Generating two-spin squeezed states of separated Bose-Einstein condensates
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We theoretically study a scheme for generating squeezing between two Bose-Einstein condensates
(BECs). The scheme involves placing two BECs in the path of a Mach-Zehnder interferometer, where
the coherent light interacts with the atoms due to the ac Stark shift. The most relevant regime for
producing squeezing is in the short time regime, defined as when the interaction time scales as the
inverse square root of the atom number. In this regime it is possible to construct a very simple
approximate theory for the overall effect of the scheme: amplitudes in the superposition between
the two BECs with unequal spin eigenvalues are damped. We analyze the types of correlations,
entanglement, Einstein-Podolsky-Rosen (EPR) steering, and Bell correlations that are produced
and show that the state is similar to a spin-EPR state. Using a two-pulse sequence the correlations
can be dramatically improved, where the state further approaches a spin-EPR state.

I. INTRODUCTION

Squeezed states [m@] have played a central role in the
development of quantum optics and its applications such
as quantum metrology B—Iﬂ] A squeezed state has the
property that the quantum fluctuations of an quadra-
ture observable is reduced below that of a coherent state.
According to the Heisenberg uncertainty principle, such
squeezing is then accompanied by another conjugate ob-
servable which is anti-squeezed. Squeezed states of light
have been widely studied experimentally and realized us-
ing a variety of techniques @], and numerous applica-
tions have been proposed |. Analogously to optical
squeezed states, the reduction of quantum noise has also
been investigated in other systems, notably in atomic sys-
tems. For atomic systems, the relevant degrees of free-
dom are the internal spin levels, and squeezing occurs if
the spin noise fluctuations are below that of a spin coher-
ent state M} Different types of interactions produce
different types of squeezed states, the most well-known
being the one-axis and two-axis countertwisting Hamil-
tonians ] Various theoretical schemes for generating
squeezing in atomic ensembles have been proposed
@], and experimental squeezing has been demonstrated
on atomic ensembles and Bose-Einstein condensates

l4g).

Squeezed states involving two or more physical sys-
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tems have a particular importance in a quantum informa-
tion contexts. Two-mode squeezed states produce EPR
(Einstein-Podolsky-Rosen) correlated states, which show
correlations in position variables and anti-correlations in
momentum variables. Such states are central in quantum
information applications IE, @], in particular continu-
ous variable quantum computing Iﬂ], since they are an
entangled states which can be viewed as a resource. In
an atomic context, the first demonstrations by Polzik and
co-workers showed that two-mode squeezed states could
be produced [|4_1|, @, @], which was followed by vari-
ous other techniques. For BECs, currently there have
not been any demonstrations showing entanglement be-
tween two completely separated atomic clouds, but en-
tanglement has been detected between different spatial
regions of the same BEC [@—@] Numerous theoretical
proposals have been investigated for generating entangle-
ment between BECs ﬁ@] The two-spin generalization
of the one-axis and two-axis squeezed states have been
theoretically investigated, which shows the nature of the
quantum state that is generated by the one-axis two-spin
(1A2S ,65) and two-axis two-spin (2A2S) Hamilto-
nians |66]. Such entangled spin states are anticipated to
play a central role in quantum information applications

167, 65].

In this paper, we study an experimental scheme that
can be used to generate entanglement between two BECs.
In the scheme, coherent light is arranged in a Mach-
Zehnder interferometer and two BECs are placed in the
two arms of the interferometer (Fig. [Il). The light inter-
acts via an ac Stark shift interaction, and after a measure-
ment of the optical state, the two BECs are projected into
an entangled state. The scheme has similarities with the
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FIG. 1: Experimental scheme for two-spin squeezed genera-
tion between two BECs. Coherent light is generated in mode
b and enters a beam splitter to emerge as two modes aj,
j € {1,2}. Each mode interacts with a BEC due to the ac
Stark shift. Each BEC has two internal states, labeled as
gj,e;j. The modes are then interfered again to produce two
new modes c, d, and detected using photodetectors measuring
in the Fock basis with outcomes n. and ng4 respectively.

scheme introduced in Refs. [52,162,69] but has a different
geometry, since light passes sequentially through the two
atomic clouds in these works. The Mach-Zehnder config-
uration is more convenient for entangling well-separated
BECs. Furthermore, in the context of atomic ensembles
@, @], the theory generally works within a Holstein-
Primakoff approximation, such that the spins are consid-
ered to be approximate quadrature operators. Here we
use exact techniques which allow us to handle any num-
ber of atoms and any interaction time. In contrast to
the approaches of Refs. @, @, @], where it was showed
that a two-mode squeezed state is generated, using our
methods we clarify several key differences. For example,
the variance of particular pairs of variables saturate at
a finite value, or even increase due to the interactions.
The detailed understanding of the protocol allows for us
to easily propose a scheme to overcome this, improving
the level of squeezing considerably.

This paper is structured as follows. We first derive a
theory to describe the entanglement protocol, where we
obtain the final wavefunction after the scheme (Sec. [II).
We find that in the short-time regime there is a conve-
nient approximate method to describe the effect of the
light-matter interaction, which gives an effective wave-
function that accurately captures the nature of the state
(Sec. [[I). After briefly describing some elementary prop-
erties of the approximate state (Sec. L)), we go on to
numerically study the exact state, examining key prop-
erties such as the variances, expectation values, entan-
glement, probability distributions, correlation based en-
tanglement and EPR steering detection, and Bell corre-
lations (Sec. [[V]). Finally, we show that there is a way to
further improve the squeezing properties of the state by
repeating the protocol twice (Sec. [V)). We finally sum-
marize our finding and conclude (Sec. [VII).

