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Abstract

Nowadays, the interest in the automatic analysis of speech and text in different scenarios have
been increasing. Currently, acoustic analysis is frequently used to extract non-verbal information
related to para-linguistic aspects such as articulation and prosody. The linguistic analysis focuses
on capturing verbal information from written sources, which can be suitable to evaluate customer
satisfaction, or in health-care applications to assess the state of patients under depression or
other cognitive states. In the case of call-centers many of the speech recordings collected are
related to the opinion of the customers in different industry sectors. Only a small proportion of
these calls are evaluated, whereby these processes can be automated using acoustic and linguistic
analysis. In the assessment of neuro-degenerative diseases such as Alzheimer’s Disease (AD) and
Parkinson’s Disease (PD), the symptoms are progressive, directly linked to dementia, cognitive
decline, and motor impairments. This implies a continuous evaluation of the neurological state
since the patients become dependent and need intensive care, showing a decrease of the ability
from individual activities of daily life. This thesis proposes methodologies for acoustic and
linguistic analyses in different scenarios related to customer satisfaction, cognitive disorders in
AD, and depression in PD. The experiments include the evaluation of customer satisfaction, the
assessment of genetic AD, linguistic analysis to discriminate PD, depression assessment in PD,
and user state modeling based on the arousal-plane for the evaluation of customer satisfaction,
AD, and depression in PD. The acoustic features are mainly focused on articulation and prosody
analyses, while linguistic features are based on natural language processing techniques. Deep
learning approaches based on convolutional and recurrent neural networks are also considered in
this thesis.
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Chapter 1

Introduction

1.1 Motivation

Natural language is the most common system of symbols used by humans to create and commu-
nicate meaning, while speech is the physical production of sounds of spoken language. Natural
Language Processing (NLP) aims to describe semantic, grammatical and syntactic aspects to
address different problems related to the interaction between humans and machines. These
methods are commonly used to assess the influence of verbal information in human interactions,
language disorders, sentiment analysis, among others. Speech processing focuses on the analysis
of non-verbal information related to para-linguistic aspects such as the articulatory, phonatory and
prosodic system [1]. Currently, speech analysis is frequently used in applications related to auto-
matic speech recognition, speaker verification, and pathological speech analysis. Although there
are several works addressing acoustic and NLP methods, the automatic language understanding is
a difficult task that requires a huge contextual knowledge due to the problems related to ambiguity,
polysemy, sarcasm, or double sense. This thesis works towards improving the performance of the
automatic language understanding and to reduce the impact of the aforementioned problems by
using speech and natural language processing.

Additionally, speech and language analyses can be addressed in different applications that
contain information related to emotions, mood, or affect. Research topics related to emotion mod-
eling aim to discriminate cognitive processes of humans, such as memory, behavior, psychological
hallmarks or decision-making [2]. For instance, customer satisfaction is linked to the heuristic
affect, which is a mental shortcut that allows the decision-making and problem-solving in an
efficient and faster way [3]. Patients with chronic diseases are often affected by mood swings due
to psychiatric or physiological factors such as depression and those related to cognitive decline,
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1.2. CONTEXT 3

which decreases the quality of life of patients and in many cases increases symptoms, as in some
neuro-degenerative diseases [4], [5].

This work proposes to extract features using classical acoustic and NLP methods, as well as
concepts of emotions related to the arousal-valence plane [6]. The aim is to evaluate the suitability
of using and combining acoustic and linguistic models to assess two different scenarios: (1)
customer satisfaction, and (2) neuro-degenerative diseases

1.2 Context

Acoustic and linguistic analyses are carried out in this study to evaluate the customer satisfaction
in call-centers, and to model communication and speech disorders in neuro-degenerative diseases.

1.2.1 Customer Satisfaction

Customer satisfaction is a scenario that makes use of technologies based on speech and language
analyses. This is linked to the customer service, which corresponds to all actions related to provide
a service, and it is the backbone of any business [7]. A large amount of collected information in
the call-centers is related to the opinion of the customers, which is usually evaluated by conducting
surveys at the end of the call. However, there are several limitations with this approach. For
instance, the mildly dissatisfied or mildly satisfied customers often do not bother to take surveys.
This behavior causes a bias in the satisfaction scores that would not reflect the real customer
satisfaction based on taking only the extreme cases into consideration [8]. Since there is a
large number of calls, only a small proportion of them (typically 2%) are evaluated. Customer
satisfaction is evaluated from the speech recording of the customer opinion, whereby these
processes can be automated using acoustic and linguistic analysis. The speech processing has
shown good performance to characterize customer satisfaction levels in related applications [9],
[10], as well as NLP methods [9], [11]. Thus, this thesis aims to assess the suitability of speech
and language modeling to perform this task.

1.2.2 Neuro-degenerative Diseases

Another field of application in acoustic and linguistic analyses is the assessment of neuro-
degenerative diseases. These are disorders of the nervous system that affect the neurons in
the human brain. Particularly, neuro-degenerative diseases are progressive, having as predom-
inating symptoms dementia, cognitive decline, and motor impairments. The loss of common



4 CHAPTER 1. INTRODUCTION

neurotransmitters and the death of the brain tissue cause communication deficits and emotional
disturbances, associated with depressive signs, mood changes, sleep disorders, among others [12].
The two most common neuro-degenerative diseases, Alzheimer’s Disease (AD) and Parkinson’s
Disease (PD), have symptoms related to the described disorders.

AD is the most prevalent neuro-degenerative disorder, and it is characterized by progressive
dementia, degeneration, and death of the brain cells. AD symptoms include memory, behavioral,
psychological impairments, and deterioration of cognitive functions related to communication
deficits, i.e., the capability to produce coherent language [13]. AD is the most common form of
dementia, affecting 2/3 of the total cases of dementia [14]. The total population of Colombia
is approximately 50 million inhabitants, where there are around 221.000 people suffering from
this disease [15]. The PSEN1-E280A or Paisa mutation is responsible for most of Early-Onset
Alzheimer’s (EOA) cases in Colombia. It is commonly diagnosed at a mean age of 49 years [16].
It affects a large kindred of over 5000 members that present the same phenotype. It is characterized
by typical symptoms of the AD such as memory deficits in the third decade of life, development of
progressive cognitive impairments such as verbal disfluency, changes in personality and behavior,
among others [17].

In general, AD patients become dependent and need intensive care, showing a decrease of
the ability from individual activities of daily life. The standard scales to evaluate the cognitive
function of the patients are the Mini-Mental State Examination (MMSE) [18] and Montreal
Cognitive Assessment (MoCA) [19], which are 30-point scales that contain items related to
language production, immediate memory, naming, and spatial attention. Scores of over 24 and 26
indicate normal cognition for MMSE and MoCA respectively. Cognitive deficits and behavioral
disorders also appear in AD. The patients tend to react aggressively, perceiving danger in common
situation where none exists. These mood swings appear because of an alteration in perception of
the reality. AD patients commonly present depression symptoms according to different studies [4],
[20], [21]. According to [21] about 80% of AD patients can develop depression during the course
of the disease. In addition, some studies suggest that the reduced ability to feel emotions is
caused by the memory loss, which may induce the appearance of apathy and depression [22], [23].
Several studies have considered speech and NLP methods to assess the neurological state of AD
patients [24]–[27].

PD is a neurological disorder characterized by the progressive loss of dopaminergic neurons
in the mid brain [28], which are in charge to control movement and emotions. The most common
motor symptoms are rigidity, bradikynesia, resting tremor, among others, which also affect the
muscles involved in the speech production. Some of the voice impairments include pitch variation,
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decreased loudness and hypokinetic dysarthria [29]. Non-motor complications also affect PD
patients. The most common non-motor symptoms include sleep disorders, cognitive impairments,
and depression [30]. If the depressive disturbances are not treated, they lead to other symptoms
such as greater functional disability, faster physical and cognitive deterioration, increased caregiver
distress, among others [31]. The depressive state of the PD patients is evaluated in a single item in
the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [32].
Depressive symptoms in PD may experience fluctuation likewise as motor symptoms [33]. Preva-
lence of depression in PD varies from 20% to 50% and depressive symptoms are frequently
associated with rapid progression of motor symptoms and cognitive impairments [5]. Communi-
cation deficits and impairments in the grammar production appear in 90% of the patients due to
deficits in the production of the dopaminergic neurons [34]. Most of the studies in the literature
have been focused on the speech analysis rather than in the language comprehension. Several
studies suggest that, besides articulatory problems, impairments in grammar, verbal fluency, and
semantic are also present in most of the patients [35], [36]. There are similar symptoms in both
diseases. One of the most common symptoms is depression, which appears in up to 40% of
patients with PD [37].

This work proposes to combine speech analysis and NLP methods to extract features from
spontaneous speech recordings and their transcriptions. The challenge is to evaluate the suitability
of these methods to assess neuro-degenerative diseases as well as mood states in the patients.

1.3 Hypothesis

Speech and natural language processing provide relevant information for the automatic assessment
of the customer satisfaction, and neuro-degenerative diseases.

1.4 Objectives

1.4.1 General Objective

To design a methodology based on speech, natural language processing, and pattern recognition
techniques in order to improve the performance in the automatic prediction of the customer satis-
faction levels and monitoring the emotional and mood state of patients with neuro-degenerative
diseases.
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1.4.2 Specific Objectives

1. To analyze and evaluate the most suitable features, extracted from speech and natural
language, to assess the customer satisfaction levels and mood states of the patients.

2. To design a robust algorithm to combine features from speech and language, to improve the
performance when the modalities are applied individually.

3. To validate the performance of several feature sets considering the discrimination capability
different classification tasks.

