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Grupo de Investigación en Sistemas Embebidos e Inteligencia

Computacional SISTEMIC

October 2018



Brain-imaging based methodology for

OPM sensor placement

Author:

Leonardo Duque Muñoz
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“The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with weary feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

Still round the corner there may wait

A new road or a secret gate,

And though I oft have passed them by,

A day will come at last when I

Shall take the hidden paths that run

West of the Moon, East of the Sun.”

J. R. R. Tolkien (Lord of the Rings books).



Abstract

Optically-pumped magnetometers (OPMs) have reached sensitivity levels that make

them viable portable alternatives to traditional superconducting technology for magne-

toencephalography. OPMs do not require cryogenic cooling, and can therefore be placed

directly on the scalp surface. Unlike cryogenic systems based on a well characterised

fixed arrays essentially linear in applied flux, or electroencephalography sensors that do

not need to account for sensors orientation; OPM sensors are no longer rigidly arranged

with a scanner system. Therefore, uncertainty in their locations and orientations with

respect to the brain, and with respect to one another, must be accounted for. In this

thesis dissertation, we propose a methodology to estimate the true sensor geometry of

a disturbed array. We use parametric Bayesian inversion methods to perform neural

source reconstruction and score among disturbed geometries with Free Energy as a cost

function. This geometry disturbance is non-linear, causing local sub-optimal values on

Free Energy that we tackle with a Metropolis search. Looking for a robust solution

to this sensor placement problem, we develop a Multiple Kernel Learning (MKL) ap-

proach to extract the predominant complex dynamics hidden in the data. To do this, a

weighted mixture of Gaussian kernels is used to highlight the data relationships, enhanc-

ing the data-driven covariance estimation and leading to a more reliable neural source

reconstruction. When tested over disturbed OPM geometries, the MKL based solvers

turned the Free Energy into a monotonic function, allowing the use of gradient descent

optimisation. As a result, we estimate the true geometry of disturbed OPM arrays with

a similar error than Metropolis search, but with 90% fewer iterations and allowing a

larger search space. Our proposal suggests that a flexible and scalable design for sensor

placement can be used to harness the potential of OPMs.
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cisco Vargas Bonilla. Thank you both for the hours of mentoring, teaching and fruitful
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This work was supported by COLCIENCIAS “Convocatoria de Doctorados Nacionales

647 del 2014”. SISTEMIC research group Universidad de Antioquia. Partnership pro-

gramme, Cardiff University. Instituto Tecnológico Metropolitano, ITM.



Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables xiv

Abbreviations xv

Symbols xvi

1 Introduction 1

1.1 Deling with OPM mis-localisation . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dealing with non-linearity of the data . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Papers in peer reviewed journals: . . . . . . . . . . . . . . . 7

Conference Papers: . . . . . . . . . . . . . . . . . . . . . . . 7

Abstracts in conferences: . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 MEG and EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Optically Pumped Magnetometers (OPMs) . . . . . . . . . . . . . 10

2.1.2 OPM vs SQUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 EEG Vs MEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 MEG/EEG Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Prior Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Negative variational Free Energy . . . . . . . . . . . . . . . . . . . . . . . 15

vi



Contents vii

3 Data-driven model optimisation to improve OPM co-registration 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Scanner-casts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.3 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.4 Variation in the array geometry . . . . . . . . . . . . . . . . . . . . 21

Perturbation of the position and orientation: . . . . . . . . 21

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Adding sensor orientation Error . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Movement of sensor array . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.3 Model Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Optimisation in one dimension . . . . . . . . . . . . . . . . . . . . 27

3.4.5 Optimisation in three dimensions . . . . . . . . . . . . . . . . . . . 29

3.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Enhanced data covariance estimation 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Multiple Kernel Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Simulated MEG/EEG data . . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Real-world MEG/EEG data . . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 Tested source reconstruction approaches . . . . . . . . . . . . . . . 38

4.3.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 SDB1 benchmarking results . . . . . . . . . . . . . . . . . . . . . 40

4.4.2 Performed source reconstruction on SDB2 . . . . . . . . . . . . . 41

4.4.3 Performed RDB1 accuracy . . . . . . . . . . . . . . . . . . . . . . 44

4.4.4 Group Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 OPM sensor array localisation using brain imaging based kernel meth-
ods 52

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 OPMs spatial sampling . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Analysing the effect of the head model . . . . . . . . . . . . . . . . 55

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Adding sensor orientation error . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Adding sensor position error . . . . . . . . . . . . . . . . . . . . . 57

5.3.3 Model Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.4 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.5 Optimisation in one dimension . . . . . . . . . . . . . . . . . . . . 59

5.3.6 3D Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Contents viii

6 Conclusions 63

6.1 Data-driven model optimisation to improve OPM co-registration . . . . . 64

6.2 Enhanced data covariance estimation: . . . . . . . . . . . . . . . . . . . . 65

6.3 OPM sensor array localisation using brain imaging based kernel methods 66

6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Optimisation 68

A.1 Metropolis search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.2 Bayesian Model Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B Model optimisation (Metropolis search with MKL) 70

B.0.1 Optimisation in one dimension . . . . . . . . . . . . . . . . . . . . 70

B.0.2 3D Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C Time Analysis 74

C.1 Single Kernel vs multi-kernel prior . . . . . . . . . . . . . . . . . . . . . . 74

C.2 Metropolis search vs gradient descent . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 76



List of Figures

2.1 Magnitude of the measured radial magnetic field as a function of source
depth for SQUID and OPM. Note that the improvement factor in mag-
netic field strength in superficial sources could be as high as eight times
the magnitude, while for depth sources (6 cm) the improvement could be
of three times in magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Benchmark used to recover the true geometry of the OPM array. The
location and orientation parameters that minimises the error in the Free
Energy cost function are the most likely ones. . . . . . . . . . . . . . . . . 18

3.2 Head Cast and OPM recordings.3.2(a) CAD model of the scanner-cast.
The cast is based on an individual MRI scan and designed to house the
OPM sensors around the outer scalp surface.3.2(b) Subject wearing the
scanner-cast with the multichannel OPM array. The scanner-cast is fixed
rigidly within the shielded room eliminating any sensor motion. . . . . . 20

3.3 Perturbations of the sensor array. 3.3(a) Each sensor was independently
perturbed from their true orientation (black) by a fixed angle in random
direction (red). 3.3(b) The rigid sensor array was displaced from its true
position with respect to the center of the brain (black) to new positions
(red) within an arc spanning -20 to 20 mm (and subsequently a cube of
40× 40× 40 mm3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Empirical data. Sensor-level time courses for median nerve stimulation
recorded with OPMs and SQUIDs. The evoked response at 20 ms (red
dotted line) is highlighted. Black lines show time courses from a single
channel, averaged over trials. 3.4(a) Single channel OPM used to sequen-
tially record responses at 13 different locations across the scanner-cast,
treated as a simultaneous measurement. 3.4(b) Multichannel OPM data
recorded simultaneously with 13 different channels in the same scanner-
cast. 3.4(c) SQUIDs recordings with the 13 channels that are spatially
correlated to OPM channels highlighted in red (the 13 SQUIDs chan-
nels used are the ones with the highest spatial correlation with the OPM
array). Note the scale changes between sensor types. 3.4(d) SNR calcu-

lated for the three experiments. Where SNR = maxi(
∑

pre Y
2
i

ΣpostY 2
i

), is the

maximum ratio of post-stimulus to baseline power in any sensor. . . . . . 23

ix



List of Figures x

3.5 3.5(a) OPMs simulations. Sensitivity of model fit (Free Energy metric)
to errors in sensor orientation: for perfect sensors (blue solid), sensors
with gain errors of 5% (orange triangles), and gain errors of 20% (yellow
circles). Adding gain error to the data results in broadening of posterior
estimate on sensor orientation. Solid black line (F = −3) is the point
at which the models become 20 times less likely than the best model.
3.5(b) Sensitivity of model fit to orientation errors added to real sensor
recordings: for SQUID data (blue solid); single channel OPM data (orange
triangles) and multi-channel OPM data (yellow triangles). Note that the
sensitivity to individual channel orientation error is lower in the empirical
OPM recordings than the SQUID system. . . . . . . . . . . . . . . . . . 24

3.6 Effect of sensor array displacement on goodness-of-fit, simulated and real
data. 3.6(a) Simulated data. Sensitivity of Free Energy to errors in sensor
array position: for perfect sensors (blue solid), sensors with gain errors of
5% (orange triangles), and gain errors of 20% (yellow circles). Adding gain
error to the data results in subtle broadening of posterior estimate of the
sensor array position. 3.6(b) Sensitivity of Free Energy to array position
(ground truth based upon head and scanner-casts estimates) added to real
sensor recordings: for SQUID data (blue solid); single channel OPM data
(orange triangles) and multi-channel OPM data (yellow circles). Note
that the Free Energy peaks at zero error where the measured data can be
interpreted as the generating source. . . . . . . . . . . . . . . . . . . . . . 26

3.7 3.7(a) Movement of the array through each iteration of the Metropolis
search, the array moves through an arc in a 2D plane; the initial value
is in 18 mm of error (green point), and evolves through each iteration
(black points) until reach the final value (blue point). 3.7(b) Evolution of
the Free Energy through each iteration. A first model is computed with
the array centered of the sensors in the initial value (green point), then
the inverse problem is solved and a Free Energy value is computed. The
position of the array is updated through each iteration of the metropolis
search until convergence (black points). The blue point represents the
final position of the array while the red point represents the true position
(as estimated from the scanner-cast). 3.7(c) Evolution of the distance er-
ror from the scanner-cast location, this error is unknown to the algorithm.
3.7(d) Prior and Posterior distributions of the array location (based on
MEG data and uniform priors); zero represents the approximate array
position on the scanner-cast. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Optimisation in three dimensions (sensor space). The dotted cube shows
the original 4× 4× 4 cm3 uncertainty on array location. The 95% confi-
dence ellipsoid (black) shows the posterior location of the central sensor
(and hence the whole rigid array). The location of the central sensor
based on the scanner cast information is show as a red dot. Lower right
panel is a magnified sagittal view. . . . . . . . . . . . . . . . . . . . . . . 30



List of Figures xi

3.9 Optimisation in three dimensions (source space). Source estimates with
confidence volumes shown in three orthogonal views. The red sphere rep-
resents the peak of the reconstructed neural activity when reconstructed
with sensors at the scannercast locations. The initial sensor uncertainty
gives rise to a prior distribution on the peak of the electrical activity (blue
ellipsoid; based on reconstructions over 30 sensor locations distributed
randomly across the prior volume). The black ellipsoid is the posterior
estimate of electrical activity after BMA. The estimated source location
when the sensor array location is unknown is 5 mm from the peak source
location as estimated using the scannercast information. . . . . . . . . . . 31

4.1 Benchmark of compared single kernel and multikernel data covariance
estimation for ESI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 4.2(a) Influence of the number of considered Gaussian Kernels NK on the
source reconstruction for both different seed values: IM-SK and MED-SK.
4.2(b) Estimated weights for a value fixed to NK=30. with two different
variablity spans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Spatial accuracy index ds achieved by tested methods with different co-
variance approaches. Top and bottom rows depict achieved results under
Gaussian and non-Gaussian noise conditions, respectively. . . . . . . . . . 42

4.4 Glass brain of the simulated neural activity reconstructed by the tested
methods at SNR=5 dB. Labels LRFO indicates the glass brain views (left,
right,frontal , occipital). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Glass brains with reconstructed neural activity for the first subject of
multimodal faces database. Labels LRFO indicates the glass brain views
(Left, right, frontal, occipital). Top row is the multimodal condition taken
as ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Earth-movers distance of comparing brain activity reconstructions against
our ground-truth. The last column (Av) shows the performance metric
averaged across all subject set. Note that the lower values of ρs imply that
the kernel approaches reveal hidden dynamics in the source space that
only one modality cannot observe, i.e., they approximate the multimodal
source reconstruction to the single modality results. . . . . . . . . . . . . 47

4.7 The kernel alignment metric compares the response of subjects to the vi-
sual stimulus in sensor and source spaces. Note that the kernel alignment
is higher for the kernel prior compared to the covariance prior. The val-
ues are as high as twice in some subjects, i.e., the kernel representation is
consistent with the group. The last column (Av) shows the performance
metrics averaged across all subject set. . . . . . . . . . . . . . . . . . . . . 49

5.1 Methodology to recover the geometry of the OPM array with the MKL
approach. The MKL turns the Free Energy in a monotonic function of
the location. Thus, the gradient descent could be used to optimise the
localisation of the array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



List of Figures xii

5.2 Orientation precision for different array spacings. 5.2(a) The original
array (blue circles) with mean sensor separation of approx. 3.1 cm; a
denser array with sensors 0.5 cm closer (red triangles) and a coarser array
with sensors 1 cm further apart (diamonds, i.e. mean separation approx.
3.6 cm). 5.2(b) Orientation precision (width of perturbation curve at
F = −3 for different sensor spacings (averaged over concentric rotations
of the array of {0, 10, 20, 30} degrees). 5.2(c) Field-maps of the simulated
source on the different arrays. . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Influence of the head model. We confirm that among the evaluated head
models, the single shell is the most likely. Additionally, the multi-kernel
approach presented a better differentiation among models, indicating that
the single shell is at least 20 times more likely than the next model. . . . 56

5.4 Adding sensor orientation error . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Adding sensor position error. All methods agree, the most likely head
model is the single shell. All the evaluated methods score the true ge-
ometry as the most likely, and presented a sensitivity of 5 mm. The
multi-kernel approach has the advantage that it provides a monotonic
function of the position error. . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 1D Optimisation. 5.6(a) shows that the gradient descent is not able to
converge with the EBB-COV algorithm in the extended search space ξ =
80 mm (i.e. the chains that are outside of the range [−8 20] mm got
stuck in several local minima). 5.6(b) The gradient descent with the
multi-kernel approach reaches the true position of the array with few
iterations, it is also capable of finding the true position in a prior space of
ξ = 80 mm. The average error for the estimation of the array geometry
with all the chains for MKL approach is 0.3402 mm . . . . . . . . . . . . 60

5.7 Four views of the 3D optimisation process with the gradient descent
method. Four chains were performed in the 3D optimisation. For each
simulation five priors are set in the cube of 40×40×40 mm3 and the one
with the highest Free Energy is chosen (the starting point in each chain
is represented with a cross). All the simulations converged at the same
point with 4.04 mm of error (zero is the true position given by scanner-
cast, represented here with a red dot, the black dot represents the final
position reached for all the chains). The algorithm converges in approxi-
mately 40 iterations, compared with the ∼350 iterations that Metropolis
search uses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1 2D Optimisation. B.1(a) shows that with each iteration of the Metropolis
algorithm the error diminishes, while in B.1(a) the Free Energy increases
with each iteration until convergence. B.1(c) shows the movement of
the sensor array across an arch in the XY axis. Initially the error is
about 18 mm and finally the algorithm converges. The estimation of the
geometry of the array is in error of 0.38 mm. . . . . . . . . . . . . . . . . 71

B.2 Four views of the 3D optimisation process. In this simulation the largest
movement is in the Y axis. First, the priors are set in a cubic distribution
of 40 mm with the centre of the array being the true position. One of
the priors is chosen, and then the Metropolis process starts. With each
iteration the array is moved until convergence. Here, the final position
have an error of 3.7 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



List of Figures xiii

C.1 Comparison of time consumption between single kernel and multiple weighted
kernels. It increases in average 1.8 s . . . . . . . . . . . . . . . . . . . . . 74

C.2 Comparison of time consumption for the 1D and 3D optimisation with
Metropolis search and gradient descent. While in the 1D optimisation,
the Metropolis last for 250 iterations, the gradient descent for the MKL
solution takes 12 iterations to converge (i.e. 94.8% fewer iterations). For
the 3D optimisation, the Metropolis search last for 370 iterations, while
the gradient takes 37, i.e. ∼ 90% fewer iterations. . . . . . . . . . . . . . . 75



List of Tables

2.1 EEG and MEG modalities comparison. . . . . . . . . . . . . . . . . . . . . 12

4.1 Accuracy of the ROI selection and correlation of reconstructed time-
courses computed on SDB1 . The values marked in bold are the best
performance per row. Notation Av stands for average. . . . . . . . . . . . 40

4.2 Paired t-test comparing the tested covariance estimations with the spatial
accuracy index ds. In the t-test alternative hypothesis, the method named
in the right is assumed to have a significantly lower ds mean value. . . . 43

4.3 Paired t-test comparing the tested covariance estimations with GS with
the temporal accuracy index εt. In the t-test alternative hypothesis, the
method named in the right is assumed to have a significantly greater εt
mean value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 t-test calculated for earth movers distance . . . . . . . . . . . . . . . . . 48

4.5 Results of t-test computed for the κ metrics in sensor and source spaces . 48

xiv



Abbreviations

BMA Bayesian Model Averaging

EBB Empirical Bayesian Beamformer

EEG Electroencephalography

GS Greedy Search

ISI Inter Stimulus Interval

ITL Information Teorethic Learning

KL Kernel Learning

LOR Loreta

MEG Magnetoencephalography

MNI Montreal Neurological Institute

MKL Multiple Kernel Learning

MRI Magnetic Resonance Imaging

OPM Optically Pumped Magnetometers

Rb Rubidium

RDB Real Data Base

RKHS Reproduced Kernel Hilbert Space

ROI Region Of Interest

SDB Simulated Data Base

SEF Somatosensory Evoked cortical magnetic Field

SERF Spin Exchange Relaxation Free regime

SK Single Kernel

SNR Signal to Noise Ratio

SPM Statistical Parametric Mapping

SQUID Superconducting Quantum Interference Devices

WMMK Weighted combination of Multiple Gaussian Kernels

xv



Symbols

Notation

x scalars

x,X vectors, matrices

Xi i-th column of matrix X

Xij ij-th element of matrix X

‖·‖2 L2 norm or the Euclidean norm

‖·‖F Frobenius norm

E[·] The expectation operator

N (·) Gaussian distribution

U(·) Uniform distribution

XT Transpose of matrix X

X−1 Inverse of matrix X

tr(X) Trace of matrix X

B Magnetic field

r Position of the detector

rJ Position of a current source

Y EEG, MEG or OPM data

~yi Time-course of i-th MEG/EEG or OPM channel

L

J Current density

Ξ Sensor noise

xvi



Notations and Symbols xvii

Q Prior source level covariance matrix

QΞ Prior sensor noise covariance matrix

QJ Posterior source covariance matrix

Qa Model based sample covariance matrix of model a

QY The data-based sample covariance matrix

Nc Number of channels

Nt Number of time samples

Di i-th source covariance component matrix

~h Vector of hyperparameters

Π Prior precision matrix of hyperparameters

Σh Posterior covariance matrix of hyperparameters

F Negative variational Free Energy

κ Kernel function.

