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ABSTRACT 
 

The Intensive Care Unit (ICU) is a hospital department that provides intensive treatment to patients with 

severe and life-threatening conditions. The primary function of the ICU is to deliver care which cannot be 

administered in other areas of the hospital. Patients in the ICU are the most heavily monitored patients 

in the entire hospital; for this reasons the ICU is a data rich environment, even to the point of exhaustion.  

The vast amount of data obtained from a single patient in an intensive care unit makes it humanly 

impossible to organize and interpret it in the required time, thus, scores that model the patient severity 

and can be related with the mortality have been created. The primary motivation of this scores was to 

derive further insight of the patient condition and improve patient care. 

Traditionally, this scores are population-based and provide statistically rigorous results for an average 

patient, and are useful to guide prognostication, to assess ongoing disease development and organ 

function, to compare ICU performance over time and across units and to compare clinical trial population 

outcomes but, pitifully, they are not precise enough to draw conclusions about groups of patients that 

share a relevant clinical condition, like a particular disease, and even less to be used for individual 

prediction of outcomes.  

When standard scores do not fit the data of a specific population well enough, two approaches to adapting 

them for use among patients with the specific condition have been used. One approach would be to 

modify the traditional score by adapting them for use specifically among patients that share a condition, 

which we will be referring as adjusted models. The other approach would be to develop entirely new 

models based on a population that shares a common characteristics and that incorporates additional 

variables that could potentially enhance accuracy, which we will be referring as customized models. 

Sepsis patients are a specific population that is especially vulnerable, since they present a high in-hospital 

mortality of 25–30% and patients with sepsis are frequently cared for in ICUs, either because sepsis itself 

led to their admission or because sepsis developed as a complication of their admission for other reasons; 

moreover, it has been reported that sepsis survivors had substantially increased risks of all-cause 

mortality, as well as major health complications at 1 year after discharge when compared with the general 

population. 

For sepsis patients within the ICU, mortality prediction has been accessed through both adjusted and 

customized models; however, approaches addressed so far have focused on the in-hospital mortality 

prediction, and no methods have been proposed to identify and predict long-term risk and mortality in 

sepsis patients that are being taken care of in the ICU. 

According to the above, in this work, we present the development of a model that goes beyond the 

prediction of in-hospital mortality and alert those patients who may have a poor prognosis after being 

discharged from the hospital, and we formulate our research question as follows: Among adult ICU 

patients, is it possible to identify those who are at risk of dying one year after their sepsis related 

admission using demographic variables, comorbidities and physiological data obtained during the first 24 

hours of their ICU stay? 



In order to answer such a question, we used three approaches. First we developed a custom one-year 

mortality prediction model using a Stochastic Gradient Boosting (SGB) technique. The model was based 

on the data of 5650 ICU patient’s admissions that were retrospectively identified as having sepsis, and 

used 132 predictors, obtained from variables found in the literature review or suggested by experts. In 

the first approach, we also used two techniques to measure the importance of the used predictors, and 

we found 17 predictors that allowed us to develop an SGB model with a performance similar to the 

complete model (which uses all the 132 predictors).  

In the second approach, we developed a methodology that allows the stratification of patients according 

to their one-year mortality risk. For this, we extended our study cohort using two additional retrospective 

criteria for sepsis identification and focusing only on the variables that were relevant (according to the 

results of the previous approach) or that were routinely taken to patients within the ICU, obtaining 15082 

admissions; From said cohort we developed two scores systems that are correlated with the one-year 

mortality risk of the patients.  

Although the developed customized models for sepsis patient within the ICU proved far outperform 

adjusted scores for the one-year mortality prediction task, they continue to be population-based and 

therefore they provide “the average best choice” for sepsis patients. For this reason, in the third approach, 

we also propose and evaluate the generation of personalized models based on patient similarity metrics. 

The goal of this personalized models is to identify patients who are similar to a new patient and derive 

insights from the data of those similar patients to provide personalized predictions.  

Personalized models has been widely used for predictions in several fields, including music, movies and e-

commerce, however, there are still very few studies that focus on personalized prediction models based 

on health data prediction. Moreover, no studies have been reported in which personalized models are 

developed from a population known to be very homogenous, such as our study population, where it is 

known that all patients have infection, organ dysfunction, and ICU stays of more than 24 hours.  

The developed models, with the three approaches, showed discrimination superior to adjusted models 

based on traditional severity scores and, the population based methodologies also presented adequate 

calibration. Specifically, our personalized models demonstrated the value of patient similarity metrics in 

outcome prediction modeling and showed superiority when compared to population-based models. Also, 

since we focused on long-term mortality prediction, these models successfully identify those patients who 

are at risk of dying one year after their sepsis related admission using demographic variables, 

comorbidities and physiological data obtained during the first 24 hours of their ICU stay, indicating early, 

which patients should be accompanied, observed attentively and provided with additional care that 

improve their quality of life. 

Finally, in order to enable the clinical use of the machine learning models developed for the prediction of 

one-year mortality of sepsis patients within the ICU, we developed a software based on the models that 

presented a better performance and the functionalities that are considered useful so that intensivist can 

obtain details of the particular condition of each patient and provide better care. 

  



PART 1: CLINICAL SCENARIO 
 

This part of the thesis sets the stage for outcome prediction within the Intensive Care Units, details the 
concept of sepsis, raises our research question, and outlines the methodology to answer it. Chapter 1 
presents the way in which mortality are currently being predicted within the ICU. Chapter 2 contextualizes 
the concept of sepsis and indicates why it is a condition that is worth studying and Chapter 3 presents 
how the general perspective detailed in the first two chapters is transformed in a pertinent research 
question, it also includes our study design and the selected outcome of interest. 
 
 

  



CHAPTER 1. INTENSIVE CARE UNITS 
1.1 Introduction  

An Intensive Care Unit (ICU) is a special area of a hospital that provides intensive treatment to patients 

with severe and life-threatening conditions; these patients are constantly monitored and are cared by 

highly trained personnel. A large number of physiological and laboratory variables are gathered daily from 

the patients in an ICU, which allows caregivers to track their progress.  

However, the vast amount of data obtained from a single patient in an intensive care unit makes it 

humanly impossible to organize and interpret it in the required time [1]; for this reason, different types 

of indicators that seeks to summarize the patient's condition have been developed. 

The indicators used in medical practice within the ICU can be broadly divided into: those that synthesize 

multiple physiological and demographic data into a single number that represents the severity of the 

illness of a patient and those based on a single physiological measure, also known as a biomarker, which 

is used for interpretation, evaluation and understanding of different disease processes. 

The indicators of the first group are developed from statistical analysis of the data collected for a large 

number of patients and seek to express in a single number the severity of a patient's illness; in general 

this score increases with the mortality risk. These kind of classification systems are used to determine the 

risk in population studies conducted in ICU, and provide a method for benchmarking between intensive 

care units of different hospitals [2–6].  

The indicators of the second group are proposed when a physiological measurement can be used to 

differentiate normal biological processes from pathological ones or to indicate the response to a 

therapeutic intervention. They are based on a deep understanding of the causes that vary such 

measurement within the organism, and are corroborated by epidemiological studies. The main uses of 

these kinds of indicators are predicting prognosis and guide treatment of patients. 

In this work, we present the development of a composite set of models for the prediction of long-term 

mortality in sepsis patients within the ICU; These models are based on the methodologies used by the 

indicators of the first group, but are complemented by physiological measures that have proven their 

usefulness as sepsis biomarkers. 

1.2 Severity-of-illness scoring systems 
Scoring systems used in critically ill patients can be broadly divided into scores that assess disease severity 

and use it to predict outcome and scores that assess the presence and severity of organ dysfunction, in 

this section we review the most commonly used severity-of-illness scoring systems in each of these two 

groups. We present different versions of the scores that have been updated over time, and list the 

variables of the most used version of each of the reviewed scores [7]. 

1.2.1 Outcome prediction scores 
The outcome prediction scoring systems were developed to indicate the mortality risk of groups of ICU 

patients, they were not designed for individual prognostication, and usually comprises of two parts, 1) a 

number assigned to disease severity, commonly known as the score, and a model that gives the probability 



of hospital mortality of the patients[7, 8] . The following scores are currently used for assessing the acuity 

of a general ICU population.  

1.2.1.1 Acute Physiology and Chronic Health Evaluation 

The original Acute Physiology and Chronic Health Evaluation (APACHE) was developed in 1981 to classify 

groups of patients on the basis of severity of illness. APACHE uses a logistic regression model with hospital 

mortality as the outcome variable and a set of predictors including comorbidities, age, gender and 34 

physiological measures. APACHE contains two parts: a) a physiology score representing the degree of 

acute illness and b) a preadmission health evaluation indicating health status before acute illness [9]. Four 

years later appears APACHE II, a simplified version of the previous version, which aims to improve its 

clinical acceptability. It uses a point score based upon values of 12 routine physiologic measurements 

(taken during the first 24 h after admission), age and previous health status to provide a general measure 

of severity of disease. Table 1.1 presents the APACHE II scoring system. 

Table 1.1 Acute Physiology and Chronic Health Evaluation Score II. The points presented in the table are the values that are 
summed to the score when a patient is in a particular group for each of the predictors; for instance, in the temperature of the 
patient is above 41°C, a four is summed to the total score.  

 

APACHE III appears in 1991 and largely uses the same variables as APACHE II; however, it uses a different 

way to collect the neurological data -no longer using the Glasgow Coma Scale (GCS), and also adds 

particularly two important variables: The patient’s origin and the lead-time bias. Most recently, APACHE 

IV was developed using a database of over 100,000 patients admitted to 104 ICUs in 45 hospitals in the 

United States between 2002 and 2003. In APACHE IV predictor variables are similar to those in APACHE II, 

but it includes new variables such as urine output, blood urea nitrogen, albumin, bilirubin and glucose; 

Chronic health conditions (lymphoma, leukemia and metastatic tumor) treatments (Thrombolytic 

therapy, Mechanical ventilation) and administrative information (ICU admission diagnosis, ICU admission 

source and Length of stay before ICU admission) were also added. [7, 8, 10]. 



1.2.1.2 Simplified Acute Physiology Score 

The Simplified Acute Physiology Score (SAPS) was developed in 1984, and was intended as a simplification 

for the original APACHE that differs from APACHE II in the number of variables.  SAPS reduces the number 

of the physiological parameters to 13 and introduces age as new parameter. Later, in 1993, SAPS II was 

developed and  includes 17 variables: 12 physiological variables, age, type of admission, and 3 variables 

related to underlying disease. The SAPS II score was validated using data from consecutive admissions to 

137 ICUs in 12 countries. Table 1.2 presents the SAPS II scoring system [5, 7]. 

 

Table 1.2 Simplified Acute Physiology Score II. 

 

While SAPS II was developed on ICUs in Western Europe, SAPS III included a world-wide database of 

16,784 patients; additionally, SAPS III includes 20 variables divided into three parts related to patient 

characteristics prior to admission, the circumstance of the admission, and the degree of physiological 

derangement within 1 hour before or after ICU admission. Unlike the other scores, SAPS III includes 

customized equations for prediction of hospital mortality in seven geographical regions: Australasia; 

Central, South America; Central, Western Europe; Eastern Europe; North Europe; Southern Europe, 

Mediterranean; and North America [7, 8]. 

1.2.1.3 Oxford Acute Severity of Illness Score 

The Oxford Acute Severity of Illness Score (OASIS) was developed in 2013. It has equivalent discrimination 

and calibration of the APACHE IV from which it was derived. OASIS score uses the worst measurements 

from the first 24 hours of ICU admission [11], and uses 81,000 admissions from a large multi-center 

database collected by the Cerner corporation (Kansas City, MO, United States). To select subsets of the 

available features OASIS uses a genetic algorithm, and uses a customized Particle Swarm Optimization 

method to calculate the score. As consequence, two logistic regressions using OASIS as a covariate were 

developed for both ICU and hospital mortality[12]. Table 1.3 presents the OASIS scoring system. 



Table 1.3. Oxford Acute Severity of Illness Score 

 

1.2.1.4 Severity score comparisons 

Table 1.4. describes the original performance of the outcome prediction scores described above. It 

includes the year of publication, the size of the development population, the moment in which the data 

are taken and their respective performance measures for hospital mortality discrimination. The predictive 

ability of the presented scores is measured with the Area Under the Receiver Operating Characteristic 

(AUROC) curve which is a performance measurement for binary classification problems that indicates how 

much model is capable of distinguishing between two classes. The AUROC returns a value between 0 and 

1, the higher the AUROC the better the model. An AUROC close to 0 indicates that the model swapping 

the predictions (prediction ones as zeros and vice versa); an AUROC of 0.5 means that the model has no 

class separation capacity and an AUROC close to 1 indicates that the model has good measure of 

separability. 

The AUROC performance presented in Table 1.4. shows the most recent versions of the APACHE score 

have a lower performance than previous version, however the test dataset is much bigger. In the case of 

SAPS scores, it can be observed that the SAPS III performance is lower that the SAPS II and the testing set 

it smaller, however, the important advance in this version is the reduction of data collection time (around 

two hours instead of the usual 24) and the inclusion of mortality prediction models for specific geographic 

regions. Despite the fact that OASIS is the most recent scoring system, among those reported, it is 

observed that its performance is the least, however, it is important to note that the objective of OASIS (13 

variables) development was to create a score with discrimination and calibration similar of the APACHE 

IV (142 variables) but with less variables. 

Table 1.4. Original performance of the outcome prediction scores. 

 



Table 1.5. Studies which evaluated APACHE scores in an independent sample. 

 



Table 1.6. Studies which evaluated SAPS scores in an independent sample. 

 



Table 1.7. Studies which evaluated OASIS scores in an independent sample. 

 
 
Several studies have analyzed the outcome prediction scores. In a recent PhD thesis by Johnson some 
performance studies are presented [13]. The inclusion criteria for a validation study was a cohort with at 
least 100 patients, a general ICU population (no disease specific evaluation) and evaluation of the model 
on an independent cohort. Table 1.5 and Table 1.6 summarizes the studies for APACHE and SAPS scores.  
 
In addition, the external performance studies conducted in order to validate OASIS are presented in Table 
1.7; OASIS uses a large multi-center population of ICU patients admitted to hospitals in the United States 
and additionally includes two external validation studies; the first one uses the Multiparameter Intelligent 
Monitoring in Intensive Care (MIMIC) II database, a publicly available ICU database sourced from the Beth 
Israel Deaconess medical center in Boston, Massachusetts; and the second one takes place at a large 
tertiary teaching hospital in Oxford, England; an additional study that evaluates OASIS over an 
independent general ICU population of 470 patients is also presented [14]. 
 
The distribution of the AUROC performance for the studies is presented in Figure 1.1. It can be observed 
that there is no significate difference between the APACHE and SAPS scores. Figure 1.2 presents the 
number of different countries in which studies are reported, it can be observed that beside being the 
score that are appear in more performance studies, SAPS II is also, the score reported in a greater number 
of countries. 

 

 
Figure 1.1. Boxplot of the AUROC performance of the studies on independent cohorts for APACHE, SAPS and OASIS scores. 



1.2.1 Organ dysfunction scores 
Other type of severity-of-illness scoring systems are designed to access the degree of organ dysfunction 

rather than to predict the outcome of a patient.  This section describes two of the most several organ 

dysfunction scores used in ICU patients [7]. 

 

 
Figure 1.2.  Number of different countries in which studies are reported. 

1.2.1.1 Logistic Organ Dysfunction Score 

The Logistic Organ Dysfunction Score (LODS) was developed in 1996, and uses a database of 13,152 

admissions from 137 ICUs in 12 countries. LODS includes 12 variables to represent the function of six 

organ systems (neurologic, cardiovascular, renal, pulmonary, hematologic, hepatic). It takes the worst 

value for each variable in the first 24 hours of admission. Each system uses a score from 0 (that means no 

dysfunction) to 5 (that represents maximum dysfunction). Since LODS is a weighted system, it is possible 

to combine the total degree of organ dysfunction across the six organ systems in a single score that can 

be used as covariate in a logistic regression model to convert the global score into a probability of 

mortality [7, 8, 15]. Table 1.8 presents the LODS scoring system. 

Table 1.8. Logistic Organ Dysfunction Score 

 



1.2.1.2 Sequential Organ Failure Assessment 

The Sepsis-related Organ Failure Assessment score was first developed in 1994; however, it eventually 

became known as the Sequential Organ Failure Assessment (SOFA) as it was applied outside of septic 

populations. Each function of the six organ systems (respiratory, cardiovascular, renal, hepatic, central 

nervous, coagulation) is scored from 0 (normal function) to 4 (most abnormal), which result  in a possible 

score of 0 to 24. SOFA score takes the worst value on each day is recorded, and the cardiovascular 

component is assessed by a treatment-related variable (dose of vasopressor agents) instead of the 

composite variable [7, 8, 16]. Table 1.9 presents the SOFA scoring system. 

Table 1.9. Sequential Organ Failure Assessment 

 

1.2.1.3 Quick Sequential Organ Failure Assessment 

To facilitate recognition in prehospital, ward, and the emergency department, the Third International 

Sepsis Consensus Definitions Task Force [17] recommended a new severity of illness classification system, 

called "qSOFA" for quick sepsis-related organ dysfunction assessment score. The score ranges from 0 to 3 

points. The presence of 2 or more qSOFA points near the onset of infection was associated with a greater 

risk of death or prolonged intensive care unit stay. Table 1.10 presents the qSOFA system. 

Table 1.10. quick Sequential Organ Failure Assessment 

 

1.2.1.4 Organ dysfunction scores and new definition of sepsis 

Recently, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) update the 

definitions for sepsis and septic shock. The Task Force recommendations is that Sepsis should be defined 

as life-threatening organ dysfunction caused by a dysregulated host response to infection [17].    

In the absence of a gold-standard diagnostic test for sepsis, the Task Force evaluates four clinical criteria 

in order to operationalize the new definition. They include SOFA, LODS, systemic inflammatory response 

syndrome (SIRS). the most important findings were: among ICU encounters with suspected infection, the 

predictive validity for in-hospital mortality of SOFA was not significantly different than the more complex 

LODS; but was statistically greater than SIRS and qSOFA. For this reason, the Sepsis-3 consensus 



recommend that for clinical operationalization, organ dysfunction can be represented by an increase in 

the SOFA score of 2 points or more which is associated with an in-hospital mortality greater than 10%. 

Among encounters with suspected infection outside of the ICU, the predictive validity for in-hospital 

mortality of qSOFA was statistically greater than SOFA and SIRS, supporting its use as a prompt to consider 

possible sepsis [18].  

1.3 Mortality prediction in the ICU 
Patient mortality is one of the most important clinical outcomes within an ICU. Traditionally, models 

associated with severity scores are used to assess the in-hospital mortality, such models are based on the 

analysis of large populations, and often provide statistically rigorous results for an average patient but are 

also expensive, time-consuming, and prone to selection bias, moreover, these indicators lack the precision 

required for use at the individual level and they yielded widely dissimilar performances when applied to 

different groups of patients, Table 1.11 presents as example six studies which compare severity score 

based models on different populations [19–24]. 

Table 1.11. Studies which evaluated Scoring Systems for disease specific samples. 

 



It is important to highlight the work of Jentzer et al, since they present the largest published study 

comparing outcomes between patients ≥70 years of age with patients <70 years of age in a contemporary 

population. In such work, the authors concluded that AUROC values were equivalent for the APACHE-III, 

APACHE-IV and SOFA scores for in-hospital mortality, but it can also be observed that severity scores have 

lower discrimination for mortality in patients ≥70 than in older patients, which indicates that mortality 

prediction models based on traditional severity scores present errors at patient data away from the 

average. 

Efforts have been made to develop mortality prediction models with improved performance, and three 

strategies (That can be mixed with each other) stand out. The first one is based on the creation of specific 

models for groups of patients that shares a common characteristic (like diagnostics, service type or a 

similarity metric). The second one hinge on advanced machine learning algorithms different than logistic 

regression, and the third one relies on patient similarity. Table 1.12 presents some of these studies [1, 2, 

25–32].    

Table 1.12. Studies in the field of  mortality prediction. 

 



Table 12. (Continued). Studies in the field of   mortality prediction. 

 

Three of the reported works, evaluated various machine learning models on the same cohort an assessed 

mortality prediction. Pirracchio et Al. [27] used a Super Learner (SL) algorithm to predict in-hospital 

mortality, SL is a supervised learning algorithm that is designed to find the optimal combination from a 

set of prediction algorithms, meaning, that the SL is an ensemble machine learning technique that uses 

multiple learning algorithms to obtain better prediction performance, and in theory it perform at least as 

well as the best member of the library of prediction algorithms that it uses. In their work, Pirracchio et Al. 

used twelve prediction algorithm: Penalized Generalized Linear Model (GLM), Bayesian GLM, GLM, 

Stepwise regression, Neural network, Spline regression, Random forest, Generalized Additive Model, 

Bagging, Boosting, Bayesian additive regression trees and Pruning, which means that, in order to build the 

SL, the performances of each of the twelve prediction algorithms were assessed, and, in a test done with 

non-processed variables,  it was found that best performing algorithm was the random forest and the 

worst performing one was neural network. 

Purushotham et Al. [30] benchmarked the performance of the deep learning models with respect to 

traditional severity scoring systems and the super learner described by Pirracchio et Al. on the Medical 

Information Mart for Intensive Care III (MIMIC-III) database. The evaluated deep learning models were: 

Feedforward neural networks (FFN), recurrent neural network (RNN) and multimodal deep learning model 

(MMDL). In their work Purushotham et Al. used various mortality prediction benchmark tasks: In-hospital 

mortality, short-term mortality (2-day and 3-day mortality) and long-term mortality (30-day and 1-year); 

they also selected three sets of features: Feature set A, consisting of the 17 processed features used in 

the calculation of the SAPS-II score; feature set B, consisting of 20 raw values related to the SAPS-II score 

and feature set C, consisting of 136 raw features. For all the mortality prediction tasks evaluated with 

feature set A there is not much difference between the MMDL model and the super learner performances, 



however when raw features are used the MMDL model consistently obtains the best results.  Indicating 

that deep learning models benefit from large number of raw features. 

Barret et Al. evaluated various machine learning models, including a deep learning model on a specific 

population: ICU patients with acute myocardial infarction and post myocardial infarction syndrome [31]. 

In their study Barret et Al. analyzed data from 5436 patients and found out that, from the 27 used 

algorithms, the best performing ones were logistic model trees and simple logistic model.  

Another remarkable study was presented by Johnson et Al. [28]. and focus on the reproducibility of 

mortality prediction studies within the ICU. In their study Johnson et Al. reproduced 38 experiments that 

use MIMIC database, and compare the performance reported in the studies against gradient boosting and 

logistic regression models using a simple set of features. The outcome for prediction was define by the 

study, and was one of the following: in-hospital mortality, 30-day post ICU admission mortality, 48-hour 

post ICU discharge mortality, 30-day post ICU discharge mortality, 30-day post hospital discharge 

mortality, 6-month post hospital discharge mortality, 1-year post hospital discharge mortality, and 2-year 

post hospital discharge mortality. The cohorts were also defined by the study, since Johnson et Al. 

attempted to reproduce each of the cohorts used in the studies. Unlike the studies reported above, in 

which multiple machine learning algorithms were evaluated on the same cohort, in this work two 

algorithms were evaluated on multiple cohorts with the same features. On the 38 reproduced 

experiments all the non-linear prediction models (gradient boosting) outperformed the linear prediction 

models (logistic regression), and, in average, the discrimination performance difference was 2.42%, which 

indicates that the mortality prediction can be approached quite linearly. On the other hand, the gradient 

boosting exhibited better results than those published in the review studies in 32 of the 38 experiments; 

and the logistic regression showed better results in 27 experiments, 16 of which were approached with 

non-linear models in the original studies. 

It can also be observed that in the field of personalized predictive modeling based on patient similarity for 

mortality prediction in the ICU, Lee et Al. deployed a cosine-similarity-based patient similarity metric to 

identify patients that are most similar to an index patient and subsequently custom-build a 30-day 

mortality prediction model which outperformed the results obtained with models fitted with all the data 

and traditional severity of disease scores [2], in their experiments 5000 was determined to be the 

minimum number of similar patients for logistic regression to ensure sufficient variability in categorical 

predictors within training data (these minimum numbers of similar patients could be different for other 

datasets and predictors) and the best performance (highest AUROC) were achieved with logistic 

regression when 5000 or 6000 most similar patients were used for training the personalized model. One 

of the main conclusions of this work is that using a subset of similar patients rather than a larger, 

heterogeneous population as training data improves mortality prediction performance at the patient 

level. In this study, predictors equally contribute to the patient similarity metric, the patient cohort is a 

representation of patients with a wide variety of diagnoses and conditions and a personalized model is 

fitted for each index admission. In a later work, Lee et Al. [29] used a random forest proximity measure as 

a patient similarity metric in the context of personalized mortality prediction within the ICU, this work 

used the same population and methodology that their previous one, and it can be observed that, in 

comparison with the death counting (DC), logistic regression (LR), and decision trees (DT) results from 

their previous work that studied a cosine similarity as patient similarity metric, the predictive performance 

was similar, moreover, random forest and case-specific random forests did not benefit from 

personalization via the use of the random forest patient similarity metric. The above, and the fact that the 



random forest modeling approaches did not benefit from personalization via the use of the random forest 

similarity measure, indicate that selecting an appropriate similarity metric is not a straightforward task. 

1.4  Conclusion  
General severity of illness scores can be useful to guide prognostication, to assess ongoing disease 

development and organ function, to compare ICU performance over time and across units, to compare 

clinical trial population and outcomes.  The general traditional scores were developed to be used in mixed 

groups of ICU patients, for this reason their accuracy in subgroups of patients can be questioned; even 

more since the begging of severity of illness scores it is clear the need to create specific scoring systems 

according to the characteristics of the patients, that is why scores like APACHE and SAPS were developed 

for adult population while the PRISM was constituted as a pediatric score and the SAPS III include specific 

coefficients to geographic regions. 

In a survey Bouch listed the characteristics for an ideal scoring system [33]: 

1. On the basis of easily/routinely recordable variables 

2. Well calibrated 

3. A high level of discrimination 

4. Applicable to all patient populations 

5. Can be used in different countries 

6. The ability to predict functional status or quality of life after ICU discharge. 

Studies presented in Table 1.11 suggest that no scoring system currently incorporates all these features, 

specifically the items 4 and 5 are challenging to fulfill, that is why machine learning approaches and 

disease-specific scoring systems, like the ones presented in the Table 1.12, are increasingly being 

developed. Specifically, from the works that evaluated multiple models it can be interpreted that deep 

learning models require large training and feature sets to report improvements, which can be seen in the 

fact that in the Barret et Al. study [31] (performed on a specific population) the simple logistic and logistic 

trees methodologies outperformed the deep learning models; but in the Purushotham et Al. [30] study 

(performed on a general population) the  deep learning models exhibited the best results. In addition to 

this, it can also be observed  from Table 1.12 that the ensemble methodologies based on trees (like 

random forest and gradient boosting) consistently report good performances. 

The customize models have proved to perform better than the general population approach, however 

these studies continue to be population-based and therefore they generally provide “the average best 

choice”. One developing idea in this field is personalized predictive modeling based on patient similarity. 

The goal of this approach is to identify patients who are similar to an index patient and derive insights 

from the data of similar patients to provide personalized predictions. This approach has been widely used 

for personalized predictions in other fields, including music, movies and e-commerce, however, there are 

still very few studies that focus on personalized prediction driven by patient similarity metrics within the 

ICU. 

  



CHAPTER 2. SEPSIS 
2.1 Introduction  

In this chapter we seek to show how the outcome prediction problem for sepsis patients within the ICU is 

currently being addressed, for this, we first present the current definition of sepsis, the incidence of the 

condition and the estimates for its mortality. We also present four criteria for sepsis identification based 

on retrospective analysis of ICD codes and administrative data generated at the end of the hospital stay. 

Then we indicate the long-term outcomes for patients with sepsis, and finally we present studies focused 

on the mortality prediction exclusively for sepsis patients is within the ICU.   