II. EXPERIMENTAL SCHEME
A. Physical system and Hamiltonian

We first describe the physical system that we consider
in this paper. Figure [1l shows the overall scheme. We
consider two BECs that are each in well-separated traps.
These could be for example two BECs in separate mag-
netic traps on an atom chip, or two BECs in optical dipole
traps @—Iﬁ] Each of the BECs have two internal energy
states that can be populated, for which the bosonic anni-
hilation operators are g;, e;, where j € {1,2} labels the
two BECs. The two internal states could be for example
the ' = 1,mp = —1 and F' = 2,mp = 1 clock states
in the case of 8Rb IE, |_4_A|, @, @] It is convenient to
construct Schwinger boson operators

S5 = elg; + gle,
S) = —iejg; +igje;,
S7 =ele; —glg;. (1)

which have commutation relations [S?,S7] = 2ie;;,S*
where €;;;, is the completely antisymmetric Levi-Civita
tensor. We consider here that the total number of atoms
is fixed for each BEC, such that

glg; +ele; = N. (2)

The states of a BEC can be written in terms of Fock
states, defined as

(e} (1)

Ik = KN — k).

|vac), (3)

where |vac) is the state with no atoms or photons. We
also use the notation for spin coherent states

1 0 o N\
|0, 0)) = i (eT c0s 5 + gl sin 58“") [vac),  (4)
where 0 < 0 < 7w, — < ¢ < m are spherical angles on
the Bloch sphere.

Two optical modes interact with the each of the BECs,
in a Mach-Zehnder configuration as shown in Fig. [Il The
bosonic annihiliation operator for the mode that the laser
initially illuminates is called b. This mode enters a beam
splitter, which transforms the mode according to

1
b= ﬁ(al + GQ) (5)
where the bosonic annihilation operators for each mode
passing through BEC 1 and 2 are ap,as respectively.
Defining Stokes operators for the optical modes in the
dual-rail encoding, we have

J? = aIal - CL;CLQ
n=ala, + alay (6)



where n is the number operator for photons. After pass-
ing through the two BECs, the photons are incident upon
a beam splitter which transforms the modes according to

a] = (c+4d)

(c —d). (7)

Sl Sl

The states of the light are written in terms of Fock states
bhm

i)y = (")

vn!

Coherent states are implied from the use of a single Greek
symbol

[vac). (8)

o), = e*|°‘|2/260‘bT|vac>. 9)

The atoms within the BECs interact with the light due
to an ac Stark shift interaction |74-78]

H:?(Sf—SQZ)JZ. (10)
The spin-dependence of the interaction occurs because
the selection rules of the transition with respect to the
hyperfine ground states only produce an ac Stark shift
for one of the states gj,e; [77). We will work in the
rotating frame of the spins such that any rotation caused
by diagonal terms in the Hamiltonian are accounted for.
After the interaction with the light, the two modes are
interfered and the number of photons in the modes ¢, d
are measured. We will show in the following section that

this results in an entangled state between the BECs.

B. Dynamics

We now derive the state that is produced by the se-
quence shown in Fig. [[l In our derivation we consider a
general initial state of the BECs, given by

N
Wo) = Y Wpyp, k) |ke). (11)
k1,k2=0

A suitable choice of initial state are two BECs that are
polarized in the S*-direction,

¥ = |5.9)), [5:9)), 12

which can be expanded in the Fock basis such that

O o

Throughout this paper, we will generally consider the
initial state (I2) unless otherwise stated.

The laser illuminates the mode b in a coherent state,
such that the initial state of photons is given by |a),.
After the first beam splitter, the initial state is thus

The light now interacts with the BECs. We assume
that the light interacts for a time ¢ with the BECs, such
that the state after it passes the BECs becomes

(7)) =

= exp{

[¥(0)) = [Wo)

e 1My (0)) (15)

<%—safpw@>

T
2

where we have defined the dimensionless time 7 = Qt.
Substituting ([[4) with () gives

N
|¢(T)> = Z \I]klkz |k1> |k2>

k1,ko=0
—iT(k}1—]€2)aIa1 i> iT(k}l—kg)a;llg i>
X e e .
V2/a, V2/ 4,
(16)
Using the fact that ei7'%|a) = |¢?a) we may evaluate
the above to the form
N
2
() =e1*F/2 N Wy, [ha) (ko)
k1,ka=0
le% . .
X exp | — (e_”(’“_k?)aT —i—e”(kl_]”)(ﬂ)} vac).
p [\/5 1 2 | >
(17)

The next step is to apply the beam splitter operation
according to (). The state then becomes

N
|¢(T)> = Z \I]klkz |k1> |k2>

k1 ,ka=0
X |acos (k1 — ko) 7). |—iasin (ky — k2) T), - (18)

The last step is to detect the number of photons in each
of the modes ¢, d. This is equivalent to the projection of
the state (I8) using the measurement operator

Hpony = [ne)na)(nel(nal, (19)

such that the final unnormalized state up to an irrelevant
global phase is

Bnena (1)) = oy [0(7)) (20)
= Inc) Ina)
N
X Z Wi ks Cnong (k1 — k2)7] K1) [k2) (21)
k1, ka=0



where we defined the Fock state coefficients of a coher-
ent state split with amplitudes cosx and siny as (see
Appendix [A])

anc+nd€7\a|2/2
\/nc!nd!

which is normalized according to

Crena(X) cos™ xsin"x  (22)

o0

Z |Chna (X)|2 =1 (23)

Ne,nqg=0

The form (2I)) shows that the effect of the optical scheme
is extremely simple — the initial wavefunction is modu-
lated by an extra factor of C,, n,[(k1 — k2)7]. We shall
explore the effect of this more in the next section.

The normalized state after measuring photons is given

by

’Jncnd (T)>

Preng (T) .

Yneng (7)) (24)

Here the normalization factor is equal to the photon de-
tection probability

Prena(7) = (Bnena(7)|Fnena (7))

N

= Z |\Ijk1k20ncnd[(k1_k2)7-]|2' (25)
k1,k2=0

For the initial state (I3]), after some algebra we can elim-
inate one of the summations to yield the equivalent ex-
pression

2N
prons®) = g 22 (% )ICnund (¥ I 29

From (23), one can see that the photon detection proba-
bility is normalized

S Pans(r) = L. (27)

Ne,nqg=0

The state ([24)) is the desired entangled state of the two
BECs. We analyze this state and the photon probability
distribution (26)) in the following sections.