1.5 Contribution of this Study

This thesis proposes multimodal approach based on acoustic and linguistic analyses to assess
two different scenarios: (1) customer satisfaction, and (2) neuro-degenerative diseases. The
acoustic analysis includes classical features derived from the Short-Time Fourier Transform
(STFT), Mel-Frequency Cepstral Coefficients (MFCCs), energy, duration, and the Fundamental
Frequency (F 0). The linguistic approach includes classical features for inference such as Bag of
Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF), and word embedding
methods such as Word2Vec (W2V), and Bidirectional Encoder Representations from Transformers
(BERT). In addition, a deep learning based approach is proposed to extract information from
the arousal-valence plane. The extracted features are used to evaluate different applications: (1)
customer satisfaction analysis, (2) assessment of AD, and (3) depression in PD. All the approaches
are compared with baseline features in the state-of-art. The algorithms were implemented in
Python and Pytorch. The reported results in this study indicate that the combination of acoustic
and linguistic information improved the performance considering different applications.

The following are the main outcomes of this thesis :

1. Collection of a multimodal corpus with speech, transcriptions, handwriting, and gait signals
collected from PD patients since 2019, for different purposes by the GITA research group1

in association with Fundalizanza2.

2. A multimodal corpus of speech and transcriptions collected from 60 depressive and non-
depressive PD patients in Colombia by the GITA research group1 in association with
Fundalizanza2.

1https://gita.udea.edu.co/
2https://www.fundalianzaparkinson.org

https://gita.udea.edu.co/
https://www.fundalianzaparkinson.org
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3. A multimodal corpus of speech and transcriptions collected from different participants
related to the Paisa mutation in Colombia by the GITA research group1 and GNA research
group3.

4. An approach based on user modeling using acoustic and linguistic features together with a
GMM-UBM models, for the assessment of depression in PD.

5. A novel approach to evaluate scenarios such as customer satisfaction and assessment of
patients with neuro-degenerative diseases, using deep learning techniques and the arousal-
plane information.

6. The development of WEBERT, which is a python toolkit designed for research purposes to
automatically compute dynamic and static BERT embeddings based on the Hugging Face
project4. WEBERT is available for English and Spanish (multilingual) models, as well as
for base and large models, and cased and lower-cased options. BETO and SciBERT are
also available here. BETO is a pre-trained BERT model from a Spanish corpus. SciBERT
is a pre-trained model on English scientific text. The source code is available online5.

7. I participated in the development of the mobile application Apkinson, which was devel-
oped to collect speech and movement data from PD patients, and to be used to monitor
continuously the state of the patients using information from speech, hand movements, and
fine-motor skills. The app was the main result of a Colombian-German project, financed by
BMBF in which 16 young researchers from both countries participated. The source code is
available online6.

1.6 Outline

This work is divided into eight chapters. Chapter one contains the context, hypothesis, objectives
and the contribution of this study. Chapter two includes the state-of-art. Chapter three describes
the different methods addressed in this study. Chapter four contains the description of the different
datasets. In Chapter five are presented the experiments, results and discussions. Finally, chapters
six include the main conclusions, summary and further work.

3https://web.gna.org.co/en/us/
4https://github.com/huggingface/transformers
5https://github.com/PauPerezT/WEBERT
6https://github.com/jcvasquezc/SMA2

https://web.gna.org.co/en/us/
https://github.com/huggingface/transformers
https://github.com/PauPerezT/WEBERT
https://github.com/jcvasquezc/SMA2


Chapter 2

State-of-the-art

2.1 Speech and Linguistic Analysis in Customer Satisfaction

Customer satisfaction is an important aspect for all industries. Automatic evaluation of customer
satisfaction has been recently considered using speech and NLP strategies. In [11], the authors
proposed an automated method to measure customer satisfaction by analyzing the transcriptions
from 115 customer calls for a 2-point and 5-point satisfaction measurement. Phone calls were
transcribed using the IBM Attila Speech Recognition toolkit [38]. The authors analyzed different
aspects such as call duration, number of holds during the call, sentiments words, competitor
mentions, talk speed and prosodic features, using the RapidMiner toolkit [39]. Different classifiers
such as decision trees, logistic regression, Naı̈ve Bayes, and Support Vector Machine (SVM) were
implemented. The models were validated with a 10-fold cross-validation strategy. The authors
reported accuracies with the SVM up to 89.42% in 2-point and 66.09% in 5-point.

In [40] the authors proposed the use of speech analysis in customer satisfaction for affective
modeling according to the arousal-valence plane. The NTU American dataset [41] was used in
order to represent three emotions of anger, sadness, happiness and neutral serving as emotionless
state. The analysis was performed based on identify the contribution of the neutral state in other
emotional states. Acoustic features considered MFCCs, and for classification was considered an
adaptive neuro-fuzzy inference system with substractive clustering. The authors reported results
for measuring satisfaction of 40% accuracy, and neutral emotion showed higher performance with
58% of accuracy.

A text mining approach to explore customer satisfaction in airlines is presented in [42].
The authors performed an automatic customer satisfaction analysis in online customer reviews
for airlines companies from the website Air Travel Review. NLP features based on Latent

8



2.1. SPEECH AND LINGUISTIC ANALYSIS IN CUSTOMER SATISFACTION 9

Dirichlet Allocation (LDA) and part-of-speech tagging were obtained in order to identify different
dimensions of satisfaction. The authors reported an accuracy of 80% for the two problem positive
vs. negative reviews.

The combined analysis of speech recordings and their transcripts have shown promising results
on different applications as well. In [9], the authors combined acoustic and language analysis
to improve the performance on emotion recognition. The IEMOCAP database and data from a
call-center were used in the experiments. The acoustic analysis was performed using Long Short
Term-Memory (LSTM) networks trained with features extracted with OpenSMILE [43]. The
language analysis was based on utterance-level embeddings generated from the transcriptions
using multi-scale CNNs. Information from speech and text were merged and the final classification
of emotions was performed with an SVM, which was optimized following a Leave-One-Speaker-
Out (LOSO) cross validation strategy. The results indicated that the combination of acoustic
features extracted from audio signals and language features extracted from their transcripts
improve the accuracy up to 24% depending on the evaluated database.

Table 2.1: Summary of the state-of-the-art methods for customer satisfaction using acoustic and
linguistic analysis

Related work Acoustic Features Linguistic Features Datasets

Park, 2009 [44]
Call duration, number of holds
during the call, talk speed

RapidMiner: Sentiment words,
category-specific word, positive
actitude and gratitude
indicator, product name.

115 customer calls

Kamaruddin, 2016 [41] MFCCs - NTU American dataset

Lucini, 2020 [42] -
Latent Dirichlet Allocation
and part-of-speech tagging Air Travel Reviews

Cho, 2018 [9]

OpenSMILE ComParE 2013:
MFCCs, energy, F 0, entropy,
zero crossing rate, shimmer,
jitter, spectral-based features.

Word embeddings after one
hot encodings input DAIC-WOZ

State-of-the-art summary for customer satisfaction according to this work is shown in Table 2.1.
Acoustic features mainly include MFCCs, energy, F 0, and prosody based features related with
duration, among others. OpenSMILE has to be in consideration as baseline feature set for speech
analysis. Linguistic features consider LDA, part-of-speech-tagging, and word embedding methods.
In this approaches, indicators such as product name, competitor name, gratitude and positive
answers take high relevance to perform customer satisfaction analysis.
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2.2 Speech and Linguistic Analysis in Health-Care Applica-
tions

There are several studies focused on modeling speech deficits of PD patients related to cognitive
decline [45]–[47]. In [47] the authors proposed a methodology to assess the cognitive decline
of PD patients with a combination of clinical and acoustic features. The cognitive state of the
patients was labeled with the Addenbrooke’s Cognitive Examination (ACE-R) [48]. Data from 44
PD patients evaluated at baseline and two years after were considered for the analysis. The results
indicated that the F 0 and the REM sleep behavioral disorder questionary (RBDSQ) explained
37.2% of the variability change of the ACE-R. In addition, the most correlated features with
the cognitive decline were the disease duration, the speech index rhythmicity (SPIR), and the
RBDSQ. The results of a linear regression showed that the SPIR was able to predict the cognitive
decline with an accuracy up to 73.2%. There are studies that have considered NLP to evaluate PD
patients. In [49], the authors extracted different components from transcriptions of spontaneous
speech recordings. The authors used Latent Semantic Analysis (LSA), part-of-speech tagging
and word-level repetitions via graph embedding tools to model the transcriptions. The study
considered several classifiers including K-nearest neighbors, SVMs, Adaboost, and others, to
discriminate between 50 PD patients and 50 HC subjects. Results of up to 77% of accuracy were
reported. In [50] the authors aimed to predict motor, cognitive, and depressive symptoms of 35 PD
patients, all of them English native speakers. The motor state was predicted based on the UPDRS
score (UPDRS is a previous version of the MDS-UPDRS scale), and the global cognitive state
was predicted based on the Montreal Cognitive Assessment (MoCA) scale. The depressive state
was assessed based on the Geriatric Depression Scale (GDS). The clinical scales were predicted
by computing articulation features such as formant frequencies and the derivatives of the MFCCs,
and prosody features based on the phoneme rate. Acoustic features were used to train a Gaussian
staircase regression algorithm to predict each neurological scale. The authors reported moderate
Spearman’s correlations in the prediction of the motor severity (ρ = 0.42) and global cognition
(ρ = 0.52), however, the results on depression were not satisfactory (ρ = −0.21).

Cognitive deficits and behavioral disorders are more common in AD than in PD. Thus, besides
the studies on PD, there are several works on AD where the impact of language impairments is
studied [26], [51], [52]. In [52], the authors considered speech and language analyses to evaluate
the depressive state of AD patients. The methodology was evaluated using Pitt Corpus from the
Dementia Bank [53]. The language features include part-of-speech-tagging, parse constituents,
psycho-linguistic measures, vocabulary richness, among others. On the other hand, acoustic
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features considered such as fluency measures, MFCCs, voice quality features, energy intensity,
shimmer, among others. The extracted features were used to classify HC subjects and AD patients
with depression. The authors reported an accuracy up to 86.4% with an SVM classifier. The
results classifying AD patients with and without depression achieved an accuracy up to 65.9%,
using a logistic regression.