Sepsis is a word derived from the ancient Greek [σηψις], which means the decomposition of animal- or 

plant-based organic materials by bacteria.  The modern concept was introduced in 1991 in a consensus 

conference held by the American College of Chest Physicians (ACCP) and the Society of Critical Care 

Medicine (SCCM) where sepsis was defined as the host's inflammatory response to infection [34, 35]. 

From that moment sepsis was considered a condition resulted from a host’s systemic inflammatory 

response syndrome (SIRS) to infection. When organ dysfunction occurred, it was considered severe sepsis, 

a condition that, if aggravated, could turn into septic shock, defined as “sepsis-induced hypotension 

persisting despite adequate fluid resuscitation.” [36, 37]. Table 2.1 presents the summary of definitions. 

 

Table 2.1 Definitions for systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic shock 

 

The SIRS criteria have been used for identification of potentially septic patients because they can facilitate 

enrollment for research purposes; however, their utility is limited by the lack of specificity since up to 90% 

of patients admitted to the ICU fit the criteria for SIRS [38]. The above, and the advances into the 

pathobiology, management, and epidemiology of sepsis led to the reexamination of the definitions. As 

consequence, in The Third International Consensus Definitions for Sepsis and Septic Shock, a task force 

proposed a new definition that incorporate the current understanding of sepsis biology, defining sepsis 

as a “life-threatening organ dysfunction caused by a dysregulated host response to infection”[17, 18]. 

Under this new definition, sepsis involves organ dysfunction, indicating a pathobiology more complex than 

infection with an accompanying inflammatory response. It  makes the term “severe sepsis” superfluous 



[17], and septic shock is defined as a subset of sepsis with profound circulatory, cellular, and metabolic 

abnormalities [39]. 

For clinical operationalization, sepsis can be diagnosed when organ dysfunction happens, represented by 

an increase in the Sequential Organ Failure Assessment (SOFA) score of 2 points or more, consequent to 

an infection [40]. Septic shock can be identified using the clinical criteria of hypotension requiring 

vasopressor therapy to maintain mean arterial pressure (MAP) at least of 65mmHg and having a serum 

lactate level greater than 2 mmol/L after adequate fluid resuscitation [39]. Table 2.2 summarizes these 

definitions. 

Table 2.2 New definitions for sepsis, organ dysfunction, and septic shock. 

 

2.2 Sepsis criteria 
To operationalize the new definition of sepsis, presented in the previous section, the task force of Third 

International Consensus Definitions for Sepsis and Septic Shock recommends to replace the SIRS criteria 

with the SOFA score [40].However, despite the efforts of the task force for standardize a sepsis diagnostic, 

there remains some controversy around the new definitions [41–46]: new definitions did not involve low 

or middle income countries; as result, SOFA is a score is routinely calculated in some, but not all, ICUs;  

the decision of replace SIRS with SOFA was based on a retrospective study conducted  with ICU patients 

with sepsis in which it was observed that 1 out of 8 patients with sepsis and multiorgan failure did not 

have at least 2 SIRS criteria, and, semantically, it cannot be ignored that in 7 out of 8 cases the patients 

met the “at least 2 SRIS” criteria. Even the experts in sepsis pathobiology of the consensus recognized 

some limitations since some of the definitions and clinical criteria were generated through voting, and 

unanimity was not always presented. 

In a respond to the debate, Singer (one of the specialist of the sepsis-3 task force), argues that the main 

reason why SIRS was not included in the operationalization of the new sepsis definition was based on 

pathophysiology, because SIRS criteria are not particularly good in distinguishing a normal and 

appropriate host response to an infection from an inappropriate response resulting in a more serious 

infection [41]. 

Sepsis-3 definition appears to be an improvement over the previous iterations and the main purpose of 

using SOFA score for operationalizing sepsis is to diagnose the condition. In contrast to SIRS, the new 

definition is all-inclusive as it reflects new onset organ dysfunction. On the other hand, for retrospective 

studies it is possible to identify sepsis by using different criteria that uses ICD codes and administrative 

data generated at the end of the hospital stay. 

2.2.1 Explicit sepsis 
The current definition of sepsis indicates that the condition is life-threatening organ dysfunction caused 

by a dysregulated host response to infection, for this reason the codes of the International Classification 



of Diseases (ICD) which best frame the new definition are 995.92 for severe sepsis and 785.52 for septic 

shock. These codes are extremely specific to sepsis, but have very low sensitivity.  

2.2.2 Angus criteria  
The Angus criteria is a validated protocol that uses administrative data to identify sepsis patients. The 

algorithm for the Angus [47] criteria first looks to identify patients coded for severe sepsis or septic shock. 

If patients do not have this code, all discharge diagnoses are reviewed for an infection code, if present 

then procedure codes/diagnoses codes are checked for organ dysfunction codes [38]. Table 2.3 presents 

the ICD-9-CM-based classification of acute organ dysfunction used by the Angus Criteria. 

Table 2.3. Angus ICD-9-CM-based classification of acute organ dysfunction. Where 3- or 4-digit codes are listed, all associated 
subcodes were included. 

 

2.2.3 Martin criteria 
The criteria developed by Martin et al.[48] sorts patients either by codes for septicemia, septicemic, 

bacteremia, disseminated fungal infection, disseminated candida infection or disseminated fungal 

endocarditis in addition to an organ dysfunction code or an explicit diagnosis: severe sepsis or septic shock 

[38]. Table 2.4 presents the ICD-9-CM-based classification of acute organ dysfunction used by the Martin 

Criteria. 

2.2.4 Sepsis-3 
In a recent study Desautels et al. aimed to study and validate a sepsis prediction method, for the new 

Sepsis-3 definitions based on retrospective data [49]. For this they took the earliest culture draw or 

antibiotic administration as the time of suspicion of infection, and then they define a window of up to 48 



hours before this time and 24 hours after this time. The SOFA score, at the beginning of this window, was 

compared with its hourly value throughout this window; and when the hourly value was ≥ 2 points higher 

than the value at the start of the window the particular admission was designate as septic.  

Table 2.4. Martin ICD-9-CM Based Classification of Acute Organ Dysfunction Associated with Sepsis. 

  



In this work, we will use these four criteria to identify the admissions that will be part of our study cohort. 

Since each of these identification methodologies are based on different ICD-9 codes for the determination 

of organ dysfunction, it is expected that they yield widely different patient groups; however they all fulfill 

the current definition of sepsis: “life-threatening organ dysfunction caused by a dysregulated host 

response to infection”, making them appropriate for our study. 

2.3 Global Incidence and Mortality of Hospital-treated Sepsis 
So far we have presented the definition of sepsis, and how the condition can be identified both at the 

time of attention and retrospectively, however, we have not yet seen why sepsis is considered a delicate 

health problem. In this chapter we present the incidence and mortality of hospital-treated sepsis 

elucidating why its study is relevant. 

 At the annual congress of the European Society of Intensive Care Medicine (ESICM) in October 2002, the 

Surviving Sepsis Campaign was formed with the objective to raise awareness to reduce sepsis mortality. 

At that time, sepsis was considered a leading cause of death in the intensive care unit with a worldwide 

documented incidence of 1.8 million each year; however, it was considered that this number is 

confounded by a low diagnostic rate and difficulties in tracking sepsis in many countries, and the Surviving 

Sepsis Campaign estimates that with an incidence of 3 in 1000 the true number of cases each year could 

reach 18 million, and the mortality rate was of almost 30% [50].  

The Surviving Sepsis Campaign outlined a six-point action plan (Table 2.5) aimed at improving the 

management of sepsis, and increase awareness among health care professionals, governments, the public 

and funding bodies. 

Table 2.5. The Surviving Sepsis six-point action plan 

 

Existing epidemiologic studies suggest that sepsis remains a huge burden across all regions, despite that 

a sustained Surviving Sepsis Campaign achieved a continuous quality improvement in sepsis care [51]. 

Sepsis incidence rates are up to 535 cases per 100,000 person-years and rising [52], and although 



outcomes have improved, in-hospital remains high at 25–30% [52]. Patients with sepsis are frequently 

cared for in ICUs, either because sepsis itself led to their admission or because sepsis developed as a 

complication of their admission.   

A recent metaanalysis by Fleischmann et al. estimated the worldwide incidence and mortality of sepsis; 

they systematically searched 15 international citation databases for population-level estimates of sepsis 

incidence rates and mortality in adult populations published in the last 36 years [53]. One of the main 

findings reported is that studies on population level incidence and mortality rates for sepsis and severe 

sepsis are scarce, and none exist for low- and middle-income countries. For the High-income countries 

(when the only the last 13 years were analyzed) an aggregate global estimator of 437 sepsis cases per 

100,000 person-years is reported. For the case of severe sepsis population incidence rate of 270 cases per 

100,000 person-years was estimated when more recent investigations were analyzed. The mortality rates 

estimated from hospital-treated cases are 17% for sepsis and 26% for severe sepsis from studies published 

between 2003 and 2015.  

This estimated indexes only covers the high-income countries, which only represent 13% of the world’s 

population. If the reported rates also apply for the countries low- and middle-income countries, a total 

annual number of 31.5 million sepsis and 19.4 million severe sepsis cases would be expected to be treated 

in hospitals around the globe each year, and it may cause or contribute to up to 5.3 million deaths 

worldwide per annum. However, the true incidence and burden of sepsis in low- and middle-income 

countries remains uncertain because of a lack of information on sepsis epidemiology and may even be 

higher since infectious diseases are considerably more prevalent in these areas of the world and cause a 

substantially higher proportion of deaths [53]. 

Specifically for Colombia, in 2011, Rodríguez et al. published a study with the aim of determine the 

epidemiologic characteristics of sepsis in a hospital based population in Colombia. This study was carried 

out using data from ten general hospitals in the four main cities of Colombia between September 1, 2007 

and February 29, 2008. A total of 2,681 patients were recruited from emergency rooms, intensive care 

units, and general wards. The 28-day mortality rates of patients with infection without sepsis, sepsis 

without organ dysfunction, severe sepsis without shock, and septic shock were 3%, 7.3%, 21.9%, and 

45.6%, respectively; study reports a monthly incidence of 3.61 cases of sepsis per 100 hospital admissions 

[54]. 

In a secondary analysis on the same cohort, Ortíz et al. focused on the patients admitted to the intensive 

care units and reported an overall 28-days mortality rate at the time of discharge of 33.6%, and could go 

up to 45.1% for patients with septic shock [55].  

2.4 Long-term Outcomes from Sepsis 
The data presented in the previous section focus on the short-term mortality; however, in recent years 

interest in understanding the impact of critical illness on long-term outcomes has increased. Studies 

examining long-term outcomes of severe sepsis, acute lung injury, and lung transplantation suggest that 

critical illness is associated with long-term consequences that persist beyond ICU and hospital stay [56]. 

In 2003 Weycker et al. [57] estimated the long-term mortality and medical care charges among patients 

with severe sepsis and concluded that their mortality and economic costs are high, during the period of 

acute illness as well as subsequently. The study identified 16,019 patients who were treated in hospital 

for severe sepsis and reported that 21.2% of subjects died in hospital, 51.4% died after one year and 74.2% 



died after five years; with respect to medical charges, the mean total charges for the index admission 

were $44,600 (USD), at 1 year, mean cumulative medical care charges totaled $78,500 (USD); at 5 years, 

the total was $118,800 (USD).  

In [56], authors suggested that mechanisms underlying increased long-term mortality remain poorly 

understood, and besides the fact that long-term mortality following severe sepsis is high, and fewer than 

half of patients who experience severe sepsis are alive at 1 year, other outcomes like neurologic 

impairments, respiratory impairment and renal failure are also important because they may increase risk 

of death and reduce quality of life. 

In 2010, Iwashyna et al. [58], reported that severe sepsis was associated with substantial and persistent 

cognitive impairment and functional disability among survivors. And Winters et al [59] concluded that 

patients with sepsis showed ongoing mortality up to 2 years and beyond after the standard in hospital 

mortality end point. Patients with sepsis also had decrements in quality-of-life measures after hospital 

discharge. 

In 2013 Wang et al. [60] concluded that sepsis is independently associated with increased risk of mortality 

after hospital treatment; Individuals with the disease exhibited increased rates of death for up to 5 years 

after the illness event. This is evidenced by the fact that One-year, 2-year and 5-year mortality among 

individuals with sepsis were 23%, 28.8% and 43.8%, respectively; and the death rates in the same periods 

of those patients who never developed sepsis were 1%, 2.6% and 8.3%. 

In 2015 Ou et al [61] reported that sepsis survivors had substantially increased risks of all-cause mortality, 

as well as major adverse cardiovascular events like ischemic stroke, hemorrhagic stroke, myocardial 

infarction, heart failure, and sudden cardiac death or ventricular arrhythmia at 1 year after discharge 

when compared with matched population control subjects; sepsis survivors had higher risks.  

2.5 Outcome prediction for sepsis patients in the intensive care unit 
From chapter 1, it is clear that, traditionally approaches to ICU outcome prognostication has relied on 

static models generated from analyzing large, heterogeneous, multi-center patient datasets, such one-

size-fits-all approaches perform well for the average patient; but tend to present problems when the 

characteristics of the patients move away from the mean. According to this, in section 1.3, we showed 

that efforts have been made to generate mortality prediction models that use data from patients who 

share the same characteristic (for example, the same diagnosis). 

The mortality prediction problem exclusively for sepsis patient within the ICU has been addressed mainly 

with two approaches: One approach is to modify the models by adapting them for use specifically among 

patients with sepsis. The second one is to develop entirely new models, incorporating additional variables 

that could potentially enhance accuracy. 

The first approach was proposed by Le Gall et al. in 1995 and then assessed by Arabi et al. in 2003 [62, 

63]. In his 1995 work, Le Gall showed that SAPS II and Mortality Prediction Model II at 24 hours (MPM24 

II) did not fit the data well when used exclusively on severe sepsis patients, and proposed a methodology 

for the adjustment of those models to the severe sepsis and septic shock population. To adjust of these 

two scores for patients with severe sepsis, Le Gall et al. developed new logistic regression equations using 

only either the SAPS II or the MPM II24 scores obtained from the group of patients with severe sepsis. 

Consequently, each new logistic regression model would contain a single variable plus the constant term. 



The idea behind this approach is that the original score, which produced a probability of hospital mortality 

for general ICU population, would be mathematically translated into an adjusted probability of mortality 

based only on the experience of patients with severe sepsis. This adjusted versions of the SAPS II and 

MPM II24 presented better discrimination and calibration than the original models.  

The performance of the adjusted mortality prediction scoring system proposed by Le Gall. Et al, and 

another four scores (APACHE II, SAPS II, Mortality Prediction Model II at admission (MPM II0), MPM II24) 

were evaluated in a cohort of 250 patients with suspected severe sepsis and septic shock by Arabi et al. 

[62]. They concluded that the overall mortality prediction was adequate for all six scores, however, 

calibration was inadequate for APACHE II, SAPS II, MPM II0 and MPM II24. On the other hand, the adjusted 

version of SAPS II and MPM II24 exhibited improved calibration that the original versions. 

In addition to the adjustment of existing models, particular scores for the prediction of mortality in 

patients with severe sepsis and septic shock have been developed [64, 65]. Carrara et al. presented a 

development of a model exclusively for septic shock patients derived from hemodynamic variables, 

clinical information and laboratory results of the first 48 hours after shock onset and to predict mortality 

in the following 7 days. Other study, conducted by Zhang and Hong, presents a novel prediction score 

developed and validated specifically for patients with severe sepsis. Said model is based on Least Absolute 

Shrinkage and Selection Operator (LASSO) methodology and variables that are routinely used in clinical 

practice within the ICU grouped in the following categories: demographic   data, laboratory variables, vital 

signs, comorbidities, vasopressors, Glasgow Coma scale and urine output. The LASSO score showed the 

best discrimination in the validation cohort as compared with other scores such as SAPS II, acute 

physiological score III (APS III), Logistic organ dysfunction system (LODS), SOFA, and OASIS. 

In the hospital in general, important studies have been carried out in which exclusive models were 

developed for the prediction of mortality in patients with sepsis [66–68]. For the studies the cohort was 

not composed exclusively of ICU patients, and although some of the patients received ICU care, the 

selection criteria are fundamentally different from those of the other studies in which the patients were 

evaluated for sepsis at the time of admission to the ICU.  

 Lagu et al. developed a multilevel mixed-effects logistic regression model to predict in-hospital mortality 

in patients with sepsis using only administrative data; Predictors included patient demographics (age, sex, 

race, insurance type), site and source of sepsis, presence of 25 individual comorbidities, treatment 

(mechanical ventilation, vasopressors and admission to the intensive care unit). In the validation cohort, 

the model developed by Lagu et al. presented discriminatory ability statistically similar to traditional 

severity of disease scoring system, APACHE II, SAPS II and MPM III. The best performance on the validation 

cohort was obtained with the SAPS II score.  

In 2014 Osborn et al. used the data from 23438 patients with suspected or confirmed sepsis from 218 

hospitals in 18 countries to generate the Sepsis Severity Score. Even though the purpose of such a model 

is to predict in-hospital mortality for patients with sepsis during their ICU stay, not all the patients analyzed 

for its developed come from the Intensive care unit, moreover, the patient location at symptom onset is 

one of the predictors. Other predictors are the Geographic region, organ failure (Cardiovascular, 

Pulmonary, renal, hepatic, hematologic), conditions related to the vital signs (hyperglycemia, tachypnea, 

hypothermia, hyperthermia, hypotension), laboratory measures (Lactate, and white blood cell count), 

medicine intake (fluids and vasopressors) and treatments and conditions (mechanical ventilation, altered 

mental status and chills with rigor). The Sepsis Severity Score accurately estimated the probability of 



hospital mortality in severe sepsis and septic shock patients. It performed well with respect to calibration 

and discrimination. 

Based on the results from Lagu et al, and Osborn et al; in 2016 Ford et al. developed a Severe Sepsis 

Mortality Prediction Model and Score that only used administrative data. Data from 108448 patients were 

used for the development of the mentioned score. Predictors included were demographics (age, gender 

and race), measures of acute illness severity (Mechanical ventilation, shock, hemodialysis and ICU care), 

and 20 comorbidities (anemia, depression, diabetes, drug and substance abuse, chronic lung disease, 

congestive heart failure, hypertension, hypothyroid disease, liver disease, lymphoma, metastatic 

carcinomas, neurologic conditions, obesity, paraplegia, perivascular conditions, psychiatric diseases, 

pulmonary circulatory, renal failure, malignant solid tumors, weight loss). The sepsis severity model and 

score presented an excellent discrimination performance and were well calibrated and far exceeded the 

performance obtained with the Osborn score. Table 2.6 presents an abridgment to the cited works. 

2.6 Conclusion 
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; in 

recent years’ clinicians have become aware of the importance of the long-term outcomes associated with 

this conditions. In Section 2.3 some studies were shown that indicate that Patients with sepsis have 

ongoing mortality beyond short-term end points, and survivors consistently demonstrate impaired quality 

of life. Even more, sepsis survivors suffer from additional morbidities such as higher risk of readmissions, 

cardiovascular disease, cognitive impairment and of death, for years following sepsis episode; despite this 

mortality prediction models for patients within the ICU focus on the short term mortality prediction (7-

day mortality and in-hospital mortality). 

All the works reported in Table 2.6 presented better performance than traditionally  severity of disease 

scores, which supports the conclusion in chapter 1, and indicates that also for patients with sepsis the 

customize models perform better than the general population approaches; however, the use of in-

hospital mortality as an end point for clinical studies are not enough to understand the effect of sepsis on 

mortality and quality of life, and the current understanding of the risk factors and mechanisms underlying 

long-term sequelae in patients that suffered from this condition is limited. Therefore, identify risk factors 

during an ICU stay that reverberate and even could predict long-term outcomes will help physicians offer 

better treatments. 

 

 

 

 

 

 

 

 



Table 2.6 Sepsis severity of disease related works. 

 



CHAPTER 3. RESEARCH QUESTION 
 

3.1 Introduction  
 

Chapter 1 outlines how data gathered from patients in an intensive care unit is used in the form of scores, 

and also presents the most commonly used severity-of-illness classification systems. Traditional scores 

can be useful to guide prognostication, to assess ongoing disease development and organ function, to 

compare ICU performance over time and across units and to compare clinical trial population outcomes 

but they were not designed for individual prognostication. In order to increase the performance of 

outcome prediction scores and use them at the individual level, specific models according to groups of 

patients that shares a common characteristic have been developed.  

In chapter 2 presents the modern concept of sepsis, the methods used for the clinical operationalization 

of the diagnosis and its incidence and hospital; it also describes several retrospective studies to identify 

sepsis by using different criteria that uses ICD codes and administrative data generated at the end of the 

hospital stay. Finally, it describes the long-term outcomes for sepsis and report studies focused on 

outcome prediction for sepsis patient within the ICU , which used in-hospital mortality as an end point. 

In this chapter, the context presented in the previous chapters is used to structure the research question; 

the objectives and the outline of the methodology used in this thesis are also presented. 

3.2 Research Question 
In accordance with chapter 2, Sepsis is a life-threatening organ dysfunction caused by a dysregulated host 

response to infection [17] and patients who suffer it are often in a very delicate condition, with mortality 

rates around 26% [51]. Multiple models have been developed to predict outcomes exclusively of sepsis 

patients, which have proven to perform better that traditional severity-of-illness classification systems 

[62, 64–69]. However, these customize models are focused on the short-term mortality prediction. In 

recent years clinicians have become aware of the importance of the long-term outcomes associated with 

sepsis; only half of patients are alive at 1 year after a sepsis episode and the surviving patients are in risk 

of suffer other conditions like neurologic and respiratory impairments, renal failure, ischemic stroke, 

hemorrhagic stroke, myocardial infarction, heart failure, and sudden cardiac death or ventricular 

arrhythmia [56–58, 60, 61, 70].  

Currently, the risk factors and mechanisms underlying long-term sequelae in patients that suffered from 

sepsis is limited, according to the above   

3.3 Objectives 
In order to answer the research question, the following objectives were proposed: 

3.3.1 General objective  
Generate, from demographic and physiological parameters, a methodology that stratifies the severity of 

commitment of a patient admitted to an intensive care unit, with sepsis; in order to initiate an early and 

appropriate treatment from their individual characteristics. 



3.3.2 Specific objectives 
1. Generate a segmentation that allows stratifying a patient into risk groups according to their 

characteristics of clinical relevance. 

2. Develop a statistical model that relates the parameters of clinical relevance with the mortality of 

patients in each of the risk groups. 

3. Evaluate the developed model, both from its statistical performance and its clinical usefulness. 

4. Develop assistance software that allows clinicians to establish a risk score to understand the 

severity of each patient's condition and generate early alarms for the start of treatment. 

3.4 Methodology  
The activities developed to answer the research question were divided, as the Figure 3.1 shows, in four 

different stages. 

The first stage is the customize mortality prediction modeling. It includes several steps: review the core 

literature, propose the input variables and to define the outcome of interest. The input variables proposed 

were chosen from the bibliographic revision, the criterion of the expert intensivists and the availability in 

the used database (which will be described in detail in the next chapter). At this stage, a first study cohort 

composed was selected and termed cohort A. Cohort A is composed of 5650 sepsis patients (explicit or 

according to Angus criteria) that had the majority of the variables of interest. The main outcomes of this 

stage are an ensemble model for the one-year mortality prediction of sepsis patients with in the ICU that 

outperformed traditional severity-of-illness scoring systems; and a subset of predictors that are truly 

related with one-year mortality. The subset of relevant variables was obtained using two methodologies: 

1) Least Absolute Shrinkage and Selection Operator (LASSO); 2) Stochastic Gradient Boosting relative 

variable importance.   

The second stage is the stratification of patients in risk groups. In this stage the definitive cohort 

(composed of 15082 admissions) was obtained, each admission included in the cohort meets the following 

characteristics: 

• A retrospective sepsis diagnostic according to the explicit, Angus, Martin and Sepsis-3 criteria. 

• Patients older than 16 years 

• The majority of variables that were find to be relevant for the one-year mortality in the stage 1. 

This subset of predictors was complemented with variables that are frequently used within the 

ICUs. 

• The Elixhauser comorbidity description (details of this will be presented in future chapters)  

In this stage we generated two customized scoring systems for the assessment of the one-year mortality 

risk of sepsis patients within the ICU. The first score was based on dichotomization of the variables, and 

the second one used multiple cutoff points for each continuous numerical variable (i.e. the laboratory 

measurements, the routine charted data and the admission age). 

The third stage is the personalized predictive modeling based on patient similarity, in which we use patient 

similarity metrics to identify a precision cohort for an index admission, this precision cohort is used to 

train a personalized model. For the construction of the precision cohort two parameters were adjusted: 

the modeling of the interaction between admissions and the number of similar admission used for the 

precision cohort. The number of admission used for the precision cohort was varied from 1000, to 13000; 



and in order to model the relations between admission, five patient similarity measures were proposed 

and evaluated:  

1. Cosine similarity (CS): in this approach the data of each admission is represented as an Euclidean 

feature vector, and the similarity of two admissions is computed as the angle between the two 

vectors. 

2. Equally contribution similarity (ECS): In this approach a similarity term composed only by 

categorical data (like comorbidities, gender or treatments) is computed in an independent way 

and multiplied with the CS. The inclusion of such a term achieves that only the admissions that 

share a common characteristic are connected. 

3. Weighted Contribution Similarity (WCS): This similarity measure is based on the idea that different 

conditions carry different mortality risk. For this reason, in this approach each variable of the 

categorical data is weighted. Three sets of weights were evaluated.  

To determine the optimal combination of the mentioned parameters, personalized logistic regression 

models were generated for each pair of similarity measure and number of similar patients over a 

validation subset composed of 10% of the population. Personalized Stochastic Gradient Boosting (SGB) 

models were also generated with the parameters that presented the best performance. 

In addition to the above, we evaluated a deep learning approach, which is composed of a multilayer neural 

network that is regularized by the patient similarity measure used for the personalized SGB models. In 

this stage our goals were: 1) Analyze the impact and relevance of the patient similarity metrics when 

patients are related by a common characteristic (a sepsis diagnosis) and a challenging outcome is 

evaluated (one-year mortality). 2) Evaluate if a single-time-trained non-linear method (a multi-layer 

neural network) that incorporates a similarity-based regularization could increase the prediction 

performance at the patient level and compete with a personalized model. 

In the last stage we develop a software that could be used in the clinical environment with the models 

generated in the stages 2 and 3. 

3.5 Significance of the research: Impact and products 
The emergence of machine learning techniques in the field of health is a fact. Specifically, in the field of 

Intensive Care, it is undeniable that the potential for its application is immense; for instance, the 

development of a model that takes into account the peculiarities of sepsis and identify sensitively and 

early poor long-term patient’s outcome, could become a very useful tool to help the clinical group to 

understand the severity of the disease and could help to the generation of alerts that favor early onset of 

therapeutic measures; thus helping to improve the prognosis of patients with sepsis admitted to an 

intensive care unit. Moreover, the identification of those patients who are at risk of dying one year after 



their sepsis-related ICU admission constitutes the first step in understanding the risk factors and 

mechanisms underlying long-term sequelae in patients that suffered from this condition. 
 

 

Figure 3.1. Methodology. 

It is also expected that the developed tool will support intensivists in decision making within an intensive 

care unit; since the proposed model will allow the development of software that indicates which 

demographic variables, comorbidities and physiological data are relevant to the one-year mortality of 

each particular sepsis patient. We also consider that this project would help the strengthening of the 



scientific community and the generation of new knowledge, because, currently, there is no methodology 

for the identification the long-term mortality in ICU patients with a sepsis diagnostics and there are no 

studies that indicate the usefulness of similarity metrics in cases in which patients have a common 

characteristic, such as the diagnosis. 

  



PART 2: STUDY COHORT 
 
In the first part of this thesis we indicated that we are interesting in identify patients who are at risk of 
dying one year after their sepsis related admission. Part 2 focuses in how we obtained an appropriate 
study cohort. Chapter 4 presents the database from which we take the admissions that compose our study 
cohort, called Medical Information Mart for Intensive Care (MIMIC); it also provides a list of existing 
clinical databases already in use for research. Chapter 5 Presents the details of the study cohorts that we 
selected, such as the admission inclusion criteria, and the variables used for subsequent analysis.  