K Kernel covariance estimator.

σ Kernel bandwidth

α Weighting parameter

ξ Prior location

θ Positive stepsize parameter of gradient descent



For the two women that I love the most, my wife Ana
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Chapter 1

Introduction

MEG/EEG Brain imaging techniques have become one of the most widely used methods

for characterizing brain activity [1]. MEG/EEG Brain imaging consists of reconstructing

the neural activity at cortical level from electromagnetic fields observed at scalp level [2].

Neural activity reconstruction is highly dependent on the propagation (forward) model

used to relate cortical activity with scalp level recordings [3]. The spatial precision of the

reconstruction increases with an appropriate model by for example including accurate

information about the location and orientation of the sensors, or with a higher signal

strength [4–8]. In this thesis, we propose to improve the quality of the information

provided at both sensor and solver layers. We propose a methodology for selecting

the best location and orientation of a new paradigm of MEG sensors called OPMs, by

exploiting the non-stationary (and non-linear) nature of the recorded data.

Optically pumped magnetometers (OPMs) are new developed sensors to measure mag-

netic fields (MEG) at scalp level. The OPMs present an increase in the signal strength

and a five fold improvement in the signal-to-noise-ratio (SNR) [6]. Nevertheless, being

closer to the scalp, OPMs are prone to modelling errors [5]. As OPMs measure the same

phenomena as traditional MEG, and MEG/EEG measurements are non-stationary and

non-linear processes [9], it is expected that OPMs, being closer to the scalp and with-

out a fixed sensor placement, would introduce new non-linearities to the measurement.

Thus, the commonly used data covariance matrix may not be the best container of the

MEG/EEG and OPM data, as it has several shortcomings such as being prone to be

singular, having limited capability of modeling complicated relationships of the data

(such as non-stationarities and non-linearities), and having a fixed form of represen-

tation [10]. In this thesis, we propose a new methodology for improving the forward

models with a data driven optimization to estimate the location and orientation of the

1
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OPMs sensor array, by using a multikernel approach for dealing with the non-linear and

non-stationary nature of the neural-based electromagnetic data recordings.

1.1 Deling with OPM mis-localisation

OPMs provide a sensitive, flexible, and low-cost alternative to measure brain activity

[6, 11]. OPMs do not require cryogenic cooling and can be placed flexibly on the scalp

surface with a minimum separation of ∼ 4−7 mm. OPMs potentially offer an increased

sensitivity with respect to traditional MEG devices [12], and make the MEG system

itself “wearable” with subjects able to move their head during the measurements [4]. In

this way, OPMs have the potential to form the basis of a high signal SNR and flexible

MEG instrumentation. However, this new flexibility introduces technical challenges such

as the correct sensor placement and accurate modelling of the magnetic fields generated

by the brain (i.e. accurate forward solutions) [6]. These issues must be overcome in

order to create a practical, robust, and wearable system to be used for brain imaging.

The use of OPMs in wearable arrays brings uncertainty on both the absolute and rel-

ative sensor locations and orientations [5, 6, 13]. This contrasts with traditional MEG

systems, where although there is uncertainty on the location of the head (which can

be accounted for [14]; the relative channel locations and orientations are known with a

high degree of accuracy [13]. For OPMs, these modelling errors have been minimized

through the construction of MRI based subject-specific scanner-casts [5]. Such casts are

3D printed with predefined sensor slots and fit the subject specific head shape. The

scanner-cast solution is useful for optimizing the data quality, as it removes a number

of unknowns [15]; but it is not a practical solution, because it requires an investment

per subject, and is both physically cumbersome and intimidating. Thus, in an ideal sit-

uation, one would like to use OPMs in flexible wearable arrays like those used for EEG

electrodes, but with an accurate and robust methodology able to overcome the sensor

placement issue (uncertainty about both the absolute and relative sensor locations and

orientations).

Having an accurate model of the brain’s anatomy and a correct spatial relationship

between brain and sensors, the spatial specificity of the source reconstruction could be

improved [13]. However, the reconstruction is highly dependent on the data’s SNR.

The dependence on accurate modelling is even more pronounced with OPMs because

increments in SNR (due to the proximity of the sensor to the scalp) also entail increments

in sensitivity to modelling errors [6]. In other words, if there is some topographical

blurring in the data and large distance between sensors and sources, a small error in

the propagation model makes little difference, but if the data have higher SNR and the
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sensors are closer to the brain, small errors in the model lead to distorted estimates of

the sources.

Some effort has been made to increase the spatial precision in brain imaging due to sensor

placement uncertainty [14–18]. In [14], the authors proposed a methodology to recover

the location of the cortical surface with poor prior knowledge of the head location within

the MEG helmet space. The authors used a model comparison based methodology [19]

combined with a Metropolis approach [20] to search over head positions. In [21], the

authors developed a methodology to estimate the head position parameters dividing

the MEG/EEG data into stationary sections and performing separate source inversions.

These studies demonstrate that it is possible to estimate where the brain is within

4 mm based purely on MEG/EEG data, and to provide posterior distributions on source

location that properly account for co-registration error.

Our aim in this work is to keep the spatial resolution of the scanner-cast, but in a

flexible OPM array. Nevertheless, such work is not trivial as simulations in [6] showed

that even small (5%) modelling errors could undermine the four-fold SNR increase with

respect to traditional MEG promised by OPM systems. To do so, we make use of a

cost function named Negative Variational Free Energy for model comparison [19] and

two algorithms for performing the optimisation, the Metropolis search, and a gradient

descent. The Free Energy rewards models that accurately fit the data, but penalizes

models if they are overly complex (and therefore likely to overfit). However, this cost

function relies on the data covariance matrix that, in practice is linearly estimated. This

enables several shortcomings: the covariance matrix is prone to be singular, and has a

limited capability to encode complicated relationships among data, with poor accuracy

because of MEG/EEG non-stationarities and non-linearities [10]. To address these issues

we propose a multi-kernel approach to account and exploit the hidden dynamics of the

data.

1.2 Dealing with non-linearity of the data

To cope with the covariance matrix issues, in many machine learning tasks kernel meth-

ods have been proposed. These methods allow making use of object similarity metrics in

a projected Reproduced Kernel Hilbert Space [22]. Thereby, kernel methods involve the

use of positive definite matrices, which guarantee their non-singularity even if samples

are scarce, as suitable object descriptors, that provide a solid framework for represent-

ing many types of data [23, 24]. Therefore, the kernel function is a flexible container

for expressing knowledge about the problem as well as to capture the meaningful data

relations[25].
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Specifically, kernel-based methods are challenging due to the difficulty of choosing a

proper Kernel for the problem at hand [25]. In this regard, among many available

kernels, the Gaussian function is preferred since it aims to find a Reproducing Ker-

nel Hilbert Space (RKHS) with universal approximation capability [26]. However, the

proper estimation of the Gaussian Kernel bandwidth bounds the estimation of a RKHS,

holding the main data relationships.

For tackling this issue, several authors have adjusted the kernel bandwidth based on the

second-order statistics concepts, by exploiting the spatially varying data properties with

local scales [27]. Other discussed approaches rely on Information Theoretic Learning

(ITL) frameworks to quantify more broadly the data uncertainty [28]. However, either

framework presents difficulties when the analyzed data comprise time-varying informa-

tion because of the strong non-stationarity of MEG/EEG (and we expect OPM) data.

Consequently, in order to relax the complex issue of fitting a single Kernel to the task

at hand, several recent methods have focused on combining multiple kernels, which may

correspond to different notions of similarity, namely, Gaussian Kernels with different

bandwidth [29]. Thus, Multiple Kernel Learning (MKL) has become a powerful tool in

absence of an appropriate data representation to highlight the leading data relationships.

In summary, to enhance the characterization of brain activity with OPMs and kernel

functions, we propose a methodology to recover the sensor array location based on OPMs

data. First, for traditional brain imaging techniques we evaluate Free Energy for different

sensor placements over models. We then follow the same methodology but combining

the traditional brain imaging approaches with a proposed multikernel approach that

encodes different bandwidths to recover the predominant complex dynamics hidden in

OPMs data.

The motivation of this thesis is to estimate the precise positions and orientations (and

error bounds on these estimates) of an array of OPM sensors with their own recorded

data. The methodology relies on a multi-kernel approach that exploit the non-stationary

nature of the data to improve the forward model. If this is possible, then this procedure

would reduce the dependence on 3D printed scanner-casts, suggesting that a more flexible

and scalable design can be used to harness the potential of OPMs in a more practical

manner. Moreover, it removes reliance on arbitrary scalp landmarks for co-registration,

and provides an objective test of the quality of the data and forward models (i.e. whether

they can be combined to recover the true OPM sensor locations).
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1.3 Objectives

1.3.1 General Objective

To develop a methodology for characterizing brain activity based on feature extraction

in source space, in order to implement it in optically pumped magnetometer systems.

1.3.2 Specific Objectives

• To analyze state-of-the-art techniques in EEG/MEG brain imaging, and propose

a benchmark for testing the performance and interpretability of these techniques.

• To propose a robust methodology of feature extraction in source space, in order to

bring interpretability while improving the performance of brain imaging systems.

• To select a validation benchmark for testing the proposed methodology and com-

paring it with state-of-the-art approaches.
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1.4 Outline

The present research work is developed as follows: In Chapter 2 a background of the

methods used in this thesis is presented. It includes a review of the MEG/EEG inverse

problem solvers, and the use of Negative Variational Free Energy as a cost function to

score among different models. Chapter 3 presents the methodology to find the position

and orientation parameters of the sensors relative to the brain. Chapter 4 presents

the theory behind the kernel functions applied to brain imaging, and a methodology to

perform brain imaging with kernel priors. Chapter 5 presents the combination of both

strategies to improve OPM sensor placement. Finally, general conclusions and main

contributions of this research work are presented in Chapter 6.

In Chapter 3, we make use of real and simulated data from cryogenic multichannel

recordings using a head-cast [15]; single channel OPM measurements using a scanner-

cast [5]; and simultaneous multichannel measurements using the same scanner-cast. We

then perturb our assumptions about the sensor positions and orientations obtaining a

forward model for each hypothetical (or true) sensor configuration, and estimate the

source distribution on the cortical surface by maximizing the model evidence over a

range of sensor configurations. The model evidence is approximated by the negative

variational Free Energy [30]. Each solution gives a single (maximal) Free Energy value

for each possible sensor configuration. The sensor configuration that can provide the

simplest explanation of the magnetic field produced by a current distribution on the

individual’s cortical surface will have the higher model evidence [19]. By using the

scanner-cast (where relative sensor positions and orientations are known, and absolute

positions and orientations are known to within ±3 mm and ±5 degrees respectively)

with real measured data, we can directly test this method empirically.

In Chapter 4, to enhance the estimation of data covariance matrix, we propose a method-

ology to combine several kernels with different bandwidths for encoding the predominant

complex dynamics hidden in MEG/EEG data. The methodology introduces a weighted

mixture of Gaussian kernels using Multiple Kernel Learning, and allows mixing different

notions of similarity to highlight the principal data relationships. Aiming to provide a

proper source reconstruction accounting, we demonstrate to what extent a proper kernel

combination enables increasing the performance of well-known distributed solutions to

the inverse problem.

In Chapter 5, the strategy to estimate the OPM array geometry is combined with a

solver that contains the multi-kernel implementation. When tested over disturbed OPM

geometries, the MKL based solvers turned the Free Energy into a monotonic function,

allowing the use of gradient descent optimisation. As a result, we estimate the true
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Chapter 2

Background

In this chapter, an overview of magneto and electroencephalography (MEG/EEG) is pre-

sented, starting with the origins of MEG/EEG and two types of MEG sensors, namely

superconducting quantum interference devices (SQUIDS) and optically pumped magne-

tometers (OPMs). Next, the theory and mathematical methods to characterize brain

imaging and to perform model comparison are presented.

2.1 MEG and EEG

Electroencephalography (EEG) and magnetoencephalography (MEG) have been widely

used to study brain dynamics, identifying and analyzing temporal activation patterns,

e.g., neural rhythms [31, 32], event-related potentials (ERPs) [33], epileptic spikes [34],

among others [35]. EEG and MEG are non-invasive techniques that measure electromag-

netic brain activity with high temporal resolution (sampling below 1 ms. See [1, 36, 37]

for a review in the area).

Modern SQUID sensors use a superconducting loop, which is usually made of niobium

cooled to superconducting temperatures. The term cryogenic is therefore used to de-

scribe the MEG system’s cooling which uses liquid helium to mantain a temperature of

∼ −270◦ C. SQUID sensors are most often arranged in a helmet-like structure or a de-

war. The dewar contains hundreds of sensors distributed across its inner surface as close

to the scalp as possible due to requirement for cryogenic cooling. Practically, MEG

recording is silent, passive, non-invasive and gives exceptionally high time resolution

(see [1] for a review in MEG as a tool for brain imaging).

9



Background 10

2.1.1 Optically Pumped Magnetometers (OPMs)

Up to now, SQUIDS have remained as the only technology to measure brain magnetic

fields. However, recent advances in atomic physics and miniaturization have let to

introduction of a potential replacement technology. Optically Pumped Magnetometers

(OPMs) are a new generation of MEG sensors which do not require cryogenic cooling.

Instead of superconduction, OPMs rely on the spin polarization of alkali atoms [38].

Like SQUIDs, OPMs development began nearly 50 years ago [39], but initially with a

dramatically larger size and power consumption, as well as poorer sensitivity. Partic-

ularly because of their size, these magnetometers could not be used for multichannel

recordings, making them less attractive for MEG experiments. However, over the past

decade, these problems have been solved and now the technology represent a candidate

for replacing SQUIDs. The primary reason is that OPMs have been miniaturized and

operate without cryogenic cooling, meaning that they can be placed directly on the

scalp. Additionally, they provide equal sensitivity to magnetic fields than SQUIDs [12].

The OPMs are commercially available http://quspin.com.

These devices rely on the Spin Exchange Relaxation Free (SERF) regime [40], which

can occur in very low magnetic fields, when the Lamour frequency is considerably lower

than spin-spin interaction. These sensors have three crucial components: a laser (795 nm

wavelength), a Rb87 vapour cell, and a photodiode. The laser pumps the Rb87 vapour

into steady state with large atomic polarization. In this state the vapour becomes trans-

parent to the laser light allowing the light to pass through the vapour with limited loss of

energy and therefore a maximum detection at the photodiode. However, the polarization

is highly sensitive to the ambient magnetic field. As the ambient magnetic field changes

(due to brain’s activity) the polarization and transparency of the vapour is reduced.

This means that more energy is absorbed by the gas (from the laser light) when the

ambient magnetic field changes. As such, the magnetic field modulates how much light

is detected at the photodiode. Here, the OPMs are configured to produce a sinusoidal

oscillating (∼100 Hz) magnetic field to modulate the signal along two axes. This allows

measuring both radial and tangential (to the head) components of the magnetic field.

The interested reader is directed to other general overviews of the physical principles of

OPMs [38, 39, 41–43].

The QuSpin OPM sensors used here have a noise level comparable to SQUIDs (∼ 15

fT/
√
Hz above 10 Hz), a bandwidth up to 130 Hz (1st order cut-off), an operational

dynamic range of ±1.5 nT), a size of 14× 21× 80 mm3, and can be placed such that the

sensitive volume is 6.5 mm from the scalp surface. We modelled the sensitive volume of

gas as a single point measurement of the field normal to the sensor base.

http://quspin.com
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2.1.2 OPM vs SQUIDs

Although OPMs have a noise level comparable to SQUIDs, being closer to the head al-

lows improving the magnitude of the measured MEG signal. This improvement afforded

by moving the detector closer to the head is independent on the location in the head of

the source generating the signal.

Considering a dipole oriented normal to the radial field direction (specifically, the z-

direction), the magnetic field B, at r (position of the detector, SQUIDS or OPMs) is

given by:

Bt(r) = − µ0 |J| |rJ| sin(φ)

4π
(
|r|2 + |rJ|2 − 2 |r| |rJ| cos(φ)

)3/2
(2.1)

Eq. (2.1) was derived from the Geselowits formula (see [5, 44] for its demonstration),

where rJ is the position of a current source J inside a volume conductor. The expression

in Eq. (2.1) is asymmetric with respect to the angle φ (between r and rJ), and the

angle at which the maximum field is found varies as a function of both |r| and |rJ|. The

optimal angle at which sensor should be placed is found by differentiating Eq. (2.1), so

that:

cos(φ) =
−(|r|2 + |rJ|2) +

√
|r|4 + |rJ|4 + 14 |r|2 |rJ|2

2 |r| |rJ|2
(2.2)

Fig. 2.1 presents the Magnitude of the measured radial magnetic field as a function of

source depth of SQUID (red) and OPM (blue). Note that the OPM offers an improve-

ment in source magnitude for sources anywhere in the brain.
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Figure 2.1: Magnitude of the measured radial magnetic field as a function of source
depth for SQUID and OPM. Note that the improvement factor in magnetic field
strength in superficial sources could be as high as eight times the magnitude, while

for depth sources (6 cm) the improvement could be of three times in magnitude.