III. APPROXIMATE STATE FOR SHORT
TIMES

A. Analytic approximation of the state

We first consider short interaction times of the order
7 < 1/v/N between the light and the BECs. This regime
will turn out to be the most relevant in terms of gen-
erating BEC-BEC entanglement, and it is also possible
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FIG. 2: The function C,.n,(x) defined in (22)) for (a) x = 0.1;
(b) x =7/4; (c) x =7/2; (d) x = 57 /4. All plots use o = 5.
The dashed line indicates the line n.4+nq = |o¢|27 the dominant
region where the coefficients have the largest magnitude.

to make analytic approximations of the state. This will
elucidate exactly what the nature of the entanglement
generated between the BECs is.

First consider the dominant terms in (2I)) with the
choice of initial state (I3]) with N > 1. Due to the bino-
mial functions, only the terms in the range N/2 — VN <
ki, ks S N/2 4 V/N have a significant coeflicient. Thus
for interaction times 7 < 1/4/N, the argument of the
Cp.n, function, ie. (k1 — ko)7, are all small since
|k1 — ko] ~ V/N. When x < 1 in ([22), all terms ex-
cept for ng = 0 are small, due to the presence of the
small factor siny < 1. Thus in the short time regime
7 < 1/v/N, we may approximate

2
ancei‘a‘ /2

Oﬂcnd [(kl — kg)’r] ~ 6714:0 cos™e (kl — kz)T.

(28)

ne!

This may be directly observed in Fig. 2l where we plot
the function C,,_,,—0(x) for a variety of different y. For
x < 1 (see Fig. P(a)) we observe that the only significant
amplitudes occur for ng = 0.

Now let us also consider that the BECs are illuminated
by bright coherent light |a| > 1. According to the dis-
tribution (28]), a typical measurement outcome will be
ne ~ la|?,nqg = 0. We may then approximate the cosine
factor in (28) by a Gaussian distribution

cos™ (ky — ko)T ~ e [(k1—h2)7]?, (29)



We thus obtain an approximate expression for (21)

N
’ Z}zpwx(T)> o~ Z \Ijklhefnc‘lj(mszf/? |k1> |k2>
k1,k2=0

(30)

For the case that the initial state are polarized spin co-
herent states ([I3]), the binomial factors in (ZI) can be
also approximated by a Gaussian for N > 1

1 (N 2 s ny
2—N(k)z e w(k=3)7, (31)

Using these we obtain an approximate expression for the
wavefunction

N
1 1 N2 N2
! prrox(7)> _ Z e*ﬁ[(lﬁ*i) +(k2—5) ]
\/N k],kzzo
« et (k1—k2)?/2 k1) |ka) (32)

which is valid for N > 1, |7| < 1/VN, |a| > 1. Here,
N is a normalization factor and can be approximated by
(see Appendix [B)

N 23(0, =N )y (0, e~ 11/ Hne))
+192(0, eV )5 (0, TN - (33)

where 1,,(z, q) is the Jacobi theta function.

The approximate wavefunction ([B2) clarifies the na-
ture of the wavefunction created by the scheme shown in
Sec. [ The first exponential term in [B2) is a symmet-
ric uncorrelated Gaussian in the Fock state distributions
k1, ko. Meanwhile, the second exponential produces cor-
relations in k1, ko, such that the coefficients of the states
with k1 = ko are most dominant in the sum.

In order to produce sharp correlations, (82]) suggests
that interaction times such that

1 1

T > ~ — 34
T~ Tal (34)

should be chosen. This can be chosen consistent with the
regime 7 < 1/V N as long as

N < |af?, (35)

hence it is favorable to have bright coherent light for
strong squeezing.

B. Analytic approximation of the photon
probability

We can similarly obtain an approximate expression for
the photon probability for 7 < 1/v/N and N > 1. Start-
ing with (26) and we use the expression (28] and apply
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FIG. 3: Photon probability distribution. (a) Approximate
probability distribution (BG) for the interaction times as
marked. (b)(c)(d) Exact probability distribution (28] for (b)
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the Gaussian approximations (29) and ([BI). We obtain
using similar methods to that in Appendix

|a|2nce*|f¥\2

nedV N

approx
pncnd

93(0, e~ (1/N+ner™)y,
(36)

(T) X 6nd:0

which is valid for N > 1, |7| < 1/V/N, |a| > 1. Figure
Bla) shows the photon probability distribution for three
interaction times. We see that in fact there is very little
difference between the curves. The reason for this is that
the n.-dependence of the Jacobi theta function is very
weak in (B6). Assuming 7 ~ 1/v/N, when n. > N the
theta function approaches 1 and there is no n. depen-
dence. For n. < N, due to the choice of a as given in
(33), the photon probability is small and does not impact
the shape the of the distribution. We can thus further
approximate in this regime

|a|2n667\a|2

' )

7!

approx
pncnd

(1) ~ dny=0 (37)

which is simply a Poisson distribution for the c-mode.

C. Properties of the approximate state

In the limit of large n.72, the approximate state (B2)
reduces to

P 4 1/4N 2]\7 N2
s (o) DR . )

k=0



This is reminiscent of a maximally entangled spin-EPR
state |66]

N

1
wioea PILLLE (39)

except that there is a Gaussian amplitude weighting the
wavefunction such that the amplitudes are larger nearer
to the center &k = N/2. The nature of the state (39) has
been discussed in much detail elsewhere (see for example
Ref. [66]). Due to the similar form of the state, we ex-
pect that the state ([82]) will have similar properties to the
spin-EPR state. It is however useful to know what differ-
ence the Gaussian amplitude in (32]) makes to the prop-
erties of the state. Thus here we give a short summary
of the properties of the state ([B2), in particular examin-
ing the probability dsitributions, variance, and entangle-
ment. This will give better intuition for understanding
the nature of the unapproximated full wavefunction (21))
studied in the next section.