In [54], the authors investigated the relative changes in cognition and identification of non-
verbal signals of emotion in AD patients. A group of 12 AD patients and 12 HC underwent facial
and prosodic stimuli of five different emotions (happiness, sadness, anger, fear and neutral). The
Florida Affect Battery (FAB) [55] was used to assess the emotional processing. An ANOVA was
performed to quantify the difference between groups obtaining a significance value of 0.202 for
the non-emotional prosody discrimination.

Recently in [27] the authors proposed an approach of counting word occurrences in transcrip-
tions via BoW vectors. English transcriptions from the Pitt Corpus of the Dementia Bank [53]
(168 AD patients and 94 HC subjects), were considered.The participants were asked to describe
the cookie theft image [56]. BoW features were used to classify the AD patients and HC subjects
using an artificial neural network. The authors followed a Leave-One-Speaker-Out (LOSO)
cross-validation strategy, and reported accuracies up to 84.4%.

An n-gram based approach combined with LSTM cells is proposed in [57] to predict and
classify AD patients and HC subjects. English transcriptions from the Pitt Corpus of the Dementia
Bank [53] were considered. The participants were asked to describe the cookie theft picture [56].
The prediction of the MMSE score was proposed based on evaluating the perplexity of the
transcriptions. The Spearman’s correlation was higher for the AD (ρ = 0.55) than for HC subjects
(ρ = 0.11). The classification between AD patients and HC subjects obtained 85.6% of overall
accuracy.

In [58], the authors presented an automatic speech recognition based procedure for the
extraction of a special set of acoustic features and a set of linguistic features extracted from
transcripts of the same speech signals. The acoustic features were based on the Praat software [59]
and linguistic features were based on the Magyarlanc toolkit [60]. The aim to discriminate
between AD patients and healthy controls, and also AD patients from those with Mild Cognitive
Impairments (MCI). The database for this purpose was recorded at the Memory Clinic at the
Department of psychiatry of the University of Szeged, Hungary. This consists of 25 speakers for
each group (75 speakers) and 225 recordings. The authors performed the classification followed a
4-fold cross-validation strategy using as classifier an SVM. The results showed that only using an
acoustic-based feature set a high performance to classify various groups (accuracies ranging from
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74% to 82%) was obtained. Similar accuracies were obtained using linguistic features. The fusion
of the two set of features, the accuracy increases to 80-86%.

In Table 2.2 a summary of the state-of-the-art methods for neuro-degeneratives diseases is
shown according to related work presented in this study. The predominant acoustic features
consider F 0, Mel, duration, energy, formant frequencies. The linguistic features mostly are
part-of-speech tagging, LSA, word frequency based features.

Table 2.2: Summary of the state-of-the-art methods for neurodegenerative diseases using acoustic
and linguistic analysis

Parkinson’s Disease
Related work Acoustic Features Linguistic Features Datasets

Rektorova, 2016 [47] F 0, speech index rhythmicity -
44 PD patients labeled
according to ACER

Garcia, 2016 [49] -
LSA, part-of-speech tagging,
word level representations via
graph embedding tools

PC-GITA

Smith, 2017 [50]
Formant frequency, MFCCs (static,
delta), phoneme rate - 35 PD patients

Alzheimer’s Disease

Fraser, 2016 [52]
MFCCs, voice quality features, energy,
shimmer, jitter

Part-of-speech-tagging, parse
constituents, psycho-linguistic
measures, vocabulary richness

Pitt corpus from
Dementia Bank

Buck, 2004 [54]
Prosody test conducted using
Florida Affect Battery -

12 AD patients
and 12 HC subjects

Klumpp, 2018 [27] - Bag of words
Pitt corpus from
Dementia Bank

Fritsch, 2019 [57] - N-Grams
Pitt corpus from
Dementia Bank

Gosztolya, 2019 [58]

Articulation rate, speech tempo,
utterance length, duration of silents,
number of silence, hesitation rate,
number of recurrences of a given
phoneme

Part-of-speech-tagging, number
and rate of words/phrases related
to memory activity, number of
negation words, number of of
thematic words related to the
content of the films.

75 Hungarian
native speakers



Chapter 3

Theoretical Background

The proposed models are based on different acoustic and linguistic features to discriminate emo-
tions, pathological mood and cognitive states. This chapter consists of four main sections: (1)
pattern recognition and deep learning methods, in which is explained the basis of the performed
methods for end-to-end analysis, (2) emotions modeling by the arousal-valence plane that contex-
tualize the concept of emotion in the mentioned plane, (3) speech analysis methods consisting
of all signal processing techniques performed in this study, and (4) linguistic analysis methods,
where the NLP algorithms considered for the linguistic approach are explained.

3.1 Pattern Recognition and Deep Learning Methods

3.1.1 Pattern Recognition Methods

Principal Component Analysis

This is an unsupervised method that allows to simplify the spatial complexity of a feature space of
dimensionality d onto a subspace of a lower dimension p. Principal Component Analysis (PCA)
aims to find a linear projection that maximizes the variance in the data, obtaining non-correlated
components [61].

Such a projection is defined in Equation 3.1, whereW is a d× p eigenvector matrix used to
transform the samples onto the new subspace, and x is a d×m dimensional vector with m as the
number of samples.

φ(x) = W Tx (3.1)

13
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Figure 3.1 shows how PCA aims to find the line that projects the data in the direction of the
maximum variance. PCA finds a new set of dimensions Rd → Rp, such that all the p dimensions
are orthogonal and ranked according to the variance of data along them. Thus, the eigenvector
matrixW is computed in order to maximize the spread of the data, i.e., the variance. First, the
d-dimensional mean vector µ is computed for every dimension of the whole dataset:

µ =
1

m

m∑
n=1

xn (3.2)

x
x

x

x

x

x

x

x x
x

x

x

Figure 3.1: PCA projection (straight black line) with the maximum variance

Then, the covariance matrix Σ is computed using Equation 3.3. The covariance measures the
total variation of two random variables, although is similar to the definition of correlation, in the
covariance the values are not standardized.

Σ =
1

m− 1

m∑
n=1

(xn − µ)(xn − µ)T (3.3)

From the covariance matrix, the eigenvectors ν and eigenvalues λ are obtained using Equa-
tion 3.4. An eigenvector is a vector whose direction remains unchanged when a linear transfor-
mation is applied. The eigenvalues are defined as constants that multiply the eigenvectors in the
linear transformations of a matrix, i.e., roots of the characteristic equation.

Σν = λν (3.4)

The eigenvalue and eigenvector problem can be solved using singular value decomposition that
projects data into a space of lower-dimensions preserving most of the variance, by releasing the
singular vector of components associated with lower singular values. Then, the eigenvectors are
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sorted in descending order according to their eigenvalues. The eigenvector defines the direction of
the new axis as is shown in Figure 3.2, where it can be observed the two first eigenvectors.
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Figure 3.2: Directions of the eigenvectors that will define the new axis

The eigenvectors with the lower eigenvalues are ignored because it is assumed that those
provide less information about the data distribution. The first p eigenvectors after sorting are
used to constructW which is a d× p matrix. Finally, as is shown in Equation 3.1, the resulting
eigenvector matrix is multiplied with the original features in order to project the data in a lower
dimensional space. The p dimensional transformed features that now are uncorrelated, are known
as Principal Components (PCs) that can be observed in Figure 3.3, where the new axes are these
PCs and the data suffered a rotation to be adapted to these new axes.
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Figure 3.3: Transformed features with PCA
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Support Vector Machines

SVM is a supervised classification algorithm proposed by Vapnik in [62]. The aim of this
algorithm is to find the optimal hyperplane which maximizes the margin or width according to a
training set S of m training samples as is shown in Equation 3.5. Each point xi ε Rd belongs to a
bi-class problem, thus a label is assigned for each one yi; ε

{
−1, 1

}
.

S =
{
xi, yi

}
, i = 1, 2, ...,m (3.5)

The hyperplaneH defines the decision boundary of the SVM. In the simplest case it depends
on a linear function expressed according to Equation 3.6, whereW is the weight or perpendicular
vector to the hyperplane, and b is the intercept of the line.

H = W Txi + b (3.6)

} Margin

Figure 3.4: Best fitting hyperplane for the example training set S

As illustrated in Figure 3.4, the SVM predicts a point as positive target yi = +1 when
W Txi − b > +1, and as negative target yi = −1 when W Txi − b < −1. Note that it only
considers a perfectly linearly separable problem, i.e., that no point will be inside the margin.
This SVM case is called hard margin. The goal is to find a W that maximizes the margin
in Equation 3.7, which is equivalent to get a quadratic minimization problem according to
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Equation 3.8.

margin =
(1− b)
||W ||2

− (−1− b)
||W ||2

=
2

||W ||2
(3.7)

argmax
W

2

||W ||2
≡ argmin

W

1

2
||W ||22 (3.8)

Support
Vector

Figure 3.5: Best fitting hyperplane for SM-SVM

Hence, the data in this study cannot provide a perfectly linearly separable problem, another
SVM case known as soft margin has to be considered. Soft Margin SVM (SM-SVM) introduces a
cost in the objective function to penalize errors as is shown in Figure 3.5. A convex optimization
problem is derived, where the primal objective function is represented by Equation 3.9, where
such cost is introduced by using positive slack variables ζi ≥ 0, i = 1, 2, . . . ,m. C ≥ 0 is an
adjustment parameter that controls how much is the penalty for the misclassified point. A larger
C means a higher penalty to the errors and a small margin.

argmin
W

1

2
||W ||22 + C

m∑
i=1

ζi (3.9)

ζi = 0 means that data points on the correct side and outside of the margin. Otherwise if a
data point is on the decision boundary (yi = 0), ζi = 1, and when ζi > 1, it will be misclassified.
Then, these relaxed classification constrains will be replaced as in Equation 3.10.
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yi = +1 →W Txi + b ≥ 1− ζi
yi = −1 →W Txi + b ≥ −1 + ζi

(3.10)

The optimization problem solution is solved by using Lagrange multipliers. The objective
function for Lagrange primal optimization problem L in Equation 3.11, adds the associated
Lagrange multipliers αi ≥ 0, i = 1, 2, 3, . . . ,m. ηi is chosen to guarantee ζi ≥ 0.