2.1.3 EEG Vs MEG

Table 2.1 presents a comparative analysis between EEG and MEG with both type of

sensors SQUIDs and OPMs. It shows that the OPMs have a better spatial resolution,

allows movement of the subjects, it is wearable, and easier to study young populations.

However, as it measures magnetic fields, there is a need of a special shielded room which

increases its cost. However, in [4] an array of coils that suppresses the remnant field

in the shielded room was presented. Theoretically, in a future the sensors could be

used without the need of the shielded room as the OPMs could have an active noise

cancellation combined with such coils. As the OPMs have the best of EEG and MEG,

the advantages of OPMs seems promising for the future of brain imaging.

Table 2.1: EEG and MEG modalities comparison.

EEG SQUIDs OPM

Signal distorted Signal unaffected Signal unaffected
by skull-scalp by skull-scalp by skull-scalp

Spatial resolution Spatial resolution Spatial resolution
∼ 7− 16 cm ∼ 3− 11 mm ∼ 1− 7 mm

Temporal Resolution 1 ms Temporal Resolution 1 ms Temporal Resolution 10 ms

Allow subjects to move Subjects must remain still Allows subjects to move

Flexible location of sensors Sensors fixed to a helmet Sensors in fixed arrays
attached to the head ∼ 3− 6 cm to the head close to the head (∼ 6 mm)

Wearable - Wearable

Can be done anywhere Requires special magnetic Requires special magnetic
shielded room shielded room

Studies of young Fixed helmet designed Studies of young
population feasible for adults young population feasible
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2.2 MEG/EEG Inverse Problem

An externally measured electromagnetic field can be used to estimate neural activity in

terms of neural source distribution and time course. This requires two steps: construc-

tion of a forward model to describe the predicted scalp distributions for each given source

of neural activity with a specific orientation, magnitude and location; and subsequent in-

version of this forward model to estimate the most likely spatial configuration of sources

giving rise to the measured signal. All the inversion methods used here are parametric

Bayesian inverse methods. The definitions and implications thereof will be described in

this section. All source reconstruction methods rely on carrying out the following steps:

preprocessing, including filtering and removal of possible artifacts present in the data;

source space modelling; data co-registration; forward model computation; and source

space reconstruction. This thesis is focused on the latter four. The methods for source

reconstruction vary with respect to assumptions about source space covariance.

The electromagnetic field measured with MEG/EEG may be represented by the general

linear model [45].

Y=LJ +Ξ (2.3)

Where Y ∈ RNc×Nt are the measured MEG/EEG data with Nc channels and Nt

time samples affected by zero mean Gaussian noise distribution Ξ = N (0,QΞ), Ξ ∈
R(Nc×Nd), and noise covariance QΞ ∈ RNc×Nt . J ∈ RNd×Nt is the current flow due

to Nd current dipoles distributed across the cortical surface, with prior Gaussian as-

sumptions J = N (0,Q). Q ∈ RNd×Nd is the source level covariance matrix. The gain

matrix L ∈ R(Nc×Nd) (commonly known as lead-field matrix) is defined as the propa-

gation model of an MEG signal that is produced by a source of unitary strength, and

is completely determined by the sensor configuration and volume conductor physics, as

described in terms of the forward model.

In the linear model Eq. (2.3), L is non invertible since the dipoles outnumber the sensors

(Nd � Nc). Then, the reconstruction of the sources of neural activity Ĵ cannot be

performed directly. The basis of the Bayesian implementation is that the recorded

activity over sensors Y is used to estimate the distribution of sources in the brain. The

constraints take form of prior probabilities of source activity p(J) and these priors are

informed by anatomy and neurophysiology (and combined with the physical properties

of volume conduction). The priors are then used to estimate the posterior probability

of the source activity due to data P (J|Y), allowing to estimate the posterior source
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activity distribution using the Bayes’ theorem:

p(J|Y) =
p(Y|J)p(J)

p(Y)
(2.4)

Where evidence for the recorded data p(Y) is considered to be fixed, given a constant

dataset. The estimated magnitude of J, Ĵ can be computed by taking the expectation

of the posterior Ĵ = E[p(J|Y)]. Typically, the noise associated to MEG/EEG measure-

ments is considered white Gaussian: p(Ξ) = N (Ξ; 0,QΞ). Under this assumption the

likelihood is defined Gaussian as well.

In this work, the framework presented in [14] is adapted to explore among perturbed

arrays. Briefly, with each perturbed array a new lead-field matrix La (a-th forward

model) is computed using the single shell forward model [46] for MEG data, and a

BEM model for EEG. For uninformative priors, the Maximum-likelihood solution to the

inverse problem reduces to:

Ĵ = QLTa (QΞ + LaQLTa )−1Y (2.5)

2.2.1 Prior Information

Intending to enhance estimations of Q, a large variety of priors have been proposed

within the MEG/EEG inverse problem, which are mostly divided into two approaches [47]:

model-based (or anatomically-based) and data-driven. The former strategy patterns the

synchronized activation of brain pyramidal cells (smoothness condition) as it is the case

of Low-Resolution brain electromagnetic tomography (LOR) that includes a Laplacian

operator ∇∈RNd×Nd (or smoother) to represent the neuron groups with synchronized

activation:

Q = (LT∇T∇L)−1 (2.6)

In data-driven approaches (namely, Beamforming [48]), the estimates of Q are per-

formed straightforwardly by projecting the available MEG/EEG recordings into the

source space through the lead-field matrix. This is the case of Empirically Bayesian

Beamformers (EBB), which generates a single covariance diagonal matrix with elements

computed by projecting the measured data covariance into another source space, as

follows [49]:

Q = diag((lTi Q−1
Y li)

−1/δi); ∀i = 1, . . . , Nd (2.7)
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where li∈RNc×1 is i-th column of L, matrix QY ∈RNc×Nc is the MEG/EEG linear data

covariance computed as QY=YYT /Nt, and the normalisation parameters δi∈R+ are

fixed as δi = 1/lTi li.

However, both estimation approaches (LOR and EBB) may face limited ability to gen-

eralize due to their linear representation premise, which cannot be expanded as to model

nonlinear feature relationships [50], or to include additional prior information. But be-

ing formed by independent priors, Q may be relaxed as a linear combination of Np

components [51]: Q=
∑

i∈Np
hiDi, where the weight collection of {hi∈R+} determines

the contribution of a given dictionary D={D1, . . . ,DNp}. Each matrix Di∈RNd×Nd can

embody priors extracted from previous approaches and/or even other modalities such

as functional magnetic resonance images [52].

In this work we use Multiple Sparse Priors (MSP [19]) implementation, for which the

hyperparameters hi are estimated by an Expectation-Maximization optimization using

the negative variational Free Energy as the cost function. Intending to reach a trade-off

between accuracy, fAC∈R, and complexity, fCX∈R. Thus, the MSP inverse solution

employs the negative variational Free Energy as cost function [30], defined as F=fAC −
fCX .

2.3 Negative variational Free Energy

Each inversion returns a Negative Variational Free Energy value (F ), which approxi-

mates the model evidence p(Y|a) (where a is the model) [30, 51]. In this thesis, we

use the Free Energy to score competing source reconstructions based on different sensor

locations and orientations (different geometries modelled through different La models).

That is, reconstructions of the same data but with different sensor configurations, each

providing an associated Free Energy that can be compared across geometries [53]. For

a model La associated with a given sensor location and orientation, Free Energy Fa can

be expressed as a trade-off between accuracy and complexity:

Fa = fAC(a)− fCX(a) (2.8)

The accuracy term is expressed as:

fAC(a) =
Nc

2
trace(QYQ−1

a )− Nc

2
log |Qa| −

NcNt

2
log(2π) (2.9)

Where QY = ( 1
Nc

YYT ) the data-based sample covariance matrix, Nt is the number of

samples, and | · | is the matrix determinant operator. When searching for the optimal
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geometry, the MEG/EEG data do not change; so, the accuracy of the model a mainly

depends on the model-based sample covariance matrix computed as Qa = QΞ+LaQLTa .

The complexity term depends on the hyperparameters h, which provide a trade-off

between sensor noise QΞ = h1I(Nc), and the Beamforming prior Qa = h2Γ (with Γ

being the beamformer prior):

fCX(a) =
1

2
(λ̂a − ν)TΠ(λ̂a − ν) +

1

2
log |ΣλaΠ| (2.10)

The prior and posterior distributions of the hyperparameters are considered Gaussian:

q(λa) = N (λ;ν,Π−1) and p(λa)=N (λ̂a,Σλa), respectively (where λ̂a and Σλa are the

posterior mean and covariance of the hyperparameters for model a). We used the stan-

dard SPM https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ implementation

of this algorithm with non-informative mean and precision (ν and Π) [54].

As the Free Energy approximates the model evidence for inversions obtained with differ-

ent models (different geometries) but same data; it can be used to compare the likelihood

of these models. In this model comparison framework, the F (a) values obtained for dif-

ferent geometries can be compared with respect to how well they describe the data by

simply substracting one F value from the other. It is thereby possible to quantify the dif-

ference in (approximated) model evidence. Because of the Bayesian context, the F value

difference is equivalent to calculating a Bayes factor. In line with Bayesian convention,

a positive difference means that the first model in the equation 1
e−∆F is more likely than

the second. A significance threshold is defined at three, due to the log distribution of the

Bayes factor of F difference, one model is 20 times more likely than the other. Critically,

model comparison is only valid when the data is the same and can only be used to infer

relative fitness of different models. The application of this model comparison aproach

to MEG data analysis has been succesfully demostrated elsewhere [14, 16, 54–57].

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Chapter 3

Data-driven model optimisation

to improve OPM co-registration

3.1 Introduction

Optically-pumped magnetometers (OPMs) have reached sensitivity levels that make

them viable portable alternatives to traditional superconducting technology for magne-

toencephalography (MEG) [4, 58]. The devices have a footprint of only 2.47 cm2, do

not require Helium cooling, and can therefore be placed directly on the scalp surface,

increasing sensitivity to the brains magnetic fields. However, this flexibility in sensor

placement introduces a new source of spatial uncertainty which limits the accuracy of

neuronal current flow estimates. Specifically, since sensors are no longer rigidly arranged

inside a scanner system, their locations and orientations with respect to the brain, and

respect to one another, must be accounted for in the forward model. In this chapter,

we perturb the sensor geometry (via simulation) and with analytic model comparison

methods estimate the true sensor geometry. The resulting curves allows us to compare

different MEG systems. We test this technique using simulated and real data from

SQUID and OPM recordings using head-casts and scanner-casts. We demonstrate how

this framework can also be used to optimise single sensor and sensor array models.

Finally, we show that given knowledge of underlying brain anatomy, it is possible to

estimate the true sensor geometry from the OPM data themselves using a model com-

parison framework. This implies that the requirement for accurate knowledge of the

sensor positions and orientations a priori may be relaxed. As this procedure uses the

cortical manifold as spatial support there is no co-registration procedure or reliance on

arbitrary scalp landmarks.

17
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To carry out our analysis, we make use of real and simulated data from cryogenic mul-

tichannel recordings using a head-cast [15]; single channel OPM measurements using a

scanner-cast[5]; and simultaneous multichannel measurements using the same scanner-

cast. We then perturb our assumptions about the sensor positions and orientations

obtaining a forward model for each hypothetical (or true) sensor configuration, and es-

timate the source distribution on the cortical surface by maximizing the model evidence

over a range of sensor configurations.

3.2 Methodology

The methodology used to recover the geometry of the array is presented in Fig. 3.1. The

methodology comprises the following steps. i) OPM data collection. ii) Variation in

the array geometry (the algorithm do not know the true position). iii) Forward model

computation, the single shell model was used to compute the propagation model. iv)

Estimation of the most likely cortical current distribution with the perturbed model. v)

Metropolis search procedure with Free Energy as a cost function (repetition of steps iv)

and v) until convergence. vii) Bayesian model averaging that pool estimates from across

a range of optimisation steps and weight them by their model evidence (see Apendix A

for the Metropolis search and BMA algorithms).
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Figure 3.1: Benchmark used to recover the true geometry of the OPM array. The
location and orientation parameters that minimises the error in the Free Energy cost

function are the most likely ones.
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3.3 Experimental Setup

3.3.1 Data collection

We used empirical data from a somatosensory evoked response paradigm which involved

electrical stimulation of the subjects left median nerve. There are three data sets col-

lected from the same subject and using the same paradigm used in this paper: i) data

collected with a SQUID system, ii) using multiple repeats of the same experiment with

a single OPM channel at different locations, and iii) using an array of 13 OPM channels

operating simultaneously Fig. 3.2(b). The data and recording parameters for i) and ii)

have already been described in [5].

Briefly, we performed a left median nerve electrical stimulation by applying a series

of 500 µs duration current pulses to two gold electrodes placed on the subject’s left

wrist. The current was applied using a Digitimer DS7A constant current stimulator,

and the amplitude was increased until a visible movement of the thumb was observed

upon stimulation. Each experimental run comprised 80 pulses delivered with an inter-

stimulus-interval (ISI) of 3.0099 s; the ISI was selected not to be a multiple of the 20 ms

period of the mains noise frequency (50 Hz). Data were recorded during a prestimulus

baseline of 0.5 s and post stimulus period of 2 s. A single run lasted four minutes.

All recordings were carried out inside a magnetic shielded room comprising two layers of

mu-metal and one of aluminium. For the OPM recordings, the subject was positioned

on the bed with his head in the scanner-cast and the scanner-cast was rigidly fixed in

position Fig. 3.2(b). The single OPM measurements made with a sequential sampling of

scanner-cast slots using a single OPM channel are explained in [5]. Here we additionally

ran the experiment while 13 sensors located in the same slots of the scanner-cast were

operating simultaneously. The scanner-cast presented in Fig. 3.2(a) was used for both

sets of OPM recordings. OPM data were acquired simultaneously with SQUID data

(from a 275 channel CTF instrument), and the magnetometer reference channels within

SQUID system (remote from the subject) and the time-derivatives of these channels

were used as an environmental noise reference set and regressed out of the OPM data

on a trial by trial basis (as described in [5]. SQUID recordings were performed using the

275 channel system in 3rd gradient configuration (i.e. with factory-set linear weighting

from the noise reference array).
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3.3.2 Scanner-casts

As a basis for both the simulated and empirical experiments we used the array geometry

as defined in [5]. Briefly, this relies on 3D printing to construct an individualized helmet

containing a sensor array positioned over the subjects sensory motor cortex (Fig. 3.2(a),

for more details, see [5]). As the scanner-cast was built directly from the subjects MRI,

the location and orientation of the cast with respect to the brain anatomy was known to

within ±3 mm and ±5 degrees (conservative estimates based on how far the cast could

be manipulated whilst on the subject).

(a) Scanner-cast (b) OPM recording set-up

Figure 3.2: Head Cast and OPM recordings.3.2(a) CAD model of the scanner-cast.
The cast is based on an individual MRI scan and designed to house the OPM sen-
sors around the outer scalp surface.3.2(b) Subject wearing the scanner-cast with the
multichannel OPM array. The scanner-cast is fixed rigidly within the shielded room

eliminating any sensor motion.

3.3.3 Simulated data

The SPM12 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ software pack-

age is used to simulate single trial MEG datasets based on both the OPM and SQUID

sensor geometries used empirically. For simplicity and comparability, all the simulated

trials had the same duration (1 s) and number of sensor channels (Nc = 13). We sim-

ulated a single 10Hz sinusoidal source located in the somatosensory cortex (at 46, -25,

60 mm in MNI space) with a dipole moment of 10 nAm. We added the same Gaussian

white background noise of standard deviation 100 fT RMS to both SQUID and OPM

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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sensors, we kept background noise levels equal to make interpretation of both systems

easier.

3.3.4 Variation in the array geometry

To assess whether we could derive the correct sensor geometry based on the OPM

data, we perturbed the sensor array in two ways. Firstly, we randomly perturbed the

orientation of each sensor independently within the OPM array. For each sensor, the

axis of the perturbation (roll, pitch or yaw in x, y or z) was selected randomly and these

perturbations were moved in 2.5 degree steps between −20 to +20 degrees (Fig. 3.3(a)).

Secondly, we perturbed the sensors either in a 1D arc around the head from -20 to 20

mm (Fig. 3.3(b) or within a 3D volume of 40× 40× 40 mm3 (see Appendix A section).

For each perturbation, we then computed a forward model, estimated the most likely

cortical current distribution, and obtained a Free Energy value.