CHAPTER 4. CLINICAL DATABASE 
4.1 Introduction  

As stated in chapter 1, the critical condition of an intensive care unit patient requires close and constant 

monitoring, which generates a large volume of data that can be used for the development and evaluation 

of applications, systems and models based on computational tools, such as machine learning-aided 

medical software. Despite the obvious usefulness of patient driven data accumulated with clear structure 

that make it meaningful and usable, currently in Colombia, many hospitals do not have established 

databases that archived and organized detailed patient data into central repositories, and those who have 

them do not make efficient use of their data. On the other hand, meaningful clinical conclusions can only 

be obtained with a sufficiently representative sample to generalize the results. 

In this chapter we describe in detail the used database, MIMIC-III (Medical Information Mart for Intensive 

Care), a large, single-center database comprising information relating to patients admitted to critical care 

units at a large tertiary care hospital, and we also present other databases that are readily accessible. 

4.2 The Medical Information Mart for Intensive Care (MIMIC) 

Database 
MIMIC dataset (Multi-parameter Intelligent Monitoring for Intensive Care) is widely used for researchers, 

evaluators of algorithms and physiological data analysis systems in the ICU. Its first version includes data 

from 100 patients, each record has between 24 and 48 hours of data recorded from patient monitors 

(Electrocardiogram, blood pressure, respiration and oxygen saturation) accompanied by detailed clinical 

data derived from the patient’s medical record and notes during monitoring, which provides the context 

of each patient condition [71].Figure 4.1 shows a 3-hour extract of several physiological measurements, 

an alarm is highlighted in red around the systolic blood pressure. 

 

Figure 4.1. Excerpt from a MIMIC record. Taken from [71]. 

MIMIC includes patients that were believed to be hemodynamically unstable; therefore, they are 

considered to adequately represent the range of pathologies that result in abrupt changes in blood 

pressure. MIMIC is of particular interest in research regarding heart rate, blood pressure, respiratory 

dynamics and their interactions [71]. However, MIMIC patients do not represent the entire population in 



ICU; as result, a larger bank of information became necessary in order to develop and evaluate systems 

that could assist ICU clinical staff in decision-making and the outcome prediction,. 

A new database version MIMIC-II [72–74] was created to take advantage of technological advances in 

telecommunications and storage systems. It  has more than 20,000 patients and in addition to the clinical 

history and physiological variables, includes laboratory data, therapeutic interventions, progress notes, 

radiology reports and ICD9 diagnostic codes. MIMIC-II is a great research resource due to four factors: 

• It is open, since it allows researchers from all over the world to access it free of charge after they 

request access. 

• It has data with high temporal resolution. 

• It keeps patient confidentiality. 

MIMIC-II dataset were collected in four intensive care units: medical (MICU), surgical (SICU), coronary care 

unit (CCU), and cardiac surgery recovery unit (CSRU) at Beth Israel Deaconess Medical Center in Boston, 

MA, USA during the period from 2001 to 2008. MIMIC-II records were deidentified by removing protected 

health information. Also, all hospital admissions and ICU stays of each patient were time-shifted to a 

hypothetical period in the future [72]. 

MIMIC-II consists of two main components, clinical data and physiological signals. Clinical data included 

demographic information, drug doses, nursing notes, discharge summaries, nurse verified hourly vital 

signs and laboratory test results, and were organized in a relational database, Table 4.1 describes different 

clinical data types in MIMIC-II by giving examples of each type. The signals, which include the continuous 

records of vital signs, were stored in an open format, which makes it possible to read them under any 

operating system. Figure 4.2 presents an extract of the waveform signals that can be found in MIMIC-II. 

 

Figure 4.2. Waveforms signals from MIMIC-II. Taken from [72]. 



Table 4.1. Clinical data types in MIMIC-II 

 
 

MIMIC-II includes 26.870 adult hospital admissions and 31.782 adult ICU stays. MICU patients constitute 
the largest group among the four care units. The overall median ICU and hospital lengths of stay were 2.1 
and 7 days, respectively. The overall in-hospital mortality was 11.5%, however the mortality of the CSRU 
patients was very low. Table 4.2 presents some MIMIC-II statistics for the adult population stratified with 
respect to the four critical care units. 
 

Table 4.2. Adult patient statistics in MIMIC-II 

 

MIMIC-II has been used for a large number of analytical studies, which include epidemiological studies, 

development of clinical decision rules, reducing false alarm within the ICU and prediction of important 

physiological values and adverse events [75–79]. Although MIMIC II is innovative and unprecedented, it 

still has some limitations. The administration of oral medications is not automatically entered, but is part 

of the nursing notes. The data are exclusively from the stay in the ICU, so sometimes the context that 

would provide knowledge of the history prior to admission to the intensive care unit is missing. The 

information in the database reflects the actual protocols of the Beth Israel medical center, so it is possible 

that researchers from other institutions do not find in MIMIC II information regarding specific procedures 

that are not performed in the hospital where the data was collected.  

In order to solve some of these limitations, in November 2015 MIMIC-III [80] was launched, whose name 

changed from "Multi-parameter Intelligent Monitoring for Intensive Care" to "Medical Information Mart 

for Intensive Care". This new version provides demographic information, vital signs, medications, 

laboratory measurements, observations and notes charted by care providers, fluid balance, procedure 

codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and mortality (both inside 

and outside the medical center).  



The data of MIMIC-III was obtained from two sources, one is external, the Social Security Administration 

Death Master File which is used to obtain the out-of-hospital mortality dates; and the other is from the 

hospital's information systems. Figure 4.3 presents an overview of the MIMIC-III database. The hospital 

data comprises seven important blocks:  

• Bedside monitoring that includes vital signs, trends, alarms and waveforms; although only a 

subset of patient records include physiological waveforms obtained from bedside monitors (such 

as electrocardiograms, blood pressure waveforms, photoplethysmograms, impedance 

pneumograms);  

• Chart data that includes fluids balance, medicine administration and progress notes 

• Laboratory and microbiology tests. 

• Billing that include disease, drugs and procedures codes. 

• Demographics that include admission and discharge dates, dates of birth and death, religion, 

ethnicity and marital status. 

• Notes and reports that includes discharge summaries and imaging reports. 

MIMIC-III records was deidentified using structured data cleansing and date shifting. The deidentification 

process removes or changes fields such as patient name, telephone number, address, and dates. In 

particular, stay date fields were shifted into the future by a random offset for each individual patient in a 

consistent manner in order to preserve intervals, resulting in stays which occur sometime between the 

years 2100 and 2200. Dates of birth for patients aged over 89 were shifted to obscure their true age, these 

patients appear in the database with ages of over 300 years.  

 

Figure 4.3. Overview of the MIMIC-III critical care database. Taken from [80]. 



The description of the adult population is presented in Table 4.3. MIMIC III contains data associated with 

53,423 different ICU stays from 49,785 hospital admissions for 38,597 distinct patients older than 16 years 

who entered the ICU between 2001 and 2012. The median age for adult patients is 65.8 years, 55.9% are 

male and in-hospital mortality rate is 11.5%. The median length of stay in the ICU is 2.1 days, and the 

median length of hospital stay is 6.9 days. A mean of 4579 charted observations and 380 laboratory 

measurements are available for each hospital admission. The second most common International 

Classification of Diseases code for patients aged 16 years and above was 038.9 (‘Unspecified septicemia’), 

accounting for 4.2% of all hospital admissions [80].  

Table 4.3. Details of the MIMIC-III adult patient population. 

 

4.3 Other medical databases 

4.3.1 PCORnet 
PCORnet [81], the National Patient-Centered Clinical Research Network, is a large network that collects 

data routinely gathered in a variety of healthcare settings, including hospitals, doctors’ offices, and 

community clinics. PCORnet objective is to empower individuals and organizations to use data to answer 

practical questions that help patients, clinicians, and other stakeholders to make informed healthcare 

decisions [82]. 

PCORnet is a Distributed Research Network that captures clinical data and health information that are 

created every day during routine patient visits. In addition, PCORNet is using data shared by individuals 

through personal health records or community networks with other patients as they manage their 

conditions in their daily lives. 

Currently, PCORnet represents more than 100 health institutions across the United States and have data 

on more than 100 million Americans. Data from all of these patients are potentially available for 

observational research. 

4.3.2 NHS Open data 
The National Health Services (NHS England) is a governmental entity that retains one of the largest 

repositories of data on people’s health in the world. One of NHS England projects is Open data a publicly 

released information, often from the government or other public bodies, which is made freely available 



to everyone to use, its main objective is to increase transparency and trace the outcomes and efficiency 

of the British healthcare sector. An example of the use of Open data is LG Inform, an application which 

pulls together disparate data about local services, including open data from UK local authorities, and 

provides users with meaningful information about a local area and allows users to review and compare 

services between authorities using charts, tables and maps [82]. 

4.3.3 The eICU Collaborative Research Database 
The eICU Collaborative Research Database (eICU) [83] is a multi-center intensive care unit database with 
high granularity data for comprises 200,859 patient unit encounters for 139,367 unique patients admitted 
between 2014 and 2015 to one of 335 units at 208 hospitals located throughout the United States. eICU 
was made available to the public in 2018 and include vital signs, laboratory measurements, medications, 
care plan information, admission diagnosis, patient history, time-stamped diagnoses and similarly chosen 
treatments. The data are organized into tables which broadly correspond to the type of data contained 
within the table. The eICU database resulted from the alliance of Philips Healthcare which provides a 
teleICU, a centralized model of care where remote providers monitor ICU patients continuously, providing 
both structured consultations and reactive alerts, service known as the eICU program; and the Laboratory 
for Computational Physiology at MIT which has previously shared MIMIC database. 
 

4.3.4 Biologic Specimen and Data Repositories Information Coordinating Center  
The National Heart, Lung, and Blood Institute (NHLBI) is an US National Institute of Health that provides 
global leadership in the prevention and treatment of heart, lung, and blood diseases and supports basic, 
translational and clinical research in these areas. In 2008, the NHLBI established the Biologic Specimen 
and Data Repositories Information Coordinating Center (BioLINCC) to expand the utilization of two unique 
research resources developed and maintained by the NHLBI: the NHLBI Biologic Specimen Repository 
(Biorepository) and the NHLBI Data Repository. Many of the clinical studies in the Data Repository have 
associated biospecimen collections stored in Biorepository [84].   
 
The main objectives behind the BioLINCC is to maximize the scientific value of the Biorepository and Data 
Repositories, and to promote the availability and use of other NHLBI-funded population-based 
biospecimen and data resources. The mission of the NHLBI Biorepository is to acquire, store and distribute 
quality biospecimens to the scientific community using standardized processes and procedures approved 
by the NHLBI, the Biorepository has several plasma, serum and whole blood collections from 
epidemiologic studies conducted in blood donors and transfusion-recipients. Research on these 
biospecimens enabled key advancements in transfusion safety including evaluation of donor screening 
assays for viral agents such as HIV, hepatitis B and hepatitis C, and risk estimations for transfusion-
transmitted viral agents. The NHLBI has supported data collection from participants in epidemiology 
studies and clinical trials for over six decades.  These data have often been sent to the NHLBI at the 
conclusion of the study and placed in the Data Repository.  The Data Repository is managed by the 
Epidemiology Branch in the Division of Cardiovascular Sciences and includes individual level data on 
hundreds of thousands of participants from 200 Institute-supported clinical trials and observational 
studies [85].  
 
Within BioLINCC there are three studies with both resources Specimens and Datasets that are partially 
related to sepsis; the first one focus on determine if dietary supplementation of omega-3 fatty acids, γ-
linolenic acid and antioxidants to patients with early acute lung injury or sepsis-induced respiratory failure 
would increase ventilator-free days; the second one was intended to assess the efficacy and safety of oral 
rosuvastatin in patients with sepsis-induced Acute Lung Injury and test the hypothesis that rosuvastatin 



therapy would improve the clinical outcomes of critically ill patients with sepsis-associated acute 
respiratory distress syndrome, both of this studies are framed into the Acute Respiratory Distress Network 
(ARDSNet), a randomized controlled trial conducted from 1996 through 2006. The third study aims to 
determine whether or not treatment with hydroxyurea titrated to maximum tolerated doses would 
reduce the frequency of vaso-occlusive crises by at least 50% in this case sepsis is one of the reportable 
events. 
 

4.3.5 Intensive Care National Audit & Research Centre Case Mix Programme 
The Intensive Care National Audit & Research Centre (ICNARC) is an independent charity established in 
1994. The Case MixProgramme (CMP) is a national, comparative audit of patient outcomes from adult, 
general critical care units in England, Wales and Northern Ireland coordinated by the ICNARC. Data 
collected for the CMP take the following forms [86]:  

• Patient identifiers: admissions are identified by an admission number and an alphanumeric unit 
code 

• Demographics: date of birth, gender and postcode 

• Stay variables: Raw physiological data are collected to enable calculation of the APACHE-II, 
APACHE-III, SAPS-II and MPM-II scores and hospital mortality probabilities. Both the lowest and 
highest recorded values during the first 24 hours in the CMP unit are collected. 

• Outcome: Survival data are recorded at discharge from the unit and from the hospital.  

• Activity: length of stay in the ICU and in the hospital are recorded along with information about 
transfers between units or hospitals.  

The vast amount of data have been used to produce numerous local and national analyses, specifically, 
there are four reports of analysis on the Case Mix Programme database focused on sepsis. The first one 
studies the admissions with neutropenic sepsis in adult, general critical care units between the April 1 of 
2007 to September 30 of 2010. The second one studies the admissions with severe sepsis in adult, general 
critical care units from the January 1 of 2008 to the December 31 of 2009.  The third one reports the 
number of sepsis admissions to critical care and their mortality between the April 1 of 2010 to March 31 
of 2013. The final one presents the length of stay, survival and organ support of admissions with septic 
shock in 2012. 
 

4.4 Conclusion 
High-quality clinical databases are of value in clinical practice, in managing services and in developing 

health technologies. The use of inappropriate, unrepresentative or poor-quality data can lead to imprecise 

and inaccurate conclusions; for this reason, selection of the optimal database for a particular question is 

a crucial part of relevant analyses. 

The selected database for this work is MIMIC-III which data comes from a single institution (Beth Israel 

Deaconess Medical Center in Boston Massachusetts). However, despite the limitation of being single-

centered, the main advantages of MIMIC-III are: (1) Right now the only freely accessible critical care 

database of its kind. (2) the dataset spans more than a decade, Figure 4.4. (3) It has detailed information 

about individual patient care that includes time-stamped nurse-verified physiological measurements and 

out-of-hospital mortality dates. For this reasons MIMIC-III (and specially it previous version MIMIC-II) are 

widely used internationally.  



 

Figure 4.4. Period in years in which the admissions of the different versions of MIMIC were taken. 

Within the other medical databases described before three contains intensive care data BioLINCC, CMP 

and eICU. BioLINCC data comes from randomized controlled trials and prospective cohort studies for this 

reason data presents considerable clinical detail and includes clinical physiology, severity of illness, and 

patient outcomes, however, this data are collected specifically for the purposes of answering a research 

question, this means that for each study only the variables and outcomes related to the question are 

recorded, in particular the BioLINCC studies that focus on sepsis includes data of a subset of patients with 

respiratory dysfunction and do not record long-term mortality. CMP only registers the physiological data 

associated with four severity-of-illness classification systems, moreover, only the lowest and highest 

values during the first 24 hours are recorded, which means that other statistical descriptors like the mean 

could not be used in works with this database; on the other hand, CMP do not contains outcomes beyond 

ultimate hospital discharge. 

The eICU dataset is the most like MIMIC and its main advantage if the fact that it is multi-centered; 

however, some features of this database makes it not suitable for this project. eICU database is sourced 

from the eICU Telehealth Program (a model that allow caregivers from remote locations to monitor 

treatments for patients, alert local providers to sudden deterioration, and supplement care plans) which 

makes the amount of data obtained from each patient less than the amount of data that is obtained within 

the Beth Israel Deaconess Medical Center ICUs, this is evidenced, for example, in the fact that for the eICU 

database a total of 158 distinct types of laboratory measurements are captured and for MIMIC-III 753 

laboratory measures were recorded. Second, and most important, eICU reports the health status at 

hospital discharge but do not include out-of-hospital mortality dates and for this study in particular, an 

important advantage of MIMICIII is that besides in-hospital mortality, MIMIC-III provides mortality dates 

through the Social Security Administration Death Master File. 

  



CHAPTER 5. STUDY COHORT 
5.1 Introduction  

This chapter describes how we obtain the admissions of MIMIC-III that present a diagnosis of sepsis from 

the identification criteria presented in chapter 2. After that, we detail the exclusion criteria and the 

variables taken into account for the creation of two different study cohorts. At the end of the chapter, we 

present a description of the population of the study cohorts. 

5.2 Retrospective sepsis identification in MIMIC-III 
Chapter 2 presents four methods of retrospective identification of sepsis, this section will describe how 

these criteria are implemented within MIMIC-III.  

Figure 5.1 shows the ICD-9 code structure. It has an alphabetic or numeric as first digit, whereas the 

remaining digits are numeric, the complete code has a minimum of three digits and a maximum of five 

digits. The first three digits indicate the category; the following decimals represent the cause, the origin, 

the anatomical site or the manifestations. We performed a preprocessing of the MIMIC-III ICD-9 codes in 

order to extract extracts the characters that represent the  broad categories of diagnosis (when the first 

three digits are searched for) or specific diagnosis or procedures (when four or five digits are searched 

for). 

 

Figure 5.1. ICD-9 code structure 

On the other hand, the codes for extracting admissions based on the explicit sepsis, Angus criteria and 

Martin criteria were build up from the “diagnoses_icd” and “procedures_icd” MIMIC-III tables; this tables 

contains the International Classification of Diseases Version 9 (ICD-9) codes for diagnoses and procedures 

for each hospital admission.  

5.2.1 Explicit sepsis 
In MIMIC-III, the identification of admissions that presents explicit sepsis is done using the “diagnoses_icd” 

table, which contains ICD diagnoses for patients, specifically ICD-9 diagnoses. In this table either of two 

ICD-9 diagnosis codes are looked for:  995.92 for severe sepsis or 785.52 for septic shock. Figure 5.2 

presents the SQL query that was used to identify the explicit sepsis patients; it brings back 4085 unique 

hospital admissions (field hadm_id).  

 

Figure 5.2. Query to obtain the explicit sepsis admissions. 



5.2.2 Angus criteria 
For the identification of sepsis admissions using the Angus criteria [47] in MIMIC-III, We look for hospital 

admissions that presents at least one of 2097 bacterial or fungal Infection related ICD-9 codes 

(“diagnoses_icd” table). Additionally, we identify the hospital admissions that presents any organ 

dysfunction; i.e , any of 37 unique ICD-9 codes based on the classification of acute organ dysfunction codes 

presented in chapter 2 for the Angus criteria (34 related to diagnosis and 3 related to mechanical 

ventilation procedure).  The admissions that present a sepsis episode according to the Angus criteria are 

those that present both infection and organ dysfunction. Figure 5.3 presents the SQL query that was used 

to identify the Angus criteria sepsis patients, it brings back 15.149 unique hospital admissions. 

 

Figure 5.3. Query to obtain the sepsis admissions according to the Angus criteria. The first SELECT statement retrieves the 
admission with infection, the second SELECT statement brings back the admissions in which the mechanical ventilation procedure 
was presented, the third SELECT statement retrieves the admissions that present any diagnosis associated with the Angus acute 
organ dysfunction codes. The union of the second and third SELECT statements are intersected with the first SELECT statement to 
obtain the hospital admissions that have sepsis according to the Angus criteria. 

5.2.3 Martin Criteria  
For the identification of sepsis admissions using the Martin criteria [48] in MIMIC-III, first we search for 

septicemia, septicemic, bacteremia, disseminated fungal infection, disseminated candida infection, 

septicemic plague or disseminated fungal endocarditis codes in the “diagnoses_icd” table. To do that, we 

obtain hospital admissions that presents at least one of 20 different sepsis related ICD-9 codes. Then, we 

identify the hospital admissions that presents any organ dysfunction, for this we obtain the hospital 

admissions that presents any of 63 unique ICD-9 codes based on the classification of acute organ 

dysfunction codes presented in chapter 2 for the Martin criteria (58 related to diagnosis and five related 

to mechanical ventilation, hemodialysis and electroencephalogram procedures).  The admissions that 

present a sepsis episode according to the Martin criteria are those that present both sepsis and organ 



dysfunction. Figure 5.4 presents the SQL query that was used to identify the Martin criteria sepsis patients, 

it brings back 6931 unique hospital admissions. 

 

Figure 5.4. Query to obtain the sepsis admissions according to the Martin criteria. The first SELECT statement retrieves the 
admission with sepsis, the second SELECT statement retrieves the admissions that present any diagnosis associated with the 
Martin acute organ dysfunction codes. The third SELECT statement brings back the admissions in which the mechanical ventilation, 
hemodialysis or electroencephalogram procedures were implemented.  The union of the second and third SELECT statements are 
intersected with the first SELECT statement to obtain the hospital admissions that have sepsis according to the Martin criteria. 

5.2.4 Sepsis-3 
The identification of Sepsis-3 admission was made in [1] by Desautels et al, who shared with us the 2577 

Sepsis-3 admissions. In their work,  they take the earliest culture draw or antibiotic administration as the 

time of suspicion of infection, and then they define a window of up to 48 hours before this time and 24 

hours after this time; The SOFA score at the beginning of this window was compared with its hourly value 

throughout this window, and when the hourly value was ≥ 2 points higher than the value at the start of 

the window the particular admission was designate as septic. 

5.3 Study cohorts 
From the identified sepsis patients, two different study cohorts were gathered. The first one (cohort A) 

was used to generate a customize one-year mortality prediction model of patients with sepsis admitted 

to an ICU; for this cohort, by recommendation of the experts, we use the Angus and the explicit sepsis 

criteria. The Angus implementation of the 2001 international consensus conference definition of severe 

sepsis offers a reasonable approach to identifying patients with severe sepsis, it is a validated protocol 

and of the four criteria used in this work is the one that returns a greater number of admissions. On the 

other hand, the explicit sepsis criterion is the only one that is based on the clinical judgment of an expert, 

since it indicates that a treating doctor considered that a patient had severe sepsis or septic shock during 

his/her hospitalization. 

The second cohort (cohort B) was used to developed both a system for the stratification of patients in risk 

groups and a method for the personalized predictive modeling based on patient similarity. For the second 

of these tasks it was necessary to have a large cohort in order to increase the possibility of finding similar 

admissions. According to the above, this cohort was selected from all methodologies for identifying 

patients with sepsis. 



5.3.1 Cohort A 
It was selected from the 58977 MIMIC-III admissions, all the ones that complying with the following: i) 

ICD-9-CM codes for both a bacterial or fungal infections and a diagnosis of acute organ dysfunction 

according to the Angus criterion ii) Explicit sepsis related diagnosis: severe sepsis and septic shock. 15254 

admissions. Table 5.1 depicts predictor variables for cohort A. 

Table 5.1. Extracted predictors for cohort A. 

 

The variables of cohort A were obtained from various clinical and administrative values and were selected 

based on bibliographic revision, the criterion of the expert intensivists and the availability in the MIMIC-

III database: 

• Laboratory measurements: platelet count, bilirubin, creatinine, fraction of inspired oxygen, partial 

arterial pressure oxygen and fraction of inspired oxygen ratio, white blood cell count, potassium, 

sodium, bicarbonate, lactate, arterial pH, hematocrit and hemoglobin.  

• Routine charted data: temperature, heart rate, arterial blood systolic pressure, arterial blood 

diastolic pressure, arterial blood mean pressure, urine output, base excess, glucose, peripheral 

capillary oxygen saturation and partial pressure of oxygen in arterial blood.  

• Data taken at the time of ICU admission: gender, admission type, age and minimum Glasgow coma 

scale. Fourth the following comorbidities were extracted: diabetes, immunosuppressive diseases, 

malignancy, hematologic malignancy, metastatic cancer, heart failure, pulmonary diseases, 



vascular diseases, coronary diseases, obesity, alcohol abuse, collagen diseases, drug abuse and 

malnutrition.  

• The specific acute organ dysfunctions presented in each admission: (cardiovascular, neurologic, 

hepatic, hematologic, renal, respiratory). 

Cohort A was extracted from the mentioned 15.254 admissions; For this, we selected the admissions with 

a hospital stays longer than 24 hours, resulting in a dataset with 13.836 patients. Then, only the 

admissions that had at least 70% of the laboratory measurements and at least 70% of routine charted 

data listed before were included in the study cohort A, getting 5.650 admissions. Figure 5.5 presents the 

accrual of admissions included in the study cohort and Figure 5.6 shows the distribution of admissions 

according to the used sepsis criteria.  

 

Figure 5.5. Accrual of admissions included in the study cohort A. 

 

Figure 5.6. Venn Diagram of the study cohort A according to the used sepsis criteria. 

Of all variables listed in Table 5.1, only four presented more than 5% of missing data being Bilirubin the 

most critical with 34% of absent values, followed by Fraction of Inspired O2 with 15%, Lactate with 13% 

and Base excess with 7%. The way in which the missing data are treated will be presented in Chapter 6. 



To end this section it is worth noting that in the case of the cohort A, the majority of admissions were 

excluded due to the fact that at least 70% of routine charted data or laboratory measurements were not 

available; however, the studies conducted with this cohort (which will be presented in detail in later 

chapters) showed that not all included variables were relevant for the prediction of one-year mortality of 

ICU patients with sepsis. For this reason, the admissions of the cohort B were based on the variables that 

were relevant to the analyzes performed on the cohort A, and on those variables that most patients had. 

5.3.2 Cohort B 
From the 58977 MIMIC-III general population admissions, we selected all the ones that fulfill any of the 

four criteria presented in section 6.2. As result, 16.219 admissions were obtained; from these, we exclude 

the newborn patients (obtaining 16.080 admissions); finally, we only selected  hospital admissions that 

where longer than one day, obtaining 15.751 admissions.  

Since the objective of the studies carried out on the cohort B was to generate models based on the 

similarity between patients, we also included all the comorbidity categories present in the Elixhauser 

Comorbidity Index; a method of categorizing comorbidities of patients based on the ICD diagnosis codes. 

Each Elixhauser comorbidity category is dichotomous, which means it is either present or it is not. The 

Index can be used to predict hospital resource use and in-hospital mortality [87, 88]. According to the 

above, we extracted the clinical and administrative variables presented in Table 5.2. 

After the variable extraction process, the admissions that did not have vital signs or laboratory 

measurements during the first 24 hours were also excluded, resulting in a study cohort of 15.476 

admissions. Then, only the admissions that had at least 70% of the laboratory measurements and at least 

70% of vital sings data listed before were included in the study cohort B, getting 15.082 admissions. Figure 

5.7 presents the accrual of admissions included in the study cohort B and Figure 5.8 shows the distribution 

of admissions according to the used sepsis criteria.  

  

Figure 5.7. Accrual of admissions included in the study cohort B. 



Table 5.2. Extracted predictors for Cohort B 

 

 

Of all variables extracted for cohort B, only three presented more than 5% of missing data being Bilirubin 

the most critical with 35% of absent values, followed by lactate with 21%, pH with 21% and ptt with 7%,  

inr-pt with 7%. 

5.3.3 Data Preparation 
Similar to the SAPS score, the routine charted data and laboratory measurements for both cohorts were 

extracted during the first 24 hours of each ICU stay; the other predictor variables represent single values 

throughout the entire duration of a patient ICU stay. Since the variables are not measured with the same 

frequency (Figure 5.9 depicts the time window for two of the variables as an example), we calculated 

statistical indices that allowed their description.  



 

Figure 5.8. Venn Diagram of the study cohort B according to the used sepsis criteria. 

For the cohort A we extract mean, maximum, minimum, variance and range for all the laboratory and 

routine charted variables. For the cohort B we only extracted maximum, minimum and mean values for 

vital signs, and maximum and minimum values for laboratory measurements. The reduction in the number 

of statistical indicators of cohort B was made because the analyzes performed on the cohort A indicated 

that the inclusion of the range and the variance did not significantly improve the performance of the 

mortality prediction models,  and the clinical operationalization within the average intensive care units 

indicates that these values (and more complex ones such as kurtosis or skewness) could not be calculated. 

 

Figure 5.9. Example variables. Grey box represents the 24-hour window in which the data are extracted and evaluated. 