L(W , b, αi, ηi, ζi) =
1

2
||W ||22 + C

m∑
i=1

ζi +
m∑
i=1

αi [−yi(W Txi + b) + 1− ζi]︸ ︷︷ ︸
≤0

+ηi

m∑
i=1

(−ζi)︸ ︷︷ ︸
≤0

=
1

2
||W ||22 + C

m∑
i=1

ζi −
m∑
i=1

αi[yi(W
Txi + b)− 1 + ζi]− ηi

m∑
i=1

(ζi)

(3.11)

The constrained optimization is performed using the Karush Kuhn Tucker (KKT) conditions,
which are given by primal, dual, and complementary slackness restrictions:

• Primal restrictions.

yi(W
Txi + b)− 1 + ζi ≥ 0

ζi ≥ 0
(3.12)

• Dual restrictions.

αi ≥ 0, i = 1, 2, 3, . . . ,m

ζi ≥ 0, i = 1, 2, 3, . . . ,m
(3.13)

• Complementary slackness restrictions.

αi[yi(W
Txi + b)− 1 + ζi] = 0

ηiζi = 0
(3.14)

Then, the set of derivatives of the Lagragian respect toW , b and ζi are zero.



3.1. PATTERN RECOGNITION AND DEEP LEARNING METHODS 19

∂L
∂W

= 0 ⇒ W =
m∑
i=1

αiyixi

s.t. αi ≥ 0

(3.15)

∂L
∂b

= 0 ⇒
m∑
i=1

αiyi = 0

s.t. αi ≥ 0

(3.16)

∂L
∂ζi

= 0 ⇒ C − αi − ηi = 0

s.t. ηi ≥ 0, αi ≥ 0

(3.17)

There are additional constraints according to Equation 3.17 with respect to αi, subject to:

0 ≤ αi ≤ C ⇒ Box Constraints (3.18)

The data points enclosed with the dotted lien are the support vectors (see Figure 3.5). Those
points define the decision boundary, i.e., αi ≥ 0. Additionally, notice that:

• A subset of data points do not contribute to the model when αi = 0

• α has to be greater than zero to satisfy thatW Txi + b = 1− ζi.

• The points lying on the margin occur when ζi = 0. This implies that αi < C and ηi > 0.

• Considering αi = C, the points inside the margin are misclassified if ζi > 1, or correctly
classified if ζ ≤ 1.

Thus, the intercept or independent term b in Equation 3.19, can be found when ζi = 0, the
data points are support vectors, and considering the box constraint.

yi(W
Txi + b)− 1 + ζi = 0

b =
1

yi
−W Txi

(3.19)



20 CHAPTER 3. THEORETICAL BACKGROUND

Finally, replacing the results and constraints into the primal Lagrange function, the wolfe dual
problem is found as in Equation 3.20.

L =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

s.t. 0 ≤ αi ≤ C (3.20)

The previous description is only to discriminate between two classes, however, the SVM can
be adapted to solve multi-class classification problems. The multi-class classification in this study
is performed by a method called “one-vs-the-rest” (OVR), that consists of fitting a classifier per
class. The initial approach of OVR requires certain unanimity between all SVMs, i.e., a data point
could be classified if and only if this SVM’s class is accepted and the others are rejected. An
advantage of this model is its interpretability since is possible to obtain some knowledge about
the class inspecting its classifier.

Another consideration to take into account is that all the data dimensions are not linearly
separable. In the SVM classifier, a kernel function is considered to transform the feature space
into another that will be linearly separable. In this work, the kernel function is defined by
k(x,x′) = 〈φ(x), φ(x′)〉.

Kernel Trick

The kernel trick is a method that transforms a non-linear classification problem into a linearly
separable [63]. It maps the original feature space into another space of higher dimensionality. The
kernel function is defined as feature map φ(x) (basis function), which satisfied the Equation 3.21.

k(x,x′) = 〈φ(x), φ(x′)〉 (3.21)

The kernel function corresponds to an scalar product in some feature space. This function is
defined by k : Rd × Rd, where R is symmetric and positive semi-definite.

In this study a kernel function called “Radial Basis Function” (RBF) is considered. This
function is defined by Equation 3.22, where γ establishes the width of the bell-shaped curve. RBF
has the property that each basis function depends only on the radial distance, most commonly
used the Euclidean distance. Notice that the RBF kernel has a ready interpretation as a similarity
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measure since it decreases with distance and ranges between zero and one.

k(x,x′) = exp−||x− x
′||2

2γ2
(3.22)

Random Forest

Random Forest (RF) is a supervised learning algorithm characterized by its precision and robust-
ness against noisy data [64]. This algorithm consists of a set of individual decision trees from
the randomly selected subset of the training set. Each tree contributes with a single vote in order
to predict the most frequently class as is shown in Figure 3.6. If there are d input features, a
number n < d is specified such that at each node, n features are selected at random out of the d,
i.e., n is the number of trees. The number of features in each subset is define as s = d/n. The
large number of relatively uncorrelated models or trees can produce ensemble predictions that
are more accurate than any of the individual predictions. The trees protect each other from their
individual errors. In cases where some trees may be wrong, other trees may be right. Thus, it uses
a combination of features at each node to grow a tree, instead of using the best variables, which
reduces generalized error.

RF is actually an Ensemble-Bagging algorithm that generates random bootstrap samples from
the training set. The main difference is that in RF selects only subset of features for training
the individual trees, while in Bagging each tree is provided with the full set of features. The
random feature selection allows the trees to be more independent of each other compared with
regular Bagging, further, it is computationally faster because each tree learns only from a subset
of features.

One of its advantages is that it does not suffer of over-fitting problems because RF takes the
average of all predictions, which cancels out biases. The individual trees are generated by using
an indicator of attribute selection. The most common in RF is the Gini Index also known as “the

Total Decrease in Node Impurity”. The Gini Index considers a binary split for each attribute in
order to compute the relative importance of the feature. This index which satisfies Equation 3.23,
measures the impurity of a given element with respect to the other classes. T defines the training
set, Ci is the class and f (Ci,T )/|T | is the probability that the selected case belongs to Ci. The
more it decreases, the more important is the feature, i.e., that the mean decrease is an important
parameter for feature selection. Thus, the forest is made to grow up until their maximum depth by
using a given combination of features.
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Dataset

s-Features

Tree-nTree-1 Tree-2 Tree-3

Majority Voting

Final Prediction

s-Features s-Features s-Features

Class-1 Class-1Class-1Class-2

Figure 3.6: Architecture of the random forest model

∑∑
j 6=i

(f (Ci,T )/|T |)(f (Cj,T )/|T |) (3.23)

Finally, the RF algorithm is performed by the following steps:

1. Random samples from the dataset are selected.

2. A decision tree for each sample (Tree-n) is constructed. Thus, the prediction from every
decision tree is obtained.

3. Each tree will grow to its maximum extension without pruning in which the features form
each node. The maximum extension or depth is manually set and optimized.

4. The final prediction is performed by majority voting of all individual trees.
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Gaussian Mixture Model-Universal Background Model

Gaussian Mixture Model-Universal Background Model (GMM-UBM) was first proposed by
Reynolds in [65]. This model is commonly used in topics related to speaker verification. In this
thesis the aim is to find differences between PD patients with depression (D-PD) and PD patients
without depression (ND-PD), and as reference point an UBM composed by HC subjects. The
algorithm consists of three main steps: (1) the Gaussian Mixture Model (GMM), (2) the Universal
Background Models (UBM), and (3) Adaptation of the GMM with respect to the UBM.

Gaussian Mixture Model

GMMs are parametric models capable of representing a probability densities as a weighted
sum of M Gaussian distributions (see Figure 3.7).

Figure 3.7: Gaussian Mixture Model representation

LetX be a set of d-dimensional feature vectors xi, the mixture density used for the likelihood
estimation is given by Equation 3.24.

P (xi|Θ) =
M∑
k=1

ωkPk(xi|θk) (3.24)

ωk is the weight of the mixture, M is the number of Gaussian components or clusters in theΘ
model. xi is the i-th feature vector ofX . θk is the set of Gaussian parameters given by the mean
d × 1 vector µk, and the covariance d × d matrix Σk. Pk is the Probability Density Function
(PDF), which is estimated in Equation 3.25. The weights of the mixture models must satisfy the
constrain

∑M
k=1 ωk = 1.
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Pk(xi|θk) =
exp (−1

2
(xi − µk)T (Σ−1k )(xi − µk))

2πd/2|Σk|1/2
(3.25)

The parameters of the Gaussian Mixture are estimated using the maximum likelihood, ac-
cording to the Expectation Maximization algorithm (EM). In the first step of this algorithm, θk
and ωk are initialized randomly. Commonly, the k-means clustering algorithm is used for that.
The second step is called the E-step. Here, Pk(θk|xi) is computed using Equation 3.25 for every
feature vector xi given every θk. Then, the posterior probability is computed according the Bayes
theorem [66] which satisfies Equation 3.26.