(a) Orientation perturbation (b) Position perturbation

Figure 3.3: Perturbations of the sensor array. 3.3(a) Each sensor was independently
perturbed from their true orientation (black) by a fixed angle in random direction (red).
3.3(b) The rigid sensor array was displaced from its true position with respect to the
center of the brain (black) to new positions (red) within an arc spanning -20 to 20 mm

(and subsequently a cube of 40× 40× 40 mm3)

Perturbation of the position and orientation: In order to perturb the geometry

of the array, we used spatial transformation matrices. These matrices are used to rep-

resent the orientation and position of a coordinate system. In this case, the principal

coordinates of the sensors are set in the MNI coordinates of the brain. As we know the

coordinates of the sensors relative to the brain by the scanner-casts, we can compute the

new coordinates of the sensors for each perturbation. Any combination of translation
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and rotation of each sensor can be computed in a single 4 by 4 affine transformation

matrix:

T =

[
R P

0 1

]

where the sub-matrix R ∈ R3×3 represents the orientation (or rotation) of the object in

the space, and the vector P ∈ R3×1 represents the position of the object in the space. An

orientation error for any sensor can be computed by pre-multiplying the transformation

matrix of the sensor with the transformation matrix of the perturbation (angle θ) in any

axis:

Rx(θ) =


1 0 0 0

0 cos(θ) sin(θ) 0

0 −sin(θ) cos(θ) 0

0 0 0 1

Ry(θ) =


cos(θ) 0 −sin(θ) 0

0 1 0 0

sin(θ) 0 cos(θ) 0

0 0 0 1



Rz(θ) =


cos(θ) sin(θ) 0 0

−sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1


A position error can be computed by rotating the whole array in any plane (here is

rotated in the xy plane. We adapted the framework presented in [14] to explore across

the perturbed arrays. Briefly, with each perturbed array a new gain matrix La (forward

model) is computed using predominantly the single shell forward model [46], although

we also made use of the single sphere model [59].

3.4 Results

Fig. 3.4 shows the averaged time courses from single channel OPM data (Fig. 3.4(a)),

multi-channel data (Fig.3.4(a)) and SQUID data (with the 13 channels chosen for com-

parison highlighted in red. Those channels are the ones with the highest spatial corre-

lation with the OPM array) (Fig. 3.4(c)); time zero corresponds to the median nerve

stimulation impulse. The expected m20 evoked response is visible with the three ex-

periments (red-dotted line). Note the scale changes in the axes with the OPM signals

being 5-10 times larger in magnitude. As expected, the magnetic fields measured with

the OPMs have a stronger response due to their proximity to the scalp; despite this
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signal magnitude advantage however, the relative SNRs (at sensor level) are comparable

across all three experiments (Fig.3.4(d)), presumably because much of the variability in

the signal is of neural origin.
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Figure 3.4: Empirical data. Sensor-level time courses for median nerve stimulation
recorded with OPMs and SQUIDs. The evoked response at 20 ms (red dotted line) is
highlighted. Black lines show time courses from a single channel, averaged over trials.
3.4(a) Single channel OPM used to sequentially record responses at 13 different locations
across the scanner-cast, treated as a simultaneous measurement. 3.4(b) Multichannel
OPM data recorded simultaneously with 13 different channels in the same scanner-cast.
3.4(c) SQUIDs recordings with the 13 channels that are spatially correlated to OPM
channels highlighted in red (the 13 SQUIDs channels used are the ones with the highest
spatial correlation with the OPM array). Note the scale changes between sensor types.

3.4(d) SNR calculated for the three experiments. Where SNR = maxi(
∑

pre Y 2
i

ΣpostY 2
i

), is the

maximum ratio of post-stimulus to baseline power in any sensor.
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3.4.1 Adding sensor orientation Error

In the first instance, we wanted to examine the sensitivity of our models to sensor orien-

tation error and gain error. The logic being that sensitivity to error in the geometry is a

prerequisite for any scheme seeking to optimise geometry. We also considered gain-error

to account for other un-modelled sensor imperfections due to calibration or cross-talk

issues. Individual sensor orientations were perturbed by orientation errors between -20

to 20 degrees in a random direction around their true orientation in steps of 2.5 degrees.

A total of 30 L forward models were obtained for each orientation error (i.e. each for-

ward model has all channels perturbed in a different random direction about their true

axis by this amount). Additionally to orientation error we perturbed the models with

gain errors of 5% and 20% (Fig. 3.5(a)).

-20 -15 -10 -5 0 5 10 15 20

Change in orientation (°)

-7

-6

-5

-4

-3

-2

-1

0

F
re

e
 E

n
e
rg

y

Simulated data

No error

5%

20%

(a) Sensor Orientation error for simulated data

-20 -15 -10 -5 0 5 10 15 20

Change in orientation (°)

-7

-6

-5

-4

-3

-2

-1

0
∆

 F
re

e
 E

n
e

rg
y

Real data

SQUIDs

OPM single

OPM multi

(b) (Software) Change in orientation for real data

Figure 3.5: 3.5(a) OPMs simulations. Sensitivity of model fit (Free Energy metric)
to errors in sensor orientation: for perfect sensors (blue solid), sensors with gain errors
of 5% (orange triangles), and gain errors of 20% (yellow circles). Adding gain error to
the data results in broadening of posterior estimate on sensor orientation. Solid black
line (F = −3) is the point at which the models become 20 times less likely than the
best model. 3.5(b) Sensitivity of model fit to orientation errors added to real sensor
recordings: for SQUID data (blue solid); single channel OPM data (orange triangles)
and multi-channel OPM data (yellow triangles). Note that the sensitivity to individual
channel orientation error is lower in the empirical OPM recordings than the SQUID

system.

Fig. 3.5(a) shows the change in Free Energy as a function of channel orientation error

for simulated data. The solid-line shows simulations with an idealized OPM sensor

array. Note that the Free Energy peaks at zero error where the measured data can

be most simply reconciled with the single generating source. For Free Energy values

(on a log scale) −3 corresponds to models that are 20 times less likely. In the ideal

sensor case we are therefore able to reject sensor geometries with more than ±4 degrees
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of intrinsic error as unlikely. Also shown are the effects of additional random gain-

error (5%, 20%; red triangles and yellow circles respectively). These serve to blunt the

orientation perturbation curves- adding 20% gain error to the sensors means that it is

now only possible to confidently reject sensor geometries with greater than ±12 degrees

orientation error- although the most likely sensor geometry remains the true geometry.

Fig. 3.5(b) shows the same orientation perturbation curves but based around real mea-

sured data from the three MEG systems. All three datasets are also sensitive to per-

turbations of the geometry of the measurement sensors and suggest that the most likely

orientation is the true one. The model used to describe the SQUID data is sensitive

to orientation error of less than ±5 degrees, the models used to describe the concate-

nated single channel OPM data being sensitive to orientation error of ±12 degrees and

the model used to describe the multi-channel OPM data is relatively insensitive to ori-

entation error. We speculate that the difference between the single and multi-channel

system OPM curves is that the concatenated single channel system is effectively a more

homogenous system than the multi-channel system. The multi-channel system will suf-

fer from sensor cross-talk and other factors (such as calibration, different intrinsic noise

levels etc) of between-sensor variability. However, the difference between the SQUID and

OPM curves ran counter to our expectation- which was that the OPM models would

have the higher sensitivity to perturbation because of the marginally higher SNR [6, 8].

3.4.2 Movement of sensor array

The other scenario we considered was a rigid array of sensors of known relative geometry

attached to the scalp. In this case the goal is to estimate the array location (as fixed

whole) relative to the subjects anatomy. This could be locating a small array of OPMs

strapped to the scalp surface or estimating the position and orientation of a generic

helmet (e.g. bicycle helmet) containing the sensors. We begin by demonstrating the

change in Free Energy as the sensor array is moved in an arc about its true position.

Fig. 3.6(a) shows the effect of this movement on simulated OPM data. Again, the most

likely array location is the true location, and the 95% confidence bounds on this location

are ±8 mm. As gain error is increased these error bounds become larger (i.e. the curves

become wider).

Fig. 3.6(b) shows the same (software) displacement of the sensor array used to collect

real OPM and SQUID data (i.e. error was added to the sensor array locations from a real

data recording, and a search across a range of array locations was performed with the

algorithm being agnostic to the true array location). Again we were encouraged to find

that all forward models to explain these real data exhibit maximal model evidence at the
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true array location, even though this location is unknown to the algorithm. We observe a

similar pattern to the orientation error manipulations with real data, in that the models

using data from SQUID sensors once again have the least positional uncertainty (±2

mm); before reaching significance (i.e. very small changes in sensor array position are

detrimental to the goodness-of-fit); followed by the OPM single channel data (±3 mm)

and the OPM multi-channel recordings (±10 mm).
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Figure 3.6: Effect of sensor array displacement on goodness-of-fit, simulated and real
data. 3.6(a) Simulated data. Sensitivity of Free Energy to errors in sensor array posi-
tion: for perfect sensors (blue solid), sensors with gain errors of 5% (orange triangles),
and gain errors of 20% (yellow circles). Adding gain error to the data results in subtle
broadening of posterior estimate of the sensor array position. 3.6(b) Sensitivity of Free
Energy to array position (ground truth based upon head and scanner-casts estimates)
added to real sensor recordings: for SQUID data (blue solid); single channel OPM data
(orange triangles) and multi-channel OPM data (yellow circles). Note that the Free En-
ergy peaks at zero error where the measured data can be interpreted as the generating

source.

3.4.3 Model Optimisation

In sections 3.4.1 and 3.4.2we perturbed the geometry of the array in two ways. First,

by perturbing the orientation of the sensors while the position remain fixed between -20

to 20◦.Then, by perturbing the position of the rigid array in which the relation of the

sensors remains the same through an arch of -20 to 20 mm around the xy axis. The

obtained curves show that the true position is the one with the highest free energy. Such

result suggests that we can find the true position of an array with only an approximate

prior position. The practical problem is now to demonstrate how it is possible to locate

a rigid sensor array with only approximate positional information based only on the field

measurements, a volume conductor model and the cortical geometry. We did this by

using the data from the single-channel OPM array in two ways. Firstly, using a simple

2D search passing over the known location of the sensor array. Secondly, by assuming
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an initial uniform uncertainty over a 64 (4 × 4 × 4) cm3 volume a-priori knowledge of

sensor array location in any dimension.

3.4.4 Optimisation in one dimension

Assuming a rigid array we set a prior search space of ξ = 40 mm around the true position.

Then, we used the Metropolis search algorithm detailed in the Appendix A. Four chains

were simulated with single axis movement in which the algorithm had no information of

the true array position respect to the brain, i.e. flat priors on location within [-20 20] mm

of the true position. The Metropolis search was performed with 600 iterations per chain

in four chains. Fig. 3.7(a) shows the change in the position of the array as it moved

through an arc of 18 mm (i.e. the perturbed array started with an error of 18 mm). The

initial value is represented with a green mark. Through each iteration of the Metropolis

search (black dotted line) the position changes (via model comparison Fig. 3.7(b)) until

convergence (blue mark). The error drops with each iteration (Fig. 3.7(c)) and after

250 iterations the algorithm oscillates near to the true position. Fig. 3.7(d) shows the

prior and posterior estimate of the array location. The figure shows that the model

estimate of the array position was 0.44 mm from our estimate of location based on the

scanner-cast. The uncertainty (95 percentile) on this geometry estimate is also less than

1 mm (Fig. 3.7(d)).
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Figure 3.7: 3.7(a) Movement of the array through each iteration of the Metropolis
search, the array moves through an arc in a 2D plane; the initial value is in 18 mm of
error (green point), and evolves through each iteration (black points) until reach the
final value (blue point). 3.7(b) Evolution of the Free Energy through each iteration.
A first model is computed with the array centered of the sensors in the initial value
(green point), then the inverse problem is solved and a Free Energy value is computed.
The position of the array is updated through each iteration of the metropolis search
until convergence (black points). The blue point represents the final position of the
array while the red point represents the true position (as estimated from the scanner-
cast). 3.7(c) Evolution of the distance error from the scanner-cast location, this error
is unknown to the algorithm. 3.7(d) Prior and Posterior distributions of the array
location (based on MEG data and uniform priors); zero represents the approximate

array position on the scanner-cast.
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3.4.5 Optimisation in three dimensions

Although the optimisation in 1D provides a clear illustration of the Metropolis process,

it is not practically useful since positional uncertainty will rarely be constrained to lie

in one dimension. To show how this method can be generalized to higher dimensional

spaces we used the same Metropolis procedure but based on the assumption that sensor

location was only known to within an approximate 3D volume of 4× 4× 4 cm3. Fig. 3.8

shows the prior cubic volume for the centre of the array (blue cube i.e the search space for

the Metropolis algorithm); alongside the posterior confidence interval (black ellipsoid i.e

the estimation of the centre of the array with the BMA procedure) and the scanner-cast

estimate of this sensor location (red i.e the measured centre of the array via scanner-

cast). After the optimisation, the Metropolis search and BMA estimated the posterior

mean array position to be 4 mm displaced from that we expected from the scanner

cast. The posterior confidence volume on this location was 0.1019 cm3 i.e. a 600-fold

reduction on the prior volume.
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Figure 3.8: Optimisation in three dimensions (sensor space). The dotted cube shows
the original 4× 4× 4 cm3 uncertainty on array location. The 95% confidence ellipsoid
(black) shows the posterior location of the central sensor (and hence the whole rigid
array). The location of the central sensor based on the scanner cast information is show

as a red dot. Lower right panel is a magnified sagittal view.

It is also possible to view the consequence of the refinement of sensor position at the

source level. Fig. 3.9 represents the search space in the source space, i.e., the areas that

could be estimated if the geometry of the array is not found with precision. Estimating

the source level activity based on our prior knowledge of sensor position (4×4×4 cm3),

gives a distribution of (of peak locations) than can be described by the 95% confidence

ellipsoid (blue) in Fig. 3.9 With the BMA step we are able to pool estimates from across

a range of optimisation steps and weight them by their model evidence. Also shown in

Fig. 3.9 is the posterior confidence volume on the peak source location after the Bayesian

Model Averaging over sensor geometries (black). The model optimisation reduces the

confidence volume on peak location from 34.90 cm3 to 0.05654 cm3. The centre of the

optimised confidence volume is 5 mm from the source estimate when using the scanner-

cast location as ground truth (red dot). The BMA step gives a degree of robustness to

the process and importantly provides us useful posterior estimates of the head location

and an estimation of current distribution with a confidence interval.
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Figure 3.9: Optimisation in three dimensions (source space). Source estimates with
confidence volumes shown in three orthogonal views. The red sphere represents the peak
of the reconstructed neural activity when reconstructed with sensors at the scannercast
locations. The initial sensor uncertainty gives rise to a prior distribution on the peak of
the electrical activity (blue ellipsoid; based on reconstructions over 30 sensor locations
distributed randomly across the prior volume). The black ellipsoid is the posterior
estimate of electrical activity after BMA. The estimated source location when the sensor
array location is unknown is 5 mm from the peak source location as estimated using

the scannercast information.

3.5 Summary and Discussion

Here, we showed how model evidence is a useful metric to judge not only the quality

of the source reconstruction [19, 54], but also the quality of the forward model [53, 60].

Model evidence is however data-dependent and cannot be compared across datasets or

MEG systems. Here, we introduced the idea of quantifying how sensitive a given system

is to geometrical perturbation. We demonstrated how the width of these precision curves

could be used to compare different MEG systems or MEG system architectures.

We were initially surprised by our finding that our models of the SQUID system were

less tolerant to errors than the OPMs. Especially given the simulation work of [6] who
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showed that we would expect an idealized OPM system to have higher SNR (due to

scalp proximity) and therefore more sensitivity to perturbations in the lead-field. We

speculate why this might be the case in our data: firstly, in our recordings, the actual

measurement SNRs were only marginally higher for OPMs than SQUIDs- despite the

scalp proximity (Fig. 3.4). Whilst we might expect an increase in the white noise level

by a factor of two for the OPMs, the OPM signal was around 5-10 times greater. We

speculate that the limiting noise floor in the recording of the median nerve SEF is maybe

a feature of the cortical response rather than the instrumentation. Additional sources of

noise in the OPM measurements are that the OPMs are currently calibrated sequentially

(and for each recording session) which we estimate adds around 5 − 10% noise to the

true OPM gain.

We have demonstrated how the spatial parameters (position and orientation) of a sensor

array can be physically characterized based on magnetic fields derived from the human

brain. In addition to removing the dependence on a scanner-cast, we can also dispense

with traditional co-registration procedures and the associated subjective identification

of arbitrary scalp landmarks. The co-registration here is performed with respect to

inner skull anatomy (cortex and inner skull boundary) and unlike typical co-registration

procedures (but see [14]), the geometrical uncertainty is directly factored into the source

estimate giving realistic confidence bounds. For example, the experimenter needs only

to specify that the array is approximately above the right ear (with a 64 cm3 volume)

and the algorithm is able to reduce this uncertainty by 600-fold to 0.1019 cm3.

Here we used only a 3 parameter optimisation of a fixed array but the algorithm directly

generalizes to optimisation over much larger parameter spaces (for example when only

the topology of the array is known). The main consideration being the additional amount

of data required. Importantly, as OPM devices are becoming wearable, we can expect

subjects to tolerate the scanning environment for considerably longer periods, we will

likely have far more data available with which to perform such optimisations. This

would mean that the physical characterization of the sensor array and optimisation of

forward models could be performed on data orthogonal to that under-scrutiny. For

example, using stationary parcellations of resting-state data [21]. Additionally, we have

measurements of magnetic fields tangential (rather than radial) to the cortical surface

that we still have not used [58].

Although all of the data were collected from the same individual wearing either scan-

ner or head cast, there were however differences in the recording paradigms. First, the

SQUID data were collected based on right rather than left median nerve stimulation.

Secondly, the Inter stimulus interval for the multichannel OPM and SQUID measure-

ments was 0.5 s, in contrast to 1.9 s for the single channel OPM data which we know
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will influence the evoked response components profile[61]. We, therefore, cannot rule out

that there is some disparity in how well the data are modelled at the source level, which

could in turn change the steepness of the geometrical tuning curves. We also tested

the possibility that the SQUID tuning curves to position and orientation might benefit

from the 5 cm baseline axial gradiometer configuration, but found negligible theoretical

diference.