IEPR) =

1. Spin probability distribution

Let us first consider the probability distribution of
measuring the state [32)) in various bases. In addition
to the eigenstates of S as given in [3]), let us define the
eigenstates of the S*, SY operators as

S7|k)®) = (2k — N)|k)®)
SY|k) W) = (2k — N) k)W), (40)

Explicit expressions for the eigenstates are given in Ap-
pendix

The probabilities of measuring the atoms in these basis
are then given by

Poroa (bt k) = (@] (1)) @ [R)) 2, (41)

where in this case |®) = [¢/aPP**(7)). The probabilities
for oy = o9 are shown in Fig. @(a)(b)(c). We compare
the distribution to that generated by the two-axis two-
spin (2A2S) squeezed state |66]

[zazs(r)) = e SISEESTINTZ o)) 2 0)),  (42)
where we have rotated the basis such that correlations
occur in the S, variables and anti-correlations in the
SY, variables. As discussed in Ref. [66], this pro-
duces a state that is approximately a spin-EPR state
(9), for the optimal squeezing time. We calculate the
probability distributions of the measurement ([&Il), where
|D) = |hanas(T)), the results are shown in Fig. El(d)(e)(f).

First examining the probabilities in the S*-basis (Fig.
@(c)(f)), we see that strong correlations are formed
thanks to the Gaussian squeezing factor in ([32)). Only the
terms with k1 = ko have high probabilities, showing cor-
relations. The main difference to the 2A2S squeezed state

10 15 20

10/< o 15 o

FIG. 4: Probability distribution for measurements of the
state (a)(b)(c) [2PP™*(7)) given in [B2) for N = 20, n.r> =
0.23+/20 and (d)(e)(f) the 2A2S state given in @) for N = 20,
7 = 2/N. Measurements are made in the eigenstates of the
(a)(d) S%; (b)(e) SY; (c)(f) S* operators.

here is that the distribution along k1 = ko are weighted
by a Gaussian factor, such that only Fock states with
N/2— VN S ki ke SN/24 V/N have a significant prob-
ability. In contrast, the 2A2S squeezed state has a more
even amplitude distribution.

For the probabilities in the SY-basis (Fig. H(b)(e)), we
see that the main probabilities occur along k1 = N —
ks, displaying anti-correlations. The anti-correlations in
B2)) are considerably broader along the anti-diagonal in
comparison to the 2A2S squeezed state. This can be
attributed to the Gaussian factor which modulates the
amplitude in the S* correlations. Similar to a Fourier
transformation, the broader the distribution for the 5%
correlations, the sharper the anti-correlations in the SY
variables.

Finally, for the probabilities in the S*-basis (Fig.
@(a)(d)), a twin-Fock state like distribution is produced
for both ([B2) and the 2A2S squeezed state. Due to the
initial state being S*-polarized states, the highest weight
is for kiz) = kéz) = N, with addition terms in the super-
position being generated by the effective interaction.

In summary, the approximate state (82) produced by



the optical protocol has the same correlations and anti-
correlations as that produced by the 2A2S squeezed state
[#2), which in turn is similar to the spin-EPR state ([B9).
The main difference is in the amplitude dependence in
the S#-basis measurements, originating from the first
Gaussian factor in ([B2). This produces broader anti-
correlations in the SY-basis measurements.

2. Variances and expectation values

From the probability distributions examined in the last
section, we expect that particular spin combinations will
attain low values of the variance. From the distributions
in Fig. M, we expect that the variances of the combina-
tions ST — 8%, S{ + 5, Sf — S5 should remain small. For
the 2A2S squeezed state [@2]), the variance of the ST — 53
is zero for all time, while the variance of SY + S§ and
SF — S5 decay with exactly the same time-dependence

In Fig. Bla) we calculate the variances of the three
operators pairings for the approximate state ([B2). For
the ST — S5 variance, we see that this approaches zero in
a similar way to the 2A2S squeezed state. However, the
S{ + S¥ variance does not completely decay to zero and
saturates to a value N. We attribute this to the broader
anti-correlations that are produced, as seen in Fig. E|(b).
Meanwhile, the ST — S5 variance increases and converges
to a value N. The variance of this quantity initially starts
at zero because the initial state are S”-polarized states.
This is unlike the 2A2S squeezed state where the variance
is zero for all time due to the twin-Fock nature of the
state. Here again the correlations are broader and occur
along the off-diagonal elements in Fig. d{a).

The spin expectation values for the approximate state
([B2) are plotted in Fig. [Bl(a). In this case, the dependence
more resembles the 2A2S squeezed state, where the ini-
tially polarized spins in the S®-direction decay to zero.
The other spin expectation values are zero for all time,
similarly to the 2A2S squeezed state.

3. Entanglement

We finally examine the entanglement in the state ([B2)).
This can be quantified for the pure state using the von
Neumann entropy

E(p) = —Tr(plog, p), (43)
where
p = Tra(|pPPr () KrPProx(7) |) (44)

is the reduced density matrix on BEC 1. Here Trs is the
partial trace over the states in BEC 2.

In Fig. [[(a) we show the entanglement as a function
of n.7? for state [B2). As expected the amount of entan-
glement increases monotonically with the amount of cor-
relations that are generated. The entanglement increases
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FIG. 5: Variances of the two-spin squeezed state for the oper-
ators O as marked, using the (a) approximate state (32); (b)
exact state (24]) for short time scales; (c) exact state ([24) for
long time scales; (e) the 2 pulse scheme (B6) for short time
scales; (f) the 2 pulse scheme (G6 for long time scales. For
the one pulse state we choose parameters N = 20, n. = 20,
ng = 0 in (a)(b)(c). For the two pulse state choose N = 20,
n = n® = 20, nl(il) = "((12) =0, 7V =023 ~ Topt, and
7@ = 7 in (e)(f). (d) The optimal squeezing time 7 deter-
mined by minimizing A?(Sf — S3) as a function of N. We
choose parameters ng = 0 and n. as marked.
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FIG. 6: Expectation values of the two-spin squeezed state
for the operators O as marked. Expectation values using the
(a) approximate state (32); (b) exact state (24). We choose
parameters N = 20, n. = 20, nq = 0 throughout.