Pk(θk|xi) =
Pk(xi|θk)Pk(θk)∑M
k=1 Pk(xi|θk)Pk(θk)

(3.26)

In the third step or M-step, the objective function (see Equation 3.27) aims to maximize
Pk(θk|xi), thus the parameters of the Gaussian mixtures are computed.

θk+1 = argmax
θk

Pk(θk|xi) (3.27)

The weights of the Gaussian components given by Pk(θk) are defined as:

Pk(θk) = ω̂k+1 =

∑d
i=1 Pk(θk|xi)

d
(3.28)

Then, µk andΣk are updated until convergence using Equation 3.29 and 3.30, respectively.

µ̂k+1 =

∑d
i=1 Pk(θk|xi)xi∑d
i=1 Pk(θk|xi)

(3.29)

Σ̂k+1 =

∑d
i=1 Pk(θk|xi)(xi − µ̂k+1)

T (xi − µ̂k+1)∑d
i=1 Pk(θk|xi)

(3.30)

Then, after the k-th iteration Pk(xi|θk) is increased, i.e., Pk+1(xi|θk+1) > Pk(xi|θk). In this
algorithm the feature vectors xi are assumed independent, so the log-likelihood of a given model
Θ may be computed.

Universal Background Models

The GMM trained with a large sample of speakers is called UBM. In this case, given a
spontaneous speech transcript and a hypothesized D-PD or ND-PD, the goal is to determine how
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close is the PD patient to the UBM given trained using HC subjects. The UBM model is less well
defined since it must potentially represent the entire space of possible alternatives to the patient.
No objective measure is defined to establish how many data is needed to train the UBM. There
are two main approaches to build the UBM. The first approach is to train individually a set of
sub-population models related to the data, this to cover the space of the alternatives. The second
approach consists of only pool all data to train the UBM via EM algorithm. This thesis considers
the second approach to train the UBM using the HC subjects.

Adaptation of the GMM

The basic idea is to derive the patient model by updating the parameters in the UBM via
adaptation. This allows to get a better coupling between the patient model and the UBM. The
adaptation is a two step estimation process, similar to the EM algorithm. The first step is related
to the E-step computed for each mixture in the UBM. The second step is related to the adaptation,
in which a data-independent coefficient is used to combine the old sufficient statistics given by
the UBM parameters with the new sufficient statistics estimates. This coefficient relies more on
the new sufficient statistics in mixtures with larger data, and in smaller data relies more the old
sufficient statistics, both related to the final parameter estimation. The probabilistic alignment for
the training vector x is determined into the UBM mixture component. For the k-th mixture in the
UBM P (k|xi) is computed as in Equation 3.31.

P (k|xi) =
ωkPk(xi)∑M
j=1 ωjPj(xi)

(3.31)

P (k|xi) and xi will be used to compute the statistics for ωk, µk, andΣk as in Equations 3.32,
3.33, and 3.34.

nk =
D∑
i=1

P (k|xi) (3.32)

Ek(X) =
1

nk

d∑
i=1

P (k|xi)xi (3.33)

Ek(X
2) =

1

nk

d∑
i=1

P (k|xi)xi2 (3.34)

The adapted parameters for the k-th mixture are obtained by the new sufficient statistics from
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the training data (ωk, µk, andΣk) as in Equations 3.35, 3.36, and 3.37.

ŵk =
[
αωk

nk
d

+ (1− αωk )wk

]
γ (3.35)

µ̂k = αmk Ek(X) + (1− αmk )µk (3.36)

Σ̂k = αvkEk(X
2) + (1− αvk)(Σk + µ2

k)− µ̂2
k (3.37)

Where {αωk , αmk , αvk} are the adaptation coefficients that control the balance between new
and old estimates for the weight, the mean and the variance respectively. γ is the scale factor,
that is computed over all adapted weights to fulfill the constraint

∑M
k=1 ωk = 1. The adaptation

coefficient αρk is defined in Equation 3.38, where rρ is a fixed relevance factor for parameters ρ.

αρk =
nk

nk + rρ
(3.38)

The updating parameter can be derived from the general Maximum A-posteriori estimation
known as MAP.

3.1.2 Deep Learning Methods

Deep learning has been frequently used nowadays in different applications related to speech,
image, video and NLP. The performance varies depending on the application and the structure of
the Deep Neural Network (DNN) architecture and the availability of data [67].

DNNs are formed with several layers, in which the output of a layer corresponds to the input
of a deeper one. The layers are used in order to control the information to feed the DNN model,
improve the robustness, and the performance.

A Feed-Forward DNN (FF-DNN) is an artificial neural network that the information moves in
only one direction, forward, i.e., the outputs of the model do not feed back on themselves. The
goal of a FF-DNN is to approximate a function f ∗. A FF-DNN defines a mapping y = f ∗(x; θ) by
learning the value of the parameters θ that result in the best function approximation. The output of
an FF-DNN is expressed according to Equation 3.39, where j is the number of abstraction layers,
x is the input and φ is the nonlinear transformation. In addition, Figure 3.8 shows the general
scheme of a DNN.

y = φj(fj(· · · (φ2(f2(φ1(f1(x))))))) (3.39)
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Figure 3.8: General scheme of a feed-forward DNN

In the training process an objective function is computed to measure the performance in order
to update its internal structure in form of adjustable parameters. The Stochastic Gradient Descend
(SGD) algorithm is used to train deep learning methods. It is an iterative optimization algorithm
to find minimum values in convex and differential functions. This method (see Equation 3.40)
uses a small set of the training data as input to adjust the weight parameters w of a DNN. The
gradient gk is based on a loss function gk = L(w(k)). The step size defined by learning rate η is
used to converge to a local minimum. This process is repeated many times with several small data
sets or batches.

w(k+1) = w(k) − η5 L(w(k)) (3.40)

An Extension of SGD is the Stochastic optimization method called Adam. The name Adam is
derived from Adaptive Moment Estimation. It provides more robustness, since SGD maintains a
single learning rate, and Adam computes individual adaptive learning rates for different parameters
from estimates of first and second moments of the gradients.

Adam is a combination between two optimization techniques: Adaptive Gradient Algorithm
(AdaGrad) and Root Mean Square Propagation (RMSProp). Adam computes and exponential
moving average for the gradient vk and the square gradient rk, which satisfies Equation. The
parameters β1 and β2 control the decay rates of these moving averages. ε is a floating number to
prevent divisions by zero. � is the Hadamard product.
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vk = β1v
k−1 + (1− β1)gk

rk = β12v
k−1 + (1− β2)gk � gk

w(k+1) = w(k) − η vk√
rk + ε

(3.41)

Convolutional Neural Networks

There are other DNN architectures easier to train than the fully connected DNNs. These are
called Convolutional Neural Networks (CNN), which are frequently used in image processing.
In speech analysis, CNNs are used in different applications such as detection of events in audio,
speech recognition and ER [68]. CNNs are designed to process multiple arrays. For instance, the
analysis of two dimensional arrays from a time-frequency representation (spectrograms) from
speech signals. These networks are formed by a structure of alternating convolutional filters and
pooling layers instead of the fully connected layers of a DNN.

The input of a CNN is a tensorX ∈ Rv×d×c, where v and d can be the time-frequency axes
from spectrograms with c channels. A weight tensorW ∈ Rm×m×h is convolved with the input
element i, j of matrixX in each convolutional layer according to the Equation 3.42, that produces
a hidden representation H ∈ Rv−m+1×d−m+1×h of the extracted features. m is the order of the
convolutional filter, and h is the number of hidden units in the convolutional layer.

H(i, j, h) = conv(X,Wh)(i, j) =
m∑
j=1

m∑
n=1

X(i+m, j + n)Wh(m, n) (3.42)

Usually, after the convolution operation a pooling layer is used to resample the hidden
representation H , removing non-relevant information that may appear because speech accent
or distortion. The last layer of a CNN corresponds to a fully connected layer that groups all
the features with a non-linear activation function to make the final decision. Figure 3.9 shows a
typical architecture of a CNN formed by convolution layers followed by a fully connected layer to
predict the output.
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Figure 3.9: General scheme of a convolutional neural network with a fully connectd layer

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are related to process sequential data in DNNs. They
incorporate a feed-back allowing that the network to have “memory”. The decision in a time
instant t− 1 affects the decision of an RNN in a time instant t. The networks are connected to
their past decisions (feedback loop), where the sequential information is stored in the hidden state
of a network, which manages to span many time steps.

RNNs seek an existing correlation between the events that are separated in time. These
correlations are called “long-term dependency”. For instance, an utterance contains several words
that depend on the previous words to put them into context, as a feedback loop. The process of
carrying memory forward is defined in Equation 3.43, where the hidden layer (ht) in an instant t
is computed.

h(t) = f(h(t−1); x(t); θ) (3.43)

The feedback occurs at every time step in the series, each hidden layer state contains also
traces of all those that preceded h(t−1) for a long memory. Figure 3.10 shows the general scheme
of a simple RNN, where it can be observed that the RNN has a chain form of repeating modules
of neural networks.

unfold

x

h(...) h(t-1)h(t-1)h(t-1)h(t-1) h(t) h(t+1) h(...)

x(t-1) x(t) x(t+1)

Figure 3.10: General scheme of a RNN

In the RNNs, the repeating module consists of a very simple structure of just a single tanh
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layer, as is shown in Figure 3.11.
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Figure 3.11: RNN cell unit

Long Short-Term Memory

The LSTM is a RNN-based architecture, capable to learn long-term dependencies. This neural
network can remember information for long periods of time and it is designed to solve the problem
of vanishing gradients in the typical RNN. The main idea is to introduce gates that control writing
and accessing memory in an additional cell state. The LSTM cell unit is illustrated in Figure 3.12.
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Figure 3.12: LSTM cell unit

The LSTM has a chain structure as the RNN with a memory called hidden state, but a new
memory is added. This memory is knwon as cell state (Ct). The cell state goes straight down the
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entire chain. It undergoes only linear changes and it is time dependent. An LSTM consists of the
interaction of four different layers to update the internal state in multiple steps, as is shown in
Figure 3.12. These layers are called gates.