The problem of uncertain sensor placement is not specific to OPM MEG. In [62] have

shown that inaccuracies of EEG electrode coordinates form an error term in the forward

model and ultimately in the source reconstruction performance. This error arises from

the combination of both intrinsic measurement noise of the digitization device and man-

ual coregistration error when selecting fiducials on anatomical MRI volumes. OPMs

pose additional challenges over EEG in that neither orientation nor position will be

known in a more flexible setup. These problems will be yet more acute for the OPMs

because the sensitivity to modelling errors is highly dependent on SNR [6, 8].

In this study, we have approximated the OPM as a point measurement system. In

reality, the volume of the gas exposed to the laser light has maximal dimension of 3 mm.

This distance is relatively large given that the OPM sensors may now sit < 20 mm from

the brain. The addition of appropriate integration points within this volume would be

a useful avenue for further study.

We made use of the scanner-cast here in order to provide some ground-truth on sensor

position and orientation. However, some skew in the position of the cast on the head is

possible (we estimated this to be around ±3 mm, ±5 degrees). We do not know therefore

whether to attribute the final discrepancy (4 mm) between scanner-cast measurements

and algorithm estimates position to the cast or the algorithm. But we note that the

algorithm gives us posterior confidence bounds on the array location of better the 0.1019

cm3. We see one use of this algorithm is to further refine our geometrical estimates from

the scanner-cast.



Chapter 4

Enhanced data covariance

estimation

4.1 Introduction

Estimating brain activity with magneto/electroencephalography (MEG/EEG) has been

increasingly employed as a non-invasive technique for understanding the brain functions

and neural dynamics. However, one of the main open problems when dealing with

MEG/EEG data is its non-Gaussian and non-stationary structure. In this chapter,

based on Multiple Kernel Learning (MKL), we combine a set of mapping functions

equipped with distinct bandwidth sizes to encode different notions of similarity, intending

to extract more accurately the predominant complex dynamics hidden in MEG/EEG

sensors. To highlight the prominent data relationships, the MKL methodology employs

a weighted mixture of Gaussian kernels (termed WM-MK), enhancing the data-driven

covariance estimation and resulting in a more reliable source reconstruction. Obtained

results of validation on simulated and real-world MEG/EEG data demonstrate to what

extent a proper kernel combination enables increasing the performance of well-known

distributed solutions to the MEG/EEG inverse problem.

4.2 Multiple Kernel Learning

Instead of linearly computing the covariances, the kernel-based estimation accounts for

the non-stationary behavior of available data, encoding the relationship between each

couple of M/EEG channels {yc,yc′} into the following kernel function [63]:

κ(yc,yc′) = 〈φ(yc), φ(yc′)〉, ∀c, c′∈Nc (4.1)

34



Enhanced data covariance estimation 35

where yc∈RNt is the time-course of c−th MEG/EEG channel and φ(·):RNt→H maps

from the original domain, RNt , into a Reproduced Kernel Hilbert Space (RKHS ), H.

Notation 〈·, ·〉 stands for the inner product.

The RKHS dimension tends to infinity (i.e., |H|→∞), so that |RNt |�|H|, φ(·) can-

not be directly calculated. Instead, we use the well-known kernel trick to compute

Eq. 4.1 through a distance-based positive definite and infinitely divisible kernel func-

tion, kc,c′=κ (d(yc,yc′)), provided a distance operator d:RNt×1×RNt×1 7→R+. Hence,

applying κ over each channel-pair produces a kernel covariance estimator K∈RNc×Nc in

the projected RKHS space. Here, the kernel functions are Gaussian:

κ(yc,yc′ , σ) = exp(−||yc − yc′ ||22/σ2) (4.2)

where ‖·‖22 is the squared L2 norm.

To capture the meaningful data relationships hidden in the input space, the bandwidth

σ∈R+ is fixed by a MKL method that linearly combines Nm pre-defined kernel functions,

each one equipped with different bandwidth, as follows:

K =
∑

m∈Nm

αmKm, (4.3)

where each term Km∈RNc×Nc is a potential non-linear kernel to be combined, being

αm∈R+ its corresponding weighting parameter.

For calculating the linear parameter combination, we follow an information-theoretic

approach based on the Kullback-Leibler (KL) divergence (noted as dKL(·, ·)) between

a mixture of kernels K and the input kernel matrix KY ∈RNc×Nc , having conic sum

constraints upon the weighting parameters [29]:

min
α1,...,αm

{dKL(N (0,K),N (0,KY ))} (4.4)

s. t. :
∑

m∈Nm

αm = 1, αm > 0.

Optimizing the constrained formulation in Eq. 4.4 enables extracting the relevance

weight (prominence) of each kernel employing conventional methods, such as the pro-

jected gradient descent [64]. As a result, the combined kernel K is obtained using

Eq. 4.3.
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4.3 Experimental Setup

To capture a broader class of data dynamics than the variability measured by a single-

kernel bandwidth, the introduced WM-MK approach uses a set of NK Gaussian kernels

with different bandwidth to feed the whole multi-kernel estimator within the expanded

variability span.

For testing, the evaluated MEG/EEG brain imaging methods are implemented on

SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Note that for validating the simulated

databases, the reconstruction is carried out using the same head model for which the

data is produced. Although the use of this procedure commits the so-called “inverse

crime”,which is a biasing effect occurring when the lead field matrix used to generate

the synthetic data is the same for estimating the reconstructed brain activity, lead-

ing to overly optimistic results [65], it still allows validating the performance of these

methods [17]. Fig. 4.1 illustrates the proposed approach.

M/EEG    Source
estimation

Cov

MKL

Figure 4.1: Benchmark of compared single kernel and multikernel data covariance
estimation for ESI.

During validation, the following datasets are tested: i) two collections differently sim-

ulated of MEG/EEG data, incorporating Gaussian and non-Gaussian noise conditions.

ii) A well-suited real MEG/EEG dataset for which the ground truth is the activity

elicited by a multi-modal study, comprising EEG and MEG data.

4.3.1 Simulated MEG/EEG data

Intending to generate realistic M/EEG data, the simulated recordings must be designed

using the minimal realistic case of brain activity simulation described in [66], holding the

following guidelines: (i) A realistic forward model, (ii) Realistic source locations, being

confined to the cortical manifold, (iii) Variable locations, different spatial extents, and

depths of the sources, (iv) The presence of independent background brain processes with

http://www.fil.ion.ucl.ac.uk/spm
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1/f (pink noise) spectra, and (vi) The presence of measurement noise at different SNR

levels. With this aim, the following two simulation benchmark datasets are employed:

SDB1 : This dataset is generated for testing the compared responses to interacting

brain activity with stationary temporal dynamics. In this case, two active sources are

modeled as a stationary band-limited linear auto-regressive process, each one randomly

allocated in one of the eight brain octants or Regions of Interest (ROIs) [66]. Besides,

500 background uncorrelated sources, created as pink noise generators, are placed at

random locations of the cortical mesh. The simulation set employs the lead-field values

precomputed for a realistic head model (termed New York Head [67]), having a detailed

segmentation of six tissue types (scalp, skull, cerebro-spinal fluid, gray matter, white

matter, and air cavities) and using an MRI resolution of 0.5 mm3. Additionally, the

number of electrodes and cortical locations are fixed to Nc=108 and Nd=2000, respec-

tively. Thus, we perform 100 runs, each one lasting Nt=10 s and sampled at 200 Hz

with a randomly selected Signal-to-Noise Ratio (SNR).

SDB2 : This dataset is designed to test the compared methods under non-stationary

brain activity and non-Gaussian noise conditions. With this purpose, a single-trial MEG

dataset is reproduced for Nc=270 sensors using the Montreal Neurological Institute

(MNI) template implemented in SPM12. The source time-courses are generated with

Nt=1 s, and sampled at 160 Hz. Further, we create the time-locked brain activity

that involves a couple of active sources by the real part of a Morlet wavelet, which is

commonly accepted in studies of evoked related potentials (ERP) [68]. In particular, the

central frequency of each wavelet is randomly sampled from a Gaussian distribution with

mean 9 Hz and standard deviation 2 Hz. Then, the simulated source activity is mapped

to MEG sensors using a tessellated surface in the gray-white matter interface, fixing

Nd=8196 vertices (number of possible source locations) with the source orientations

fixed orthogonally to the cortical surface. In this case, the lead fields are computed

employing the Single-Shell volume conductor model of SPM12. This procedure is also

conducted using non-Gaussian noise modeled with values: skewness s=0.3 and kurtosis

k=4. As a result, a number of 50 trials are generated with varying noise conditions,

adding random white noise to the data with a different SNR: {−5, 0, 5, 10, 15, 20} dB.

4.3.2 Real-world MEG/EEG data

The multi-modal human neuroimaging dataset [69], noted as RDB1 , holds EEG, MEG,

as well as functional and structural MRI data acquired from NS=16 subjects [69], and

it is intended to provide a comparison benchmark for visual stimulation. During ac-

quisition, each subject undertook multiple runs of a simple task performed on a large
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number of faces labeled as follows: Famous, Unfamiliar, and Scrambled. The MEG

data hold Nc=306 channels of the Elekta VectorView system employed to simultane-

ously collect the EEG recordings from Nc=70 electrodes (using the nose reference). Six

sessions, each one lasting approximately ten minutes, were acquired from each subject,

while they judged the type of stimulus presented (face or scrambled face), providing

nearly 300 trials in total for each one of three testing conditions. The trials, belonging

to the same condition were averaged to perform a single ERP per stimulus. The main

objective of this dataset is to analyze the related amplitude of N170 component, which

is a component of the ERP that reflects the neural processing of faces.

4.3.3 Tested source reconstruction approaches

We compare performance of the MEG/EEG brain imaging methods Loreta, Empirical

bayesian beamformer, and greedy search (LOR, EBB, and GS) regarding their ability

to accurately estimate the source location and to reconstruct the time-courses from

the simulated time-locked activity. For assessing the influence of enhanced covariance

estimation on the tested inversion methods, the following estimation approaches are

compared: i) Sample Covariance matrix computed in Eq. 2.7 (noted as COV ) as a

baseline linear estimation widely used in practice. ii) A single Gaussian kernel with a

bandwidth calculated from the median of data distances (MED-SK ), which is a nonlinear

estimate that provides a significantly larger bandwidth σ∈R+ for globally encoding

the data relationships [63]. iii) A single Gaussian kernel with a bandwidth computed

by a more elaborated estimate (using information metrics, IM-SK ), seeking for higher

separability among data groups [70]. iv) The proposed weighted mixture of Gaussian

kernels using MLK (WM-MK ).

In order to capture a broader class of MEG/EEG data dynamics than the variability

measured by a one-kernel bandwidth, the introduced WM-MK approach uses a set of

NK Gaussian kernels with different bandwidths to feed the whole multi-kernel estimator

within an expanded variability span. In this sense, we set NK=30, where the bandwidths

create a mesh ranging between 0.1σ0 and 10σ0, being σ0∈R+ a seed value calculated as

in either approach: MED-SK or IM-SK. Furthermore, the input kernel matrix needed

to learn the linear combination weights is computed as recommended in [29]:

Ky =
1

Nt
YY>.
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4.3.4 Evaluation metrics

The source reconstruction performance is assessed on the temporal and spatial domains

using the following metrics:

– ROI–localization: rs∈R[0, 1], this measure looks for the true octants, comprising

the simulated sources against their estimated values. If both octants coincide,

rs=1. Otherwise, rs=0. Consequently, the higher the rs, the better the ROI

localization.

– Spatial accuracy index : ds∈R[0, 1], it computes the Euclidean distance between the

actual simulated location and the position of the source with the highest power,

estimated as the most powerful value of the computed primary current density

matrix. Thus, the lower the ds, the better the source reconstruction.

– Temporal accuracy index : εt∈R[0, 1], computed as the average of maximum dipole

correlation over the simulated sources, it measures the shape similarity between

simulated and time-courses extracted from dipoles. The dipole correlation is esti-

mated through the maximum value of the Pearson Correlation Coefficient across

the dipoles related to each simulated source.

– Earth-movers distance: ρs∈R+, it estimates the spatial distribution of dipole-wise

power, employing the rate between the neural activity and true source power. ρs

measures the needed effort to transform the estimated power distribution into the

actual distribution by transporting the probability mass. Thus, lower ρs values

correspond to a better reconstruction.

– Kernel alignment : κs∈R [0, 1]. This empirical alignment, estimating the similarity

between two matrices, is calculated as follows:

κ(Ki,Kj) =
‖Ki,Kj‖F√

‖Ki,Ki‖F ‖Kj ,Kj‖F
(4.5)

where ‖Ki,Kj‖F is the pairwise Frobenius inner matrix product. Consequently,

the closer to one the κs value, the more alike the matched matrix kernels. There-

fore, rather than evaluating the source reconstruction, κs assesses the brain re-

sponse similarity as the averaged pairwise alignment between subjects.

During testing of source reconstruction methods, a separate performance measure is

used following the purpose of each validated dataset. Namely, in the case of SDB1 , rs

and εt are employed to estimate the actual ROI set (octants), comprising brain activity

and time-courses. For SDB2 , other measures (ds and εt) compute the actual location
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and time-course of sources. Regarding RDB1 , the ρs value measures to what extent the

estimated reconstruction is close to the available ground truth, while κs estimates the

brain activity homogeneity over the sensor and source spaces across subjects presented

with a standard stimulus. Besides, the influence of the examined covariance estimators

is appraised for all datasets.

4.4 Results

4.4.1 SDB1 benchmarking results

Table 4.1 presents the results obtained by each comparing method in terms of ROI -

localization performance rs, and averaged temporal accuracy index εt, obtained after

100 trials. Because of the imposed realistic constraints upon the source covariance

matrix, GS achieves the best source localization accuracy, outperforming EBB and LOR,

respectively. This result is expected based on previous studies [54]. Note that for rs, the

standard deviations are not provided since each estimate accounts for the percentage of

times that both octants are correctly identified across all trials. In this sense, rs does

not reflect the case where only one ROI where correctly estimated. As EBB suffers with

correlated sources, it is expected that EBB reflects lower results compared with GS.

Table 4.1: Accuracy of the ROI selection and correlation of reconstructed time-
courses computed on SDB1 . The values marked in bold are the best performance per

row. Notation Av stands for average.

ESI COV IM-SK MED-SK WM-MK Av
ROI localization index, rs

LOR 54 66 62 71.0 63.25
EBB 73 74 76 77.0 75.00
GS 85 85 87 88.0 86.25
Av 70.6 75 75 78.6

Temporal performance index, εt
LOR 53.31 ± 6.24 61.22 ± 5.31 63.65 ± 4.87 68.13 ± 4.12 61.57
EBB 84.98 ± 3.65 86.24 ± 2.95 85.37 ± 3.08 87.09 ± 2.75 85.92
GS 89.43 ± 2.78 88.63 ± 1.96 90.25 ± 2.05 92.36 ± 1.68 90.16
Av 75.9 78.7 79.7 81.7

Regarding the data covariance, the linear COV estimate provides the lowest accuracy, on

average, in comparison to the kernel-based methods. Thus, either single kernel approach

reaches a comparable source reconstruction accuracy. Nonetheless, the best accuracy

is achieved by the multi-kernel approach WM-MK over both space and time domains.

Additional evaluation is carried out to assess the robustness of WM-MK estimator under

variations of three essential parameters:
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i) Kernel bandwidth initialization. Two approaches were implemented to calculate the

seed kernel bandwidth σ0, IM-SK and MED-SK. However, the accuracy achieved by

WM-MK with either of them was similar, with ρs = 87 and εt = 91.72 ± 1.48 for

WM-MK (IM), and ρs = 89 and εt = 92.36± 1.68 for WM-MK (MED).

ii) Variability span. The achieved ROI -localization accuracy is analyzed within a couple

of test ranges, which are fixed as to capture enough information from input data, apply-

ing the seeds computed by the median and IT approaches. Fig. 4.2(a) shows that the

value NK≥30 is enough to implement the multi-kernel representation for both tested

ranges of σ: 0.1σ0–3σ0 and 0.1σ0–10σ0, yet, the expanded interval results in a better

source reconstruction accuracy.

iii) Number of combined kernels NK that indirectly adjusts the kernel size set, encoding

to a different extent the complex data relationship and thus better representing the

complexity of MEG/EEG dynamics, as seen in Fig. 4.2(b).
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Figure 4.2: 4.2(a) Influence of the number of considered Gaussian Kernels NK on
the source reconstruction for both different seed values: IM-SK and MED-SK. 4.2(b)

Estimated weights for a value fixed to NK=30. with two different variablity spans.

4.4.2 Performed source reconstruction on SDB2

Fig.4.3 shows that all compared brain imaging methods increase ds as SNR raises, re-

gardless of the tested covariance estimator or either explored measurement noise model

(Gaussian and non-Gaussian). Additionally, Fig.4.3(a) reveals that the prior simplicity

of LOR makes it the most affected by the measurement noise, while the EBB solution

provides an accuracy close to GS (see Figs. 4.3(b) and 4.3(c)), for which the accuracy ds

improves up to 5 mm compared with the LOR reconstruction. EBB achieves even lower

ds values having non-Gaussian noise (see bottom row). When comparing the covariance
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estimation approaches, COV gives the worst spatial accuracy in almost all cases, being

outperformed by IM-SK and MED-SK, which perform similarly. WM-MK provides the

best ds value, regardless of the involved method. Note that these results hold for MEG

data corrupted by Gaussian or non-Gaussian noise, though the latter caused higher

degradation.