and saturates towards a limiting value Ejj,. The limit-
ing value can be deduced by finding the reduced density
matrix for (B8]), which is already in diagonal form

k) (k). (45)

Evaluating the entanglement for this state we obtain for
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FIG. 7: Entanglement produced between two BECs using
the optical protocol. The von Neumann entropy for (a) the
approximate state ([B2) for N = 20; (b) the exact state (24]) for
parameters N = 20, n. = 20, nqg = 0 and the two-pulse state
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(B8 for parameters N = 50, n‘(: = n£ ) = 50, nl(i ) = n,(i =0,
7D =0.1, and 7™ = 7 as plotted in the figure.
N>1
1 Ne 1
By ~ 5 log, 5 ~ 5 logy N + 0.547. (46)

Since maximum entanglement that can be reached be-
tween two N + 1 dimensional systems is

Epax = logy (N + 1), (47)

we see that for large systems the amount of entanglement
that can be generated is

(48)

We see that due to the Gaussian factors, the entangle-
ment that can be generated using the optical scheme is
less than the maximum. However, it is still a macro-
scopic amount of entanglement, of is of the same order
as the maximal entanglement. We shall see how this can
be further improved in Sec. [V]

IV. NUMERICAL ANALYSIS OF THE
ENTANGLED STATE

In this section we analyze the state (24)) and photon
probability distribution (26]) using a numerical approach.
This will allow us to confirm the behavior at short inter-
action times as investigated in the previous section, and
examine the behavior at longer times.

A. Photon probability distribution

Figure Bl(b)(c)(d) shows the photon probability using
the exact distribution (28] for several different interac-
tion times. For short interaction times (Fig. B(b)) we see
that the photons are almost completely in mode ¢, with
a Poissonian distribution as discussed in Sec. [IIBl We
can understand this also from the perspective of Fig. [
In the Mach-Zehnder configuration of the light, when the

light is relatively unperturbed due to the small interac-
tion, constructive interference will occur for mode ¢ and
destructive interference for mode d.

For longer interaction times (Fig. Bl(c)(d)), photons
start to emerge with outcomes ngy > 0. The domi-
nant regions where the photons energy are along the line
ne+nq = |af?, since the number of photons is conserved
by the Hamiltonian. To understand the nature of the
broadening, first consider the behavior of the Ci,_n,(x)
function as plotted in Fig. Due to this function be-
ing the amplitude of a coherent state split by a beam
splitter (see Appendix [Al), the typical outcome occurs at
ne ~ |af?cos? xy and ng ~ |a|?sin? x. Now for N > 1
we can approximate the binomial function by a Gaussian
using (B1)), giving

S e NG, (kTP (49)

k=—o00

Prong (T) &

5

™

This is a convolution of the beam split photon probabil-
ities with a Gaussian. The dominant terms in the sum
are those with —v/N7 < kr < v/N7, which causes the
broadening seen in Fig. Blc). For Fig. Bl(d), there are
three dominant peaks because in this case kT = km /4,
the peaks occur at the three angles y = 0, 7/4,7/2. This
is similar to the resonances observed in one-axis two-spin
sqeezed states [64].

B. Spin probability distribution

We now examine the spin probability distributions (@II)
for the exact state (24). In Fig. B we plot all 9 spin
combinations of o1,0,. Comparing the corresponding
approximated distributions in Fig. Hl the three diago-
nal distributions o1 = o9 visually are identical, with the
same pattern of correlations and anti-correlations. The
same broadening of the (S7,SY) distributions are also
seen here with the exact wavefunction. As explained in
Sec. [IILCT] this is due to the Gaussian envelope of the
S7, 55 distribution.

For the other off-diagonal spin combinations o1 # o9,
we see distributions which are symmetrical on one of the
variables, which gives rise to zero correlations. The pat-
tern of the distribution has a resemblance to the two-
axis two-spin squeezed states, with semicircular features
emerging (see Fig. 4 of Ref. [66]). We note that off-
diagonal spin combinations o1 # o9 of the approximate
wavefunction ([B2) are visually identical (not plotted) to
the probability distribution using the exact wavefunction
@4) for these parameters. The strong similarity of the
distributions in Fig. @ and Fig. B show that the wave-
function ([B2)) is an excellent approximation to the exact

@4).
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FIG. 8: Probability distribution after measuring the state (24
in various bases according to ([#I]) on the two BECs. We use
parameters N = 20, n. = 20, nq = 0, 7 = 0.23 & Topt, close
to the optimally squeezed time. The density plot legends for
similar shaped distributions are the same. The legend for the
SV, 8y is shown top right.

C. Variances and expectation values

The variances of three correlated and anti-correlated
spin pairs are shown in Fig. Bl(b)(c). At short time scales
(Fig. Blb)), the variances of ST — S5 and S} + S§ of
the exact state ([24) are nearly identical to that of the
approximate state ([32) as shown in Fig. Bla). Both of
these quantities approach N and remain at this value for
some time (Fig. [l(c)), until revivals are seen at times 7 =
kw /2, for integer k. The interaction time 7 is periodic in
units of 7 for all quantities.

For the variable S7 — 53, which exhibits the largest
amount of squeezing, the dependence agrees well with
the short-time approximation for times 7 < 1/V/N as
can be seen by comparing Fig. Bla) and B(b). After these
times the approximation breaks down and the variance
starts to increase (Fig. Bl(b)). There is thus an optimal
interaction time 7op¢ Where the squeezing is optimized,
in a similar way to the two-axis two-spin state [66]. At
longer time scales (Fig. Bl(c)), the variance shows some
complex oscillatory behavior, but does return to the same
variance until a time 7 = ™ — Top¢, which occurs due to
the periodicity of the interaction.