The first gate, also known as the forget gate, controls which details from the previous cell
state are forgotten. The main idea is to forget and memorize information in separate states by
looking at the previous hidden state (ht−1) and the input xt, which satisfies Equation 3.44. σ is
the sigmoid activation function andW f is the weights of the neural network that corresponds to
the forget gate.

f t = σ(W f [ht−1,xt]) (3.44)

Then, the second one is the input gate. It contributes to the decision of which values will
be updated. This gate is represented by it in Equation 3.45. New candidate values C̃t (see
Equation 3.46) are created by the layer with a tanh activation.

it = σ(W i[ht−1,xt]) (3.45)

C̃t = tanh (W C [ht−1,xt]) (3.46)

The cell state (Ct) and the hidden state (h̃t) are updated separately. A new cell state appears
by summing the remaining information from Ct−1, and new information from the input and the
previous hidden state as is shown in Equation 3.47, where � is an element-wise multiplication.

Ct = f t �Ct−1 + it � C̃t (3.47)

Finally, the output is computed based on the input and the cell state using Equation 3.48. The
hidden state is obtained by multiplying the output and the cell state passed through a tanh layer
(Equation 3.49). The sigmoid function in ot decides which values from the input will pass. The
tanh is used to weight the values from the cell state, and thus decide levels of importance. In
Equation 3.50, it can be observed that the output yt directly depends on the hidden state yt.

ot = σ(W o[ht−1,xt]) (3.48)

ht = ot � tanh (Ct)) (3.49)
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yt = σ(ht) (3.50)

Gated Recurrent Unit

Gated Recurrent Unit (GRU) can be considered as a variation of the LSTM, due to the similarity
in their designs, both based on gating mechanisms. This variation was proposed in order to reduce
the number of parameters in the LSTM and for easier training. The main difference is that the
memory operates directly via the hidden state. The number of gates are reduced to just two, i.e.,
the number of layers and parameters are fewer. The GRU cell unit is shown in Figure 3.13.
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Figure 3.13: GRU cell unit

The first gate is called reset gate and determines the influence of the previous hidden states.
The relation with the LSTM is that the forget and the input gate are combined in this gate. The
reset gate is computed similar as the gates in the LSTM as is shown in Equation 3.51.

rt = σ(W r[ht−1,xt]) (3.51)

The update gate in Equation 3.52 is the second one. The update gate determines the influence
of past information in the current state, i.e., the influence of newly computed update.

zt = σ(W z[ht−1,xt]) (3.52)

In Equation 3.53, a current memory content is computed by using the reset gate. An update
will be proposed, where the input and the reset are combined. It allows to observe how the gates
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will affect the final output. As the reset gate is computed by using a sigmoid activation function, it
will have a low influence of previous hidden state when rt is close to zero.

h̃t = tanh (W h[rt � ht−1,xt]) (3.53)

Finally, the updated hidden state is computed, as is shown in Equation 3.54. The update gate
is needed in this step, as it controls the combination of the old state and the proposed update. This
will determine what to keep from the current memory content h̃t and what from the hidden states.
The output node yt is defined in the same way as in the LSTM, which satisfies Equation 3.50.

ht = zt � ht−1 + (1− zt)� h̃t (3.54)

Deep learning in speech analysis: there are several approaches to analyze speech signals by
DNNs [69]. For instance, DNNs could be trained using previously extracted acoustic features.
In speech processing, a spectrogram is a graphical representation that allows to visualize the
frequency content in an audio. Spectrograms have been widely used in CNNs based schemes to
achieve emotion recognition. On the other hand, RNNs are commonly used to process time series
of speech frames, among several other possibilities.

Deep learning in text analysis: the aim is to represent words as vectors through neuronal
networks. There are several methods based on deep learning techniques, but this study will be
focused on a novel method called “Word embeddings”. The aim of the word embeddings is to
redefine the high dimensionality word features into low dimensional feature vectors, preserving
the contextual similarity in the corpus. These methods are widely used in deep learning models
as RNN and CNN. The most popular models to build word embeddings are Word2Vec [70],
Glove [71] and BERT [72]. Word2Vec is an alternative of word representation that pretends
to represent the words as a multidimensional space vector, where similar or related words are
represented by nearby points, i.e. a FF-DNN that learns vectors to improve the predictive ability.
Glove is a count-based model that learns words from their co-occurrence information from a
corpus. BERT is one of the most recent word embedding methods. This consists of a model of
pre-trained language representation, with a more complex scheme, by jointly conditioning on both
left and right context in all layers.
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3.1.3 Performance Metrics

The performance metrics are used to evaluate the accuracy and generalization capability of
the outcomes of a model. They are defined as a process that quantifies the effectiveness and
efficiency of past actions. In this study, several metrics are used to evaluate different pattern
recognition algorithms. Commonly, it is necessary to introduce various measures in the context
of a classification problem, where the labels for a bi-class classification are defined as positives
or negatives [73]. These sets of measures come from a four-cell contingency table known as
confusion matrix.

Confusion Matrix

The confusion matrix allows to visualize the algorithm performance of a supervised learning
method. It is a table that displays and compares original labels with the ones predicted by the
model. Table 3.1 shows the structure of the confusion matrix. The number of class predictions are
represented by rows, while the instances of the original labels are representing by columns. Based
on a binary classifier each cell in the matrix is defined as follows:

• True positive (TP): the number of cases correctly identified as the positive class.

• True negative (TN): the number of cases correctly identified as the negative class.

• False positive (FP): the number of misclassified cases for the positive class.

• False negative (FN): the number of misclassified cases for the negative class.

Table 3.1: Confusion matrix

Original labels
1 0

Predicted
labels

1 TP FP
0 FN TN

The confusion matrix is used to guide the computation of the different performance matrix,
such as: accuracy, specificity, sensitivity, recall, F-score, precision and the Receiver Operating
Characteristic curve (ROC).
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Unweighted Average Recall

The Unweighted Average Recall (UAR) in Equation 3.55 is the ability to discriminate different
classes, i.e, the fraction of predictions that were correctly classified by the model. Table 3.2 shows
the taken cells from the confusion matrix to calculate the UAR.

Table 3.2: Confusion matrix cells used to computed the accuracy

Original labels
1 0

Predicted
labels

1 TP FP
0 FN TN

UAR = Average

(
TP

TP + FN
,

TN

TN + FP

)
× 100 (3.55)

Sensitivity and Specificity

The sensitivity in Equation 3.56, is the proportion of TP correctly identified as such. Table 3.3
shows the necessary cells of the confusion matrix to calculate the sensitivity.

Table 3.3: Confusion matrix cells used to computed the sensitivity

Original labels
1 0

Predicted
labels

1 TP FP
0 FN TN

Sensitivity =
TP

TP + FN
(3.56)

The specificity in Equation 3.57, is the ability to discriminate the negative class correctly. It is
the proportion of TN correctly identified as such, i.e, the rate of TN. Table 3.4 shows the necessary
cells from the confusion matrix to calculate the specificity.

Sensitivity and specificity ranges from 0 to 100%

Specificity =
TN

TN + FP
(3.57)
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Table 3.4: Confusion matrix cells used to computed the specificity

Original labels
1 0

Predicted
labels

1 TP FP
0 FN TN

Receiver Operating Characteristic Curve

The ROC curve is derived from a Gaussian distribution constructed from the classification
scores. The classification score indicates a measure of confidence in the prediction. A graphical
representation is performed to show the binary classifier performance, while its discrimination
threshold is varied. The True Positive Rate (TPR) known as the Sensitivity, and False Positive
Rate (FPR) define as 1−Specificity are computed to obtain the distribution. The ROC curve
(Figure 3.14) is created by plotting TPR and FPR for all possible threshold values, where this
curve is defined in the x-axis by FPR, and in the y-axis by TPR.
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Figure 3.14: ROC curve derived from a Gaussian distribution

The model performance is determined by looking at the Area Under the ROC Curve (AUC).
The AUC represents degree or measure of separability. It ranges from 0 to 1, in which 1 indicates
that the model is able to perfectly discriminate between the two classes. Four different cases
are considered as examples: (1) in Figure 3.15, is considered two distribution (at the left) with
non-overlapping that produce a ROC curve (at the right) with and AUC of 1, i.e., that the model
has an ideal measure of separability, (2) in Figure 3.16, the prediction is less accurate, since
the distribution are more overlapped, with an AUC of 0.80, (3) in Figure 3.17, the AUC is
approximately 0.5. It indicates that model has no discrimination capacity to distinguish between
the classes, and (4) in Figure 3.18, an AUC of 0 is obtained, when the predictions are wrong,
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confusing a negative class as a positive class and vice versa.

Figure 3.15: ROC curve from a non-overlapping distribution

Figure 3.16: ROC curve from a overlapping distribution

Figure 3.17: ROC curve from a totally overlapping distribution
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Figure 3.18: ROC curve from a non-overlapping distribution but with all misclasified predictions

Precision and Recall

Precision or positive predictive value in equation 3.58, is the proportion of positive identification
that were actually correct. It defines the ability of a classifier not to predict a positive identification
which is originally negative. Table 3.5 shows the necessary cells from the confusion matrix to
calculate the specificity.

Table 3.5: Confusion matrix cells used to computed the precision

Original labels
1 0

Predicted
labels

1 TP FP
0 FN TN

Precision =
TP

TP + FP
(3.58)

Recall has the same definition that the sensitivity for a binary classification, but it is a more
general definition that can be extended for multi-class classification problems. Precision and recall
ranges from 0 to 1.