The intuition behind the spatial accuracy index ds is the source localisation error, i.e.,

the Euclidean distance between the simulated source and estimated sources. Thus, the

lower the ds, the closest the source reconstruction with the simulated one. In this

sense, the results obtained with the simulations with Gaussian and non-Gaussian noise

suggests that the EBB WM-MK provides the best source reconstruction in a theoretical

real scenario (the 0 dB SNR) and in the worst scenario with non-Gaussian noise.
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Figure 4.3: Spatial accuracy index ds achieved by tested methods with different
covariance approaches. Top and bottom rows depict achieved results under Gaussian

and non-Gaussian noise conditions, respectively.

Furthermore, we explore the confidence interval of the covariance estimations, using the

GS solution as the one producing the best spatial reconstruction accuracy. To this end,

a paired t-test is employed, assuming as null hypothesis that there are no significant

differences between each pairwise tested estimators concerning the ds values (averaged

across 50 trials). Otherwise, the alternative hypothesis affirms that one of the mean ds

values is confidently lower. Although all kernel-based covariance estimations outperform

the linear COV method, the proposed WM-MK estimation yields the best confidence
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Table 4.2: Paired t-test comparing the tested covariance estimations with the spatial
accuracy index ds. In the t-test alternative hypothesis, the method named in the right

is assumed to have a significantly lower ds mean value.

SNR −5 0 5

h t p h t p h t p

Cov vs. IM-SK 1 4.7304 0 0 −1.629 0.1095 1 3.3441 0.0016∗
Cov vs. MED-SK 1 5.4485 0 1 −2.610 0.0120∗ 0 −0.7086 0.4819
Cov vs. WM-MK 1 3.1384 0.0029 ∗ ∗ 0 −0.161 0.8724 1 4.4935 0 ∗ ∗
IM-SK vs. MED-SK 0 0.0648 0.9486 0 −1.487 0.1433 1 −4.8435 0 ∗ ∗
IM-SK vs. WM-MK 1 −2.7642 0.0080 ∗ ∗ 0 1.857 0.0693 1 3.7174 0 ∗ ∗

MED-SK vs. 1 −3.1465 0.0028 ∗ ∗ 1 3.366 0.0015∗ 1 7.7800 0 ∗ ∗
WM-MK

Cov vs. IM-SK 0 −0.3161 0.7542 1 10.552 0 1 16.6182 0
Cov vs. MED-SK 0 −1.6015 0.1201 1 7.443 0 1 12.0668 0
Cov vs. WM-MK 1 −3.9143 0.0005 1 6.851 0 1 5.4172 0
IM-SK vs. MED-SK 1 −9.4138 0 1 −18.391 0 0 −21.3205 0
IM-SK vs. WM-MK 1 3.6292 0.0011 0 −1.137 0.2645 0 −1.1252 0.2697

MED-SK vs. 0 1.7996 0.0823 0 0.575 0.3407 0 0.9688 0.3407
WM-MK

interval, demonstrating that the null hypothesis is rejected at a significance level p=0.01

over a wide range of tested SNR levels with either noise model: Gaussian (see top row

in Tab. 4.2) or non-Gaussian (bottom row).

We also present a visual inspection of the spatial accuracy in Fig. 4.4. It displays in the

top row three views of two simulated sources of auditory and frontal cortices, adding

Gaussian noise at SNR=5 dB. Coincident with our previous results, the LOR solution

achieves the most distant and smoothed estimation from the actual simulated sources,

while EBB and GS present better results on increasing order. However, the noticeable

result here is that the kernel-based WM-MK covariance estimator increases the achieved

spatial accuracy in all cases. Additionally, all methods present a better power balance

among sources.

Analyzing the reconstruction on the temporal domain, using the COV approach all three

solutions (LOR, EBB and GS) reach similar results for εt over the examined SNR, and

the incorporation of kernel-based covariance estimators enhances the reconstruction in

all cases, i.e., the temporal correlation with the time courses are more reliable with the

Kernel approaces. Similar to the results obseved for dataset SDB1 .

As the obtained results are too similar for visual inspection, we replicate the paired

t-test in Tab. 4.3 explained above for ds, in order to assess the statistical significance

of εt results for GS (as it was the one with higher performance). However, in this case

the alternative hypothesis states that one of the compared methods mean εt value is

significantly higher. The confidence interval of the εt estimates is likewise computed as

previously, but the alternative hypothesis states that one mean value of εt in each pair-

wise comparison is significantly higher. Adding Gaussian noise (see top row), obtained
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values of interval confidence show that WM-MK achieves significant differences against

other compared methods trough the SNR range. Yet, this advantage decreases in all

methods involving kernel-based covariance estimation when considering non-Gaussian

noise.

Table 4.3: Paired t-test comparing the tested covariance estimations with GS with
the temporal accuracy index εt. In the t-test alternative hypothesis, the method named

in the right is assumed to have a significantly greater εt mean value.

SNR −5 0 5

h t p h t p h t p

COV vs.IM-SK 1 −10.0034 0 ∗ ∗ 1 −30.2897 0 ∗ ∗ 0 −1.9937 0.0518
COV vs. MED-SK 1 −15.4569 0 ∗ ∗ 1 −16.2527 0 ∗ ∗ 1 5.9091 0 ∗ ∗
COV vs. WM-MK 1 −22.3932 0 ∗ ∗ 1 −38.5848 0 ∗ ∗ 1 −20.2308 0 ∗ ∗
IM-SK vs. MED-SK 1 −4.7635 0 ∗ ∗ 1 3.9734 0.0002 ∗ ∗ 1 7.0437 0 ∗ ∗
IM-SK vs WM-MK 1 −11.4166 0 ∗ ∗ 1 −13.2751 0 ∗ ∗ 1 −16.8647 0 ∗ ∗
MED-SK vs. WM-MK 1 −2.5426 0.0142∗ 1 −14.4398 0 ∗ ∗ 1 −30.6395 0 ∗ ∗
COV vs.IM-SK 0 0.8483 0.4004 0 −0.7420 0.4617 1 −3.8453 0.0003 ∗ ∗
COV vs.MED-SK 0 −0.8382 0.4060 1 −2.3881 0.0208∗ 1 −2.8423 0.0065 ∗ ∗
Cov vs. WM-MK 0 −1.9807 0.0533 1 −4.3176 0.0001 ∗ ∗ 1 −5.7455 0 ∗ ∗
IM-SK vs. MED-SK 0 −1.5620 0.1247 0 −1.4914 0.1423 0 1.8038 0.0774
IM-SK vs WM-MK 1 −2.7328 0.0087 ∗ ∗ 1 −3.7452 0.0005 ∗ ∗ 1 −2.8924 0.0057 ∗ ∗
MED-SK vs. WM-MK 0 −0.7984 0.4285 0 −1.6892 0.0975 1 −5.5269 0 ∗ ∗

Overall, the obtained results for SDB2 coincide with the SDB1 benchmark and val-

idate our hypothesis that, despite the used inversion method, a better-explained data

covariance improves the source localization accuracy.

4.4.3 Performed RDB1 accuracy

In this case, we use the face perception dataset setting the famous faces stimulus as our

target. The source reconstruction obtained by each brain imaging method is averaged

from 140 to 180 ms after stimulus to represent the activity corresponding to the N170

peak. Accordingly, a bilateral activation of the fusiform face areas (FFA) is expected,

having dominance in the right hemisphere. As recommended in [69], for validation of

this specific task, our ground truth is extracted from a multimodal pipeline, merging

MEG and EEG data acquired for each subject (non-averaged). Achieved multimodal

source reconstruction for the first subject of the dataset, shown in the top row of Fig. 4.5,

exhibit the highest brain activity near to the bilateral fusiform areas (remarked by red

squares), confirming our assumption. The remaining rows display the achieved source

reconstructions by the considered brain imaging solutions.

Such as in the visual inspection of the simulated data scenario, GS and EBB exceed

the LOR source reconstruction. And again, the proposed WM-MK approach improves

the brain images of the three solvers with two notorious facts: (i) LOR and GS present
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Figure 4.4: Glass brain of the simulated neural activity reconstructed by the tested
methods at SNR=5 dB. Labels LRFO indicates the glass brain views (left, right,frontal

, occipital).
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Figure 4.5: Glass brains with reconstructed neural activity for the first subject of
multimodal faces database. Labels LRFO indicates the glass brain views (Left, right,

frontal, occipital). Top row is the multimodal condition taken as ground truth.
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lower smoothness with the multi-kernel approach. (ii) The incorporation of the prior

kernel information leads to diminishing the spurious activity.

4.4.4 Group Study

One of the main problems of performing group studies with MEG/EEG is the inter

subject variability [71], and we hypothesize that most of this variability is caused by the

poor accuracy achieved when using the traditional estimator of the covariance of the

data (COV ). To quantify how the proposed approach can improve results on this as-

pect, in Fig. 4.6 we matched the ground-truth (multimodal pipeline, merging MEG and

EEG data acquired for each subject) towards the best performing source reconstruction

method (i.e., GS) using the earth-movers distance achieved over each subject on the

database (the intuition is that if the multimodal source reconstruction for each subject

is close to the source reconstruction with only one modality, the ρs should be a low

value). This comparison is performed with each subject of the database, although it is

not a group comparison, the kernel approach elucidates the hidden activity that a single

modality can not see reaching lower values compared with the COV method. Once

again, all normalized ρs values confirm the findings visualized in Fig. 4.5. That is, by

including the WM-MK covariance estimator allows outperforming other one-kernel co-

variance estimates, reaching the lowest ρs values, and thus, leading to the best accuracy.

Furthermore, the obtained results of the paired t-test, shown in Table 4.4, demonstrate

that besides visually enhancing all tested brain imaging solutions, the multi-kernel strat-

egy holds the highest confidence interval of covariance estimation.

Cov IM-SK MED-SK WM-MK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subject

0

0.2

0.4

0.6

0.8

1

Av

Figure 4.6: Earth-movers distance of comparing brain activity reconstructions against
our ground-truth. The last column (Av) shows the performance metric averaged across
all subject set. Note that the lower values of ρs imply that the kernel approaches reveal
hidden dynamics in the source space that only one modality cannot observe, i.e., they

approximate the multimodal source reconstruction to the single modality results.
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Table 4.4: t-test calculated for earth movers distance

Scenario ρs
h t p

Cov–IM-SK 1 3.3974 0.0043 ∗ ∗
Cov-MED-SK 1 3.4721 0.0037 ∗ ∗
Cov-WM-MK 1 3.8929 0.0016 ∗ ∗
IM-SK–MED-SK 0 1.0347 0.3184
IM-SK–WM-MK 1 5.3365 0.0001 ∗ ∗
MED-SK–WM-MK 1 3.4802 0.0037 ∗ ∗

Finally, we complement this group analysis by assessing the covariance estimator that

enables differentiating the most the brain response homogeneity across subjects, applying

the kernel alignment metric of Fig. 4.3.4. Note that higher κ, provide better pairwise

alignment, and thus, more homogeneous brain responses across subjects (this aligment

estimate the similarity across the source reconstruction in all the subjects of the dataset).

Fig. 4.7 shows the mean and standard deviation of κ, computed in either space: sensors

(see top plot) and sources (bottom plot). As a result, WM-MK is the best-considered

covariance estimator, because it facilitates distinguishing the paradigm of famous faces as

a target stimulus, showing the highest subject responses (i.e., group responses are more

related to each other), and reducing the dispersion metric between subjects. Table 4.5

shows the corresponding t-test results computed for the κ metrics. The confidence

interval of these estimates holds true across subjects, i.e. with the κ measure we are

able to judge that the brain responses for this stimulus is in general homogeneous only

with the WM-MK approach.

Table 4.5: Results of t-test computed for the κ metrics in sensor and source spaces

Scenario κs Sensor κs Source
h t p h t p

Cov–IM-SK 1 −20.2945 0 ∗ ∗ 1 −4.0188 0.0011 ∗ ∗
Cov-MED-SK 1 21.6487 0 ∗ ∗ 1 −9.7663 0 ∗ ∗
Cov-WM-MK 1 −35.2829 0 ∗ ∗ 1 −10.2391 0 ∗ ∗
IM-SK–MED-SK 1 −2.1140 0.0356∗ 1 −2.7866 0.0138∗
IM-SK–WM-MK 1 −18.3321 0 ∗ ∗ 1 −3.7867 0.0018 ∗ ∗
MED-SK–WM-MK 1 14.0533 0 ∗ ∗ 1 −4.7868 0.0002∗
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(b) Kernel alignment in sources

Figure 4.7: The kernel alignment metric compares the response of subjects to the
visual stimulus in sensor and source spaces. Note that the kernel alignment is higher
for the kernel prior compared to the covariance prior. The values are as high as twice
in some subjects, i.e., the kernel representation is consistent with the group. The last

column (Av) shows the performance metrics averaged across all subject set.

4.5 Summary and Discussion

This chapter introduces the kernel-based estimation of MEG/EEG data covariance ma-

trix for improving the neural source reconstruction accuracy. After analysis and valida-

tion of several considered approaches to enhanced covariance computation, the following

aspects are worth mentioning:

Computation of kernel weights: The implementation of multi-kernel based estima-

tors allows exploiting non-stationary structures with high temporal and spatial complex-

ity. Here, for assessing the influence of enhanced covariance estimation on the tested

inversion methods, we compare two borderline situations: i) a single kernel function
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as the commonly employed method to assess the marginal effect of variable sets (that

is, just one weight), and ii) Multi-kernel analysis that allows exploiting more complex

interactions when having many additive kernel weights.

In the temporal domain the kernel matrix, ruled by its bandwidth, acts as a noise filter

highlighting each of the MEG/EEG dynamics and rejecting noise components. As a

result, the multi-kernel approach of enhanced covariance estimation achieves the best

temporal performance even with non-stationary brain activity under non-Gaussian noise

conditions. On spatial domain, the use of kernel-based covariance estimation enables

encoding the data relationships elicited by brain activity, appropriately dealing with

noise.

Another critical aspect of computing the kernel weights is the adopted cost function.

In particular, the use of KL divergence provides a straightforward mathematical formu-

lation when employing Gaussian kernels. Moreover, the conic constraints imposed on

the optimization problem allow associating each kernel weight with its relevance, pro-

viding more interpretable results. Further, optimization is achieved employing gradient

descendant strategies, which are easy to implement with a relatively low computational

burden.

Estimation of kernel bandwidths: The bandwidth that rules the width of Gaussian

shape is a pivotal point of research for kernel filters. Its enhanced estimation results in

an RKHS representation that highlights the leading data dynamics. Therefore, several

strategies have been proposed for setting this parameter, mostly in accordance with

the task at hand. For single kernel functions, we contrast two widely used methods of

computation: i) based on information metrics (IM-SK ), and ii) based on the median of

data distances (MED-SK ). The former one is assumed to promote the data separabil-

ity, yielding low σ values, though very small σ values make the kernel-based estimation

neglect most of the actual data relationships, and the second one with higher σ val-

ues should include more noise-induced data relationships. However, both approaches

performed similarly in both analyzed domains, meaning that either method is practical.

In the case of a mixture of Gaussian kernels, therefore, we propose to compute the

needed parameter set within an extended span, holding the bandwidth setting to enable

an adequate multi-kernel representation. The span length depends on a seed value

empirically fixed to σ0 calculated by either approach described above (see Tab. 4.1).

The obtained results confirm that the mixed strategy improves the performance of tested

brain imaging methods in both temporal and spatial domains. Particularly, Figs. 4.5

and 4.4 demonstrate that WM-MK reduces the blurred activity surrounding the active

sources, while Fig. 4.7 shows that the estimated time-courses are closer to the actual
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ones, even when dealing with non-Gaussian noise. Moreover, WM-MK significantly

improves the performance of tested brain imaging methods with real data, as shown in

Fig. 4.6. Consequently, the mesh of Gaussian kernels is an innovative approach that

relaxes the difficult task of estimating a proper kernel bandwidth and improves the

performance of the task at hand.

Accuracy of inverse problem solutions: Fig. 4.1 shows that LOR improves the

most in both analyzed domains. For instance, in space LOR enhances about 12 points

against the linear covariance when using a single kernel, and about 17 points when

using the multi-kernel approach. Similar results are observed in time. This behavior is

explained as the kernel reduces the LOR noisy and blurred source reconstruction (see

Fig. 4.4). Moreover, the accuracy of EBB and GS also rises when including non-linear

covariance estimation. Thus, either approach improves about two points with a single

kernel and about four points with multiple kernels.



Chapter 5

OPM sensor array localisation

using brain imaging based kernel

methods

5.1 Introduction

A methodology for reconstructing the true geometry of OPM sensor arrays was presented

in Chapter 3. Furthermore, a multi-kernel approach that takes into account the non-

stationary nature of MEG/EEG data for brain imaging was presented in Chapter 4. In

this chapter, we merge both strategies to create a robust methodology to improve OPM

sensor placement.

Additionally, the methodology for reconstructing the geometry of the array had two

parameters fixed, the spatial sampling and the head model, and these parameters should

be accounted for. The OPM array used in this thesis has 13 sensors to sample the

somatosensory cortex (Fig. 3.2), this fixation is set due to the limitation of the number

of OPM sensors. However, current arrays have grown up to 32 sensors [72, 73] (as shown

in Chapter 3 with the MEG system, our methodology can be implemented with more

sensors). The question that remains is, how many sensors are needed for a proper spatial

sampling in OPM arrays? Furthermore, we used the single shell model [46] to compute

the propagation model. As this parameter may be critical, in this chapter we analyse

the effect of using different head models.