5.4 Patient characteristics in the study cohorts  
Table 5.3 . provides for cohort A a breakdown of the adult population by care unit. Cohort A contains data 

associated with 5.650 distinct hospital admissions for patients aged 16 or above who were given a severe 

sepsis or septic shock explicit diagnostic, or retrospectively identified as septic with the Angus criteria. The 

median age is 67.54 years, 54.58% of the patients are male, in-hospital mortality is 22.6% and one-year 

mortality is 43.36%. The median length of an ICU stay is 5.9 days and the median length of a hospital stay 

is 11.88 days 

Table 5.3. Details of the cohort A patient population by first critical care unit on hospital admission. CCU is Coronary Care Unit; 
CSRU is Cardiac Surgery Recovery Unit; MICU is Medical Intensive Care Unit; SICU is Surgical Intensive Care Unit; TSICU is Trauma 
Surgical Intensive Care Unit. 

 

Table 5.4 provides for cohort B a breakdown of the adult population by care unit. Cohort B contains data 

associated with 1.582 distinct hospital admissions for patients aged 16 or above who were given a severe 

sepsis or septic shock explicit diagnostic, or retrospectively identified as septic with the Angus, Martin or 

Sepsis-3 criteria. The median age is 68.47 years, 53.87% of the patients are male, in-hospital mortality is 

19.63% and one-year mortality is 42.92%. The median length of an ICU stay is 4 days and the median 

length of a hospital stay is 11.51 days.  

Table 5.4. Details of the cohort B patient population by first critical care unit on hospital admission. CCU is Coronary Care Unit; 
CSRU is Cardiac Surgery Recovery Unit; MICU is Medical Intensive Care Unit; SICU is Surgical Intensive Care Unit; TSICU is Trauma 
Surgical Intensive Care Unit. 

 



5.5 Conclusions 
In chapter 4, we present the MIMIC-III clinical database. It contains data associated with 49,785 different 

hospital admissions for patients older than 16 years. The median age for adult general population is 65.8 

years, in-hospital mortality rate is 11.5%, the median length of stay in the ICU is 2.1 days, and the median 

length of hospital stay is 6.9 days.  

When comparing the general population with the population of selected sepsis cohorts, it can be observed 

that patients with sepsis have a hospital mortality, a median ICU length of stay and a median hospital 

length of stay that are close to twice the values for the general population. 

The foregoing is true for both cohort A and cohort B; Moreover, it can be observed that although the 

sepsis identification methodologies yielded a different set of admissions, the inclusion of Martin and 

Spsis3 criteria do not significantly change the description in the cohorts. 

In chapter 2, we presented some studies that indicates that patients with sepsis show ongoing mortality 

beyond the hospital discharge [56, 89–91]; which is ratified in the selected study cohorts, since one-year 

mortality rate is twice the in-hospital mortality rate. 

From the accrual of admissions presented for cohorts A and B, it can be seen that the percentage of 

excluded admissions in cohort A is much higher than the percentage of excluded admissions the other 

one; the main reason is the condition that the admissions must have at least 70% of the data (both 

laboratory and routine charted). According to the above, the great difference between the number of 

admissions excluded is due to the fact that in the first cohort we sought to analyze variables selected by 

two criteria: the bibliographical review and the experts’ opinions and in the second cohort we focused on 

variables that were relevant for 1-year mortality prediction in patients with sepsis within the ICU (see 

chapter 6) or that were routinely measured.  

  



PART 3: CUSTOMIZED MODELS 
 

This part presents our first approaches for the development of one-year mortality prediction models for 

sepsis patients within the intensive care unit (ICU). The works presented in this part lead to the generation 

of customized models, since they exclusively use the data of our study cohorts, in addition we generate 

obtained adjusted models based on traditional severity of disease scoring systems to benchmark the 

performance of our models. Chapter 6 present the development of a Stochastic Gradient Boosting model, 

and the obtaining of a set of variables that are truly related to the long-term mortality of sepsis patients 

within the ICU. Chapter 7 presents the development of two customized scores that indicate a patient's 

one-year mortality risk. 

  



CHAPTER 6. MODEL FOR ONE-YEAR 
MORTALITY PREDICTION IN PATIENTS 
ADMITTED TO AN INTENSIVE CARE 
UNIT WITH DIAGNOSIS OF SEPSIS 
6.1 Introduction  

 

In previous chapters we showed that that sepsis is a life-threatening organ dysfunction due to a 

dysregulated host response to infection and it is an important public health problem, which generates 

high costs for the health system and carries a high morbidity and mortality; moreover; sepsis survivors 

had higher risks of all-cause mortality at 1 year after discharge compared to the general population. In 

this chapter we present the development of a model that goes beyond the prediction of in-hospital 

mortality and alert those patients who may have a poor prognosis one-year after being discharged from 

the hospital.  

 

The model for the prediction of one-year mortality of sepsis diagnosed patients within the ICU was 

developed using the admissions of the study cohort A and was based on an advanced ensemble supervised 

learning method denoted as Stochastic Gradient Boosting (SGB). SGB combines boosting with bootstrap 

averaging and has built-in feature selection since it reports the relative variable importance. In addition 

to this, we also used selected relevant predictors by using a method that performs both variable selection 

and regularization called Least Absolute Shrinkage and Selection Operator (LASSO). 

 

Thereby, we developed and evaluated five SGB models: one with all the predictors available in the study 

cohort A, two of them with the predictors selected with each of the methods (SGB and LASSO), another 

one with the union of the selected predictors, and the final with the intersection of the selected 

predictors. 

 

All five developed models outperformed commonly used severity-of-disease scoring systems (SAPSII, 

SOFA and OASIS). As comparison measurements between the developed model and the traditional 

systems we used the accuracy and the AUROC; the Hosmer-Lemeshow goodness of fit test was used on 

the model to verify its ability to provide a risk estimate that corresponds to the observed mortality 

(Calibration). The calibration of our models were adequate since the p-value for the Hosmer-Lemeshow 

goodness of-fit were considerably greater than 0.05. This model would help identify those patients at 

greatest risk, and will be the first step to detect signs of alarm from a worse long-term outcome.  

 

 



6.2 Methodology  
In this approach we used the 5.650 admissions of the study cohort A. According to what was presented in 

the previous chapter, the analyzed variables were extracted during the first 24 hours of each hospital stay; 

and, since the variables are not measured with the same frequency, we calculated statistical indices that 

allowed their description: mean, maximum, minimum, variance and range. As result,  data of the cohort 

A, were converted into 132 predictors as follow:  

• 110 are the statistical descriptions of the laboratory measurements and the routine charted 
data,  

• 17 are the presences of comorbidities and organ dysfunctions,  

• 2 are the numerical values for age and Glasgow Coma Score (GCS). 

• 3 corresponded to the gender and admission type categorical data, since each of these variables 
were binarized using one hot encoding.  

 

In order to explain the data extraction process, we present examples of how variables from the five 

categories listed above were obtained, based on the actual data of a single particular patient with a sepsis 

related admission. In Table 6.1 we present some information that can be obtained directly from the 

MIMIC-III database.  From this information we obtain the gender (assigning a 1 if the patient is “Male” 

and a zero if the patient is “Female”), the admission type (which is one hot encoded to two variables 

“Emergency” and “Elective”), the admission age (subtracting the date of birth from the admission time) 

and the one-year outcome (subtracting the death time from the discharge time).  

Table 6.1. Admission information for the example patient. 

 

For the comorbidities we extract all the diagnoses that were made during the sepsis related admission; 

Table 6.2 presents the International Classification of Diseases Version 9 (ICD-9) codes that were registered 

for the sepsis related admission for our example patient; the three first columns can be obtained from 

directly from MIMIC-III, the fourth column is the assignation to an Elixhauser comorbidity group, not all 

the ICD-9 codes are related with a comorbidity group, and some of them are related with more than one 

group.  

For the calculation of the minimum Glasgow Coma Scale (GCS), data associated with the three 

components (Eye opening response, verbal response and motor response) of the score for the first 24 

hours of admission can be extracted directly from MIMIC-III, then, we add the numerical values of the 

three components and obtained the minimum one. Table 6.3 presents the information related to the GCS, 

the first three columns can be obtained directly from MIMIC-III, the fourth column is the associated 

behavior. It is important to note that MIMI-III provides the numeric value for the behavior and its 

interpretation; in orange we highlighted the data associated with the worst GCS that would be 13. 

For each of the continuous numerical data of the laboratory measurements and the routine charted data 

we obtained all the records that were made to a patient within 24 hours after admission, and the we 



calculated the maximum, minimum, mean, variance and range. In Table 6.4 we present the values 

registered for the heart rate values for the example patients, in orange we highlighted the maximum a 

minimum value that were 83 and 66; the mean was 14.9, the range was  17 and the variance was 3.8. 

 

Table 6.2. Comorbidity information for the example patient, it can be observed that in this admission eight comorbidities were 
registered. 

 

We used two techniques in order to select the most important predictors for the one-year mortality 

prediction model: Least Absolute Shrinkage and Selection Operator (LASSO) and the Stochastic Gradient 

Boosting (SGB) variable importance. Since LASSO is based on maximum likelihood logistic regression it is 

susceptible to missing values, for this reason we used mean imputation. As an ensemble method based 

on decision tree aggregation, SGB can be fitted with even with the presence of missing values, therefore, 

there was no need for data imputation with this methodology. SGB variable importance is a procedure 

that indicates the contributions of each of the predictors to the model; therefore, it is possible to choose 

the most relevant predictors that represent the majority of the performance of the model. 



After the feature selection process with, we developed five SGB models, two of them with the predictors 

selected with each of the methods, the third with the intersection of the predictors, the fourth with the 

union of the selected predictors with both methodologies and the last with all 132 predictors. The 

Hosmer–Lemeshow test assess whether or not the observed event rates match predicted event rates in 

subgroups of increasing probability of the one-year mortality. 

 
Table 6.3. Glasgow Coma Scale related information for the example patient. 

 



Table 6.4. Heart rate measures for the first 24 hours after the admission of the example patient. 

 
 

6.2.1 SGB  
SGB is a treebased ensemble-based algorithm, capable of manage qualitative and quantitative variables, 

and remain robust to missing data and outliers. SGB model has been successfully applied in various fields 

such as rockburst damage prediction, travel time prediction, land cover mapping and berries skin 

flavonoid contents [92–95], and even for prediction of mortality in head injury [96], where the Boosted 

Tree Classifier method achieved both the highest AUROC and accuracy rate.  

 

Ensemble based algorithms consist of multiple base models, each one of those provides a different 

solution to the problem. The solutions of all the base models are finally combined (usually by weighted 

voting or averaging) into a single final model output, that is usually a more stable and accurate prediction 

[97]. The ensemble algorithms begin with a training dataset: 

{𝑦𝑖 , 𝑥𝑖}1
𝑁  

which Where 𝑦𝑖  is the response variable and 𝑥𝑖 = {𝑥1, 𝑥2,… , 𝑥𝑛} is a feature vector with 𝑛 variables and 

the whole dataset is composed of 𝑁 observations; and the goal is to find a function 𝐹∗(𝑥) that maps 𝑥  to 

𝑦 and minimizes a loss function Ψ(𝑦, 𝐹(𝑥)) [98].    



Stochastic Gradient Boosting (SGB) is a type of ensemble algorithm based on Gradient Boosting [99], a 

function approximation method that estimates 𝐹∗(𝑥) using an additive expansion: 

𝐹(𝑥) = ∑ 𝛽𝑚ℎ(𝑥; 𝑎𝑚)

𝑀

𝑚=0

 (1) 

Where ℎ(𝑥; 𝑎) is a simple parameterized function of the input variables 𝑥, characterized by a set of 

parameters 𝑎 = {𝑎1, 𝑎2, … }. The individual terms of the function ℎ(𝑥; 𝑎) differ in the values chosen for 

the parameters 𝑎𝑚. The expansion coefficient  {𝛽𝑚}0
𝑀  and the model parameters {𝑎𝑚}0

𝑀 must be jointly 

fitted to the training data [98].  

The algorithm stars with guess of 𝐹0; after that the expansion coefficient, the parameters and the function 

are calculated iteratively for 𝑚 = 1,2, ⋯ ,𝑀 as following: 

(𝛽𝑚, 𝑎𝑚) = argmin
𝛽,𝑎

∑ Ψ(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛽ℎ(𝑥𝑖; 𝑎)) (2)𝑁
𝑖=1   

and 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥𝑖; 𝑎𝑚) (3) 

𝐹𝑚 represents the function in the mth iteration and 𝛽𝑚 and 𝑎𝑚 are the expansion coefficient and the 

parameters of the mth simple model. In order to solve (2) for arbitrary differentiable loss function 

Ψ(𝑦, 𝐹(𝑥)) a two-step procedure have been proposed [99]. For this, first, the function ℎ(𝑥; 𝑎) is fitted by 

least-squares:   

𝑎𝑚 = argmin
𝑎,𝛽

∑[�̃�𝑖𝑚 − 𝛽ℎ(𝑥𝑖; 𝑎)]2
𝑁

𝑖=1

  (4) 

In (4)  �̃�𝑖𝑚  is: 

�̃�𝑖𝑚 = −[
𝜕Ψ(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

 (5) 

Then given ℎ(𝑥; 𝑎), the optimal value of 𝛽𝑚 is calculated: 

𝛽𝑚 = argmin
𝛽

∑Ψ(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛽ℎ(𝑥𝑖; 𝑎𝑚))

𝑁

𝑖=1

 (6) 

After that, the updated function 𝐹𝑚is calculated: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥; 𝑎𝑚)  (7) 

Particularly SGB uses decision trees as base model [100]. Thus, ℎ(𝑥; 𝑎) is a L-terminal node small 

regression tree (with 3 to 9 splits for this study);  at each iteration, the regression tree divides the 

explanatory variables space into L-disjoint sub-regions {𝑅𝑙𝑚}𝑙=1
𝐿  in each of which a constant response 

value �̅�𝑙𝑚 is calculated, moreover, with regression trees (6) can be solved separately with in each sub-

region 𝑅𝑙𝑚  so it solution  reduces to: 



𝛾𝑙𝑚 = argmin
𝛾

∑ Ψ(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾) (8)𝑥𝑖∈𝑅𝑙𝑚
   

Where 𝛾𝑙𝑚  is an estimate of the expansion coefficient in a particular sub-region. And the current 

approccimation of the function is updated in each corresponding region by: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈 ∙ 𝛾𝑙𝑚1(𝑥 ∈ 𝑅𝑙𝑚) (9)   

Where 𝛾𝑙𝑚1(𝑥 ∈ 𝑅𝑙𝑚) is the a constant response value in a particular sub-region and 𝜈 is a shrinkage 

parameter that controls the learning rate of the procedure. Theoretically 𝜈 must be 0 <  𝜈 ≤ 1, but it has 

been, empirically, it was found that small values (𝜈 ≤ 0.1) lead to much better generalization [99]. 

To improve the performance of the gradient boosting approach, SGB incorporates randomness into the 

function estimation procedure, so at each iteration a random permutation {𝜋(𝑖)}1
𝑁  is selected (without 

replacement and with size �̃�) This randomly selected subsample is then used, instead of the full sample, 

to fit the decision tree and compute the model update for the current iteration. 

 

For this study the output variable 𝑦 is binary, and the loss criterion is the deviance [98] 

Ψ(𝑦, �̂�) = 2 log(1 + exp(−2𝑦�̂�)) (10)  

The SGB algorithm involves a parameter-tuning process that maximizes predictive accuracy, the three 

parameters are: M is the total number of boosting iterations (n.trees), 𝜐 is the learning rate (shrinkage 

coefficient) and L is the number of splits performed on each tree [93]. To determine the optimal 

combination of the mentioned parameters, 10 fold cross-validation procedure was applied for each 

parameter configuration. In this procedure, the elements of the train subset were randomly divided into 

10 groups, nine of these groups were selected for fitting a model and the other one was used for testing 

it.  The process was repeated ten times, so each group was used for testing and training. By averaging the 

results produced in each iteration, an overall quality estimate was obtained. Finally, the combination of 

parameters that minimizes the prediction error averaged across all 10 folds was selected as the final 

model.  

The validation subset was never used in the development of the SGB model, but it was used to evaluate 

the performance of the final model. Variable importance was calculated using the improvement based on 

the splitting criteria for each predictor, which are aggregated and averaged across the entire boosting 

ensemble [92, 93, 100, 101].  

6.2.2 LASSO 
LASSO [102], is a regression analysis method that performs both variable selection and regularization in 

order to enhance the prediction accuracy and interpretability of the statistical model. The method for 

two-class classification seeks 𝑝(𝑋)  the probability of class membership and is based on a hypothesis 

function that lies between 0 and 1. For logistic regression [103]: 

𝑝(𝑋) =
𝑒𝑥𝑝(𝛽0+𝛽1

𝑇)

1 + 𝑒𝑥𝑝(𝛽0+𝛽1
𝑇)

        (11) 

 



Which is equivalent to: 

log (
𝑝(𝑋)

1−𝑝(𝑋)
) = 𝛽0 + 𝛽1

𝑇  (12)     

Where  𝛽1 is a vector, with as many components as there are predictors, and the objective is to find the 

values of 𝛽1 that results in a p(X) that most accurately classifies all the observed data points. Logistic 

regression models can be fitted by maximum likelihood. The log-likelihood can be written: 

𝑙 = ∑{𝑦𝑖(𝛽0 + 𝛽1
𝑇𝑥𝑖) − log (1 + 𝑒(𝛽0+𝛽1

𝑇𝑥𝑖))}

𝑁

𝑖=1

    (13) 

LASSO regularization works by adding a penalty term to the log likelihood function, thus the quantity to 

be minimized is: 

𝑙 + 𝜆∑|𝛽1𝑗|    (14)

𝑝

𝑗=1

 

𝜆 is a complexity parameter that controls the amount of shrinkage, so,  the larger the value of 𝜆, the 

greater the amount of shrinkage. 𝜆 is selected using cross validation in a way that the resulting model 

minimizes the sample error. The effect of the LASSO penalty term is to set some of the models coefficients 

exactly to zero, and thus allowing the variable selection. 

 

Figure 6.1 Model development 

 

 



6.2.3 Performance 
In order to develop the models, we used the following methodology. First we divided the study cohort A 

into 70% for training and 30% for testing. With the training subset we extracted two subsets of features 

using the SGB and LASSO methodologies. The parameters of each of those methodologies were tuned 

using ten-fold cross validation. Finally, we developed five SGB models with different set of predictors: the 

132 predictors, the SGB variable importance selected predictors, the LASSO selected predictors, the union 

and interception of the selected predictors with both methodologies.  The whole process was repeated 

50 times in order to obtain a confidence interval.  Figure 6.1 illustrates the methodology.  

To evaluate the performance of the five SGB models with the different sets of predictors we use the area 

under the Receiver Operating Characteristic curve (AUROC) that is a common indicator of the goodness 

of a predictor in a binary classification task, and the accuracy, which is defined as the fraction of correctly 

predicted records over the number of records. These measures of the predictive power of SGB models 

were compared with three severity-of-disease classification systems: SOFA [104, 105], SAPS2 [5] and 

OASIS [106].  

Additionally, the developed models calibration was assessed using Hosmer-Lemeshow test.  The Hosmer–

Lemeshow test is a commonly used procedure for assessing goodness of fit in binary classification 

problems; It is widely used for the evaluation of risk-scoring models in medicine that are developed using 

a wide range of sample sizes [107]. The Hosmer–Lemeshow test seeks to prove that a model fits the data, 

and it is a chi-square test conducted by sorting the n observations in the data set by estimated probability 

of success, dividing the sorted set into 𝑔 groups and assessing the Hosmer–Lemeshow C statistic: 

�̂�𝑔 = ∑ [
(𝑂𝑠,𝑖−𝐸𝑠,𝑖)

2

𝐸𝑠,𝑖
+

(𝑂𝑓,𝑖−𝐸𝑓,𝑖)
2

𝐸𝑓,𝑖
]

𝑔
𝑖=1   (14) 

Where 𝑂𝑠,𝑖  and 𝑂𝑓,𝑖 are the observed number of successes and failures; 𝐸𝑠,𝑖 and 𝐸𝑓,𝑖  the predicted 

successes and failures in the 𝑖th group; �̂�𝑔 follows a Chi-square distribution with 𝑔 − 2 degrees of 

freedom, therefore the p-value for the test is: 

𝑝 = ∫ 𝜒𝑔−2
2 (𝑥)𝑑𝑥

∞

�̂�𝑔
  (15) 

The number of groups 𝑔 is defined by the user and there is an established dependence of the probability 

of correctly rejecting a poorly fitting model (using the Hosmer-Lemeshow test) with the sample size and 

the number of groups. By considering this dependence, Paul et al. made some recommendations to select 

the number of groups. Specifically for samples sizes between 1000 and 25000 𝑔 is given by: 

𝑔 = 𝑚𝑎𝑥 (10,𝑚𝑖𝑛 {
𝑚

2
,
𝑛 − 𝑚

2
, 2 + 8 (

𝑛

1000
)
2

}) 

 Where n is the number of observations, and m is the number of successes [107]. However, this 

recommendation is based on the simulation of six models, all of which are much simpler than the SGB 

models developed in this work. 

Finally, since, calibration, and therefore the Hosmer-Lemeshow test, examines how well an observed 

number of events (deaths) compare to the number of events estimated by the model across probability 

groups, we compared, to give a friendly visual representation, observed versus model-based estimates of 

numbers of deaths graphically within deciles (g=10) of estimated probabilities of mortality. 



6.3 Results   
The SGB models were implemented with the caret [108] and gbm [109] R-packages, LASSO was 

implemented using glmnet [110] R-package; both in R software. 10-fold CV procedure was used to tune 

the parameters. According to what was previously mentioned, for SGB, three parameters were tuned: M, 

𝜐 and L. To determine the combination of parameters that present better performance (greater AUROC) 

during the CV process, a set of SGB models were tested using different values for M (50, 100, 150, 200, 

250, …, 1900, 1950, 2000), L (3, 5, 7, 9) and 𝜐 (0.001, 0.01, 0.1).   

The first developed model was fitted using all the predictors. Figure 6.2 presents the tuning procedure for 

this model parameters that was done using the results of the performance of cross-validation; Each of the 

four plots in the figure represents the maximum number of splits performed on each tree (iteration depth, 

parameter L); The colored line in each of the four plots represent different shrinkage coefficient (learning 

rate, parameter 𝜐); The x axis of each plot represent the boosting iteration (parameter M). Each data point 

in the figure represents one classifier. The optimal classifier is constructed with 950 trees, an iteration 

depth of 9 and a learning rate of 0.01; the AUROC obtained on the 3955 admissions of the training subset 

was 0.7715(95% Confidence Interval: 0.762 - 0.786) and the AUROC obtained on the validation subset was 

0.805 (95% Confidence Interval: 0.785 - 0.826).  

 

Figure 6.2  SGB model tuning parameters and AUROC. Each data point in the figure represents one classifier.  For example, in the 
lower-left plot the purple data point at (400,0.746) indicates a model built with 400 trees, a tree depth is 3 and a learning rate of  
0.1; this particular classifier gives an AUC value of 0.746 in the 10-fold cross-validation on the training subset. 

A second SGB model that only used a subset variables selected using the relative variable importance 

method built in within the SGB. The general effect on the model of each predictor was calculated using 

the relative importance, this measures are based on the number of times a variable is selected for 

splitting, weighted by the squared improvement to the model as a result of each split, and averaged over 

all trees[100, 111]. The most influential predictors were selected by developing a model with the 

predictors that had the greatest relative importance, and that in the end presented an AUROC like that of 

the complete model. 40 predictors were selected (that represent around 68% of the influence in the 



model), the most important one, as expected was admission age with a relative importance around 10%; 

the second most relevant predictor was total urine output during the first day of admission, although 

urine output is a commonly used indicator for renal disease, it is interesting how much it affects the log-

term mortality; the relative importance of the following predictors are below 4%. The AUROC obtained 

on the 3955 admissions of the training subset was 0.7713 (95% Confidence Interval:  0.766 - 0.7763) and 

the AUROC obtained on the validation subset was 0.803 (95% Confidence Interval: 0.783 - 0.824).  

Figure 6.3 shows the relative importance of the selected predictors with the SGB methodology for the 

model developed with all the variables, and the model that only uses the selected ones; since the relative 

importance of the variables are scaled so that the sum adds to 100 [100], it is clear that, in the model that 

only uses the 40 SGB selected variables the relative importance of each variable increase with respect to 

the model with all the variables; however, although there is a change in the relative positions of the 

predictors, no particularly sharp change is observed. 

 
Figure 6.3 SGB relative importance of the predictors for 1-year mortality prediction models. In the left we presented the most 
relevant predictors of the complete model (that sums 67%); in the right we present the relative importance of the model developed 
only with selected predictors.  Abbreviations: Bun: blood urea nitrogen; Max: maximum; WBC: white blood cell; Min: minimum; 
SpO2: peripheral capillary oxygen saturation; PaO2/FiO2: partial pressure arterial oxygen and fraction of inspired oxygen ratio; 
FiO2: fraction of inspired oxygen; Mechanical vent: mechanical ventilation; DABP: diastolic arterial blood pressure; BP: blood 
pressure. 



 

Figure 6.4 SGB relative importance of the predictors for 1-year mortality prediction models. In the left we presented the relative 
variable importance of the model developed with the LASSO selected predictors; in the right we present the relative variable 
importance of the model developed union of the selected predictors.  Abbreviations: Bun: blood urea nitrogen; Max: maximum; 
WBC: white blood cell; Min: minimum; SpO2: peripheral capillary oxygen saturation; PaO2/FiO2: partial pressure arterial oxygen 
and fraction of inspired oxygen ratio; FiO2: fraction of inspired oxygen; Mechanical vent: mechanical ventilation; DABP: diastolic 
arterial blood pressure; BP: blood pressure; GCS: Glasgow coma scale.  

The third SGB model was developed using only a subset of predictors obtained with the LASSO 

Methodology. Unlike the methodology based on SGB variable importance, LASSO sets some of the 

predictors coefficients to zero, whereby the algorithm returns a set of selected variables. In order to 

obtain a subset of values truly related to the one-year mortality, we performed 100 runs with different 

splits for the training and validation datasets (always 70% for training), each model was fitted with the 

random training subset, thus, on each run we obtained a slightly different subset of LASSO selected 

predictors. According to this, we developed the SGB model with the LASSO predictors that were selected 



in more than 80% of the runs. The AUROC obtained on the 3955 admissions of the training subset was 

0.7714 (95% Confidence Interval:  0.765 - 0.777) and the AUROC obtained on the validation subset was 

0.806 (95% Confidence Interval: 0.785 - 0.826). 

The fourth SGB model was developed using the union of the variables selected with both SGB variable 

importance and LASSO methodologies. The AUROC obtained on the 3955 admissions of the training 

subset was 0.7715 (95% Confidence Interval:  0.766 - 0.779) and the AUROC obtained on the validation 

subset was 0.808 (95% Confidence Interval: 0.787 - 0.828). 

Figure 6.4 shows the relative importance of the variables of SGB model developed with the LASSO selected 

variables, and the model with the union of the selected variables with both LASSO an SGB methodologies. 

It can be observed that, in contrast to the values reported in Figure 6.3, some predictors that were 

selected with LASSO (Alcohol, Obesity, Renal, Gender males among others) but not with SGB variable 

importance, do not significantly influence the one-year mortality prediction, being obesity and alcohol the 

most extreme cases.  

According to the above, the final model was developed with the intersection of the selected predictors 

with both methodologies. Figure 6.5 shows the relative variable importance of the model with the 

intersection of selected variables, this intersection model leads to the development of a much simpler 

model that only has 17 predictors. The AUROC obtained on the 3955 admissions of the training subset 

was 0.754 (95% Confidence Interval:  0.746 - 0.759) and the AUROC obtained on the validation subset was 

0.791 (95% Confidence Interval: 0.769 - 0.812). 

 

Figure 6.5 Relative variable importance of the model with the intersection of selected variables 



Calibration of the five models were evaluated using Hosmer–Lemeshow Test (with g=25); and the 

parameters of all the models were fitted using a 10-fold cross validation process on a training subset;  

Table 6.5 summaries the number of variables, the final parameters values and the evaluation measures 

of the five models over the 1695 admissions of the validation subset.  