Figure[Bl(d) shows the optimal sqeezing time, obtained
by minimizing the variance of S7 — 53, as a function of
N for various choices of n. and ngy = 0. Despite the
scaling with /n. as suggested in Fig. [Bl(a), we observe
that for the optimal time there is little dependence on

n.. We attribute this to the fact that the \/n. scaling
is derived in Sec. [[IIB] for short times 7 < 1/\/N, and
the optimal squeezing time is on the edge of the validity
of this regime. The optimal squeezing time is found to
show a scaling behavior agreeing very well for large N
with the relation

1.07
T()pt ~ \/—N

For the expectation values, the agreement between the
approximate wavefunction (Fig. [Bla)) and exact wave-
function (Fig. B(b)) generally shows excellent agreement.
The expectation values of SY and S* are zero for all time,
and S” shows a Gaussian decay as seen before. The ex-
act wavefunction shows a revival of the S* expectation
value at a time 7 = 7, due to the periodicity of the exact
wavefunction. The approximate wavefunction does not
capture this long time behavior.

(50)

D. Entanglement

In Fig. [(b) we plot the von Neumann entropy as a
function of interaction time 7 for the exact state (24I).
We see that for short times 7 < 1/v/N the behavior
of the entanglement agrees well with the approximate
state as shown in Fig. [[(a). After these times, the curve
shows a typical “devil’s crevasse” dependence as observed
in Ref. [64], where entanglement fluctuates in a fractal
pattern depending on whether the interaction time is a
rational multiple of 7. This behavior occurs due to the
similar nature of interaction that was considered both in
Ref. [64] and this work, which are both a S7S3 type
Hamiltonian. The pattern repeats with a period of =
due to the periodicity of the wavefunction. We note that
for the longer interaction times, photonic outcomes with
ng > 0 become more probable. Hence Fig. [[{b) would
represent the case where only the ngy = 0 is considered,
and other cases show a different dependence. This is in
contrast to the short-time regime where the ngy = 0 case
is the most probable outcome.

As discussed in Sec. [IIC3l there is a ceiling to the
entanglement that can be generated, which agrees well
with the limiting value of entanglement (46]). This occurs
due to the Gaussian amplitude of the initial state, and
was also observed in Ref. |64].

E. Correlation based entanglement and EPR
steering detection

Figure [ shows that entanglement is present between
the BECs at all times except 7 = nm, where n is an
integer. Calculating the von Neumann entropy requires
finding the eigenvalues of the reduced density matrix,
which is difficult to extract experimentally in high di-
mensional systems due to the large number of measure-
ments required. It is therefore more desirable to have



entanglement criteria that are based on low-order corre-
lations of spin operators, which are more viable to ob-
tain in an experimental context. A comparative study of
various criteria was performed in Ref. [6d] for the two-
axis two-spin squeezed state, which has similarities to the
state that we consider here. It was found there that the
Hofmann-Takeuchi criterion [79]

Var (ST — S%) + Var(S{ + S¥) + Var(S} — S3)
Cent = AN

> 1,
(51)

which holds for any separable state, was most suitable for
detecting this type of entangled state. The reason for the
success of this criterion stems from the fact that it does
not involve a comparison with any expectation values of
spins (S7), (SY), (S#), which all decay to zero as seen in
Fig.

Figure [@(a) shows the left hand side of the criterion
(EI) for the exact state ([24]). We find that entanglement
is detected for some times except for times 7 = nw/2.
There are some times where the violation of (BI) is ex-
tremely small, such as 7 = w/4. Comparison with Fig.
[[(b) shows that these times such as 7 = w/2 are in fact
entangled, but the criterion only just detects entangle-
ment. The fact that the Hofmann-Takeuchi criterion is
able to detect entanglement for the full range of times is
rather remarkable, since for other similar states such as
the 1A2S 61, [64] and 2A2S squeezed states [66], entan-
glement is only successfully detected for a limited range
of times.

EPR steering can similarly be detected using a corre-
lation based criterion. The criterion developed by Reid
and co-workers [@, 61, ] states that EPR steering from
BEC 1 to BEC 2 is present if it violates the inequality

Var(S{ + SY)Var(S7 — S3)
(51)?

1—2
Csteer =

>1. (52)

Figure @(b) shows that EPR steering is detected in the
short time range. The largest violation is seen around
Topt, Which is the time when the largest squeezing is
observed. The fact that EPR steering is detected in a
smaller range than entanglement is consistent with the
notion that EPR steering is a quantity that is higher in
the hierarchy of quantum correlations @, @] We note
that although EPR steering is generally an asymmetric
property, in our case it is symmetric as the state is sym-
metric with respect to interchange of BECs 1 and 2.

F. Bell-CHSH correlations

One of the interesting features of the two-axis two-
spin squeezed state is that it violates a Bell-CHSH
inequality for all N [66]. Due to the similarity of the state
generated using our scheme, we can reasonably expect
that Bell-CHSH correlations may be present in our state.
The Bell-CHSH inequality [83] for two observers with two
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FIG. 9: Detection of entanglement and EPR steering using
correlation based criteria. (a) The Hofmann-Takeuchi crite-
rion (1)) for the exact state ([24]) and the two-pulse state (G4]).
(b) The EPR steering detection criterion (B2)) for the exact
state (24]) and the two-pulse state (B0l). For the state (24]) we
use parameters N = 20, n. = 20, nq = 0; for the state (GG we
use the parameters N = 20, ngl) = ngz) = 20, nfil) = nl(f) =0
and choose the first interaction time to be 7! = 0.23 ~ Topt-
For the two-pulse scheme the interaction time refers to the

second pulse time 7 = 7@,
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FIG. 10: Bell-CHSH correlations in the state (24). (a) Time
dependence of (B3) for various choices of n. as marked. We
use parameters g = 0.2, N = 15, ng = 0. (b) Optimized
values of (G3) with respect to 7 and 0p for various N. We
choose parameters n. = 4N, ng = 0. The dotted line shows
(B3) for the case of the two-axis two-spin (2A2S) squeezed
state (see Eq. (60) from Ref. [66]).

local measurement choices states that every local realist
theory satisfies

Cons = |(MM M) + (M m?)