Therefore, in this chapter three aspects of the methodology are discussed: the spatial

sampling of MEG/EEG and OPM arrays, the justification of the choice of the head

52
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model, and the Kernel-based OPM sensor placement. The methodology uses a multi-

kernel approach to estimate the neural source distribution on the cortical surface. the

main improvement of including non-stationary information is that the Free Energy be-

comes convex; therefore, we changed the Metropolis search for a gradient descent optimi-

sation algorithm, allowing us to find the true geometry of the array with approximately

the same error, but in much fewer iterations.

5.2 Methodology

In this chapter we merged the methodology to recover the geometry of the OPM array

with the multi-kernel approach. The full proposed methodology comprises the following

steps: i) OPM data collection. ii) Variation of the array geometry (the algorithm does

not know the true geometry). iii) Forward model computation. In this step, we score

among three different head models: single shell, MEG local spheres, and single sphere.

iv) Source estimation (with traditional EBB and with the multi-kernel approach). v)

Gradient descent with Free Energy as a cost function (repetition of steps iii to v until

convergence). Fig. 5.1 presents a schematic of the methodology used to recover the

geometry of the array.
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Figure 5.1: Methodology to recover the geometry of the OPM array with the MKL
approach. The MKL turns the Free Energy in a monotonic function of the location.

Thus, the gradient descent could be used to optimise the localisation of the array.
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5.2.1 OPMs spatial sampling

The OPM array was designed to sample the somatosensory cortex. In Chapter 3 we

show that it is possible to perform a source reconstruction with the OPM array shown

in Fig.3.2. Here, we want to probe the reasons for the improvement in orientation

(Fig. 3.5(b)) and displacement (Fig. 3.6(b)) precision when using SQUIDs over OPMs.

It is possible that although the OPMs observed a larger field change, the spatial sampling

of the array on the scalp surface was sub-optimal. We therefore repeated the simula-

tions of Fig.3.5(a) (orientation perturbation error with ideal sensors), but with different

potential OPM sensor spacings (and the same number of sensors). Fig. 5.2(a) shows this

manipulation. For each sensor array we computed the curves shown in Fig. 3.5(a) (with

no gain error added) and calculated the precision or the width of the orientation error

curve before intersection with ∆F = −3 (at which point sensor models with greater ori-

entation errors were 20 times less likely than the best model). We did this for putative

4 sensor arrays sharing the same central sensor but rotated around this central axis by

0, 10, 20 and 30 degrees in order to factor out any sampling issues due to the hexagonal

arrangement. Fig. 5.2(b) shows that the orientation precision was indeed a function of

sensor spacing with optimal spacing (for this simulated source) close to the scanner-cast

spacing. Fig. 5.2(c) shows the observed field patterns for the different sensor spacings;

it is notable that the closest spacing (1.7 cm) samples the largest field extrema yet is

sub-optimal in terms of orientation precision (Fig. 5.2(b)). At the scalp surface the

field is much less spatially diffuse requiring much higher density of scalp detectors to

effectively achieve the same spatial precision.

In order to maintain the sampling of the standard CTF system (and assuming that on

average the CTF sensors are 3 cm further from the surface of an 8 cm radius spherical

head); the OPM sensors should be a maximum of 16 mm apart whereas in our array the

spacing was ∼30 mm. However, Fig. 5.2(a) show that for this particular region of cortex

the scanner-cast sampling was close to optimal; with denser sensor spacing leading to

larger magnitude in the sampled field (Fig. 5.2(c)) but less precise orientation estimates

(Fig. 5.2(b)). That said, in future oversampling is certainly a safer option than under-

sampling (and will give rise to a sensitivity increase if nothing else) and although there

will be a concomitant increase in cross talk (around 3% for current spacing [4]), this is

deterministic and straightforward to model.
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Figure 5.2: Orientation precision for different array spacings. 5.2(a) The original
array (blue circles) with mean sensor separation of approx. 3.1 cm; a denser array with
sensors 0.5 cm closer (red triangles) and a coarser array with sensors 1 cm further apart
(diamonds, i.e. mean separation approx. 3.6 cm). 5.2(b) Orientation precision (width
of perturbation curve at F = −3 for different sensor spacings (averaged over concentric
rotations of the array of {0, 10, 20, 30} degrees). 5.2(c) Field-maps of the simulated

source on the different arrays.

5.2.2 Analysing the effect of the head model

In order to justify the choice of the head model used on previous chapters, we used dif-

ferent volume conductor models to explain the single channel OPM data as geometrical

distortion. Here, the data remain constant allowing us to directly compare models using

Free Energy; in Chapter 3 we examined changes of relative Free Energy (with different

sensors and data). In this chapter, we also show these experiments with head models

comparison, and also comparing traditional brain imaging methods and kernel functions.

As an example, we performed source reconstruction with the single channel OPM data,

and used three head models, the single sphere [59], MEG local spheres [74], and single

shell model [46], to compare them with relative Free Energy. Additionally, we compared

the traditional EBB source reconstruction (Fig. 5.3(a)) with the multi-kernel approach

(Fig. 5.3(b)).

As we compared with relative Free Energy, we set the lowest scored model to zero.
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The Single sphere model is the one with the lowest Free Energy for both simulations

(with traditional EBB and with the multi-kernel approach), followed by the MEG local-

spheres and the single Shell model. While both methods (EBB and EBB multi-kernel)

present the highest Free Energy with the single shell model, the EBB multi-kernel also

surpass the ∆F = 3, where the models are 20 times more likely. This implies that the

multi-kernel approach allows a better distinction among the evaluated head models.

Single Shell MEG Local Single Sphere
0

1

2

3

4

5

(a) EBB covariance
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Figure 5.3: Influence of the head model. We confirm that among the evaluated head
models, the single shell is the most likely. Additionally, the multi-kernel approach
presented a better differentiation among models, indicating that the single shell is at

least 20 times more likely than the next model.

5.3 Results

5.3.1 Adding sensor orientation error

We added orientation (Fig. 5.4) and position (Fig. 5.5) error to the array with Single

Spheres [59], MEG local Spheres [74], and Single Shell [46] models. Fig. 5.4 shows

how Free Energy varies as a function of added geometrical noise under different volume

conductors for the single channel OPM data. Figures 5.4(a) and 5.4(b) show absolute

Free Energy (rather than relative or normalized to maximum). Both panels show that

the peak Free Energy (or the most likely model given the data) are sensors without zero

orientation error (although the algorithm has no knowledge of true orientation) and that

the most likely head model (the one with the highest Free Energy) is the single-shell.

These results are in accordance with [75], in that the single shell model outperforms the

spherical ones. That said, we were surprised to see such a clear distinction with such a

relatively small number (13) of sensors.
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Comparing between both strategies (traditional EBB vs multi-kernel approach), the

EBB multikernel has the advantage of being more sensitive to changes in orientation

error, i.e, the model degrades more rapidly. Also, there is a clearer distinction between

the single shell model and its counter part with the multi-kernel approach. In this case,

we look at how much the sensor geometry could be degraded before the evidence for the

data degrades significantly. The better model (in this case single shell) degrades more

rapidly in the presence of geometrical error. The multikernel approach is more sensitive

with 7◦ of error, while the traditional EBB is less sensitive with 9◦. This implies that it

is easier to distinguish across different geometries with the multi-kernel approach.
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Figure 5.4: Adding sensor orientation error

5.3.2 Adding sensor position error

Fig. 5.5 show the same effects for displacements of the sensor array. The single shell

model is consistently the most likely (with both strategies, traditional and multi-kernel),

but it is notable that even the simplest volume models are sufficient to estimate the true

(based on scanner-cast) array geometry. Comparing both strategies, the multi-kernel

approach presents the same sensitivity to position error as the traditional EBB (5 mm).

However, with position error, the multi-kernel approach is more stable as the function

is monotonic (and therefore simpler to optimise).
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Figure 5.5: Adding sensor position error. All methods agree, the most likely head
model is the single shell. All the evaluated methods score the true geometry as the
most likely, and presented a sensitivity of 5 mm. The multi-kernel approach has the

advantage that it provides a monotonic function of the position error.

5.3.3 Model Optimisation

After comparing the traditional EBB and the multi-kernel approach in terms of the

sensitivity of the models to orientation and position error, it is established that both

strategies perform similarly. Both strategies can recover the true position of the array

and the sensitivity to orientation and position error is almost the same (i.e ∼ 8 ◦, and

∼ 5 mm).

The practical problem is the same as chapter 3: to demonstrate if it is possible to

locate an array with only approximated positional information based only on the field

measurements, a volume conductor model, and the cortical geometry. However, we

found the Free Energy function measured with the MKL is a monotonic function of the

position. Thus, in this chapter we will use the gradient descent optimisation process (as

an improvement of the methodology presented in chapter 3)

5.3.4 Gradient Descent

As our findings suggest that the Free Energy function computed with EBB-MKL is a

monotonic function of the position, the gradient descent could reduce the number of

iterations needed for the optimisation process convergence (compared with the tested

Metropolis search). Briefly, the gradient descent used has the Free Energy (F ) as a cost

function. The goal is:

minimise
r∈R

1− F (X) (5.1)
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where r = [x, y, z] is the set of position parameters and F (r) = F (x, y, z) is the Free

Energy obtained with the position parameters x, y, z. The following algorithm is used

to compute the position parameters:

Data: Prior Positions of r = x, y, z

Result: Final position x, y, z (r)

Initialization;

Choose 5 prior locations (seeds);

Solve the forward problem (compute L) and the inverse problem J to find F (x, y, z) in

each location;

Obtain the maximum F (x, y, z) over the priors;

Choose the prior x, y, z with the maximum F ;

for i = 1 until convergence do

x = x− θF (x,y,z)−F (x−∆x,y,z)
∆x ;

y = y − θF (x,y,z)−F (x,y−∆y,z)
∆y ;

z = z − θF (x,y,z)−F (x,y,z−∆z)
∆z ;

end

Algorithm 1: Gradient descent algorithm

Here, the numerical derivation is used to compute the gradient. The values of ∆x, ∆y,

∆z are set in 1 mm. The parameter θ is a positive stepsize parameter that is used to

ensure that the iteration makes progress towards the solution set of the corresponding

problem, here θ = 0.3.

We did the gradient descent procedure using the data from the single-channel OPM

array in two ways. Firstly, using a simple 1D search passing over the known location

of the sensor array (i.e., both x, z=0 and the optimisation is performed in the y axis).

Secondly, by assuming an initial uniform uncertainty over a 64 (4× 4× 4) cm3 volume

a-priori knowledge of sensor array location in any dimension.

5.3.5 Optimisation in one dimension

We used the gradient descent optimiser presented in the previous section. The priors

are distributed with ξ = 80 mm (i.e. ±40 mm around the true location, we did this

to test the convergence of the algorithm in the convex function of the multi-kernel

approach). The gradient descent is performed 40 times for both solvers. Fig. 5.6 shows
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the evolution of the position as the number of iterations increases. In each iteration, the

position change in the direction of the gradient; in the optimisation with the traditional

EBB, only the chains that are in the range ∼ [−8 20] mm converge (i.e the gradient

descent is not an adequate optimiser for the Free Energy computed from the traditional

EBB). Comparing the convergence of both algorithms, the EBB-MKL converges for all

the chains with a maximum of 13 iterations, even if the priors are set in the extremes

(±40 mm) the algorithm achieves its goal. When both strategies converge, the true

geometry error is of 0.34 mm.
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(a) Gradient descent with EBB-COV
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(b) Gradient descent with EBB-WMMK

Figure 5.6: 1D Optimisation. 5.6(a) shows that the gradient descent is not able to
converge with the EBB-COV algorithm in the extended search space ξ = 80 mm (i.e.
the chains that are outside of the range [−8 20] mm got stuck in several local minima).
5.6(b) The gradient descent with the multi-kernel approach reaches the true position
of the array with few iterations, it is also capable of finding the true position in a prior
space of ξ = 80 mm. The average error for the estimation of the array geometry with

all the chains for MKL approach is 0.3402 mm

5.3.6 3D Optimisation

Here, we performed the same optimisation with a prior volume of 40×40×40 mm3 with

the EBB-MKL algorithm that provided a Free Energy convex, ideal to optimise with

this procedure. Fig. 5.7 shows four views of the process. The prior cubic volume for the

central sensor in the array is presented in Fig. 5.7(a); we performed 4 simulations (for

robustness, their starting point is chosen against 5 seeds that are set in the volume for

each simulation, the starting point is represented with crosses). The gradient descent

process starts with the prior that has the highest Free Energy. As each iteration occurs

the array follows the gradient (looking for the global minima of the 1 − F (x, y, z)).

Finally, the algorithm converges in the same point for all the simulations (black point),

with an average of 37 iterations ( see Appendix B ), and the final position is 4.03 mm
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displaced from that we expected from the scanner cast (previous computations with

traditional EBB and Metropolis search had similar error of ∼ 4 mm, with ∼ 350 iteraions

to converge).
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Figure 5.7: Four views of the 3D optimisation process with the gradient descent
method. Four chains were performed in the 3D optimisation. For each simulation five
priors are set in the cube of 40×40×40 mm3 and the one with the highest Free Energy is
chosen (the starting point in each chain is represented with a cross). All the simulations
converged at the same point with 4.04 mm of error (zero is the true position given by
scanner-cast, represented here with a red dot, the black dot represents the final position
reached for all the chains). The algorithm converges in approximately 40 iterations,

compared with the ∼350 iterations that Metropolis search uses.

With the gradient descent optimisation process the BMA step is not needed, as the

estimation is performed in the point where the optimisation finished. The estimated

source has the following MNI location: [−44.78 −47.47 78.12], equal to the one computed

with the paremeters given by the scanner-cast. With the gradient descent we started

with a confident volume of 34.90 cm3 and at the end we finish with a source with zero

localisation error to the source estimate when using the scanner-cast location as ground

truth.
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5.4 Summary and Discussion

In this chapter the final methodology to find the true geometry of the OPM sensor

array was presented. Firstly, the spatial sampling and the head model parameters were

discussed. It was found that the tested array was close to the optimal spatial sampling

∼ 30 mm. However, a closer array with a mean distance of ∼ 2.6 mm could be a safer

option. Secondly, we accounted for the effect of the head model in the localisation of the

true geometry of the OPM array. We found what was expected, the single shell model

performs better than the MEG local spheres and than the single sphere. Moreover,

we found that with each head model we can find approximately the true geometry

of the array. Solving the inverse problem with the multi-kernel approach, we found

that the Free Energy is a monotonic function (easier to optimise). Finally, we tested

the methodology to reconstruct the true geometry of the OPM sensor arrays with the

EBB multi-kernel approach. With that solver, we were able to use a gradient descent

algorithm to optimise the localisation of the array with Free Energy as cost function.

With this optimisation, the 1D simulation reached the true geometry with 0.32 mm

of error (in chapter 3, the error was 0.44 mm), and the 3D simulation reach the true

geometry with 4.03 mm (in chapter 3 the error was ∼ 5 mm). Also the methodology

with the gradient descent converges in much fewer steps than the Metropolis search.

The 1D option with multi-kernel approach converges in 15 iterations, even if the prior

is set in ξ = 80 mm, while the Metropolis converges in 250 iterations, the reduction is

about 94% of the time consumption. For the 3D option, the gradient takes in average

35 iterations to converge, while the Metropolis search takes 370, this implies a time

reduction of ∼ 90% of time consumption.



Chapter 6

Conclusions

OPM sensors are rapidly decreasing in size [76] and multi-channel wearable arrays will

soon become of clinical use [4, 72, 73]. To date, we have maximized the utility of OPM-

MEG data for neural source reconstruction by minimising sensor position uncertainty

a priori using scanner-casts (see [5]). In this thesis, we presented a data-driven model

optimisation to improve the OPM co-registration with a methodology that recovers the

true sensor geometry based on the recorded MEG data and a multi-kernel approach.

This methodology reduces the dependence on rigid, time-consuming and somewhat in-

timidating 3D printed scanner-casts, and potentially gives a way to a more EEG-like

system that is flexible, comfortable, and easier to use.

The problem of uncertain sensor placement is not specific to OPM-MEG. In [62] the

authors have shown that inaccuracies of EEG electrode coordinates form an error term

in the forward model and ultimately in the source reconstruction performance. This

error arises from the combination of both intrinsic measurement noise of the digitization

device and manual co-registration error when selecting fiducials on anatomical MRI

volumes. OPMs pose additional challenges over EEG in that neither orientation nor

position will be known in a more flexible set-up. These problems will be yet more

acute for the OPMs because the sensitivity to modelling errors is highly dependent on

SNR [6, 8, 62].

We derived a framework in which we can compare measurement systems based on their

sensitivity to perturbations in sensor geometry. Based on previous SQUID-based studies

[14, 16–18, 57], we found that a model of the OPM-MEG data with the true geometry

corresponds to higher Free Energy. In this thesis, as we wish to compare between

sensor types (and the data were different precluding any direct comparison of Free

Energy values), we focused on the sensitivity of the Free Energy to perturbations in the

geometry. The rationale is that poor models will be less sensitive to geometrical noise.

63
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6.1 Data-driven model optimisation to improve OPM co-

registration

In Chapter 3 an optimisation process necessary to find the OPM sensor array was pre-

sented. We found that the Free Energy is a useful metric to judge not only the source

reconstruction [19, 60], but also the quality of the forward model. With the Free Energy

we were able to score among models, and with a data-driven optimisation find the true

geometry of the array.

An important use of this method will be to refine the models of the OPM sensors

themselves. For example, the single channel OPM measurements were considerably

more sensitive to orientation error than their multi-channel counterparts (Fig. 3.5(b)).