 

 
Table 6.5 Models performance measures. * the learning rate where maintained constant for all the models in 𝜐=0.01 

 

 

It can be observed from Table 6.5, that SGB variable importance and LASSO methodologies allowed to 

develop SGB models that preserve the same performance as the model generated with all the predictors 

but with as subset of predictors, moreover, it can be seen that the 17 intersection variables are the ones 

that are truly related to the one-year mortality in sepsis patients since the model developed with them 

achieves a performance similar to other models. For the intersection model, observed versus predicted 

of numbers of deaths were compared graphically within deciles of increasing probability of the outcome. 

The graph presented in Figure 6.6 indicate that estimated and observed mortality pairs are similar and 

shows that the number of outcome events is indeed increasing along the probability deciles.       

 

 

Figure 6.6 Comparison of observed versus predicted one-year mortality in the deciles of predicted mortality based on the SGB 
model with the intersection variables. 
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To benchmark the SGB model, we adjusted three severity-of-disease scoring systems (OASIS, SAPS II, and 

OASIS) and obtained their AUROC and Accuracy. The adjustment process was proposed by Le Gall et al. in 

[63], and consist to modify an existing severity of disease score  by adapting them for use specifically 

among patients that shares a common characteristic. For instance, When the standard SAPS II model is 

applied to a patient, all of the variables are assigned points, and the resulting sum is the SAPS II score, 

which is then used as a variable in a logistic regression equation to generate the mortality probability. To 

adjust a model for patients with sepsis, it is necessary to develop new logistic regression equations using 

data only from the group of patients with sepsis. Such new model is a logistic regression that contains a 

single variable (The particular score that are being adjusted) plus the constant term. When this process is 

applied, the original score, which produced a probability of mortality for general medical population, 

would be mathematically translated into an adjusted probability of mortality based only on the experience 

of patients with sepsis. Le Gall et al proved that the adjusted models presented better calibration and 

discrimination than traditional scores [63]. The performance of the traditional severity of disease 

classification systems adjusted for the training subset and evaluated on the validation subset are 

presented in Table 6.6. 

Table 6.6 AUROC, accuracy and calibration for the 1-year mortality  on the validation subset for three adjusted severity of disease 
scoring systems and the proposed SGB models with all variables (132 predictors), and the variables from the intersection between 
the SGB variable importance selected variables and the LASSO selected variables (17 predictors). 

 

6.4 Conclusions 
The presented models for the one-year mortality prediction of the patients that are admitted in a ICU with 

a sepsis diagnosis; shows that the use of ensemble based algorithms (SGB in this study) and the inclusion 

of predictors that are not usually taken into account in the traditional severity-of-disease classification 

systems (for example minimum lactate), outperform some traditional severity of disease scoring system 

for long-term mortality prediction task.  

 

The fact that the developed SGB models presented a higher accuracy and AUROC over the validation 

subset ratifies that custom mortality prediction models for a specific disease presents a better 

performance that traditional severity of disease scoring systems, which could lead to better management 

of illness within the ICU. Although the SGB models presents a good interpretability, since they retrieve the 

relative importance of the predictors, it is clear that there is a complex interdependence among different 

physiological systems in response to sepsis, since the SGB models are composed of between 450 and 1150 

trees; for this reason, it would be necessary to develop easy-to-use computer tools that allow these types 

of models to be implemented within the ICU. 

 



The 17 predictors of the intersection model, allow to identified features that could become prognostic 

markers for the one-year mortality of the sepsis diagnosed patients within the ICU. As expected, older 

patients are at greater risk in consequence the most important parameter for the outcome is the age. 

Urine output is used as a marker of acute kidney injury, a disease that is associated with substantial in-

hospital mortality [112].  

 

Minimum lactate over the first 24 hours of the ICU admission is the seventh most important variable for 

the mortality prediction in this study; Lactate is currently used within the ICU as a diagnostic tool and as 

a prognostic marker, since the higher the value, the greater the risk of mortality. However, if the lactate 

of a patient does not reach below a threshold, it will also have a higher mortality risk. for this reason, the 

minimum lactate during the first 24 hours must also be analyzed in ICUs. Mean lactate is also considered 

an important predictor, which agrees with what is reported in the literature, since hyperlactatemia is 

related with a poor outcome in ICU [113]. An elevated Blood urea nitrogen (BUN) is associated with 

increased mortality in critically ill patients [114].    



CHAPTER 7. SCORING SYSTEM FOR THE 

ONE-YEAR MORTALITY RISK OF SEPSIS 

PATIENTS IN INTENSIVE CARE UNITS 

AND STRATIFICATION OF PATIENTS IN 

RISK GROUPS 

 

7.1 Introduction 
 

In chapter 6 we showed that the use of machine learning techniques for the development of customized 

mortality prediction models, that use only the data of a population that shares a common characteristic, 

leads to better performance compared to the general population severity of disease classification 

systems. In addition, we found a subset of predictors that are truly related with the long-term mortality 

prediction in sepsis patients within the ICU; such subset of predictors was used to develop the study 

cohort B, which is composed of 15082 hospital admissions (representing the 93% of the total sepsis 

related admission of MIMIC-III), meaning that the conclusions driven from the study cohort B are more 

representative that the ones obtained from the study cohort A.  

In this chapter, we present the development of two customize scores for the one-year mortality risk of 

the patients that are admitted in an ICU with a sepsis diagnosis. The objective of this scores is to the allow 

the stratification of patients into risk groups according to their characteristics of clinical relevance, 

whereby, the scores would indicate the severity of the condition of the patients.  

The predictors that are included in the study cohort B could be which can be roughly grouped in two types, 

categorical values and continuous numerical values. The categorical values are represented as binary data, 

and in general they indicate if the patient has a particular characteristic (for instance if the patient is male, 

or if the patient have hypotension). The continuous numerical variables were divided in groups with 

different one-year mortality risk for this we found cut-off points (CP) for each of the variables of this type.  

Two methodologies were used to find the CP of the continuous variables; the first one finds a single cutoff 

point that binarized each variables in a group whit high risk and a group with low risk. The second one 

finds multiple cutoff points for each variable.  With each of these methodologies, we developed a score 

value for each variable in the model, that was calculated as the value of the coefficients in a prediction 

logistic regression model multiplied by 10 and rounding to the nearest integer. In addition, a constant was 

added to each integer coefficient to eliminate any negative values. These nonnegative integers are the 

point values that make up the one-year mortality prediction score for sepsis patients when summed. 



Then, the one-year mortality probability was estimated using the score as the only variable in a logistic 

regression model. 

7.2 Methodology  
In this section we present the methodology followed to generate the scores for the one-year mortality 

risk. First we presented a brief description of the study cohort B. Then, we explain in detail the two 

methodologies used to select the cutoff points of each score predictor, and we present the results of each 

score.  

7.2.1 Dataset 
In order to calculate the score we obtained the following predictors from cohort B. 

• Routine charted data: The maximum, minimum and mean values during the first 24 hours of the 
ICU stay of the following vital signs: heart rate, systolic blood pressure, diastolic blood pressure, 
mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen saturation. 

• Laboratory variables: The maximum and minimum values of following laboratory variables 
obtained from the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH, 
creatinine, chloride, glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial 
Thromboplastin Time (PTT), Prothrombin Time (PT), the international normalized ratio (INR), 
sodium, Blood Urea Nitrogen and White Blood Cell Count (wbc). 

• Categorical variables: admission type (elective, urgent, emergency), gender, the receipt of either 
two treatments (dialysis and mechanical ventilation) and comorbidities according to the 
Elixhauser Comorbidity groups (30 comorbidities). 

• The predictors: admission age, the minimum Glasgow Coma Scale, and the total urinary output 
over the first 24 hours. 

Laboratory measurements and routine charted data were converted into 96 predictors; after that, we  

used two different methodologies to select the cutoff points of each score predictor. To do that, Study 

cohort B was randomly divided into two groups: a training subset with 40% of the admissions and a 

validation subset of 60% of the admissions. Methodologies run over training set. Usually, a training cohort 

larger than the validation cohort is used, however, after performing multiple tests with different sizes for 

the training cohort, we found that a sample of 40% is sufficiently representative of our study population, 

and the performance, as measured by the AUROC, does not improve substantially when larger training 

subsets (for example 70% or 80%) are used. Figure 7.1, presents the mean AUROC of 100 runs with each 

training subset percentage and Table 7.1table y presents the improvement obtained from increasing the 

training subset.   

 

Figure 7.1. AUROC as function of the training subset size.  



Table 7.1. Improvement obtained from increasing the training subset 

 

7.2.2 Binary score 
This methodology allow us to obtain a cutoff point (from now CP) for each of the continuous numeric 

predictor variables;  it divide the dataset into two groups based on a set of values for each predictor, those 

below the CP and those above; afterwards, we calculated the mortality rate of each group and assessed 

the number of admissions in each group. Thus, the CP was selected taking into account the following 

criteria: 

• Criteria 1: The smallest group contains at least 30% of admissions. 

• Criteria 2: The biggest difference between the mortality rates between the groups. 
 

In order to fulfill the criteria 1, we find the 30% and 70% quantiles in the training subset. Then, we generate 

a regular sequence between those two values with a length of 1.000, each of the elements of the sequence 

is a candidate cutoff point. We calculate the difference between the mortality rates of the populations 

over and below the candidate CP, and selected the one that presented a greater difference (criteria 2).   

Since the selection of the cutoff points is done over the training subset (6.033 admissions), it varies 

according to the random split that was made of cohort B; for this reason, we repeat the process 100 times 

and selected as final CP the mean of the values that presented a bigger difference each time.  

To illustrate the process for the cutoff point selection, we present in detail the results for the age and the 

minimum mean arterial blood pressure; since these variables represent the behavior that variables can 

suffer when dichotomized.  



 

Figure 7.2. Distribution of the 30% quantile, 70% quantile and selected cutoff points for the age over the 100 runs. 

Figure 7.2 presents the distribution of the 30% quantiles, 70% quantiles and selected cutoff points for the 

age in all the 100 runs. It is clear that the selected cutoff point is more sensitive to random divisions than 

the other two values; however, the average of difference of mortality rates along all the candidate CP 

does not show much variation since the values change from 18.67391% to 20.66875%, Figure 7.3 presents 

the average difference for the 100 runs for each candidate CP. 

 

Figure 7.3. Mortality rate difference for the age along the regular sequence between the 30% quantile and 70% quantile values. 



Figure 7.4 presents the distribution of the 30% quantiles, 70% quantiles and selected cutoff points for the 

minimum mean arterial blood pressure in all the 100 runs. In contrast to the age, it can be observed that 

the selected cutoff point variation over all the runs is small. Figure 7.5 presents the average difference for 

the mean arterial blood pressure over 100 runs for each candidate CP.  

 

Figure 7.4. Distribution of the 30% quantiles, 70% quantiles and selected cutoff points for the minimum Mean Arterial Blood 
Pressure over the 100 runs. 

 

 

Figure 7.5. Mortality rate difference for the mean arterial blood pressure along the regular sequence between the 30% quantile 
and 70% quantile values 



The mortality rate vs candidate CP (Figure 7.3 and Figure 7.5) show a different behavior for the example 

variables; for the age are positive which means that the population that are in risk is the one that is over 

the CP; on the other hand, for the mean arterial blood pressure the differences are negatives which means 

that the population at risk is the one that is below the CP. According to the CP selection criteria, we look 

for the biggest difference between the mortality rates of the populations over and below the CP, thus the 

selected CP is the one with the higher absolute value of the mortality rate difference. 

Selected CP allows us binarized all predictors. It means, a one is assigned to each predictor if its value is 

within the population with a higher mortality rate. After that, we develop a logistic regression (LR) model 

using this binary data in conjunction with the data taken at the time of ICU admission, the comorbidities 

and the treatments.  The general form of the log-odds, without the intercept coefficient: 

𝑙 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛    (1) 

In (1) coefficients 𝛽𝑖  are the parameters of the model, 𝑥𝑖  are predictors and  𝑛 is the total number of 

predictors. 

In order to obtain point values of the scoring system, the coefficients in (1) were multiplied by 10 and a 

constant was added to each integer coefficient to eliminate any negative values, then, they were rounded 

to the nearest integer.  After the coefficient transformation: 

𝑙 = (10𝛽1 + 𝜚)𝑥1 + (10𝛽2 + 𝜚)𝑥2 + ⋯+ (10𝛽𝑛 + 𝜚)𝑥𝑛  (2) 

In (2) 𝜚 is a constant added to coefficient to eliminate the negative values 𝑎𝑛𝑑 𝑖𝑠 equivalent to the 

smallest of the coefficients multiplied by ten. Rearranging the term, we got that: 

𝑙 = (10𝛽1𝑥1 + 10𝛽2𝑥2 + ⋯+ 10𝛽𝑛𝑥𝑛) + 𝜚(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛)  (3) 

The transformation process change the log-odds in two ways, of which, the multiplication of 10 with each 

of the coefficients 𝛽𝑖  do not affect the performance of the model, however the term 𝜚(𝑥1 + 𝑥2 + ⋯+ 𝑥3) 

could add important variations to the log odds, and it effect increases with the number of predictors; for 

this reason the score is defined as follows: 

𝑆𝑐𝑜𝑟𝑒 = (𝛽1
𝑇𝑥1 + 𝛽2

𝑇𝑥2 + ⋯+ 𝛽𝑛
𝑇𝑥𝑛) − 𝜚(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛)  (4) 

Where the coefficients 𝛽𝑖
𝑇are the 𝛽𝑖  coefficients multiplied by ten and rounded, the rounding of this 

coefficients is done in favor of clinical operationalization and score interpretability and it does not  

significantly affect the final performance. 

We executed multiple runs for different training subsets (in each run we randomly selected 40% of the 

study cohort B as training subset), obtaining different discrimination and calibration performance; and 

since the score is based on logistic regression, the coefficients are dependent to the selected training 

subset used to construct it; according to this, we present the score parameters obtained with a particular 

training subset  that reported a discrimination performance close to the mean of the AUROC obtained 

with the all the runs and presented an adequate calibration.  

The score development methodology presented above, brings back a set of cutoff point that divides the 

population into two groups, the difference in the one-year mortality rate between the two groups 

indicates how good such a predictor is. For this reason, different thresholds for said mortality rate 

difference were evaluated; with an increase in the one-year mortality rate difference threshold, the 



number of variables and the performance of the model decrease, making the score simpler but less 

discriminative. Figure 7.6 presents the behavior of the performance of the model according to the one-

year mortality rate difference threshold.   

 

Figure 7.6. Different AUROC for One-year mortality rate difference thresholds. 

The coefficients for the one-year mortality prediction score for ICU sepsis patients, the selected cutoff 

points (CP), the mortality rates for the population below and above the CP and the point value for each 

of the predictor variables that present a mortality rate difference greater than 5 are shown in Table 7.2.  

The coefficients and mortality rates for the comorbidities, treatment and demographic variables are 

presented in Table 7.3. With the coefficients presented in Table 7.2 and Table 7.3 the score for the one-

year mortality prediction of sepsis patients is calculated as follows: 

𝑆𝑐𝑜𝑟𝑒 = (𝛽1
𝑇𝑥1 + 𝛽2

𝑇𝑥2 + ⋯+ 𝛽𝑛
𝑇𝑥𝑛) − 138(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛) 

Where 𝛽𝑖
𝑇 are the coefficients presented in Table 7.2 and Table 7.3, and 𝑥𝑖  are one if the patient is in the 

group with higher mortality rate for each variable and zero otherwise. For instance, if the patient 

admission age is greater than 73.9  it associated 𝑥 will be 1, and if the patient minimum diastolic blood 

pressure over the first 24 hours of ICU admission is greater than 41 mmHg  it associated 𝑥 will be 0. 

 



Table 7.2. Scoring System for the One-Year Mortality Prediction of Sepsis Patients in Intensive Care Units. 

 

The final score possible maximum number is 85 (however no patient gets the maximum score in the 

dataset). The probability of one-year mortality on the validation subset was estimated using the final score 

as the sole variable in a logistic regression model, model discrimination was examined and the obtained 

AUROC of 0.768 (95% Confidence Interval: 0.761 - 0.778). To access the calibration of the score, Hosmer–

Lemeshow test was used and a value of 0.9 indicating that there is no evidence of poor fit.  

The admissions of the validation subset were divided into ten equal size groups according to the increasing 

estimated probabilities of one-year mortality given by the model, so that in the first group are those 

admissions that have the lowest probabilities of dying, and in the last group are those admissions with 

the highest probabilities of dying. For each group the observed and the estimated number of deaths were 

calculated and compared graphically and presented in Figure 7.7. 

 



Table 7.3. Comorbidities treatments and demographics variables for the Scoring System for the One-Year Mortality Prediction of 
Sepsis Patients in Intensive Care Units 

 



 

Figure 7.7. Comparison of observed versus predicted number of deaths by groups of increasing probability of one-year mortality. 

To benchmark the scoring system, the AUROC of 10 adjusted Severity of Illness Scores on the validation 

subset were calculated over 100 runs with different population partitions, the results are presented in 

Figure 7.8. In order to evaluate the calibration of the score, we check how the Hosmer-Lemeshow test 

performs in the said 100 repeated samples, the we calculated the proportion of p-values which are less 

than 0.05. From 100 runs, the Hosmer-Lemeshow test gave a significant p-value, indicating poor fit, on 

only 2% of occasions.  

The AUROC analysis presented in Figure 7.8, ratifies that a the development of entirely new models, that 

incorporate additional variables that enhance discrimination performance. However when analyzing in 

detail the information in Table 7.2 it is clear that variables that present a high different between the one-

year mortality rates of the populations below and above the CP do no always report a higher score point; 

for instance the maximum Prothrombin Time reports a difference between mortality rates of 15%, but 

the score point assigned of 135 is among the smallest; on the other hand, the minimum lactate has a 

lower difference between mortality rates but it associated score point is higher (142). The mentioned 

above indicates that for some variables there is a more complex relation between the cutoff points and 

the mortality rates, as example, one could think in the temperature, a physiological parameter that is 



pathologic both above (hyperthermia) and below (hypothermia) a CP which suggest that for parameter 

associate with the temperature it could be better to have more than 2 groups. In the next section we 

present the multiple cutoff points score, an approach that seeks to implement the aforementioned. 

 

Figure 7.8. AUROC comparison for the developed score and ten scoring systems. 

7.2.3 Multiple cutoff points score  
The score presented in previous section dichotomizes each continues predictor, and a subset of the 

population with higher risk can be found; however, it is possible that within the same variable there are 

several groups with different mortalities, this approach seeks to find the cutoff points that allow the 

identification of said groups and shows the improvement with respect to the binary score.  

In this methodology, a multiple cutoff points were obtained for each of the continuous numeric predictor 

variables. For this, we selected the unique cutoff points from the minimum and maximum values along 

with the deciles that divide the range of each variable into continuous intervals with equal probabilities. 

Then we computed the one-year mortality rate of each of the groups formed by the unique cutoff points 

and use agglomerative hierarchical cluster analysis (HCA) with a Euclidian measure of dissimilarity 

between each one-year mortality group rate. 

After that, we divide each of the continuous numeric predictors in the training subset into discrete values 

according to the groups obtained with the HCA, and calculated the one-year mortality rate for the new 

groups and for each variables we found the group with the lowest mortality rate and set it as references. 

The remaining groups were used along with conjunction with the data taken at the time of ICU admission, 

the comorbidities and the treatment information to generate a score with the same methodology 

presented in the previous section.  

To illustrate the process for the cutoff point finding, we present in detail the results for the age, the 

minimum mean arterial blood pressure and the glucose minimum. 



The minimum, maximum and the deciles that divide the range of the admission age are presented in Table 

7.4. These values divides the population according to the age in 10 different groups, with different 

mortality rates, which are shown in Figure 7.9 It can be observed that as expected, in general, the one-

year mortality rate increases with the admission age of the patients; however, there are two details that 

indicate that there is no need for all these cutoff points: first the last group (patients between 86.6 years 

old and 90 years old) shows a lower mortality rate than the ninth group (patients from 81.8 years old to 

86.6 years old); and second, the third and fourth groups present a similar one-year mortality rate, 

indicating that patients older than 52.3 years old and younger than 63.3 years old have the same risk. 

Table 7.4. Candidate cutoff points and reference values for the admission age. 

 

 

 

Figure 7.9. One-year mortality rate by groups according to the admission age. 

According to the above, an agglomerative hierarchical cluster analysis with a Euclidian measure of 

dissimilarity between the groups was used to select the final cutoff points for the admission age. Figure 

7.10 presents the dendogram of the process. It can be observed that cutting the dendogram at the height 

of two will result in five groups (presented in Figure 7.11) from which, the first group will be considered 

the reference, meaning that they patients in this group are considered to have the smallest risk. 



 

Figure 7.10. Agglomerative hierarchical cluster analysis for the admission age groups. 

 

Figure 7.11. One-year mortality rate for the final groups of the admission age. 

The minimum, maximum and the deciles that divide the range of the minimum mean blood pressure are 

presented in Table 7.5. This values divides the population according to the minimum mean blood pressure 

in 10 different groups, with different mortality rates that decrease when the values of minimum mean 

blood pressure increase (Figure 7.12 A). After the agglomerative hierarchical cluster analysis (Figure 7.12 



C), we found out four groups with the one-year mortality rates presented in Figure 7.12 B. It can be 

observed that for the minimum mean blood pressure the reference group is the last one.    

Table 7.5. Candidate cutoff points and reference values for the minimum mean blood pressure. 

 

 

Figure 7.12. Cutoff selection process for the minimum mean arterial blood pressure. 

  

The minimum, maximum and the deciles that divide the range of the minimum glucosee are presented in 

Table 7.6. These values divides the population according to the minimum mean blood pressure in 10 

different groups (Figure 7.13 A). After the agglomerative hierarchical cluster analysis (Figure 7.13 C), we 



found out four groups with the one-year mortality rates presented in Figure 7.13 B. It can be observed 

that for the minimum glucose the reference group is the third one.    

Table 7.6. Candidate cutoff points and reference values for the minimum glucose. 

 

 

Figure 7.13. Cutoff selection process for the minimum glucose. 

The coefficients for the one-year mortality prediction score for ICU sepsis patients, the selected cutoff 

points (CP) for each predictor, the mortality rates among the groups and the point value for each of the 

predictor variables are shown in Table 7.7. The coefficients and mortality rates for the comorbidities, 

treatment and demographic variables are presented in Table 7.8. The score for the one-year mortality 

prediction of sepsis patients is calculated as follows:  



𝑆𝑐𝑜𝑟𝑒 = (𝛽1
𝑇𝑥1 + 𝛽2

𝑇𝑥2 + ⋯+ 𝛽𝑛
𝑇𝑥𝑛) − 135(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛) 

Table 7.7. One-year mortality prediction score for sepsis patients within the ICU. Each block represents one of the predictors, the 
columns of such block represent the number of groups for a particular predictor; the first row of each block presents the name of 
the predictor, the second row indicates the ranges that defines each group, the third row shows the mortality rate of each group, 
and the fourth row present the score point values  𝜷𝑻. Each of the block have a column with a score point value of 0, which is the 
reference group for the particular predictor.  

 

 

  



Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU. 

 

  



Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU. 

 



Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU. 

 

 



Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU. 

 

 

 

 

 

 

 

 

 

 



Table 7.7 (Continued). One-year mortality prediction score for sepsis patients within the ICU. 

 

 

 



Table 7.8. Comorbidities treatments and demographics variables for the Scoring System for the One-Year Mortality Prediction of 
Sepsis Patients in ICU. 

 

The final score possible maximum number is 145 (however no patient gets the maximum score in the 

dataset). The probability of one-year mortality on the validation subset was estimated using the final score 

as the sole variable in a logistic regression model, model discrimination was examined and the obtained 

AUROC was 0.785 (95% Confidence Interval: 0.783 - 0.794). To access the calibration of the score, 

Hosmer–Lemeshow test was used and a value of 0.6 indicating that there is no evidence of poor fit.  



The admissions of the validation subset were divided into ten equal size groups according to the increasing 

estimated probabilities of one-year mortality given by the model, so that in the first group are those 

admissions that have the lowest probabilities of dying, and in the last group are those admissions with 

the highest probabilities of dying. For each group the observed and the estimated number of deaths were 

calculated and compared graphically and presented in Figure 7.14. 

 

Figure 7.14. Comparison of observed versus predicted number of deaths by groups of increasing probability of one-year mortality. 

 

Some variables, like the temperature or the glucose, have a non-linear behavior with respect to mortality, 

this approach can detect that kind of behavior and generate multiple CP that allow to interpret the 

condition of each patient more precisely, in order to prove this, we compared the AUROC the score 

generated with binary cutoff points and the AUROC of the score generated with multiple cutoff points of 

over 100 runs, the results are presented in Figure 7.15. In order to evaluate the calibration of the score, 

we check how the Hosmer-Lemeshow test performs in the said 100 repeated samples, the we calculated 

the proportion of p-values which are less than 0.05. From 100 runs, the Hosmer-Lemeshow test gave a 

significant p-value, indicating poor fit, on only 4% of occasions.  

 



 

 

Figure 7.15. AUROC comparison between the score generated with binary cutoff points and the score generated with multiple 
cutoff point. 

7.3 Conclusions  
We accessed two severity-of-illness scoring system specifically for patients with sepsis. The scores utilize 
6.033 admissions for its development and 9.049 for its validation. The binary cutoff points score contains 
52 variables and the multiple cutoff points scores contains 92 variables.  

Both scores accurately estimated the probability of one-year mortality in sepsis diagnosed patients within 
the ICU and are well calibrated. AUROC analysis shows that the presented scores outperforms other 
scoring systems; even more, the predictive capacity of the score is better, in this study, than the SOFA, 
that is the scoring systems used for the most recent sepsis and septic shock consensus [17, 18], and the 
Sepsis Severity Score (SSS), that is an internationally derived scoring system specifically for patients with 
severe sepsis and septic shock. 
 
The strengths of these scores are that they performed well with respect to both discrimination and 

calibration. The calibration is especially important as data were collected from a database that spams over 

10 years and we use four different sepsis criteria to retrospectively identify the admissions, including the 

most recent one. The scores are composed of 52 and 92 variables. The number of variables is more than 



traditional scores like SAPSII (20 variables) and SSS (36 variables) but considerably less than most recent 

approaches like APACHE IV (142 variables). 

The objective of this scores is to early alert of a worse prognostic and to stratify patients according to their 
risk that can be done according to the Table 7.9. One-year mortality rate according to the developed scores. As 
expected the multiple CP score presented better discrimination and it use will allow a more accurate 
interpretation of the condition of each patient, however the binary CP is more easy to implement and can 
be used for a quick interpretation of a patient's condition. 
 

Table 7.9. One-year mortality rate according to the developed scores. 

 

 
 

  



PART 4: PERSONALIZED MODELS 
 

In this part of the thesis we explore the idea that clinical outcome can be personalized and become more 

precise. Chapter 8 present de development of personalized logistic regression models for this we identify 

and analyze past patients who have admissions similar to a new patient whose outcome is to be predicted. 

In chapter 8 we also present an exhaustive evaluation of proposed patient similarity metrics, and 

concluded that with the correct among of similar patients, determined by a well selected similarity metric, 

the predictive performance can be improved. Chapter 9 presents the development of personalized 

stochastic gradient boosting models, that uses the patient similarity metric and the number of patients 

that proved to perform better in chapter 8. Chapter 10 presents the development of a graph-based 

regularized multilayer neural network, which is also based on the best performing similarity metric. 

Chapter 11 present the development of a software based on the characteristics that most contributed to 

the discrimination of the long-term mortality of patients with sepsis within the ICU. 

  



CHAPTER 8. ONE-YEAR MORTALITY 

PREDICTION IN PATIENTS ADMITTED TO 

AN INTENSIVE CARE UNIT WITH 

DIAGNOSIS OF SEPSIS DRIVEN BY 

ELECTRONIC MEDICAL DATA AND 

POPULATION SIMILARITIES 
8.1 Introduction  
In previous chapters we presented some Severity of Illness Scoring Systems, which are indicators used in 

the medical practice of an ICU that seek to synthesize information from various physiological and 

demographic data into a single number that represents the severity of the illness of a patient [2–6]. These 

indicators are developed from statistical analysis of data collected for a large number of patients; This is 

the case of the systems for severity of disease classification as SAPS and OASIS, among others. In general, 

this number increases mortality risk thereof. These classification systems are used to determine the risk 

in population studies conducted in ICU, and provide a method for benchmarking between intensive care 

units of different hospitals.  