— (P M)+ P M) <2, (53)
where Ml(z),MQ(J ) are local, two-outcome measurement
choices on BEC 1 and BEC 2 respectively, and i,j €
{1,2} label the two measurement choices. We use the
same strategy as that given in Ref. @], where the mea-
surement operators are chosen to be

MY = sgn(S5)
Ml(z) = sgn(S7 cos O + SY sinfp)

0 0
MY = sgn(3 cos TB + 5% sin 73)
0 0
M2(2) = sgn(S5 cos TB — SYsin 73) (54)

While other choices of measurement operators may lead
to stronger violations, the above choice has the advan-
tage that it is experimentally viable since it is relatively



insensitive to errors at the single atom level. In contrast,
parity measurements are very sensitive to experimental
errors since an error at the single atom level reverses the
measurement outcome [@]

The two parameters 6 and 7 should be optimized such
that a maximal violation of (B3] is obtained for each
choice of N and n.,ngy. We again focus on the short time
region such that we take ng = 0 to be the most likely
outcome. Figure[I0[(a) shows the time dependence of the
left hand side of the criterion (B3] for the state ([24]) for
various choice of n.. For large values of n., the largest
violation occurs at times &~ Top¢. Larger violation tend
to be found for larger values of n., which we attribute to
higher level of squeezing being attained for larger n.. For
05, we numerically find that the optimal angles follow a
relation

2

0y ~ 3.2/N +1.7/N 7 (55)
1+21/N

where we used a Padé approximant to fit the data.

In Fig. [M0(b) we show the optimized value of (B3]
as a function of N. We choose a photon number n. that
increases in proportion to IV, such as a to satisfy (B5]). We
observe that violations occur for all N, but the amount
of violation decreases as the system size is increased. The
decrease in the amount of violation was also observed in
the case of two-axis two-spin squeezed states, also shown
in Fig. M0(b) for comparison. Surprisingly, the amount of
violation is much larger in our case despite the fact that
our state is less than the ideal spin-EPR state (IIIC) due
to the Gaussian amplitude factors present in the state.
The CHSH correlators Copspy appear to approach the
classical value value of 2 in the limit of large N. Thus
again for this state Bell violations appear to be present
for all N, although the detection may be challenging for
large ensembles.

V. TWO-PULSE SCHEME
A. The wavefunction

The probability distribution of correlations and anti-
correlations shown in Fig. M suggests that there may
be a way to improve the correlations further such that
it further approaches the ideal spin-EPR state ([BY). As
discussed in Sec. [ITC2| the reason for the larger value
of the variance of S + S¥ is the broader anti-correlations
in the (S7,S3) amplitudes as seen in Fig. B From the
analysis in Sec. [ITI'Al we found that in the short time
limit 7 < 1/ VN, the effect of the interaction was to sup-
press the off-diagonal amplitudes k1 # ko with a Gaus-
sian distribution. This means that after obtaining (24)
with the first pulse, then performing a suitable basis ro-
tation such that the (S7,SY) anti-correlations are turned
into (S7,S5%) correlations, we should be able to further
squeeze the state.
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The two pulse scheme then proceeds as follows.
Starting from (24), we apply the transformation
e/~ /4 which transforms S — S7 and SY —
—S55. Then a second optical pulse is applied with the
same protocol, where the light interaction for a duration
72 and measurement outcomes n,(f),nl(f). Performing
similar steps to that shown in Sec. [IBl we obtain the

final two-pulse wavefunction
N
m Y
2 Ky ko k) K)y=0
N\ (N o .
x (ke /418 (ol 75"/ 4 )
k1) \ks
X 0 [(B = KT, 00, (s = k)7 k2
(56)

[0 22 (71, 730)) =

where N5 is a normalization factor, and the matrix ele-
ments of e~*"%/2 are given in (C3). Here, in the two-
pulse protocol we label quantities relating to the first
pulse with a ()] such that the 71 is the interaction time
and ngl), n((il)
pulse.

The probability distribution for (Bd]) is shown in Fig.
[[T for all measurement combinations as defined in (@I).
In comparison to the distributions of the one-pulse state
as shown in Fig. B we see a marked improvement of
the pattern of correlations and anti-correlations. In par-
ticular the (SY,SY) distribution shows a much clearer
anti-correlation. Also the (S7,.5%) distribution suffers to
a lesser extent from the Gaussian amplitude distribution
which was limiting the value of the correlations.

Variances of spin operators as a function of interac-
tion time are shown in Fig[Hl(e)(f). At shorter timescales
(Fig[Bl(e)), we see that the two-pulse scheme manages to
obtain much better values for the fluctuations which go
very near zero for all three variables, as expected from
the probability distribution plots. For longer timescales
(FigHl(f)), the variances show some oscillatory behavior,
but overall the variance remains lower than the one-pulse
scheme as can be seen in Fig. Blc).

In Fig. [[(b) we plot the entanglement generated by the
two-pulse scheme, as a function of the second pulse inter-
action time 7(2). The overall shape is similar to the one-
pulse scheme, but there are two important differences.
Firstly, for 7(?) = 0 the entanglement is not zero, since
the first pulse time is chosen to be O~ Topt, Such
that entanglement is present. Moreover, the maximum
entanglement is much larger in this case with a ceiling
in the region of El(ii)l ~ 0.95Fnax. Thus the two-pulse
scheme can improve the entanglement considerably, and
approaches to a much better extent the maximally en-
tangled state ([39).

Correlation based detection of entanglement and EPR
steering is also greatly improved with the two-pulse
scheme. In Fig. [(a) the Hofmann-Takeuchi criterion
(EI) is plotted for the two-pulse state (B6). We see that

are the measurement outcomes of the first
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FIG. 11: Probability distribution after measuring the state
(B6) in various bases according to (4I]) on the two BECs. We
use parameters N = 50, ngl) = n£2> = 50, nél) = nff) = 0,
D=7 =01~ Topt, Cclose to the optimally squeezed time.
The density plot legends for similar shaped distributions are
the same. The legend for the S7, S is shown top right.

entanglement is detected for all times, and the violations
are much stronger. The same is true for the EPR steer-
ing, shown in Fig. @Ib). The steering inequality shows
violations that are much stronger, particularly for both
pulses tuned to the optimal times 7p.