F-score

F-score in equation 3.59 is a measure to test the general performance of the classifier by computing
the harmonic mean of the precision and recall. This measure penalizes harder the extreme values.
The value of the F-score varies between 0 (worst possible value) and 1 (best possible value).
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Table 3.6: Confusion matrix cells used to computed the f-score

Original labels
1 0

Predicted
labels

1 TP FP
0 FN TN

F -score = 2× Precision×Recall
Precision+Recall

(3.59)

3.2 Emotions Modeling by the Arousal-Valence Plane

Emotions are conscious experiences characterized by a high mental activity, being a subjective
reaction to certain events. These are generated as a lower response occurring in the subcortical
regions of the brain and the neocortex. Darwin conceptualized the notion of emotions as separate
entities, arguing that all humans show emotions through similar behaviors. He defines these
separate entities into six emotional states: happiness, sadness, fear, anger, surprise and disgust [74].
Nowadays, it is considered that the human being expresses 28 different emotions, since these six
discrete emotions are considered insufficient to capture the emotional richness that humans present
and which influence humans’ decisions to such a great degree [6]. Wundt proposed a different
conceptualization of emotions in a continuum of pleasantness and activity/intensity. This notion
of emotions was adopted by Russell who proposed a continuous 2-dimensional arousal-valence
model [6]. Emotion modeling in this thesis is based on the Russell’s model which considers
valence as a representation of positive-negative hedonic tone, and arousal as level of calmness
or excitement. The hedonic tone is a property of a sensory or another experience related to the
characteristic ability to feel pleasure.

The heuristic affect underlies the concepts of feeling, mood and emotion. It is related to the
basic sense of feeling as a non-conscious reaction to a stimulus, that occurs before the cognitive
processes necessary for the formation of a more complex emotion. Conversely, feelings are the
conscious experience of emotional reactions [3]. These processes affect the mood for a short
period of time. Moods are not as intense as emotions and have less specific or immediate cause,
and these influence the emotion you feel. Emotions last from seconds to minutes, while moods
could last days or even months, such as depression, anxiety, among others.

Affective states are not independent, they have certain relation to one another. Human emo-
tions are constantly changing, and it is really challenging to define a standard value to distinguish
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emotions. It is either pleasant or unpleasant (valence), or whether you are feeling calm or agitated
(arousal). “The arousal-valence plane” [6] is commonly used to model emotional states in a
multidimensional space (see Figure 3.19). This leads to represent different emotions in two di-
mensions called “arousal” and “valence”. Since it is really challenging to analyze these emotional
changes in a qualitative form, this plane allows to perform a quantitative analysis of emotions.
The vertical dimension, also called arousal, corresponds to the excitation-relaxation. The arousal
dimension defines the intensity of emotion, that ranges between high arousal (active) and low
arousal (passive). The horizontal dimension known as valence lies to make a range between
pleasure-displeasure emotions that refers to the level of physiological activation associated with
emotions. The left side corresponds to a negative valence and the right to a positive, this regarding
the level of satisfaction or dissatisfaction towards emotion. According to the aforementioned,
emotions are defined as a linear combination of valence and arousal within circumflex model.
User state modeling, in general, aims to capture similar aspects related to the emotions and mood
in several applications, where the challenge is how to extract the information according to the
modality [75], [76].
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Figure 3.19: Bi-dimensional emotion representation in the arousal-valence plane

In this study, the arousal-valence plane is divided into four quadrants, where AP is Active
Positive, AN is Active Negative, PN is Passive Negative, and PP is Passive Positive. This is
proposed in order to get a wide representation of emotions to address different applications.

3.3 Speech Analysis Methods

In the speech production process, the vocal folds generate complex sounds composed by F 0 and
the integer multiples of this frequency (harmonics). This complex sound is then passed and filtered
in the vocal tract, producing different phonetic structures in the speech.
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The vocal tract is formed by oral and nasal cavities, pharynx and glottis. Inside of these cavities
there are the articulatory organs, which are divided into active and passive. Active articulators are
actively involved in the the speech production process and include organs such as the lower lip,
tongue, uvula, and glottis. Passive articulators are involved in the speech production but do not
move. These consider organs such as upper lip, teeth, palate, velum, and pharynx. The vocal tract
adopts several configurations through the different positions of the articulatory organs, acting as
an acoustic filter for the produced sounds in the glottis.

Changes in the vocal tract are based on the length of the tract and the different diameters along
its length. This filter is defined by the formant frequencies, which appear as resonances in the
power spectrum of the speech signal.

3.3.1 Pre-Processing

Speech is greatly affected by different factor such as type of microphone, noise, volume, among
other perturbations caused by the recording condition. Pre-processing of speech signals is
considered an important step for the development of a robust and efficient acoustic analysis.
The pre-processing mainly includes several steps: normalization, perturbation removal, and
segmentation. In non-controlled conditions some existing algorithms to remove background noise
are used [77] in this study.

The speech signals consist of: voiced and unvoiced segments (see Figure 3.20). Voiced
segments are related to the vibration of the vocal folds due to the glottis closure that produces
quasi-periodic behaviors. Unvoiced segments are mostly produced by different aspects such as
the release or closure in the vocal tract or turbulent airflow at the constriction.

Besides voiced/unvoiced segments, the transitions from unvoiced to voiced segments (onset)
and from voiced to unvoiced segments (offset) are obtained as is shown in Figure 3.21. These
transitions are detected based on the presence of the F 0 using Praat [59]. The application of the
onset and offset transitions have proven to be useful in ER [78], [79].

3.3.2 Prosodic Analysis

Prosody analyzes the supra-segmental and melodic aspects involved in the word production.
Supra-segmental aspects are related to duration, intensity, and tone. Melodic considers aspects
such as rhythm, accentuation, and co-articulation phenoms. Prosody features are derived from
physiological parameters based on F 0, duration, and the energy content.

The emotion of a speaker affects the energy content in the speech. For instance, in [80],
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Figure 3.20: Example voiced and unvoiced segment of a female speaker
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Figure 3.21: Onset and offset transitions
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[81] it was reported that happiness and anger exhibit a higher energy envelope, while sadness is
associated with a decreased energy.

The F 0 measures how low or high sounds the voice frequency of a person. The contour of
the F 0 is a useful marker to discriminate emotions from speech. For instance, neutral speech
produces a narrower F 0 range than the emotional speech. Fear has a high median, wide range,
and a moderate rate of change [82]. Conversely, angry speech has a high median, wide range,
and high rate of change in comparison with other emotions [83]. The vowels in the angry speech
exhibit the highest F 0, and have downward slopes in relation with other emotions [80]. F 0 related
to low arousal emotions such as disgust or sadness, exhibits a lower mean and a narrower range
for sadness, and a low median, wide range, and lower rate of change for disgust [81].

Features based on different Duration Ratios (DR) based on the duration of pauses, voiced and
unvoiced segments are also considered, which satisfy Equations 3.60, 3.61, 3.62, 3.63, 3.64, and
3.65.

DR1 = Pause/(V oiced+ Unvoiced) (3.60)

DR2 = Pause/Unvoiced (3.61)

DR3 = Unvoiced/(V oiced+ Unvoiced) (3.62)

DR4 = V oiced/(V oiced+ Unvoiced) (3.63)

DR5 = V oiced/Pause (3.64)

DR6 = Unvoiced/Pause (3.65)

Dynamic features related to prosody are considered using only the voice segments. These fea-
tures are obtained following the methodology presented in [84]. This method consists of obtaining
of the six coefficients αi from the M = 5-degree Legendre polynomials Pi(t) (Equation 3.66) that
model the pitch and the energy contour, separately. These coefficients models different aspects of
the contours such as the mean, slope, curvature, and the inflection points that model the fine detail.
Additionally, these dynamic features also include the duration of each voice segments in order to
get 13 prosody descriptors per voiced segment.

f(t) =
M∑
i=0

αiPi(t) (3.66)
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3.3.3 Articulation Features

Mel-frequency Cepstral Coefficients

Commonly, in speech analysis the data is processed by computing a compressed representation of
the signal that can not capture all of the dynamic information. However, it is possible to obtain a
representation to observe how the energy varies in the frequency domain with respect to the time.
It can be achieved by using the Fourier transform that converts the signal into a time-frequency
representation. In this work a variation known as the Short-Time Fourier Transform (STFT) is
used. Mel spectrogram is based on the spectrogram obtained by computing the STFT and the
spectral power, but in addition the frequencies are converted into Mel scale. These coefficients are
a smoothed representation of the speech spectrum taking into account information of the scale of
the human hearing.

The first step to compute the Mel spectrogram is the application pre-emphasis filter to the
raw signal x. The pre-emphasis filter is a first order filter that aims to balance the frequency
spectrum from the high frequencies that usually have smaller amplitudes than lower frequencies.
It is computed using Equation 3.67, where α is the filter coefficient, t is the time step, and the
negative term is the pre-emphasis.

y(t) = x(t)− αx(t− 1) (3.67)

The frequencies in a signal changes across the time. It is assumed that the frequencies are
stationary of a short period of time. Thereby, the signal is splitted into frames and passed across
of a Hamming window using Equation 3.68, where N is the window length and 0 ≤ n ≤ N − 1.
The Hamming window helps to avoid discontinuities.

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
(3.68)

Then, the STFT and next the power spectrum (P) are computed in each frame i.