Traditional ICU prediction models are based on the analysis of large populations, and often provide 

statistically rigorous results for an average patient but are also expensive, time-consuming, and prone to 

selection bias; moreover, traditionally approaches to ICU outcome prognostication has relied on static 

models generated from analyzing large, heterogeneous, multi-center patient datasets, such one-size-fits-

all approaches perform well for the average patient, but tend to present problems when the 

characteristics of the patients move away from the average since these indicators lack the precision 

required for use at the individual level, and they yielded widely dissimilar performances when applied to 

different groups of patients [62, 115, 116]. 

In order to mitigate the problems associated with traditional ICU mortality prediction scores, efforts have 

been made to generate mortality prediction models that use data from patients who share the same 

characteristic (for example, the same diagnosis or service type) [1, 2, 25, 26]. In the case of sepsis, as 

mentioned in chapter 2, the performance of mortality prediction systems in patients with suspected 

severe sepsis and septic shock have been evaluated in the ICU [62], customized versions for severe sepsis 

and septic shock of in-hospital mortality classification systems have also been developed [62, 63], and 

even particular scores for the prediction of mortality in patients with severe sepsis and septic shock have 

been created [64, 65]. In the hospital in general, important studies have been carried out in which 

exclusive models were developed for the prediction of mortality in patients with sepsis [66–68], for this 

studies the cohort was not composed exclusively of ICU patients, and although some of the patients 



received ICU care, the selection criteria are fundamentally different from those of the other studies in 

which the patients were evaluated for sepsis at the time of admission to the ICU. Although this works 

report better performance than traditionally severity of disease scores, they focus on the short term 

mortality prediction (7-day mortality and in-hospital mortality), and the use of in-hospital mortality as an 

end point for clinical studies are not enough to understand the effect of sepsis on mortality and quality of 

life [56, 59, 89, 91].   

The specific models created according to groups of patients that shares a common sepsis diagnostic have 

proved to outperform adjusted scoring systems; moreover the models presented in chapter six and seven, 

have a better predictive capacity with respect to both traditional scoring systems and models created 

exclusively for patients with sepsis, such as the Severe Sepsis Mortality Prediction Score (SSS) [66].  

Besides, even though the SSS scoring system is a severity-of-illness scoring system created specifically for 

severe sepsis patients it includes for its development both patients with and without ICU stay.   

It is clear then, that the presented sepsis mortality prediction models and the ones developed in chapters 

6 and 7, continue to be population-based and therefore they provide “the average best choice” for sepsis 

patients. For this reason, in this chapter we focus on a developing idea in the field of mortality prediction: 

personalized predictive modeling based on patient similarity. The goal of this approach is to identify 

patients who are similar to an index patient and derive insights from the data of similar patients to provide 

personalized predictions. This approach has been widely used for personalized predictions in other fields, 

including music, movies and e-commerce, however, there are still very few studies that focus on 

personalized prediction models based on health data prediction. 

In a 2017 scoping review, Sharafoddini et al. [117] present the state of techniques in the field of patient 

similarity in prediction models based on health data. Authors concludes that patient status prediction 

models based on patient similarity and health data offer exciting potential for personalizing and improving 

health care, that this field could lead to better patient outcomes and that the interest in patient similarity-

based predictive modeling for diagnosis and prognosis has been growing. In contrast, the review includes 

only 22 articles from 1339 papers that were screened. The selected articles focus on prediction in the 

health domain, devise a model for prediction, embed explicit patient similarity analytics, and utilize health 

data for training their model. The dominant focused application areas of the 22 studies reviewed by 

Sharafoddini et al. are cardiovascular disease (7 studies), diabetes (4 studies), cancer (3 studies) and liver 

disease (3 studies). The main evaluated outcomes of reviewed articles were diagnosis (9 studies), episode 

occurrence (4 studies) therapy recommendation (3 studies).  

Concretely, in the field of personalized predictive modeling for mortality prediction there was only one 

reported article. Lee et Al. [2] deployed a cosine-similarity-based patient similarity metric to identify 

patients that are most similar to an index patient and subsequently custom-build a 30-day mortality 

prediction model which outperformed the results obtained with models fitted with all the data and 

traditional severity of disease scores [2]. In their experiments they define 5000 as the minimum number 

of similar patients for logistic regression to ensure sufficient variability in categorical predictors within 

training data (these minimum numbers of similar patients could be different for other datasets and 

predictors) and the best performance (highest AUROC) were achieved with logistic regression when 5000 

or 6000 most similar patients were used for training the personalized model. One of the main conclusions 

of this work is that using a subset of similar patients rather than a larger, heterogeneous population as 

training data improves mortality prediction performance at the patient level. In this study, predictors 



equally contribute to the patient similarity metric, the patient cohort is a representation of patients with 

a wide variety of diagnoses and conditions and a personalized model is fitted for each index admission. 

According to the above, in this chapter we present the developing of personalized models that predicts 

the one-year outcome of sepsis diagnosed patients based on population similarities, moreover, we want 

to analyze the impact and relevance of the patient similarity metrics when patients are related by a 

common characteristic (a sepsis diagnosis) and a challenging outcome is evaluated (one-year mortality). 

8.2 Methodology 
For this study we used Study Cohort B, which mean we used the four criteria to retrospectively identify 

patients with sepsis within the MIMIC-III database, and the following predictors were included: 

• Vital signs : The maximum, minimum and mean values of the following vital signs were extracted 

during the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic blood 

pressure, mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen 

saturation. 

• laboratory variables : The maximum and minimum values of following laboratory variables were 

extracted from the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH, 

creatinine, chloride, glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial 

Thromboplastin Time (PTT), Prothrombin Time (PT), the international normalized ratio (INR), 

sodium, Blood Urea Nitrogen and White Blood Cell Count (wbc). 

• Categorical variables: The following categorical variables were extracted: admission type 

(elective, urgent, emergency), gender, the receipt of either two treatments (dialysis and 

mechanical ventilation) and comorbidities according to the Elixhauser Comorbidity groups (30 

comorbidities). 

• Other predictors: The following predictors were also extracted: admission age, the minimum 

Glasgow Coma Scale, and the total urinary output over the first 24 hours. 

Our objective is to use patient similarity to identify a precision cohort for an index admission, which is 

used to train a personalized model. To do that, we randomly divided the study cohort admissions in a 

training group with 90% of the admissions and a validation group with the remaining 10%. Each of the 

admissions in the validation group will be considered as an index admission and its particular precision 

cohort will be formed by the admissions of the training group that are more similar to said index 

admission. For each training group, we evaluate five different patient similarity measure in order to select 

those which the best performance with respect to one-year mortality prediction model.  

Each of the admissions of the validation group played the role of the index admissions for which the 

personalized models were generated. Figure 8.1 depicts the steps executed for processing each admission 

from the validation group:  

1) All pairwise Similarity measures (with five approaches) between the index admission and every 
admission in the training data were calculated. 

2) The calculated similarity values were sorted in ascending order.  

3) A precision cohort was created with the data of the n most similar admissions. The number of 
most similar admission was varied from 1.000, to 13.000 (there are 13.574 admissions in the 
complete training group 



4) Each precision cohort was used to train a logistic regression model for the index admission 
group.).   

 

Figure 8.1. Overview of the pipeline of the developed model. In Step 1, The index admission is represented by the yellow point; the 
training admissions are represented by the points labeled A0 to A9; Thickness of the arcs between index-admission node and 

training- group nodes establish the degree of similarity pairwise. In Step 2 and Step 3, the 𝑥𝑖
𝑗
 represent the predictors of each 

linked training admission, and the 𝑦𝑗  represents the one-year mortality outcome. In Step 4, the blue circles represent the 
coefficients for the personalized model. 

It is clear that the good performance of this methodology lies in an adequate construction of the precision 

cohort. For this it is desirable that each index patient has a large number of patients with which to 

compare (i.e. the training subset to be large), for this reason, we decided to use for our study a training 

subset formed with 90% of the total admissions of the study B cohort and a test subset with the remaining 

10%. 

8.2.1 Interaction between admissions 
The key aspect of the construction of the precision cohort is the modeling of the interaction between 

admissions, thus five types of similarity measures were evaluated:  

8.2.1.1. Cosine similarity (CS) 

Each admission was represented as an Euclidean vector in the multi-dimensional feature space defined 

by the predictor variables, for this, each continuous predictor was standardized. The similarity between 

two admissions was defined as follows: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑐𝑜𝑠 =
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Where 𝐴𝑖  and 𝐵𝑖 are the components of the vectors of two different admissions, and 𝑛 is the number of 

predictors (the extracted clinical and administrative variables). This is equivalent to the similarity used by 

Lee et al. in [2]. 

8.2.1.2. Equally Contribution Similarity (ECS) 

Since one of the major challenges for population-based studies is comorbidity, and the separation of 

patients based on demographics and site of care have proved to improve the performance of models 

[117], we add a similarity term that use a vector composed only by categorical data (comorbidities, 

treatments, gender and age discretized in age groups) to the CS: 
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Where 𝐴𝑖  and 𝐵𝑖 are components of the vectors of two different admissions, 𝑛 is the number of predictors 

and 𝑝 is the number of categorical predictors. The inclusion of such a term achieves that only the 

admissions that share a common characteristic are connected, moreover, the term reduces or increase 

the similarity between two patients insofar as they have less or more in common. 

8.2.1.3. Weighted Contribution Similarity (WCS) 

In ECS all the categorical data equally contribute to the similarity, however, it is clear that different 
conditions carry different mortality risk; for this reason, a weighted version of the previous approach was 
also evaluated. Three different set of weights were assessed for the weighted contribution similarity. 
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Elixhauser Comorbidity Measures 

The Elixhauser comorbidity system is a method of categorizing comorbidities of patients based on the 

International Classification of Diseases (ICD) diagnosis codes found in administrative data, it is composed 

of 30 comorbidity categories, each of which is dichotomous. Studies have found the Elixhauser 

comorbidity classification system to be significantly associated with various outcomes including in-

hospital mortality [118, 119]  and post discharge all-cause mortality [120, 121]. 

Table 8.1. Elixhauser comorbidity groups and their score association with death in hospital. 

 



 
In 2009 van Walraven et al. [87] presented a point system for hospital mortality using the Elixhauser 
comorbidity measures that summarizes all 30 Elixhauser comorbidity groups as a single number to be 
used for predicting in-hospital mortality. The study included 34.5795 adult admissions between 1996 and 
2008 and prove that the Elixhauser comorbidity system can be condensed to a single numeric score that 
summarizes disease burden and is adequately discriminative for death in hospital. Table 8.1 present the 
score developed by van Walraven et al. The reported points were used as weights (𝜃𝑖) in the weighted 
contribution similarity metric, the score points that indicate negative association with in-hospital 
mortality were set as zero, Table 8.1 presents the van Walraven weighted summary score based on the 
30 comorbidities from the Elixhauser comorbidity system. 
 

Severe Sepsis Mortality Prediction Score for Use with Administrative Data 

In 2016 Ford et al. [66] developed and validated a severe sepsis mortality prediction score using solely 

administrative data. The score was developed using 563155 admissions based on three criteria for severe 

sepsis cohort identification (Explicit sepsis, Angus criteria and Martin Criteria). The Sepsis Severity Score 

(SSS) presented an excellent discrimination for in hospital mortality. Table 8.2 present de variables of the 

SSS used in the weighted contribution similarity measure.     

Table 8.2. Variables of the Sepsis Severity Score used in the weighted contribution similarity measure. 

  



Scoring System for the One-Year Mortality Prediction of Sepsis Patients in Intensive Care Units 

In the previous chapter we presented the development of a scoring system for the one-year mortality 
prediction of sepsis patients in the ICU. The developed score uses the data of 15.082 admissions identified 
with four sepsis criteria (Explicit sepsis, Angus criteria, Martin Criteria and Sepsis-3) and it outperforms 
traditional severity of disease scoring systems and even outperform the SSS for the one-year mortality 
prediction. From the multiple cutoff points score we get the weights that are presented in Table 8.3; for 
this we subtract 131 to each of the scoring points so the smallest weight was one.  

 
Table 8.3. Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year 
Mortality Prediction of Sepsis Patients in ICU. 

 
 

8.2.2 Effect of the different similarity measures 
We base the studies presented in this chapter on the assumption that, analyzing only similar patients 

leads to better outcome prediction performance than analyzing all available patients. However, we do not 

have a ground truth about the similarity between patients, accordingly we evaluate the quality of the 

proposed patient similarity measures for its ability to generate precision cohorts that lead to the 

development of models with better predictive capacity, measured by the AUROC; Thus, in this section we 

present the intuition behind the proposed patient similarity measures but we are  only going to 

determined which of them is the best in future sections in which the performance of the models 

generated from these metrics is evaluated. 

The patient similarity measures yield values between zero (indicating very dissimilar patients) and one 

(indicating identical patients). When the cosine similarity is used in our dataset, each pair of admissions 

will have a non-zero number that relates them. In the case of the Equally Contribution Graph and the 



Weighted Contribution Similarity each index admission will only be related to those admissions with which 

it has something in common; for instance, in the Table 8.4 we present the adjacency matrix constructed 

by using the cosine similarity between an index admission a five training admissions, it is clear that the 

most similar admission to the index is Adm B, followed by Adm D and the less similar admission is Adm A. 

Table 8.4. Cosine similarity example for an index admission. 

 

However, when we analyze the comorbidities, treatments and demographic data, reported in Table 8.5, 

we find that:  

• The index admission and the Adm B only shares the admission type. In similar way, the index 

admission and the Adm E only shares the admission type. 

• The index admission and the Adm D shares hypertension. 

• The index admission and the Adm A only have a similar age in common. 

• By contrast, the index admission and the Adm C present a similar age, shares the admission type 

and have seven comorbidities in common: congestive heart failure, cardiac arrhythmias, 

hypertension, renal failure, liver disease, metastatic cancer and fluid electrolyte. 

Table 8.5. Comorbidities, treatments and demographic data of the example admissions. The table only presents the variables in 
which any of the admissions presents a 1. 

 



With this information, we use the second approach - the equally contribution similarity – As result,  we 

could construct a different adjacency matrix, presented in Table 8.6 In this case, as expected, the most 

similar admission is Adm C. 

Table 8.6. Equally contribution similarity example for an index admission. 

 

It can also be interpreted from Table 8.4 and  Table 8.6 that the index admission and Adm B presented a 

similar ICU stay (which means that the laboratory measurements and vital signs presented a  similar 

behavior) but theirs similarity drops when the ECS is applied since they only have the admission type in 

common; it can also be seen, that the similarities of Adm A and Adm E (that presented a low cosine 

similarity with the index admission) went to a smaller value. 

Index admission and Adm C are expected to remain the most similar when the weighted contribution 

similarities (WCS) are applied, but the similarity value that represents the relation between the index 

admission and the other ones should change.  

On the other hand, when the Severe Sepsis Mortality Prediction Score (SSS) is used to weight the WCS, 

the similarity value of Adm B and Adm E are zero because this scoring system do not consider the 

admission type.  Table 8.7 presents the WCS matrix with the SSS weights. 

Table 8.7 Weighted contribution similarity example for an index admission with Severe Sepsis Mortality Prediction Score (SSS) 
weights. 

 

When the Elixhauser Comorbidity Measures (ECM) is used to weight the WCS, the similarity value of Adm 

A, Adm B, Adm D and Adm E are zero because this weight system do not consider the admission type nor 

the admission age and the hypertension weight is zero. Since the ECM weight system is the one with fewer 

variables it also generates the sparest matrix of the evaluated WCS. Table 8.8 presents the WCS matrix 

with the ECM weights. 



Table 8.8 Weighted contribution similarity example for an index admission with Elixhauser Comorbidity Measures (ECM) weights. 

 

When the Scoring System for the One-Year Mortality Prediction of Sepsis Patients (OMPS) is used, all the 

training admissions have a non-zero value, since they shared at least one characteristic with the index 

admission. Table 8.9 presents the WCS matrix with the OMPS weights. 

Table 8.9. Weighted contribution similarity example for an index admission with Scoring System for the One-Year Mortality 
Prediction of Sepsis Patients (OMPS) weights 

 

8.3 Results  
A first way to determine which similarity metric results in a better precision cohort for each index 
admission is to simply use the one-year mortality rate among similar admissions as the prediction. The 
number of similar admissions were settled as 5, 10, 50, 100, 200, 300,400 and 500.   
 
Figure 8.2 illustrates the AUROC of death counting as a function of the number of similar admissions used 
as training data, the values presented were deployed using 30 independent runs with different randomly 
divides portions for training and validation. The maximum mean AUROC of 0.768 (95% confidence 
interval: 0.744~0.782) was achieved with 100 most similar admissions obtained with the weighted 
contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients 
weights. The performance degrades rapidly when too few patients are used for training and gradually 
when more admissions are added to the mortality rate calculation. 
 
The shown trend presented in Figure 8.2 shows that predictive performance based on similarity measures 

that have the similarity term composed only by categorical data (Equal Contribution similarity and the 

three versions of the Weighted contribution similarity) is better than when the mortality rate of the 100 

most similar patients is used as prediction; however, it seems to flatten when the cosine similarity is used.  

To benchmark the personalized one-year mortality prediction models, the predictive performances of ten 
adjusted severity of disease scoring systems (APSIII, LODS, MLODS, OASIS, qSOFA, SAPS, SAPSII, SIRS, SOFA 



and SSS) were quantified over 30 independent runs. For each run a different randomly selected training 
subset (composed of 90% of the total admissions of the study cohort B) were used to adjust the traditional 
severity of disease scoring systems, and the discrimination performance was obtained over the validation 
subset (the remaining 10% of admissions); Table 8.10 present this results.  

 

Figure 8.2. Mortality prediction performance of death counting among similar patients. CS: Cosine similarity; ECS: Equal 
Contribution similarity: WCS-ECM: Weighted contribution similarity with Elixhauser Comorbidity Measures (ECM) weights; WCS-
SSS: Weighted contribution similarity with Severe Sepsis Mortality Prediction Score (SSS) weights; WCS-OMPS: Weighted 
contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients (OMPS) weights; AUROC: area 
under the receiver operating characteristic curve. 

 
Table 8.10. Score performance of different adjusted traditional severity of illness scores for the one-year mortality prediction of 
sepsis patients within the ICU. 

 



The fact that the peak performances presented in Figure 8.2 with all the similarity measures were better 

than the performance of the adjusted traditional scoring system presented in Table 8.10, indicates that 

simple death counting among only 100 similar patients resulted in good predictive performance. 

The result obtained with the death counting approach corroborate the intuitive idea that similar patients 

tend to have equal outcomes and proving that the developed patient similarity metrics are adequate for 

the effective identification of similar patients. However, this approach does not generate a personalized 

model for the index admission.  

In order to generate a personalized one-year mortality model for the sepsis patients within the ICU we 

used the methodology presented in Figure 8.1. And we executed 30 runs with different randomly selected 

training (90%) and validation (10%) subsets. On each run, each of the admissions in the validation group 

was considered as an index admission and a set of precision cohorts were obtained and evaluated. Which 

this we found the number of similar patients and the similarity measure that presented a better 

performance.  

Figure 8.3 shows the predictive performance of personalized Logistic regression models as a function of 

the number of similar patients used for training. It is important to highlight that, the AUROC in the last 

data point (the one on the far right) is equal for all the patient similarity measures, this is because at this 

point the models are fitted 13574 admissions, what corresponds to the totality of training subset. 

Moreover, the performance in that data point is equivalent to the performance that would be obtained 

with the customized multiple cutoff-point score presented in the previous chapter, because such 

customized scores were developed using logistic regression, and in their development, the performance 

was conserved regardless of the discretization of the variables. 

It can also be observed from Figure 8.3 that that predictive performance improved as a subset of similar 

patients was used to fit the personalized one-year mortality prediction model. The peak mean AUROC of 

0.794 (95% confidence interval: 0.771~0.816) were achieved when 4.000 most similar patients obtained 

with the weighted contribution similarity with Scoring System for the One-Year Mortality Prediction of 

Sepsis Patients weights were used to construct the precision cohort. 

8.4 Conclusions  
The vast among of data that is being stored as Electronic Medical Records enables the development of 

prediction models based on patient similarities. In this chapter, we presented the utility of similarity 

metrics in personalizing one-year mortality risk estimation in the ICU for sepsis patients. The results 

showed that using a subset of similar admission rather than a larger population as training data improves 

one-year mortality prediction performance, even when the population shares a common characteristic.  

Although all the evaluated admissions are from patients with sepsis (which means that they all have an 

infection and an organ dysfunction), there was improvement when using similarity metrics, even more a 

simple mortality rate among 100 similar admissions resulted in good predictive performance that 

exceeded the performance obtained with the scoring systems reported Table 8.10. 

 

 



 

Figure 8.3. One-year Mortality prediction performance of personalized logistic regression trained on similar admissions. CS: Cosine 
similarity; ECS: Equal Contribution similarity: WCS-ECM: Weighted contribution similarity with Elixhauser Comorbidity Measures 
(ECM) weights; WCS-SSS: Weighted contribution similarity with Severe Sepsis Mortality Prediction Score (SSS) weights; WCS-
OMPS: Weighted contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients (OMPS) 
weights; AUROC: area under the receiver operating characteristic curve. 

Traditionally the risk prediction in a ICU, is addressed by the clinician based on large population studies of 

patients, like severity of disease scores, however the developed models outperformed widely the adjusted 

traditional used scores, which could be explained by the following elements: 

1. The use of a specific cohort of patients with sepsis. 

2. The inclusion of sepsis related variables, like lactate. 

3. The fact that nearby admissions are more comparable and tend to have the same outcome. 

The first two elements explain why the logistic regression model fitted with all the training subset 

exceeded the performance of the currently used scores, the third one explains the improvements 

observed in Figure 8.1 and Figure 8.3.  

An important aspect of the personalized logistic regression approach is that it gives particular coefficients 

for each precision cohort which could be interpreted as relative variable importance for a particular 

patient, meaning that a treating doctor could elucidate the most relevant factor in de prediction, so it has 

the potential to provide tailored prognoses, and prescribe more effective treatments. 

It is clear that one of the factors that strongly affects predictive performance is the choice the similarity 

measure, the results presented in Figure 8.1 and Figure 8.3 shows that the weighted contribution 

similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients weights generates 

the personalized one-year mortality prediction models with better predictive performance; however the 

other weighted contribution similarities did not show a better performance than Equal contribution 



similarity, one possible explanation could be that the SSS and ECM weights were based on scores that 

were developed for in-hospital mortality, in addition, the OMPS include all the considered comorbidities 

and treatments. 

Despite the good results reported by Lee et Al. [2], in this study, cosine similarity was, in general, the one 

that had a worse performance, indicating that importance of the comorbidities when evaluating the long-

term mortality. Moreover, the predictive performance improvement reported by Lee et Al. was 2.47% 

(the best performing model presented an AUROC of 0.83 and the model that used all available data for 

training presented an AUROC of 0.81), but predictive performance improvement in our study was 1.15%. 

This could be explained by the fact that the population that we evaluated is especially homogeneous; all 

of the patients in our study cohort present the same severe diagnosis, sepsis, have a median ICU length 

of stay of 4 days, a median hospital length of stay of 11 days and a median age of 68 years old.   

This study has demonstrated the value of patient similarity-based models in critical health problems and 
shows the superiority of patient similarity-based models over population-based ones. In order to improve 
the capabilities of these models we propose as future work, the evaluation of different algorithms on the 
precision cohort, the implementation of novel machine learning approaches on graph-structured data like 
graph convolutional networks and the evaluation of different similarity measures. 
  



 

CHAPTER 9. PERSONALIZED STOCHASTIC 

GRADIENT BOOSTING MODELS  
 

9.1 Introduction 
In previous chapter we presented the developing of personalized models that predicts the one-year 
outcome of sepsis diagnosed patients based on population similarities, and we concluded that using a 
subset of similar admission rather than a larger population as training data improves one-year mortality 
prediction performance, even when the population shares a common characteristic, which means that, 
despite the fact that the population that we evaluated is homogeneous (Mainly because the data is taken 
from intensive care unit admissions that share a sepsis diagnosis) the similarity measures are relevant for 
the long term mortality prediction. We also observed that, from the similarity metrics evaluated, the one 
that led to the development of models with better performance was the weighted contribution similarity 
with Scoring System for the One-Year Mortality Prediction of Sepsis Patients weights. In the previous 
chapter, we also found that the peak AUROC of the personalized logistic regression models were achieved 
when the data of the 4000 most similar patients were used for training and the ‘Weighted Contribution 
Similarity (WCS)’ metric with the ‘Scoring System for the One-Year Mortality Prediction of Sepsis Patients 
(OMPS)’ weights were used; proving that clinical long term mortality prediction can become personalized 
by identifying and training the model with data obtained from past admissions similar to a present case 
of interest. This idea has also been proven by Lee et al. [122] who suggested that the amount of predictive 
utility contributed by a past patient should be directly proportional to the degree of similarity between 
the past and index patient, or if it is seen from other perspective, data from dissimilar patients may 
actually degrade predictive performance. 
 
In this chapter, we want to evaluate if it is possible to get a more precise long-term outcome prediction 
using non-linear models supported on the patient similarity measure that proved to enhance the 
predictive capability of the linear models.  
 
According to the above, in this chapter we present the developing of personalized Stochastic Gradient 

Boosting models (like the models presented in Chapter 6) that predicts the one-year outcome of sepsis 

diagnosed patients based on weighted contribution similarity with Scoring System for the One-Year 

Mortality Prediction of Sepsis Patients weights. 

9.2 Methodology  
For this study we used Study Cohort B, which mean we used the four criteria to retrospectively identify 
patients with sepsis within the MIMIC-III database, and the following predictors were included: 
 

• First, the maximum, minimum and mean values of the following vital signs were extracted during 
the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic blood pressure, 
mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen saturation. 

• Second, the maximum and minimum values of following laboratory variables were extracted from 
the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH, creatinine, chloride, 
glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial Thromboplastin Time 



(PTT), Prothrombin Time (PT), the international normalized ratio (INR), sodium, Blood Urea 
Nitrogen and White Blood Cell Count (wbc). 

• Third, the following categorical variables were extracted: admission type (elective, urgent, 
emergency), gender, the receipt of either two treatments (dialysis and mechanical ventilation) 
and comorbidities according to the Elixhauser Comorbidity groups (30 comorbidities). 

• Lastly, the following predictors were also extracted: admission age, the minimum Glasgow Coma 
Scale, and the total urinary output over the first 24 hours. 
 

Whit this data we developed personalized stochastic gradient boosting models, for this we used a patient 
similarity metric to identify a precision cohort for an index admission, which was used to train a 
personalized non-linear model.  
 
We randomly divided the study cohort admissions in a training group with 90% of the admissions and a 
validation group with the remaining 10%. For each admission in the validation group, that are considered 
the index admissions, we executed the following steps (Figure 9.1 presents the overview of this approach):  

1. The weighted contribution similarity patient similarity measure with Scoring System for the One-
Year Mortality Prediction of Sepsis Patients weights between the index admission and every 
admission in the training data were calculated.  

2. The calculated Similarity values were sorted in ascending order. 
3. A precision cohort was created with the data of the 4000 most similar admissions. 
4. Each precision cohort was used to train stochastic gradient boosting for the index admission.  

 

 
Figure 9.1 Overview of the pipeline of the personalized SGB model. In Step 1, The index admission is represented by the yellow 
point; the training admissions are represented by the points labeled A0 to A10; Thickness of the arcs between index-

admission node and training- group nodes establish the degree of similarity pairwise. In Step 2 and Step 3, the 𝑥𝑖
𝑗
 

represent the predictors of each linked training admission, and the 𝑦𝑗 represents the one-year mortality outcome. In 
Step 4, the green circles represent admissions with a positive outcome and red squares represent admission with a 
negative outcome, the upper box illustrates a two-dimensional coordinate system, the dotted represent the 
boundaries of each of the trees in the final model ensemble. 