VI. SUMMARY AND CONCLUSIONS

We have analyzed a scheme for producing two-spin
squeezed states of two spinor BECs. The final state
that is produced is given by (24)), but is very well ap-
proximated by ([B2) in the short time regime 7 < 1/+/N.
Since the optimal squeezing occurs at times 7opy ~ 1/ VN
the approximate wavefunction captures the primary re-
gion of interest. The technique involves interfering co-
herent light in a Mach-Zehnder configuration, which in-
teracts with the two BECs. Performing a photon number
measurement projects entanglement onto the two BECs.
The quantum measurement thus randomly affects the
wavefunction depending on the outcomes n.,ng. While
strictly speaking this means that our protocol is non-
deterministic, in the short time regime, the most likely
outcome is ng = 0 and the random fluctuations only oc-
cur in n. according to (7). Since the effect of n. in (B32))
is only to affect the degree of squeezing, the nature of the
state is not dramatically affected by the randomness of
the measurements.
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The basic effect of the scheme in the short time limit
can be understood very simply by inspecting ([B0): Fock
state amplitudes with unequal eigenvalues with respect to

7,55 are suppressed with a Gaussian envelope. In this
work we considered an initial state consisting of an S*
polarized state for both BECs, since this is a state that
can be produced relatively simply. Since spin coherent
states have amplitudes involving a binomial distribution,
the culprit of the imperfect entanglement is due to this
initial state. However, this can be remedied to a great
extent by applying the protocol twice, where a local basis
transformation is made such as to rotate SY — S7 and
Sy — —S%. This sequence produces greatly improves
most aspects of the state such as the level of squeezing
and entanglement.

One of the most attractive aspects of the current
scheme is that it has a highly flexible geometry that al-
lows for BECs to be entangled with two completely sep-
arate light beams. Similar schemes have been considered
in past works before |52, [85] but generally the optical
pulse must pass through each BEC sequentially. The
Mach-Zehnder configuration allows for highly separated
BECs to be entangled even when the line-of-sight is ob-
structed. The entanglement that is generated is poten-
tially useful for quantum information applications such
as quantum computing |67, 68 and quantum teleporta-
tion [86, [87], where it can be used as a quantum gate to
produce entangled states.

Another interesting aspect of the states that are pro-
duced are that they are able to violate a Bell-CHSH in-
equality. The type of measurement that is required is
relatively insensitive to single atom number fluctuations,
since it involves the sign of spin operators. The level of vi-
olation is larger than that produced in two-axis two-spin
states after optimizing the interaction time and Bell an-
gles for both cases. However the amount of Bell violation
decreases with atom number, as is the case with two-axis
two-spin squeezed states, which make them potentially
difficult to observe for large atom ensembles. Using a
larger number of measurement settings and measurement
outcome it may be possible to improve upon the level of
violation without resorting to observables that are highly
sensitive to single atom fluctuations, such as parity mea-
surements.
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Appendix A: Amplitude of a beam split coherent
state

In this section we show that the coefficients C,,_n,, (X)
given in ([22)) correspond to the Fock state amplitudes
of a coherent state entering a beam splitter. Suppose a
coherent state in mode a enters a beam splitter and exits
into two modes according to the transformation

a = ccosx + dsin. (A1)
Then a coherent state of amplitude « transforms as
() = el /2gacosxel +asinxd’ a0y
= |acos x)e|asin x)a

Y Cuona(X)Ine)na)-

Ne,ng=0

(A2)

The last line shows the claimed relation.

Appendix B: Approximations involving the Jacobi
theta function

Here we describe the approximations involved in ob-
taining the expression ([B3). The expression to be com-
puted is

N
N = Z e_%[(kl_%f"’_(kz_%f]einCTz(k17k2)2 (Bl)
k1,k2=0

For N > 1, we can safely extend the limits of the sums
from —oo to oo as the first Gaussian factor strongly sup-
presses terms outside the region 0 < ki, ke < N. We
first make a transformation of variables in terms of the
relative and center of mass variables, defined as

1
kr = —=(k;1 — k
2(1 2)

1
ke = (k1 + k= N).



For integer k., k., this only covers half the points cov-
ered by ki,ks. Thus in order to cover all combinations
of ki, ko, we must displace the k; variable by one unit.
In these variables, the full set of points are then given
according to

o0
N~ ¥ [e—%<ki+ki>—4ncr%i
ky,ke=—00
+ o~ 7 (27 +2k2 42k +2ke+1) —neT k7 (4K +4k, +1)
(B3)

The sums over Gaussians function can be evaluated ac-
cording to the expressions

) e = 95(0,e77) (B4)
k=—00
Z e_w(k2+k) _ em/402(076—1), (B5)
k=—c0

which gives (33).
We note that the Jacobi theta functions can be ap-
proximated to within 6 % accuracy using the expressions

1
930, %) v e
o ) V/tanh(z /)
93(0, ) ~ sech(x/4) (B6)

V/tanh(z/7)

These functions interpolate between the behavior of the
Jacobi theta functions for z < 1

193 (O, 671) ~ 192(0, 671) ~ \/g (B?)
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and x > 1

A 27/, (B8)

Appendix C: Transformation between Fock states in
different bases

The Fock eigenstates of the spin operators correspond-
ing to S* and SY are given by

|k>(m) _ e—iSyw/4|k>
|]€>(y) _ e—iSzfr/4e—iSy7r/4|k>' (Cl)

Here the matrix elements of the SY rotation are given by

(k7™ 02|k = \/EN(N — kKN — k)!
(—1)" cosk =k +N=2n(9 /2) sin?"+*' ~* (g /2)
. Zn: T T Ty TR

where |k) and the eigenstates of S*. The matrix elements
of S* are accordingly given by

<k|e—iS19/2|k/> _ ik/_k<k|€_isy0/2|kl> (03)

where we used the fact that S% = ¢ 15 7/4GyeiSm/4,