We would expect that our models of the multi-channel array improve (by accounting for

cross-talk, gain inconsistencies, etc.), so we will observe a tightening of these precision

curves. At the moment we can think of two possible reasons why the models of multi-

channel data are suboptimal (Fig. 3.5(b)). First, the multichannel system will suffer from

cross talk which we estimate to be around 3 % [4]. Second, we made the assumption

that the sensor noise covariance matrix QΞ is a scaled identity matrix (i.e. same noise

in all the sensors). For the single (repeated) sensor measurements it is reasonable to

assume so, but we estimated the white noise floor (rms fT/
√
Hz) across the multi-

channel array varied by around 16%. Third, the OPM measurements took place within

the shielded room using an on-board nulling coil to minimize the static field on the

sensors; each nulling was followed with a calibration based on the delivery of a pulse of

known magnitude through these coils. However, there was no active compensation to

minimize the influence of slowly changing magnetic fields during recordings. These fields

(of the order of 2 nT peak-to-peak inside the Nottingham University shielded room) give

rise to gain changes of the order of 2% [4], which have not been accounted for in this

study.

For the simulations, we have assumed that both SQUID and OPM systems had com-

parable intrinsic noise levels. This was initially a simplification such that system per-

formance could be compared based on geometry alone. We should note that the most

recent generation of OPM technology (QuSPin Gen2) has a noise floor or ∼7-10fT/rt

Hz, comparable to many existing SQUID systems.

With the methodology presented in Chapter 3, we were able to find the geometry of the

array with ∼ 5 mm of error. The methodology used a Metropolis search to find the true

geometry. Furthermore, the Metropolis algorithm is able to converge even if the cost

function has local maxima. This is possible because the algorithm sometimes rejects

with certain probability the new position parameters that increase the Free Energy.
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Allowing such transitions enables the algorithm to escape from local maxima. However,

the Metropolis algorithm is slow to converge. The algorithm needs (for the 3D case)

∼ 370 iterations. In Chapter 5 we found that the Free energy obtained with the multi-

kernel approach is a monotonic and convex function in the prior search space (therefore,

easier to optimise).

6.2 Enhanced data covariance estimation:

We introduced a multi-kernel based approach that enhanced the estimation of MEG/EEG

data covariance with the purpose of raising the accuracy provided by any brain imag-

ing solver. For encoding different data relationships from measured brain activity, the

enhancing method relies on two key contributions: i) Input signal decomposition into

a mixture of Gaussian functions with weights computed through the KL divergence be-

tween the kernel and input matrices. To have an adequate multi-kernel representation,

we proposed to compute the needed set of kernel bandwidths within an expanded span

to encode the wide variability of non-stationary and non-Gaussian input data in tem-

poral and spatial domains. ii) The use of KL divergence allows associating each kernel

weight to its relevance, promoting interpretable results and low computational burden.

The implementation of multi-kernel based estimators allows exploiting nonlinear struc-

tures with high temporal and spatial complexity. Here, for assessing the influence of

enhanced covariance estimation on the tested inversion methods, we compare two bor-

derline situations: i) a single kernel function as the commonly employed method to assess

the marginal effect of variable sets, and ii) Multi-kernel analysis that allows exploiting

more complex interactions when having many additive kernel weights.

In the temporal domain the kernel matrix, ruled by its bandwidth, acts as a noise

filter highlighting each of the M/EEG dynamics and rejecting noise components. As a

result, the multi-kernel approach of enhanced covariance estimation achieves the best

temporal performance even with non-stationary brain activity under non-Gaussian noise

conditions. On spatial domain, the use of kernel-based covariance estimation enables

encoding the data relationships elicited by brain activity, appropriately dealing with

noise.

Validation of WM-MK was carried out on non-stationary brain activity (simulated and

real-world MEG/EEG data) for evaluating the influence of enhancing the covariance

estimation. As a result, the accuracy of the source estimation raises in both analyzed

domains, showing that the implementation of multi-kernel based estimators allows ex-

ploiting nonlinear structures with high temporal and spatial complexity.
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6.3 OPM sensor array localisation using brain imaging

based kernel methods

The use of gradient descent optimisation algorithm for localising the OPM sensor array

(presented in Chapter 5), improved the methodology proposed in Chapter 3; but this

was possible only because the Free Energy obtained with the multi-kernel approach was

a monotonical function in the prior search space. Thus, the optimisation was able to

converge with 4.02 mm of error, and with ∼ 90% less iterations (compared with the

Metropolis search). It must be remarked that it was not possible to guarantee that the

positions given by the scanner-cast is 100% accurate. Finally, the source estimate gives

the same estimation as the scanner-cast.

One issue, which remains to be tested is how well the estimate of array position will

generalise across scalp surface. In may well be that the method is challenged in regions

where the forward model is poorly specified (e.g., frontal lobes) or where the generative

model is complicated (e.g., the cerebellum)

The experiments performed with OPMs are growing fast. In this thesis we performed

a medial nerve stimulation to recover the motor cortex. In [4], the data acquisition

was performed while the subject had free movement (over a limited space). The results

showed that with the obtained OPM data, it was possible to perform source reconstruc-

tion and such modality allowed more movement that EEG (which fails due to muscle

artifacts). In [72], the authors performed the first study of human cognition with OPMs.

They demonstrated that a wearable OPM system can be used to perform a clinically

important language lateralisation paradigm in healthy adults. The results were consis-

tent with fMRI. Importantly, as the OPM array is wearable and motion robust, it could

have direct and practical implications in clinical pediatric assessment or in developmen-

tal neuroscience. As the system can be used in young children, it can be used to design

studies of neurodevelopment language and general cognition or presurgical assessment

of 2-8 year old children. Exploiting the movement property, in [77] the authors designed

an experiment that involved virtual reality. The authors were able to measure both

modulation of alpha-band oscillation by opening and closing the eyes, and the visual

evoked field generated by displaying a reversing checkerboard in VR. Moreover, in a VR

experiment in which a participant had to look around a wall to view a visual stimulus,

the authors showed that MEG signals can be measured and that they map to expected

areas of primary visual cortex. Finally, being closer to the head, it is possible to recover

deeper structures. In [78], the authors demonstrated that OPMs can be used to study

the electrophysiology of the human cerebellum.
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6.4 Future work

1. Integration points: In this study we have approximated the OPM as a point

measurement system. In reality, the volume of the gas exposed to the laser light

has maximal dimension of 3mm. This distance is relatively large given that the

OPM sensors may now sit ≤ 20 mm from the brain. The addition of appropriate

integration points within this volume would be a useful avenue for further study.

2. Design of new kernels for brain imaging: We plan to include both pivotal

procedures of brain activity analysis (i.e., weight estimation and source reconstruc-

tion) into a single Bayesian formulation, attempting to achieve a better coupling

between the sensor and source spaces. Besides, the design of kernels, different from

Gaussian functions, is to be considered to highlight more complex data relation-

ships.

3. Use of an improved head model for OPMs: The increased spatial sampling

and sensitivity offered by OPMs will certainly demand more complex head-models.

In [6], the authors already showed that small lead-field errors can forsake all poten-

tial advantages of OPMs over SQUIDs. Here we have shown that the Nolte single

shell model consistently performed better than single and multi- sphere counter-

parts. As the technology matures, with larger sensor arrays and longer recording

times, we will expect to move from the single shell model to more realistically mod-

els as the shaped three shell model [75], or the inclusion of more complex models

with cerebrospinal fluid, skull spongiosa, and conductivity anisotropy [79].



Appendix A

Optimisation

A.1 Metropolis search

Based on the Metropolis algorithm, we adapted the approach presented in [14] to esti-

mate the true location of the sensor array with respect to the brain:

1. Select a random sample from the prior over possible sensor geometries h0 ∼ p(h)

and solve the EBB reconstruction for that geometry. This returns a Free energy

value F (h0).

2. Use a Gaussian distribution to obtain the new array position near to the position

computed on the previous step hk−1 : h
′ ∼ N (h

′
;hk−1, σ

2I) .

3. Perform EBB reconstruction on the new location of the array and calculate the

ratio r with the new Free energy values:

r=
p(Y|h′)ph′

p(Y|hk−1)p(hk−1)
=exp(F (h

′
)− F (hk−1))

p(h
′
)

p(hk−1)
(A.1)

The ratio is given by the comparison of log evidence between the previous recon-

struction p(Y|hk−1), and the proposed one p(Y |h′), where each is also weighted

by the prior. A ratio larger than one means that the proposed geometry h
′

has

more model evidence than the previous one.

4. Take a decision : if r > 1 (the new step has higher Free energy), then the new

value is higher and accepted hk = h
′
; if r < 1.

5. The new value is compared with a random sample obtained from the uniform

distribution: β ∼ U(0, 1). If β < r the parameters are accepted, or rejected
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otherwise: hk = hk−1. Allowing such transitions enables the algorithm to escape

from local maxima.

6. Return to the second step and repeat until convergence. After an initial burn-in

period (first half of data samples), the samples together comprise an approximate

posterior distribution over the array locations.

A.2 Bayesian Model Averaging

The following BMA algorithm is used to provide an estimate of the posterior mean Ĵ .

It was set-up for k = 10, 000 iterations.

1. For the current iteration k, pick a random array geometry from the posterior

distribution hk ∼ p(h|Y)

2. For the selected array geometry hk (i.e., its corresponding lead-field matrix), com-

pute the estimated values of the neural activity Jt, and its posterior covariance

Σk.

3. Obtain a normal random variable with mean Ĵk and covariance (ΣJ)k : Ĵt ∼
N (Ĵt|Ĵk, (ΣJ)k) and save.

4. Update k and go back to step 1. until k = 10000.

5. Obtain the mean of the random variables Ĵ = ΣĴk/k



Appendix B

Model optimisation (Metropolis

search with MKL)

After comparing the traditional EBB and the multi-kernel approach for computing the

sensitivity of the models to orientation and position error, it is established that both

strategies perform similarly. Both strategies can recover the true position of the array

and the sensitivity to orientation and position error is almost the same (i.e ∼ 8 ◦, and

∼ 5 mm).

The practical problem is the same as chapter 3: demonstrate if it is possible to locate

an array with only approximate positional information based only on the field mea-

surements, a volume conductor model and the cortical geometry. We do this using the

data from the single-channel OPM array in two ways. Firstly, using a simple 1D search

passing over the known location of the sensor array. Secondly, by assuming an initial

uniform uncertainty over a 64 (4× 4× 4) cm3 volume a-priori knowledge of sensor array

location in any dimension. The main difference here, is that the multi-kernel approach

is used as the solver to recover the true geometry of the sensor array.

B.0.1 Optimisation in one dimension

We used the Metropolis search algorithm detailed in the appendix. The priors are dis-

tributed with σ = 40 mm (i.e. 20 mm around the true location). The Metropolis search

is performed with 600 iterations per chain in four chains. Fig. B.1(a) shows the change in

the position error as the number of iterations increases. With each iteration, the distance

error diminishes, until reaching a ∼0 mm error with 300 iterations. Compared with the

traditional approach shown in chapter 3, the convergence delayed ∼50 iterations. How-

ever, similar to the traditional approach, the algorithm converges. The initial value is
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represented with a green point. Through each iteration of the Metropolis search (black

points) the position changes (via model comparison Fig. B.1(b)) until convergence (blue

point). The error drops with each iteration (Fig. B.1(a)) and after 300 iterations the

algorithm oscillates near to the true position. After convergence, the estimated position

was 0.38 mm (the traditional EBB was 0.44 mm). The uncertainty (95 percentile) on

this geometry estimate is also less than 1 mm. Fig B.1(b) shows, how in each iteration

the Free Energy increases until convergence. Fig B.1(c) shows the path followed by the

algorithm. Gray dots shows how the algorithm position follows the path of highest Free

Energy until reaching an approximate true geometry that is in error of less than 1 mm.
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Figure B.1: 2D Optimisation. B.1(a) shows that with each iteration of the Metropolis
algorithm the error diminishes, while in B.1(a) the Free Energy increases with each
iteration until convergence. B.1(c) shows the movement of the sensor array across an
arch in the XY axis. Initially the error is about 18 mm and finally the algorithm

converges. The estimation of the geometry of the array is in error of 0.38 mm.
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B.0.2 3D Optimisation

As we indicated in chapter 3, the optimisation in one dimension provides an illustration

of the Metropolis process, but it is not practically useful as positional uncertainty is not

constrained to lie in one dimension. Here, we performed the same optimisation with

a prior volume of 4 × 4 × 4 cm3. Fig. B.2 shows four views of the process. The prior

cubic volume for the central sensor in the array is represented with triangles; 30 priors

are set in the volume, and the Metropolis process starts with the one with the highest

Free Energy (green point). As each iteration occurs (gray points) the array follows the

path with higher Free Energy. Finally, the algorithm converges and the final position is

3.7 mm displaced from that we expected from the scanner cast (previous computations

with traditional EBB was in error of 4 mm). The posterior confidence volume on this

location was 0.081 cm3 i.e. near to 600-fold reduction on prior volume.
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Figure B.2: Four views of the 3D optimisation process. In this simulation the largest
movement is in the Y axis. First, the priors are set in a cubic distribution of 40 mm with
the centre of the array being the true position. One of the priors is chosen, and then the
Metropolis process starts. With each iteration the array is moved until convergence.

Here, the final position have an error of 3.7 mm.
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Estimating the source level activity based on our prior knowledge of sensor position

(4 × 4 × 4 cm3) gives a distribution of (of peak locations) than can be described by

the 95% confidence volume. With the BMA step the model optimisation reduces the

confidence volume on peak location from 34.90 cm3 to 0.051 cm3. The centre of the

optimized confidence volume is 4.2 mm from the source estimate when using the scanner-

cast location as ground truth.



Appendix C

Time Analysis

C.1 Single Kernel vs multi-kernel prior

As the computation of the multiple kernel implies more calculations, we performed

an analysis of time consumption comparing EBB results with a single kernel for the

covariance matrix, with the weighted multiple kernel. One hundred simulations were

performed with the covariance matrix and the weighted multiple kernel. Fig. C.1 shows

that normalizing the time consumption against the Cov method (100 %) the WM-MK

increases the time consumption on about 30.44 %. However, that is not an issue because

in practice they are performed off-line. In terms of time difference, the single kernel last

for 5.78 s, and the multiple kernel for 7.54 s.
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Figure C.1: Comparison of time consumption between single kernel and multiple
weighted kernels. It increases in average 1.8 s
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C.2 Metropolis search vs gradient descent

We found that the Free Energy function computed for the EBB-MKL is a monotonic

function, and therefore easier to optimise. In this section, we compare the time cost

needed to compute the geometry of the array with the Metropolis search and the gradient

descent. Figure C.2 shows the time consumption for the optimisation process in 1D

and 3D search for both Metropolis and gradient descent optimisers (for Chapter 3 and

chapter 5). We found a reduction of ∼ 90% in the iterations needed for optimise the

geometry of the array for the 1D and 3D problems.

 
0

50

100

150

200

250

300

350

400

It
e
ra

ti
o
n
s

1D Metropolis

1D-MKL-Grad

3D Metropolis

3D MKL-Grad

Figure C.2: Comparison of time consumption for the 1D and 3D optimisation with
Metropolis search and gradient descent. While in the 1D optimisation, the Metropolis
last for 250 iterations, the gradient descent for the MKL solution takes 12 iterations to
converge (i.e. 94.8% fewer iterations). For the 3D optimisation, the Metropolis search

last for 370 iterations, while the gradient takes 37, i.e. ∼ 90% fewer iterations.
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[15] L. Troebinger, JD. López, A. Lutti, D. Bradbury, S. Bestmann, and GR. Barnes.

High precision anatomy for meg. Neuroimage, 86:583–901, 2014.
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[34] S. Noachtar and S. Rémi. The role of eeg in epilepsy: a critical review. Epilepsy

Behavior, 15:22–33, 2009.

[35] E. Basar and B. Güntekin. A review of brain oscillations in cognitive disorders and

the role of neurotransmitters. Brain research, 1235:172–193, 2008.

[36] E. Niedermeyer and L. Silva. Electroencephalography: Basic principles, clinicl ap-

plications, and related fields. Lippincot Williams & Wilkins, 2005.

[37] V Sakkalis. Review of advanced techniques for the estimation of brain connectivity

measured with eeg/meg. Computers in Biology and Medicine, 41:1110–1117, 2011.

[38] MP. Ledbetter, IM. Savukov, VM. Acosta, D. Budker, and MV. Romalis. Spin-

exchange-relaxation-free magnetometry with cs vapor. Physical Review A, 77, 2008.

[39] Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji. Detection of very weak mag-

netic fields (10−9 gauss) by 87rb zero-field level crossing resonances. Physics Letters

A, 28:638–639, 1969.

[40] W. Happer and H. Tang. Spin-exchange shift and narrowing of magnetic resonance

lines in optically pumped alkali vapors. Phys. Rev. Lett, 31, 1973.

[41] R. Benumof. Optical pumping theory and experiments. Am. J. Phys., 33:151–165,

1965.

[42] C. Cohen-Tannoudji, J. DuPont-Roc, S. Haroche, and F. Laloë. Detection of the
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[57] C. Stevenson, M. Brookes, JD. López, L. Troebinger, J. Mattout, W. Penny, P. Mor-

ris, A. Hillebrand, R. Henson, and G. Barnes. Does function fit structure? a

ground truth for non-invasive neuroimaging. Neuroimage, 94:8995, 2014. doi:

10.1016/j.neuroimage.2014.02.033.

[58] J. Iivanainen, M. Stenroos, and L. Parkkonen. Measuring meg closer to the brain:

Performance of on-scalp sensor arrays. Neuroimage, 147:542–553, 2017.
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