In addition to the technique used for the generation of personalized models in this chapter, an important 
difference with respect to the methodology followed in Chapter 8, is that both the number of similar 
patients analyzed for the generation of each model, and the similarity metric used to determine the 
relationship between patients, remained constant, this was done because in the studies with the 
personalized logistic regression models we found out that the peak AUROC was achieved when the 
weighted contribution similarity measure with Scoring System for the One-Year Mortality Prediction of 
Sepsis Patients weights was used as patient similarity measure, and the 4000 most similar patients were 
used for training; and since the SGB methodology is computationally more expensive than the logistic 



regression, it was unfeasible for us to perform tests as rigorous as those performed in the previous 
chapter; In spite of this, the way in which the tests in this chapter were carried out allow us to conclude 
whether the inclusion of non-linear methodologies can add value to the prediction of one-year mortality. 
 
The idea behind the selected similarity measure is that different conditions (like comorbidities, treatments 
or demographics) carry different mortality risk, therefore, it is necessary a metric that allows grouping 
patients who share conditions according to how related these conditions are to one-year mortality. The 
following is the used similarity, the weights (𝜃𝑖) are presented in Table 9.1. 
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Table 9.1 Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year 
Mortality Prediction of Sepsis Patients in ICU. 

 
 

The non-linear model used, Stochastic Gradient Boosting (SGB), is the model used for the model presented 
in chapter 6. Boosting is a powerful machine learning method for selecting features and weight their 
predictive contribution to the classifier. It combines the outputs of many weak learners, Tress in the case 
of  SGB [103, 123, 124], which are combined through a weighted voting to produce the final prediction. 
As a decision tree-based ensemble method, boosting allows the use of numeric and categorical predictors 
and it is robust to missing values [103], it reduces overfitting problems through the use of a learning rate 
(also called shrinkage) [103], it is also more resistant to multicollinearity than other machine learning 
methods like neural network [123, 125].  



 
Boosting is based on the idea that the classification error of a model could be reduced if a new weak 
learner is added. The way of error reduction is arbitrary so that any loss function can be used depending 
on the problem being solved. In gradient boosting, a gradient descent procedure is used to minimize the 
loss function. The minimization is realized numerically by applying a steepest descent step that calculating 
the negative gradient of the loss function [103, 123]. 
 
In order to illustrate how the gradient boosting methodology generates the final model, an example of 
visualizing gradient boosting is presented in Figure 9.2. The points in this example comes from the 
precision cohort illustrated in Figure 9.1, thus, for the index admission there are five adjacent admissions 
(3 that survive and 2 that do not), the objective is to generate a model to classify the green circles and red 
squares, which represent admissions with positive and negative outcomes respectively, shown in the two-
dimensional coordinate system. In the first iteration a small tree is generated, this tree divides the two-
dimensional space in two segments and indicates that the admissions with a X value less or equal to 1 are 
classified as green circles. However, with first model two green circles (encased in a red dotted ellipse.) 
are misclassified. These two green circles are the errors of the first model, for this reason, in the next 
iteration the algorithm focus on them and generate a second decision tree to correctly predict them; the 
second tree generates a horizontal boundary in such a way that the admissions that have a Y value higher 
than 2 are classified as green circles. This second tree separates the three green circles from most of the 
red squares. However, there is still a misclassified admission, so the third iteration focus on it, and 
generate a third tree that indicate that the admissions with an X value less or equal to 1 are classified as 
green circles. The final model is the sum of Tree 1, Tree 2 and Tree 3 and it successfully classifies all the 
admission.  
 
It is clear then that gradient boosting has the risk of overfitting. This risk can is mitigated by using some 
regularization methods, the first one is the learning rate 𝜐, which is a number between 0 and 1 that is 
multiplied to the decision tree generated in each iteration, it has been proven that this parameter 
improves the model’s generalization ability [103]; the second one is the Stochastic Gradient Boosting 
approach. SGB is a method that applies subsampling as a regulation technique to reduce overfitting [103, 
126].  At each iteration SGB samples a fraction of the training data without replacement and uses these 
subsamples to generate the new tree. Then the improvement of the prediction performance of the new 
model can be evaluated by predicting those subsamples which are not used in the building of the tree 
[103, 123]. Besides the learning rate 𝜐, the SGB algorithm involves other parameters which need to be 
tuned in order to maximize the predictive capability of the model , these parameters are: the total number 
of boosting iterations (number of trees) and the number of splits performed on each tree [93]. 
 
In order to make the generation of personalized SGB models computationally viable, no tuning process 

was carried out in the development of the particular models of each index admission; instead we selected 

global hyperparameters and used them in all models. According to the tests performed in chapter 6 we 

fixed the learning factor as 0.01. To determine and adequate maximum tree depth we generated a SGB 

model trained with all the training subset and evaluated tree values for the parameter (5,7 and 9). Finally, 

since it is expected and desirable that a model trained on less admission uses less trees, we developed 

models using 4000 randomly selected admissions from the training subset which were used to select the 

final number of trees.       

 



 
Figure 9.2 Gradient boosting example. 

9.3 Results  
 
The development of the personalized stochastic gradient boosting models was done on R software, the 
caret package [127] was used for the SGB model generation and the proxy package [128] were used to 
the computation of the similarity measure. 
  
The general SGB model trained with 90% of the admissions included in cohort B reported a AUROC of 0.81 
(95% Confidence Interval: 0.78 ~ 0.82) over the remaining 10% of admissions, for this model the learning 
rate was held constant at a value of 0.01; and a 10 fold cross-validation process was used to select the 
optimal parameter for the number of splits (tree depth) and boosting iterations, for this the AUROC of 



different sets of parameter configuration were computed. The results of the performance of 10-fold ross-
validation are presented in Figure 9.3. 
 
The parameter that presented a better 10-fold CV performance were: number of trees=1800 and tree 
depth = 9. However, it can be observed in Figure 9.3 that at 1000 boosting iteration the curve with max 
tree depth of 9 flattens; moreover, it is reasonable to think that a model trained with less observations 
(4000 for the personalized SGB models) could need less trees; for this reason, we generate another 
general SGB model trained with 4000 admissions. This model reported a AUROC of 0.795 (95% Confidence 
Interval: 0.787 ~ 0.803) over the remaining admissions, for this model the learning rate and tree depth 
were held constant at 0.01 and 9 respectively; and a 10 fold cross-validation process was used to select 
the optimal boosting iterations which were set between 600 and 1000 with a stepwise increment of 50. 
The results of the performance of 10-fold ross-validation are presented in Figure 9.4, where it can be seen 
that the optimal classifier is constructed with 900 trees. 
 
Figure 9.5 illustrates the AUROC of the personalized models generated with both SGB and logistic 
regression, the values presented were deployed using 20 independent runs with different randomly 
divides portions for training and validation. The mean AUROC of the personalized SGB models were 0.809 
(95% Confidence Interval: 0.791 - 0.825) and the mean AUROC of the personalized Logistic regression 
models were 0.794 (95% Confidence Interval: 0.78 - 0.807). 
 

 
Figure 9.3 SGB model tuning parameters and AUROC. The colored lines indicate different interaction depths (number of splits in 
each tree). Each data point in the figure represents one evaluated classifier. For instance, the blue data point at (1000, 0.80) 
indicates a model built with 1000 trees each with 3 splits, that gives a AUROC of 0.80 in the 10-fold cross-validation. 



 
Figure 9.4 SGB model tuning parameters and AUROC. 

 
Figure 9.5 AUROC comparison of the personalized model developed with logistic regression and SGB. 

 

 



9.4 Conclusions  
In this chapter we the development of personalized Stochastic Gradient Boosting models. It is important 

to note that, besides indicating the one-year mortality probability, this approach gives a relative variable 

importance for each precision cohort, so it has the potential to provide tailored prognoses, and prescribe 

more effective treatments. As an example we present two particular patients, described in Table 9.2. 

Table 9.2 Description of two patients. Only a subset of predictors relevant for the example are presented. 

 



Since the personalized SGB model is based on a precision cohort that was constructed specifically for each 

index patient, it generates two different models, one for the patient A and other for the patient B, and 

besides the probabilities of surviving or not, it also present additional information. 

 

Figure 9.6 Variable importance for the one-year mortality prediction according to the personalized SGB. 

Figure 9.6 presents the 10 most important variables for the personalized models of both patients, and 

differences can be seen bottom up. First the relevance of the admission age is greater in patient A (the 

older patient). The importance of the blood urea nitrogen is greater in the patient B. There are no variables 

related with the blood pressure nor the respiratory rate on patient B. And the metastatic cancer appears 

as a relevant variable in patient B although it does not suffer it, this mean that metastatic cancer is an 

important predictor in the precision cohort of patient B, which could indicate that this particular 

comorbidity is one of the main reasons why a young patient can die within a year.  



CHAPTER 10. GRAPH-BASED 

REGULARIZED MULTILAYER NEURAL 

NETWORK  
 

10.1 Introduction 
In this work we are aiming to develop a one-year mortality prediction model for sepsis patients within the 

ICU that could be used for particular patient prognostication. The approaches that have been 

implemented can be grouped into three categories: the adjustment of traditional severity of disease 

scoring systems, the development of entirely new customized models that incorporated additional 

variables and the generation of personalized models based on a precision cohort for each new patient. 

Within the approaches used so far, the one that performed best was the personalized Stochastic Gradient 

Boosting (SGB) models; For the generation of these models, a precision cohort should be constructed, for 

this, the 4000 patients most similar to each new patient are selected; the similarity between patients is 

calculated using the weighted contribution patient similarity metric; then, with the constructed precision 

cohort for the new patient a personalized SGB model is fitted; this means that it is necessary to develop 

a model for each patient.  

According to the above, in this chapter we want to evaluate the possibility of integrating patient similarity 

information in a model that should only be trained once. For this, we build a structure that contains the 

vector of characteristics of each patient, and the relationship between patients. Graphs provide a natural 

way of representing populations and their similarities. In such setting, each patient is represented by a 

node and the similarities are modelled as weighted edges connecting the nodes [129]. So, our problem is 

classifying nodes (patients) in a graph; and it can be framed as graph-based learning, where label 

information is smoothed over the graph using explicit graph based regularization [130].  

In this chapter we developed a Graph-based regularized multilayer neural network. For the graph 

construction we used the same weighted contribution patient similarity metric as in the previous chapter. 

In order that only the nodes (patients) that are truly similar were connected, we established a similarity 

threshold, so that the edges that had a value below such threshold would be eliminated from the graph. 

10.2 Methodology  
For this study we used Study Cohort B, which mean we used the four criteria to retrospectively identify 
patients with sepsis within the MIMIC-III database, and the following predictors were included: 
 

• First, the maximum, minimum and mean values of the following vital signs were extracted during 
the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic blood pressure, 
mean blood pressure, respiratory rate, temperature and peripheral capillary oxygen saturation. 

• Second, the maximum and minimum values of following laboratory variables were extracted from 
the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH, creatinine, chloride, 
glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial Thromboplastin Time 



(PTT), Prothrombin Time (PT), the international normalized ratio (INR), sodium, Blood Urea 
Nitrogen and White Blood Cell Count (wbc). 

• Third, the following categorical variables were extracted: admission type (elective, urgent, 
emergency), gender, the receipt of either two treatments (dialysis and mechanical ventilation) 
and comorbidities according to the Elixhauser Comorbidity groups (30 comorbidities). 

• Lastly, the following predictors were also extracted: admission age, the minimum Glasgow Coma 
Scale, and the total urinary output over the first 24 hours. 

 
Similar to the previous chapter we randomly divided the study cohort admissions in a training group with 

90% of the admissions and a validation group with the remaining 10%; however, since the methodology 

developed in this chapter are based on the assumption that similar admissions (nearby nodes in a graph) 

are more comparable and tend to have the same outcome (labels) in this approach we represent the data 

of the training subset as a graph. 

So, we consider a training subset of 13574 admission comprising demographic, physiological predictors, 

comorbidities and treatments and we calculated the pairwise similarity between those admissions using 

the weighted contribution patient similarity metric. The idea behind this patient similarity measure is that 

different conditions (like comorbidities, treatments or demographics) carry different mortality risk, 

therefore, it is necessary a metric that allows grouping patients who share conditions according to how 

related these conditions are to one-year mortality. The following is the used similarity: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑤𝑒 =
∑ (𝜃𝑖𝐴𝑖)(𝜃𝑖𝐵𝑖)
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Where 𝐴𝑖  and 𝐵𝑖 are the vectors of two different admissions, 𝑛 is the number of total predictors and 𝑝 is 

the number of categorical predictors (comorbidities, treatments or demographics), and 𝜃𝑖  are the weights 

of each categorical predictor. In this study we used the scoring system for the one-year mortality 

prediction of sepsis patients weights, presented in Table 10.1 

Then we represent the training subset population as an undirected graph 𝒢 = (𝒱, ℰ, 𝒲), where 𝒲 is the 
weighted adjacency matrix describing the graph’s connectivity. Each admission in the training subset is 
represented by a node 𝓋𝑖 ∈  𝒱 and is associated with a feature vector 𝑥(𝓋𝑖) conformed of the predictors 

(such as laboratory tests, vital signs and comorbidities listed above). The edges (𝓋𝑖 , 𝓋𝑗) ∈  ℰ of the graph 

represent the similarity between the admission. The graph labels are the one-year mortality of the training 
subset, 1 is for those patients who die before one year and 0 for the patients that survive for more than a 
year. An overview of the graph generation process is presented in Figure 10.1. 
 
To construct 𝒲 we set a similarity threshold (ω𝑡ℎ), for this we calculated the pairwise similarity of all the 

admissions in the training subset; and for each of those admissions we sorted the admissions and found 

the value of the 4000th most similar patient, and then we average all those values. The objective of this 

procedure is to adapt the results obtained in chapter 8, where it was shown that the best performing 

personalized models were achieved when 4000 most similar patients were used to construct the precision 

cohort for each patient. According to the above 𝒲 is defined as: 

 



𝒲𝑖𝑗 = {

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦                    𝑖𝑓  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 > ω𝑡ℎ

𝑂 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   

 

 
Table 10.1 Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year 
Mortality Prediction of Sepsis Patients in ICU. 

 
 
Our problem can be framed as graph-based learning, where label information is smoothed over the graph 
via some form of explicit graph-based regularization. So it can be addressed as semi-supervised learning 
a field of study where the goal is to improve generalization (improve the performance) on supervised tasks 
using unlabeled data, for this, semi-supervised learning algorithms jointly optimize two training objective 
functions: a supervised loss over labeled data and the unsupervised loss over both labeled and unlabeled 
data.  
 
There are two semi-supervised learning paradigms, transductive learning and inductive learning. 
Transductive learning only aims to apply the classifier on the unlabeled instances observed at training 
time, and the classifier does not generalize to unobserved instances.  Inductive learning aims to learn a 
parameterized classifier that is generalizable to unobserved instances. 
 



In this work we are interested in inductive learning and specifically in those methods that consider that 
similar instances are more comparable and tend to have the same labels, therefore, our interest is to use, 
beside the supervised loss term, a loss term that considers the similarity between the admissions. 
According to the above, we aim to develop a model that incorporates the similarity between patients in 
the training process, to be used in new patients; meaning that we are not using unlabeled nodes in the 
training process but we are going to evaluate the performance of the model over a validation subset.  
 
The particular algorithm that we use is called label propagation [131]; this algorithm adds a large penalty 
when similar instances are predicted to have different labels, the loss function of semi-supervised learning 
in the binary case can be written as: 
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Figure 10.1 Graph construction process. 𝒙𝒋 represent a feature input vector for a particular admission in the training subset and 

𝒚𝒋 represent the corresponding output. The nodes 𝑨𝒋 represent a particular node in the graph with an associated 𝒙𝒋 and 𝒚𝒋 (which 

is illustrated as the node color, red nodes indicate a label 1, and grey nodes indicates a label 0). 

 
The first term of the above equation is the standard supervised loss function, for instance the squared 
loss over the labeled part of the graph, 𝑓(∙) can be a neural network like differentiable function. The 
second term is the graph Laplacian regularization, 𝑎𝑖𝑗 indicates the similarity between instance 𝑖 and 𝑗, so 

this term incurs a large penalty when similar instances with  a  large 𝑎𝑖𝑗 are  predicted  to  have  different  

labels 𝑓(𝑥𝑖) ≠ 𝑓(𝑥𝑗).  

 



It is possible to introduce the label propagation idea in a deep learning scheme. Deep learning consists of 
learning a model with several layers of non-linear mapping. In this chapter we use a multi-layer neural 

network, and each 𝑘𝑡ℎ layer is defined as: 
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𝑆 is a non-linear function such as Re-Lu, 𝑤𝑖
𝑘 are the weights associated with each layer, 𝑥 are the input 

vector and  𝑏𝑘,𝑖  are the bias associated with each layer.  
The output of the presented neural network for binary classification, assuming 𝑁 layers of hidden units is 
a the two position vector: 

𝑓(𝑥) =

[
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In the implementation of this approach we use a softmax function after the neural network output, which 
is a function that takes as input a vector of 2 real numbers (for binary classification), and normalizes it into 
a probability distribution consisting of 2 probabilities. The standard softmax function is defined as: 
 

𝜎(𝑧𝑖) =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
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The method we use for deep learning via semi-supervised embedding is to add a semi-supervised loss 
(regularizer) to the supervised loss on the entire network’s output:  
 

ℒ = ℒ0 + 𝜆ℒ𝑟𝑒𝑔 ,  

ℒ𝑟𝑒𝑔 = ∑𝑎𝑖𝑗‖𝑓(𝑋𝑖) − 𝑓(𝑋𝑗)‖
2

𝑖,𝑗

 

Where ℒ0is the supervised cross-entropy loss, 𝑓(∙) is the output of a neural network, 𝜆 is a weighing factor 

and 𝑎𝑖𝑗 is the similarity weight between the  𝑖𝑡ℎ admission and the  𝑗𝑡ℎadmission. Our approach to this 

problem can be framed as graph-based learning, where label information is smoothed over the graph via 
explicit graph-based regularization [130, 132]. For this we constructed a graph based on the similarity that 
presented the best performance in our previous tests. Such graph is denoted as a square matrix 𝐴, which 
has as entries each  𝑎𝑖𝑗. Figure 10.2 present the overview of the graph-based regulated neural network. 

The number of units in the hidden layers were: 20, 15 and 10 respectively and the dropout ratio were 0.5. 
 
For this Laplacian Regularization experiments, we vary the regularization weighting factor 𝜆, which takes 
the following values:0,  0.0001, 0.001, 0.01, 0.1 and 1;  
 
 



 

 
Figure 10.2 Outline of the graph-regulated methodology. 

 

10.3 Results  
The first step in for the development of the graph-based regularized multilayer neural network is the  
construction of the weighted adjacency matrix 𝒲. For this we obtain a similarity threshold (ω𝑡ℎ) 
averaging the similarity values of the 4000th most similar patient for each admission in the training subset. 
The obtained value was 0.08; the distribution of those values is presented in Figure 10.3. 

 
Figure 10.3 distribution of the similarity values of the 4000th most similar patient for each admission in the training subset. 



 
Then, the graph-based regularized multilayer neural network was developed using the TensorFlow [127] 

library on python, in order to update the network weights iteratively (training) we used the Adam 

optimization [133] algorithm which is an is an extension to stochastic gradient descent.  

Stochastic gradient descent maintains a single learning rate for all weight updates and the learning rate 

does not change during training, on the contrary, Adam optimization computes individual adaptive 

learning rates for different parameters. 

Unlike the SGB model, where the number of iterations of the algorithm are determinate by the number 

of trees in the ensemble; in this deep learning approach, the number of iterations were set to 10000000. 

Each iteration involves using the model with the current weights to make predictions on some samples, 

comparing the predictions to the ground truth outcomes, calculating the error, and using the error to 

update the weights by using the backpropagation algorithm. Each iteration was done with a batch of 30, 

this value was settled by trial and error.     

Figure 10.4 presents the performance of the Laplacian regularized neural network as function of the 

regularization weighting factor 𝜆 over ten independent runs. The best performance for the Laplacian 

regularized neural network was obtained with a regularization factor or 0.1 which reported an AUROC of 

0.812 (95% Confidence Interval: 0.808 - 0.814) 

 

Figure 10.4  Performance of the one-year mortality prediction Laplacian regularized neural network.  

 

10.4 Conclusions  
When comparing the graph-based regularized multilayer neural network to the personalized Stochastic 

Gradient Boosting (SGB) models presented in the previous chapter an important difference arise between 



them, the personalized SGB models creates a particular model for each new patient, which mean that for 

every new patient a precision cohort is obtained with the 4000 most similar patients, and a specific SGB 

model is trained with that particular cohort; and the graph-based regularized multilayer neural network 

generates a single model that is generalizable to unobserved instances, which mean that it is only trained 

one time.  

When comparing the mean performances of both methodologies it can be observed that the performance 

obtained with the graph-based regularized multilayer neural network with a weighting factor λ of 0.1 is 

slightly better than the personalized SGB models. Figure 10.5 illustrates the AUROC of the best performing 

graph-based regularized multilayer neural network and the personalized models generated with both 

SGB, it is important to note that the values presented for personalized SGB were deployed using 20 

independent runs with different randomly divides portions for training and validation but we only perform 

10 runs for the graph-based regularized multilayer neural network with a weighting. 

 

Figure 10.5 Comparison of  graph-based regularized multilayer neural network with a weighting factor λ of 0.1 and the SGB 
personalized models. 

The graph-based regularized multilayer neural network has the advantage of being trained only once (in 

comparison of train a particular model for each index patient), however since it is based on a three-layer 

neural network loses interpretability. An important factor in favor of the personalized SGB approach is 

that it could give a relative variable importance for each precision cohort, so it has the potential to provide 

tailored prognoses, and prescribe more effective treatments.  

Despite the fact that the performance of the graph-based regularized multilayer neural network cannot 

be considered superior to that of personalized SGB, it is clear that it is a promising methodology, and as 

future work, more rigorous tests are proposed in which other patient similarity metrics are evaluated, the 

similarity threshold is modified and tests are made with different training subsets. 



CHAPTER 11. SOFTWARE 

DEVELOPMENT  
 

11.1 Introduction  
The emergence of machine learning techniques in the field of health is a fact. Specifically, in the field of 

Intensive Care, it is undeniable that the potential for its application is immense. Specifically, the 

generation of custom models by groups of populations, the use of assembly algorithms and the 

implementation of patient similarity based models, contribute elements to the prediction of mortality 

that lead to a better identification of patients at risk and therefore to improve health services. 

In previous chapters we conclude that the generation of one-year mortality prediction scores exclusively 

for sepsis patients within the ICU widely outperforms adjusted traditional severity of illness scoring 

systems [7, 8]. In addition, we demonstrated that the use of well selected similarity measure for the 

generation of personalized models improves the discrimination performance moreover, the use of non-

linear models, like SGB, could indicate which variables are more important for each personalized model.    

In this chapter we present a software development based on the characteristics that most contributed to 

the discrimination of the long-term mortality of patients with sepsis within the ICU, and provide 

information of clinical utility, according to the criterion of intensivist experts. The goal of this software is 

to enable the use of the developed models in a clinical environment and presents three personalized 

outputs for each new patient: the one-year mortality rate among the 100 most similar patients, an 

estimate of the one-year mortality probability based on a well selected precision cohort, and the 10 most 

relevant parameters for the precision cohort. These outcomes are based on the similarity measures 

presented in previous chapters, and the complete data of the cohort B.  

11.2 Software functionality 
According to the results presented in previous chapters, we identify three features to include in the 

software: 

• Personalized model: the software generates a personalized model that predicts the one-year 

outcome of sepsis-diagnosed patients. it generates a precision cohort for the new patient, the 

precision cohort is constituted by the 4000 most similar admissions; the similarity between the 

new patient and the 15082 admissions available in the database are computed using weighted 

contribution similarity with Scoring System for the One-Year Mortality Prediction of Sepsis 

Patients weights. 

• Relative variable importance: Each precision cohort was used to train a particular Stochastic 

Gradient Boosting (SGB) [123, 134] model for the new patients. Although the resulting SGB model 

it is complex, since it is composed of 900 trees, SGB model has good interpretability, being as, it 

can identify the variable importance, and because the model is generated from the precision 

cohort for each new patient, the model would provide the most important predictors for each 

particular case.  



• One-year mortality rate among the 100 most similar patients: another way to determine how is 

the patient's condition with respect to his closest neighbors is using the mortality rate, for this we 

simply use the one-year mortality rate among the 100 most similar admissions, a method that, 

when used as prediction for the new patient, proved to outperform adjusted traditional severity 

of illness scoring systems. 

The developed software is an interactive web application, constructed using the Shiny R package 

[135]. And it dynamic is divided in three layers. The first one, the presentation layer, is with which the 

user interacts directly and consist of the data input and visualization modules. The second one is the 

control layer, in this one the precision cohort is obtained and the models are generated. The final one 

is the data layer, and it is where the database composed of all sepsis admissions of cohort B is located. 

Figure 11.1 shows the software dynamics, and the interaction between layers.  

 

Figure 11.1. Dynamics of the software 

The interface of the software is composed of two main panels, one for the input of the variables, and 

another one for the results display. The software has four modules. The first one enable user to insert 

the new patient data, which are assigned to a feature vector, the input data are divided in four 

categories:  



• Admission data and demographics: categorical variables as admission type (elective, emergency), 

gender, birthdate. 

• Comorbidities and treatments: Two treatments are included as input variables (dialysis and 

mechanical ventilation) and the comorbidities according to the Elixhauser comorbidity groups 

[87] (30 comorbidities). 

• Routine charted data: the maximum, minimum and mean values of the following vital signs were 

extracted during the first 24 hours of the ICU stay: heart rate, systolic blood pressure, diastolic 

blood pressure, mean blood pressure, respiratory rate, temperature and peripheral capillary 

oxygen saturation. Also, the total urine output during the first 24 hours and the minimum Glasgow 

Coma Scale Score during the first 24 hours were included as input variables. 

• Laboratory based measures: the maximum and minimum values of following laboratory variables 

were extracted from the first 24 hours in the ICU: anion gap, bicarbonate, bilirubin, arterial pH, 

creatinine, chloride, glucose, hematocrit, platelet count, hemoglobin, lactate, potassium, Partial 

Thromboplastin Time (PTT), Prothrombin Time (PT), the international normalized ratio (INR), 

sodium, Blood Urea Nitrogen and White Blood Cell Count (wbc). 

The second module selects the precision cohort; In this case, the similarity between the new patients 

and all the 15082 admissions of the database are computed obtaining a similarity vector that is sorted. 

Then, we use the sorted indices to obtain a similarity-sorted database, when the most similar patients 

come first. For the similarity computation we used the Weighted Contribution Similarity, a similarity 

measure in which each categorical data (like the comorbidities, treatments and demographics) had a 

particular weight, contributing more or less to the similarity: 
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The weights used for the categorical data are based on the Scoring System for the One-Year Mortality 

Prediction of Sepsis Patients in Intensive Care Units and presented in Table 11.1. 

The third module computes the one-year mortality rate among the 100 most similar patients; for this 

we took the one-year outcome of the top 100 patients in the similarity sorted database (which are a 

zero for surviving patients and one for non-surviving patients) sum the all and multiply the result by 

100, this is presented in the software as a pie chart. 

The last module computes the one-year mortality probability; for this a personalized SGB model is 

fitted with the precision cohort (the data of the 4000 most similar patients). Along the mortality 

probability we also present the relative variable importance of the top 10 most relevant predictor for 

each particular precision cohort.  

Table 11.1. Weights of the Comorbidities treatments and demographics variables based on the Scoring System for the One-Year 
Mortality Prediction of Sepsis Patients in ICU. 



 

Figure 11.2 depicts modules that compose the software; in the input data module, the four collapsible 

panels and the feature are presented; in the precision cohort module, the first matrix is the complete 

dataset, where the dark orange row represent the indices of each admission, the light orange rows 

represent the predictors and the grey row represents the one-year mortality outcomes of each 

admission. In the similarity vector the dark orange column represent the indices of the admissions 

and the light orange column represents the similarity between each admission and the new patient; 

from the sorting process we only use the indices to rearrange the complete dataset and obtain the 

database sorted by similarity.  

