently
used on the sepsis population, such as Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score,
and Severe Sepsis Mortality Prediction Model (SSS).

The customized models presented in chapter 6 and chapter 7, allow the assessment of the one-year
mortality probability of sepsis patients within the ICU, however, methodologies were also developed that
allowed the generation of personalized models which can be used at the patient level.

12.3 Limitations and future Perspectives
This thesis shows that it is possible to identify those who are at risk of dying one year after their sepsis
related admission using demographic variables, comorbidities and physiological data obtained during the
first 24 hours of their ICU stay, moreover we have proven that patient similarity metrics can improve
discrimination ability. However, our work has certain limitations; First of all, the developed models are
based on the admissions taken from a single single-center, however, we consider that the final sample is



sufficiently representative to generalize the results, since the admissions included in the study cohort
were obtained using multiple retrospective sepsis identification criteria and the used database spans for
more than 10 years.

Another important limitation, is that the personalized models, requires a relatively high among of time to
identify the precision cohort for a new patient, concretely, the methodology used in chapters 8 and 9
implies the construction of a similarity matrix W € RNxN where N is the total number of observations,
which implies an algorithm with complexity 0(n?), moreover, for the identification of the precision
cohort, an sorting function is also used over the vector with the similarity metric values between any
patient and the remaining N-1 patients, a process that implies an algorithm with complexity O (nlogn).

According to the above, it is clear that, with current implementations, the number of instructions required
toidentify the precision cohort would increase drastically if the size of the population increases, therefore,
the research and implementation of algorithms that have a linear complexity O (n), and the adaptation of
the developed methodologies to parallel and distributed computing environments is proposed as future
work. Nevertheless, we consider that, with our current population, such time is not excessive (about 20
minutes in a regular laptop, but not formal test was executed) considering the fact that the model can be
applied just 24 hours after the ICU admission and it serves to estimate the probability of mortality one
year after the admission.

Itis important to note that for the non-linear models presented in this thesis (personalized SGB and graph-
based regularized multilayer neural network) a much smaller amount of tests runs were executed
compared to linear models; The reason for this was the large amount of computing time necessary to
evaluate these models on more than a thousand patients. Similarly, the parameters used for the
identification of the precision cohort in the non-linear models were those that presented the best
performance when the personalized logistic regression models were constructed, and it is reasonable to
expect that different algorithms have different optimal parameters, in particular, we consider that the
adequate number of similar patients can be especially sensitive to the used machine learning technique;
Unfortunately, with the computing capacity and the algorithms that we currently have, these tests were
considered unfeasible.

According to the above it would be desirable to externally evaluate the generated models in a Colombian
context, for this it is necessary to build a quality database which would imply technical challenges
associated with the data acquisition and storage, procedural challenges associated with clinical permits
and ethical challenges related to patient privacy.

Our results indicate that a well selected patient similarity metric improves discrimination ability, for this
reason further developments in the field of personalized models within the ICU should focus on the
selection of a good similarity measure; according to this, in the short term techniques like feature
selection, predictor weighting schemes, or experts’ opinions should be used to develop new patient
similarity measure that improve the performance of prediction models. It will be also interesting to
implement distance metric learning approaches.

On the other hand, our graph-based regularized multilayer neural network prove to be a promising route,
thus, novel machine learning approaches based on graph-structured data like graph convolutional
networks should be implemented for mortality prediction task.



Finally, in order to reduce the computation time, it would be necessary to implement the methodologies
presented in this thesis on a software framework that allow distributed storage and processing of data
such as Apache Spark.

12.4 Diffusion: Publications and Conference presentation

Parts of the work presented in this thesis have been published in international journals and the
proceedings of international conferences. Publications relating to this work are listed below:

1. Garcia-Gallo, J. E., Fonseca-Ruiz, N. J., Celi, L. A., & Duitama-Mufoz, J. F. (2018). A machine
learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care
Unit with a diagnosis of sepsis. Medicina intensiva.

2. Garcia-Gallo, J. E., Fonseca-Ruiz, N. J., & Duitama-Mufioz, J. F. (2019). Scoring System for the One-
Year Mortality Prediction of Sepsis Patients in Intensive Care Units. In World Congress on Medical
Physics and Biomedical Engineering 2018 (pp. 367-370). Springer, Singapore.

Presentations were also made at national and international conferences:

1. Il Seminario Internacional de Actualizacién en Ingenieria Biomédica. Held in Bucaramanga,
Colombia from octuber 26 to 27, 2017.

2. |EEE Conference on Biomedical and Health Informatics (BHI) 2018. held in Las Vegas, United States
of America, from March 4 to 7, 2018.

3. 10th International Conference on Bioinformatics and Biomedical Technology (ICBBT 2018) held in
Amsterdam, Netherlands, from May 16 to 18, 2018.

4. World Congress on Medical Physics and Biomedical Engineering 2018 (WC2018) held in Prague,
Czech Republic, from June 3 to 8, 2018.
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