The one-year mortality rate outcome module uses a vector with the one-year mortality outcomes of 

the 100 most similar admissions, i.e. the first one hundred columns of the database sorted by 

similarity. Finally, the one-year mortality probability outcome uses a precision cohort composed of 

the data of the 4000 most similar admissions to the new patient and fit a personalized SGB model, 

which is represented by a sum of trees, and return two outputs: the one-year mortality probability, 

and the relative importance of all the predictors, the top ten most important predictors are displayed 

in a bar plot.  



 

Figure 11.2. structure of the software developed. 



11.3 Results 
 

As mentioned before the software is a web application composed of two panels the first one is used for 

the input of the data, and it is composed of 4 collapsible panels that correspond to each of the four 

variable categories. Figure 11.3 present the final appearance of said panel. 

 

Figure 11.3. Input panel. 

The admission data and demographics collapsible panel is composed of a date input element, where the 

user enters the patient birthdate, and it is transformed to the admission age. It also contains two selection 

inputs, one for the gender (Male or Female) and one for the admission type (Emergency, Elective).  Figure 

11.4 presents the final appearance of the admission data and demographics collapsible panel. 

 

Figure 11.4. Admission data and demographics collapsible panel.  

 



The comorbidities and treatments collapsible panel is composed of 30 checkboxes based on the 

Elixhauser Comorbidity groups and two checkboxes for two treatments dialysis and mechanical 

ventilation). Figure 11.5 presents the final appearance of the comorbidities and treatments collapsible 

panel. 

 

Figure 11.5. Comorbidities and treatments collapsible panel. 

The routine charted data collapsible panel contain two elements, in the first one there is a selection input 

for eight routine charted measures (Heart rate, Arterial Blood Pressure Systolic, Arterial Blood Pressure 

Diastolic, Arterial Blood Pressure Mean, Respiratory rate, Temperature, Peripheral capillary oxygen 

saturation and Glucose) and three numeric inputs for the minimum, mean and maximum values of each 



measurement, each time the user clicks on the "Next measurement" button, the system automatically 

stores the values of the current measurement in the feature vector and changes the selection to the next 

measurement.  

The second element of the routine charted data collapsible panel is composed of two numeric inputs for 

the total urine output during the first 24 hours and the minimum Glasgow Coma Scale Score during the 

first 24 hours. Figure 11.6 present the final appearance of the admission data and demographics 

collapsible panel. 

 

Figure 11.6. Routine charted data collapsible panel. 

The laboratory based measurements collapsible panel contain a selection input for 17 laboratory test ( 

Arterial pH , Anion gap , , Bilirubin , Creatinine , Chloride , Hematocrit, Hemoglobin , Lactate , Platelet 

Count , Potassium , Partial thromboplastin time (PTT, International normalized ratio (INR), Prothrombin 

time (PT) , Sodium , Blood urea nitrogen (BUN) , White Blood Cell (WBC) count) and two numeric inputs 

for the minimum and maximum values of each measurement, each time the user clicks on the "Next 

measurement" button, the system automatically stores the values of the current measurement in the 

feature vector and changes the selection to the next measurement. Figure 11.7 present the final 

appearance of the laboratory based measurements collapsible panel. 

 

 



 

Figure 11.7. Laboratory based measurements collapsible panel. 

The visualization panel contains three elements, the most important one is the one-year mortality 

probability, which is obtained from a personalized SGB model and presented in a text. The second one is 

the mortality rate among the 100 most similar patients, this result is presented in a pie chart. The final 

one is the relative importance of the ten most relevant variables for the precision cohort selected from 

the new patient, this information is presented in a column chart and it is obtained with the SGB variable 

ranking. Figure 11.8 present the final appearance of the output panel. 

11.4 Conclusions 
The creation of software enables the clinical use of machine learning models developed for the prediction 

of one-year mortality of sepsis patients within the intensive care unit. 

The three outputs are personalized for each new patient, since they are based on the Weighted 

Contribution Similarity, a measure that proved to generate model with better discrimination capability 

that the model fitted with the entire study cohort.  

The one-year mortality rate among the 100 most similar patients and the top ten most relevant variables, 

help to provide context about the patient's condition, which can be used by medical personnel to 

complement their diagnosis and provide better treatment. 

The use of a tool like Shiny for the development of a web application ensures that the software can be 

used from any operating system, in addition, the fact that this tool has integrated functions for scaling the 

content according to the size of the screen allows its use in mobile devices. 



 

Figure 11.8. Output panel. 

  



PART 5: SUMMARY, CONCLUDING 

REMARKS, DIFFUSION AND FUTURE 

PERSPECTIVES  
 

This part present the final considerations of our study, we present a summary of the process carried out 

in this thesis, we indicate what were our main achievements and we show the limitations of our work and 

the future perspectives derived from them.  



 

CHAPTER 12. SUMMARY, CONCLUDING 

REMARKS, DIFFUSION AND FUTURE 

PERSPECTIVES  
 

12.1 Summary 
General severity of illness scores can be useful to several purposes: guide prognostication, to assess 

ongoing disease development and organ function, to compare ICU performance over time and across 

units, to compare clinical trial population and outcomes. In a survey Bouch listed the characteristics for 

an ideal scoring system [33]: 

1 On the basis of easily/routinely recordable variables 

2 Well calibrated 

3 A high level of discrimination 

4 Applicable to all patient populations 

5 Can be used in different countries 

6 The ability to predict functional status or quality of life after ICU discharge. 

None of the current scoring system incorporates all these features; Moreover, items 4 and 5 are 

challenging to fulfill, that is why customize scoring systems, are increasingly being developed. The 

customize models have proved to perform better than the general population approaches, however these 

studies continue to be population-based and therefore they generally provide “the average best choice”.  

Personalized mortality predictive modeling based on patient similarity is a developing field that seeks to 

identify patients who are similar to an index (new) patient and derive insights from the data of similar 

patients to provide personalized predictions. This approach has been widely used for personalized 

predictions in other fields, including music, movies and e-commerce, however, there are still very few 

studies that focus on personalized prediction driven by patient similarity metrics within the ICU. 

In the specific case of sepsis, a condition associated with ongoing mortality beyond short-term end points 

(i.e. in-hospital mortality), and additional morbidities such as higher risk of readmissions, cardiovascular 

disease and cognitive impairment for survivors; specific models for the mortality prediction within the ICU 

have been developed, which presented better performance than adjusted traditionally severity of disease 

scores, however, these sepsis-customized models focus on the short term mortality prediction (7-day 

mortality and in-hospital mortality). Studies suggest that the use of in-hospital mortality as an end point 

for clinical studies are not enough to understand the effect of sepsis on mortality and quality of life, and 

the current understanding of the risk factors and mechanisms underlying long-term sequelae in patients 

that suffered from this condition still limited. Therefore, identify risk factors during an ICU stay that 

reverberate and even could predict long-term outcomes will help physicians offer better treatments. 



The first step to build a long-term mortality prediction model for sepsis patients within the ICU is to obtain 

quality data. It is clear, that the performance of the models depends on the characteristics of the used 

database because machine learning techniques will give poor performance, lead to imprecise and 

inaccurate conclusions or even fail to find a good predictive model if the database is too noisy or if it is 

not representative of the studied population. Therefore, high-quality clinical databases are of value in 

clinical practice, in managing services and in developing health technologies.  

The selected database for this work is MIMIC-III which data comes from a single institution (Beth Israel 

Deaconess Medical Center in Boston Massachusetts). However, despite the limitation of being single-

centered, the main advantages of MIMIC-III are:  

• Right now the only freely accessible critical care database of its kind.  

• The dataset spans more than a decade.  

• It has detailed information about individual patient care that includes time-stamped nurse-

verified physiological measurements and out-of-hospital mortality dates.  

From the MIMIC-III clinical database we extracted two study cohorts, the first one composed of patients 

who presented an explicit sepsis diagnosis or fulfill the Angus criteria; and the other conformed with 

patients that meet, besides the explicit sepsis and Angus criteria, the Martin and Sepsis-3 criteria.  In order 

to develop the models, we included basic descriptors (like the minimum, maximum and mean) for each 

of the numerical continuous variable (vital signs, laboratory measurements and admission age), however, 

we do not include measures of the tailedness of the distributions (like kurtosis or skewness) for two 

reasons, first, their inclusion would affect the interpretability of the models, and second, the clinical 

operatization of ICU stay in Colombia do not ensure storage of the data at an adequate temporal 

resolution to obtain reliable values of these descriptors, that is to say, the medical devices do not usually 

automatically register the values of the vital signs as it is done in the Beth Israel Deaconess Medical Center 

in Boston Massachusetts. 

According to the above, we focus on the development of a model that can be used to patient individual 

prognostication and goes beyond the prediction of in-hospital mortality. For this, we divide this project in 

four different stages that, progressively, lead to the generation of models that can be used for the 

individual one-year mortality prediction of patients with sepsis within the intensive care unit clinical 

practice. 

In the first stage, presented in chapter 6, we developed a customized Stochastic Gradient Boosting (SGB) 

model for the one-year mortality prediction and compared it performance with three adjusted models 

based on traditional severity of disease scoring systems. In this stage we used a study cohort composed 

of 5650 sepsis patients which presented an explicit sepsis diagnosis or fulfill the Angus criterion for sepsis.  

Our customized prediction model proved to outperform adjusted traditional severity of disease scores 

since it obtained an AUROC of 0.805 (95% Confidence Interval: 0.785 - 0.826) and the best performing 

reference model was the adjusted SAPS II model that obtained a AUROC of 0.702 (95% Confidence 

Interval: 0.683 - 0.719). Besides this, in this stage we also obtained a subset of predictors truly related 

with one-year mortality which were selected using the Least Absolute Shrinkage and Selection Operator 

and the SGB variable importance ranking. This subset of predictors was composed of 17 variables which 

are the admission age the following values from the first 24 hours of admission: total urine output, blood 

urea nitrogen maximum, lactate minimum, hemoglobin mean, temperature maximum, glucose minimum, 



temperature minimum, spo2 mean, bilirubin maximum, platelet count maximum, systolic blood pressure 

maximum, white blood cell count minimum and the following comorbidities and treatment: metastatic 

cancer, malignancy, hypertension and mechanical ventilation. The subset of the 17 variables allowed the 

creation of a simpler SGB model that maintained the good performance since it reported an AUROC of 

0.791 (95% Confidence Interval: 0.769 - 0.812).  The calibration of the developed customized SGB models 

and the adjusted traditional severity of disease scoring systems were also evaluated; and we found that 

all the developed SGB models presented an adequate calibration but of the adjusted reference models, 

only SOFA presented an adequate calibration.  

In the second stage we developed two customized scores for the stratification of patients in risk groups, 

which is presented in chapter 7. In this stage we focus on the subset of 17 variables that were found to 

be relevant in the previous stage and complement them with variables that are frequently used within 

the ICUs. In addition to this, we increase the criteria for identifying patients with sepsis, and we include 

those that meet the Martin and sepsis-3 criteria. As a result, we gathered a study cohort composed of 

15082 admissions. With this study cohort, we generated two scoring systems for the assessment of the 

one-year mortality risk of sepsis patients within the ICU. The first score was based on dichotomization of 

the variables and achieved an AUROC of 0.769 (95% Confidence Interval: 0.761 - 0.778) on a validation 

subset composed of 9049 admissions; the second generated score used multiple cutoff points for each 

continuous numerical variable (i.e. the laboratory measurements, the routine charted data and the 

admission age) and achieved an AUROC of 0.785 (95% Confidence Interval: 0.783 - 0.794). Although the 

multiple Cutoff points score presented better discrimination and it use will allow a more accurate 

interpretation of the condition of each patient, the binary CP is more easy to implement and can be used 

for a quick interpretation of a patient's condition. These developed scores presented adequate calibration 

and outperformed adjusted traditional severity of disease classification systems over the same validation 

subset. 

The third stage was the personalized predictive modeling based on patient similarity. We used a lineal 

approach, presented in chapter 8; and a non-lineal approach presented in chapter 9. The development of 

the personalized one-year mortality prediction model is based on patient similarity measures and follows 

the next outline: 

5) All pairwise Similarity measures between the index admission and every admission in the training 
data were calculated. In chapter 8 five different measures that model the interaction between 
admissions were developed and evaluated, in chapter 9 we only used the weighted contribution 
similarity, a patient similarity metric based on the fact that different conditions carry different 
mortality risk; the weights for each condition was obtained from the scores developed in the 
previous stage.  

6) The calculated similarity values were sorted in ascending order.  

7) A precision cohort was created with the data of the n most similar admissions. In chapter 8 the 
number of most similar admission was varied from 1000, to 13000; in chapter 9, the number of 
most similar admissions were settled to 4000, since with this number the peak mean AUROC were 
obtained.  

8) Each precision cohort was used to train a personalized mortality prediction model for the index 
admission. In chapter 8 we used logistic regression model, and in chapter 9 we used SGB. The 
mean AUROC of the personalized SGB models were 0.809 (95% Confidence Interval: 0.791 - 0.825) 



and the mean AUROC of the personalized Logistic regression models were 0.794 (95% Confidence 
Interval: 0.78 - 0.807).  

In chapter 10, we evaluated an approach framed as graph-based learning, where label information is 

smoothed over the graph via some form of explicit graph-based regularization. For this we construct a 

graph based on the weighted contribution patient similarity metric with the same weights that the 

previous chapter and use it to train a regularized multilayer neural network model, which reported a peak 

AUROC of 0.812 (95% Confidence Interval: 0.808 - 0.815). 

In the final stage, presented in chapter 11, we developed a software that could be used in the clinical 

environment, this software is based on the characteristics of stages 2 and 3, that most contributed to the 

discrimination of the long-term mortality of patients with sepsis within the ICU, and provide information 

of clinical utility, according to the criterion of intensivist experts. 

12.2 Concluding Remarks 
The approach presented in chapter 6, showed that SGB variable importance and LASSO methodologies 

allowed the identification of a subset of predictors that are significatively related to the one-year mortality 

prediction of sepsis patients within the ICU. The SGB models developed with only the variables selected 

with either of those methods preserved the same performance as the one generated with all the 

predictors. Also the intersection of the predictors selected by the two methods lead to the development 

of a much simpler model with only 17 predictors, that also presented a similar performance to the 

complete model.  

The main objective of this stage was to present a customized model for the one-year mortality prediction 

of the patients that are admitted in a ICU with a sepsis diagnosis; and shows that the use of ensemble 

based algorithms (SGB) and the inclusion of predictors that are not usually taken into account in the 

traditional severity-of-disease classification systems (for example minimum lactate), improves the 

performance of the prediction of prognosis models in patients admitted to an ICU with diagnosis of sepsis.  

 

In the second stage, presented in chapter 7, we present the assessment of two customized severity-of-

illness scoring system specifically for patients with sepsis. The scores utilized 6033 admissions for its 

development and 9049 for its validation. The first score was based on the dichotomization of the 

numerical continuous variables; the second score is based on multiple cutoff points for each numerical 

continuous variable. Both scores accurately estimated the probability of one-year mortality in sepsis 

diagnosed patients within the ICU and were well calibrated.  

 

The strengths of this scores are that they performed well with respect to both discrimination and 

calibration. The calibration is especially important as data were collected from a database that spams over 

10 years and we used four different sepsis criteria to retrospectively identify the admissions, including 

sepsis-3 that is the most recent one. The scores are composed of 52 (for the binary cutoff points score) 

and 92 variables (for the multiple cutoff points score). The number of variables are more than traditional 

scores like SAPSII (20 variables) and SSS (36 variables) but considerably less than most recent approaches 

like APACHE IV (142 variables). The objective of this score is to early alert of a worse prognostic and to 

stratify patients according to their risk. 

 

AUROC analysis showed that the developed scores outperformed adjusted traditional severity of disease 

scoring systems, even more, the predictive capacity of the score is better, in this study, than the SOFA, 



that is the scoring systems used for the most recent sepsis and septic shock consensus [17, 18], and the 

Sepsis Severity Score (SSS), that is an internationally derived scoring system specifically for patients with 

severe sepsis and septic shock, however, this scores continue to be a population-based approach and 

therefore they provide “the average best choice” for sepsis patients. For this reason, we focused on the 

developing of personalized predictive models based on patient similarity. 

 

In chapter 8 the utility of similarity metrics in personalizing one-year mortality risk estimation in the ICU 

for sepsis patients was proved. The results showed that using a subset of similar admission rather than a 

larger population as training data improves one-year mortality prediction performance, even when the 

population shares a common characteristic.  

 

Although all the evaluated admissions are from patients with sepsis (which means that they all have an 

infection and an organ dysfunction), there was improvement when using similarity metrics, even more a 

simple mortality rate among 100 similar admissions resulted in good predictive performance that 

exceeded the performance obtained with the adjusted traditional severity of disease scoring systems. 

 

Traditionally the risk prediction in a ICU, is addressed by the clinician based on large population studies of 

patients, like severity of disease scores, however the developed models outperformed widely the adjusted 

traditional used scores, which could be explained by the following elements: 

• The use of a specific cohort of patients with sepsis. 

• The inclusion of sepsis related variables, like lactate. 

• The fact that nearby admissions are more comparable and tend to have the same outcome. 

 

The first two elements explain why the logistic regression model fitted with all the training subset 

exceeded the performance of the currently used scores, the third one explains the improvements 

observed when personalized models based on the precision cohort of each patient are used.  

 

An important aspect of the personalized logistic regression approach is that it gives particular coefficients 

for each precision cohort which could be interpreted as relative variable importance for a particular 

patient, meaning that a treating doctor could elucidate the most relevant factor in the prediction, so it 

has the potential to provide tailored prognoses, and prescribe more effective treatments. 

 

It is clear that one of the factors that strongly affects predictive performance is the choice the similarity 

measure, for this reason, five similarity measures were tested, of which the weighted contribution 

similarity with Scoring System for the One-Year Mortality Prediction of Sepsis Patients weights generated 

the personalized one-year mortality prediction models with better predictive performance; however the 

other weighted contribution similarities did not show a better performance than Equal contribution 

similarity, one possible explanation could be that the scores from which these weights were derived were 

developed for in-hospital mortality and they do not include all the considered comorbidities and 

treatments. 

 

Despite the good results for in-hospital mortality prediction using a cosine similarity based approach 

reported by Lee et Al. [2], in this study, cosine similarity was, in general, the one that had a worse 

performance, indicating that importance of the comorbidities when evaluating the long-term mortality. 

Moreover, the predictive performance improvement reported by Lee et Al. was 2.47% (the best 



performing model presented an AUROC of 0.83 and the model that used all available data for training 

presented an AUROC of 0.81), but predictive performance improvement in our study was 1.15%. This 

could be explained by the fact that the population that we evaluated is especially homogeneous; all of the 

patients in our study cohort present the same severe diagnosis, sepsis, have a median ICU length of stay 

of 4 days, a median hospital length of stay of 11 days and a median age of 68 years old.   

 

In chapter 8 we demonstrated the value of patient similarity-based models in critical health problems and 
shows the superiority of patient similarity-based models over population-based ones. In order to improve 
the discrimination between those patients who survive more than one year after ICU sepsis-related 
admission and those who do not, in chapter 9 we implemented personalized Stochastic Gradient Boosting 
models and in chapter 10 we developed a graph-based Laplacian regularized multilayer neural network. 
The main difference between those approaches is that the first one creates a particular model for each 
new patient; and the second generates a single model that is generalizable to unobserved instances, which 
mean that it is only trained one time.  
 
Best overall performance was obtained with the Laplacian regulated neural network, however since it is 
based on a three-layer neural network loses interpretability. An important factor in favor of the 
personalized logistic regression approach is that it could give a relative variable importance for each 
precision cohort, so it has the potential to provide tailored prognoses, and prescribe more effective 
treatments. 
 
In the section 1.3 in chapter 1, we reported some of the most relevant studies in the field of prediction of 
mortality within the ICU and the main conclusion were: 

• Ensemble methodologies based on trees consistently report good performances. 

• Mortality prediction can be approached quite linearly. 

• Deep learning models require large training and feature sets to report improvements,  

• Selecting an appropriate similarity metric is not a straightforward task. 

The first two items were addressed and proved in this thesis since, in chapter 6 we developed a model 

based on stochastic gradient boosting (SGB), an ensemble tree methodology, that outperformed the 

reference adjusted models based on severity scores, and in chapter 7, we presented a scoring system, 

based on logistic regression, that accurately indicates the risk of one-year mortality prediction of sepsis 

patients admitted to the ICU.  

The third item was glimpsed in the fact that no significant difference is observed between the Laplacian 

regulated neural network and the personalized SGB models, the foregoing suggests that a future path of 

investigation through the ways of deep learning will require a larger study population, and a greater 

number of input variables. 

The fourth item, it is in which we have our greatest contribution, since we managed to generate a 

similarity metric that prove to be relevant to personalized prediction models based on logical regression, 

but that also helps to improve the performance of non-linear approaches such SGB and the Laplacian 

regulated neural network. 

In synthesis, the discrimination analysis over the models presented in chapter 6 and chapter 7 indicate 

that customized mortality prediction models for a specific disease presents a better performance that 

traditional scores; and the personalized models developed in chapter 8, chapter 9 and chapter 10 surpass 

the performance of population-based models; moreover, the results presented shows that this thesis is 



methodologically comparable to the state-of-the-art machine learning approaches to the outcome 

prediction problem, and specifically in the field of personalized mortality prediction models represents an 

advance in the state of the art, since we achieve a similarity metric that improves the performance of both 

linear and nonlinear models. 

Despite the good performance of the models developed, it is clear that, each of these models are difficult 

to interpret; therefore, it is necessary to develop easy-to-use computer tools that allow these types of 

models to be implemented within the ICU.  

In chapter 11 we presented the creation of a software that enables the clinical use of the machine learning 

models developed for the prediction of one-year mortality of sepsis patients within the intensive care 

unit. The software present three outputs that are personalized for each new patient, since they are based 

on the Weighted Contribution Similarity, a measure that proved to generate model with better 

discrimination capability that the model fitted with the entire study cohort.  

From this outputs, the one-year mortality rate among the 100 most similar patients and the top ten most 

relevant variables, help to provide context about the patient's condition, which can be used by medical 

personnel to complement their diagnosis and provide better treatment; and the one-year mortality 

probability indicates the individual risk of each patient according to their precision cohort.  

Wrapping up, in this thesis we developed models that successfully identify those patients who are at risk 

of dying one year after their sepsis related admission using demographic variables, comorbidities and 

physiological data obtained during the first 24 hours of their ICU stay. The clinical usefulness of this is 

immense since it has been proved that patients with sepsis have ongoing mortality beyond short-term 

end points, and survivors consistently demonstrate impaired quality of life, and models that the ones 

presented in this thesis allow the early identification of those patients at higher one-year mortality risk, 

therefore, these patients could be observed attentively and they could be given additional care that will 

improve their quality of life. 

The customized scores presented in chapter 7 generate a segmentation of the sepsis patients in five 

groups according to their one-year mortality risk. Since the customized scores were developed using 

exclusively the data from patients with ICU sepsis-related admissions, they have better discriminatory 

ability than the adjusted models based on traditional scores, moreover, since our output variable focuses 

on long-term mortality, the presented customized models also outperform models that are been currently 

used on the sepsis population, such as Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score, 

and Severe Sepsis Mortality Prediction Model (SSS). 

The customized models presented in chapter 6 and chapter 7, allow the assessment of the one-year 

mortality probability of sepsis patients within the ICU, however, methodologies were also developed that 

allowed the generation of personalized models which can be used at the patient level. 

12.3 Limitations and future Perspectives 
This thesis shows that it is possible to identify those who are at risk of dying one year after their sepsis 

related admission using demographic variables, comorbidities and physiological data obtained during the 

first 24 hours of their ICU stay, moreover we have proven that patient similarity metrics can improve 

discrimination ability. However, our work has certain limitations; First of all, the developed models are 

based on the admissions taken from a single single-center, however, we consider that the final sample is 



sufficiently representative to generalize the results, since the admissions included in the study cohort 

were obtained using multiple retrospective sepsis identification criteria and the used database spans for 

more than 10 years. 

Another important limitation, is that the personalized models, requires a relatively high among of time to 

identify the precision cohort for a new patient, concretely, the methodology used in chapters 8 and 9 

implies the construction of a similarity matrix 𝑊 ∈ ℝ𝑁𝑥𝑁 where N is the total number of observations, 

which implies an algorithm with complexity 𝑂(𝑛2), moreover, for the identification of the precision 

cohort, an sorting function is also used over the vector with the similarity metric values between any 

patient and the remaining N-1 patients, a process that implies an algorithm with complexity 𝑂(𝑛 log 𝑛). 

According to the above, it is clear that, with current implementations, the number of instructions required 

to identify the precision cohort would increase drastically if the size of the population increases, therefore, 

the research and implementation of algorithms that have a linear complexity 𝑂(𝑛), and the adaptation of 

the developed methodologies to parallel and distributed computing environments is proposed as future 

work. Nevertheless, we consider that, with our current population, such time is not excessive (about 20 

minutes in a regular laptop, but not formal test was executed) considering the fact that the model can be 

applied just 24 hours after the ICU admission and it serves to estimate the probability of mortality one 

year after the admission.  

It is important to note that for the non-linear models presented in this thesis (personalized SGB and graph-

based regularized multilayer neural network) a much smaller amount of tests runs were executed 

compared to linear models; The reason for this was the large amount of computing time necessary to 

evaluate these models on more than a thousand patients. Similarly, the parameters used for the 

identification of the precision cohort in the non-linear models were those that presented the best 

performance when the personalized logistic regression models were constructed, and it is reasonable to 

expect that different algorithms have different optimal parameters, in particular, we consider that the 

adequate number of similar patients can be especially sensitive to the used machine learning technique; 

Unfortunately, with the computing capacity and the algorithms that we currently have, these tests were 

considered unfeasible. 

According to the above it would be desirable to externally evaluate the generated models in a Colombian 

context, for this it is necessary to build a quality database which would imply technical challenges 

associated with the data acquisition and storage, procedural challenges associated with clinical permits 

and ethical challenges related to patient privacy. 

Our results indicate that a well selected patient similarity metric improves discrimination ability, for this 

reason further developments in the field of personalized models within the ICU should focus on the 

selection of a good similarity measure; according to this, in the short term techniques like feature 

selection, predictor weighting schemes, or experts’ opinions should be used to develop new patient 

similarity measure that improve the performance of prediction models. It will be also interesting to 

implement distance metric learning approaches.  

On the other hand, our graph-based regularized multilayer neural network prove to be a promising route, 

thus, novel machine learning approaches based on graph-structured data like graph convolutional 

networks should be implemented for mortality prediction task. 



Finally, in order to reduce the computation time, it would be necessary to implement the methodologies 

presented in this thesis on a software framework that allow distributed storage and processing of data 

such as Apache Spark. 

12.4 Diffusion:  Publications and Conference presentation  
Parts of the work presented in this thesis have been published in international journals and the 

proceedings of international conferences. Publications relating to this work are listed below: 

1. García-Gallo, J. E., Fonseca-Ruiz, N. J., Celi, L. A., & Duitama-Muñoz, J. F. (2018). A machine 

learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care 

Unit with a diagnosis of sepsis. Medicina intensiva. 

2. García-Gallo, J. E., Fonseca-Ruiz, N. J., & Duitama-Muñoz, J. F. (2019). Scoring System for the One-

Year Mortality Prediction of Sepsis Patients in Intensive Care Units. In World Congress on Medical 

Physics and Biomedical Engineering 2018 (pp. 367-370). Springer, Singapore. 

Presentations were also made at national and international conferences: 

1. III Seminario Internacional de Actualización en Ingeniería Biomédica. Held in Bucaramanga, 

Colombia from octuber 26 to 27, 2017. 

2. IEEE Conference on Biomedical and Health Informatics (BHI) 2018. held in Las Vegas, United States 

of America, from March 4 to 7, 2018. 

3. 10th International Conference on Bioinformatics and Biomedical Technology (ICBBT 2018) held in 

Amsterdam, Netherlands, from May 16 to 18, 2018. 

4. World Congress on Medical Physics and Biomedical Engineering 2018 (WC2018) held in Prague, 

Czech Republic, from June 3 to 8, 2018. 
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