Pi =
|STFT (xi)|2

N
(3.69)

In Equation 3.70, the Frequencies (f ) in Hertz are converted into Mel scale (m). The Mel
scale aims to simulate the non-linear perception of the human auditory with respect to the sounds,
since the energy in a critical band of a frequency has influence in the human hearing. This critical
band bandwidth varies with the frequency, being this scale linear below 1kHz and logarithmic
upper this threshold. The information is transformed into the Mel scale domain in order to extract
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a set of critical frequency bands by applying a bandpass filter adjusted around the center frequency,
i.e., triangular filters (see Figure 3.22). After applying the filter bank to the power spectrum, it is
converted to a log scale. The number of filters was set on 64 in this thesis.

m = 2595 log10

(
1 +

f

700

)
(3.70)

Figure 3.22: Filter bank on a Mel scale

This study considers two approaches using Mel. First approach considers the real and the
imaginary part from the STFT in order to compute a 2-Dimensional Mel spectrogram that captures
more information related to the dynamic in the signal. The signal was framed in a 40 ms window
with a step size of 10 ms, and then a 500 ms sequence was formed. Finally, the second approach
considers MFCCs. Thus, the Discrete Cosine Transform (DCT) is applied on the filter bank
coefficients to decorrelate them. Usually, these are represent by the 12 first coefficients, and their
first and second derivate.

Bark Band Energies

Bark bands are defined as the critical bands of human hearing [85]. Commonly, the human hearing
system is modeled by a bank of 24 critical bands. These critical bands are used to quantify the
capability of the human ear to distinguish between individual frequency tones. Each critical band
is able to simulate the same quantity of cells from the basilar membrane, producing a proportional
displacement in relation to the frequency distribution in Equation 3.71.

Bark(f) = 13 arctan (0.00076f) + 3.5 arctan

(
f

7500

)2

(3.71)
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This relation can be observed in Figure 3.23. Note, that the bandwith of critical band are
constant at 100 Hz for frequencies that are below of 500 Hz, while the increment is proportional
to the logarithm of frequency for medium and high frequencies. The Bark scale frequency
bands are almost linear below 1kHz, while from frequencies superior to 1kHz the scale grows
exponentially, which yields a perceptual filter-bank.
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Figure 3.23: Critical bands of human hearing according to the Bark scale

In this work the log-energy of the speech signal distributed only considering 22 critical bands
is computed. The process to obtain these Bark Band Energies (BBE) consist of calculating the
corresponding Fourier spectrum in 22 frequency bands according to the Bark scale, and thus the
log-energy of each band is computed.

Formant Frequencies

A formant frequency is an acoustic resonance of the vocal tract. When the sound waves pass
through the supraglottic cavities, they modify the amplitude of the harmonics due to the resonance
phenomenon. The formants are defined as each of the preferred resonating frequencies corresponds
to the relevant bump in the frequency response curve. These formants vary for each emotion,
especially the two first formants F1 and F2. F1 is higher in emotions such as anger or happiness

than sadness and boredom.

3.3.4 Speech Features to Model Emotions

There are physiological changes related to emotions that influence aspects of speech production
such as breathing, phonation, resonance, prosody, and articulation. Emotions such as happiness,
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anger, and fear, induce an increase in sub-glottal pressure, a dryness of the mouth, and occasional
muscle tremor. In addition, high arousal emotions produce louder and faster speech, which
is characterized by strong high frequency energy, a higher average pitch, and a wider pitch
range [86]. On the other hand the low arousal emotions such as sadness and boredom affect the
parasympathetic nervous system, producing speech with slow rate, low pitch, and lower high
frequency energy [87].

Table 3.7 shows the relationship between the speech parameters and emotions. Note that F 0

and the energy content are the parameters that are more related to the emotional content.

Table 3.7: Relationship between emotions and speech parameters. Table adapted from [2]

Feature Happiness Anger Sadness Fear Disgust
Articulation Normal Tense Slurring Precise Normal

Rate Slower/Faster Slightly Faster Slightly Slower Much faster Very much faster
F 0 Much higher Very much higher Slightly Lower Very much higher Very much lower

F 0 Range Much wider Much wider Slightly narrower Much wider Slightly wider
Energy content Higher Higher Lower Normal Lower

Voice
Quality Breathy

Breathy chest
blaring tone Resonant voicing Irregular chest tone Grumble

F 0 Changes Smooth, upward Abrupt on stressed
Downward
inflections Normal

Wide, downward
inflections

3.4 Linguistic Analysis Methods

NLP is a set of techniques responsible for understanding, interpreting, and manipulating human
written language. It aims to extract information from natural language via machine learning
methods. Some of the most common applications are: text classification and categorization,
language generation, multi-document summarization, machine translation, and sentiment analysis.
Particularly for sentiment analysis, there are word clusters related to certain types of emotions, e.g.,
words as “Happy”, “Smile” or “Love” are related to positive emotions, while “Cry”, “Sadness”
or “Boring” are related to negative emotions. The context is another fundamental part to identify
certain physiological events and can be more exhaustive when recognizing some emotions [88].

The common pipeline in NLP (see Figure 3.24) consists of four main steps: data pre-processing,
vectorization, transformation, and model training. Data pre-processing helps to reduce the
noise in the data. Vectorization converts a collection of text documents into a numerical vector.
Transformation aims to extract features by different machine and deep learning techniques such as
BoW, TF-IDF, W2V, and BERT. Model training consists of applying pattern recognition methods
in order to analyze content based on particular categories.
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Figure 3.24: Text pre-processing scheme

3.4.1 Pre-Processing

Several types of noise are present in the text data. Text pre-processing aims to clean and standardize
the text, making it noise-free and ready for analysis as it is shown in Figure 3.25.

Noise 
Removal

Lexicon
NormalizationTokenization

Figure 3.25: Text pre-processing scheme

The following two steps are implemented for this purpose:

• Noise removal: non relevant information for the context, such as stopwords, accents or
punctuation, are removed from the text. A Spanish dictionary of noise entities from the
Natural Language Toolkit (NLTK) [89] is considered to remove stopwords such as in, the,
of, among others. Punctuation and special characters (numbers, URLs) are removed by
preparing a dictionary of noisy entities and iterate the text object by tokens, thus removing
those tokens which are present in the dictionary.

• Lexicon normalization: there are multiple representations for a single word. To standardize
the words in an equal representation, all words were transformed via stemming to remove
the suffixes. Another implemented method was lemmatization, which transforms the words
into their root form.

The pre-processing step is not applied for all the considered NLP methods. Noise removal and
lexicon normalization are applied for BoW, TF-IDF, and W2V, however, the stemming process is
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not applied for W2V. In the case of BERT, the removal of punctuation and special characters as
text pre-processing is considered.

3.4.2 Bag of Words

BoW is an inference method that creates a vocabulary of all words that appear in the whole
document. First, the sentences are represented as a collection of words that will be represented in a
feature vector with fixed size. Each sentence is pre-processed and tokenized. Thus, the vocabulary
is created, and multiple occurrences of the same word are removed by an iterative process. The
words of the entire corpus are counted and stored in a vector with a length of the total number of
words in the corpus. An example of how the feature vector looks like is shown in Figure 3.26,
where three different sentences with similar words are presented. Each row in the feature vector
corresponds to one sentence, and to each column to the different words in the whole corpus. Note
that each position contains the number of occurrences of an specific word in the sentences or
document.

I want to drink!!

Sentences

I am hungry, I want to eat a Pizza. 

I want a Hawaiian Pizza, but I want the 
biggest Pizza.

1

2

3

i am hungry hawaiianwant to eat a pizza but the biggest drink

2 0 0 2 0 0 1 2 1 1 1 1 0

1 0 0 1 1 0 0 0 0 0 0 0 1

Feature Vector

2 1 1 1 1 1 1 1 0 0 0 0 01

2

3

Figure 3.26: Example of a generated feature vector using BoW modeling

BoW only considers if a known word occurs in a document or not. The more similar words in
two documents, the more similar the documents can be. There are two main limitations in BoW
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modeling: (1) this method disregarding the order in which the words appear, i.e., it does not take
into account the embedded contextual information, and (2) for large documents, it may result in a
vector with lots of null values, known as sparse vector.

3.4.3 Term Frequency-Inverse Document Frequency

TF gives the relative frequency of a specific term, word or combination of words in a document.
These values are compared to the relative frequency of other terms in a text or document. Then,
to each term in a document a weight for that term is assigned, that depends on the number of
occurrences t of it in the document. Thus, a simple to compute a score based on the ratio is
assigned between t and the number of words in the whole corpus d using Equation 3.72, where
TFi,j is the term frequency of a term i in a document j.

TFi,j(t, d) =
ti,j
d

(3.72)

The limitation of TF is that it only considers all the query terms with equal importance. In
fact, certain terms have little or no discriminating power to determine relevance. IDF acts as TF
corrector factor for this issue. It attenuates the effect of the query terms that occur frequently in
the corpus to be meaningful for relevance determination. IDF scales down the weights of the term
with high frequency by comparing the number of all available documents n and the number of
documents that contain the term to analyze dfi. In other words, IDF determines the relevance of
the text with respect a specific word as:

IDFi(df) = log

(
n

dfi

)
(3.73)

TF-IDF is based on a heuristic intuition in which a query term that occurs in many documents
is not the best discrimination and should be given less weight than one which occurs in a few
documents. Then, the definitions of TF and IDF are combined using a simple product in order to
produce a composite weight for each term:

TFIDF = TF × IDF (3.74)

TF-IDF will be higher when the term occurs within a small number of documents, an it will
be lower when it occurs less frequently in a document or in many documentsdocuments. In the
case the word occurs in all documents will be the lowest one. Note that as same as BoW the exact
ordering of the terms in a document is ignored but the number of occurrences of each term is
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important.

3.4.4 Word2Vec

An alternative for word representation is vector space models. These models pretend to represent
the words as a vector in a multidimensional space, where similar or related words are represented
by nearby points. A well-known method is W2V, which consists of a Neural Network (NN) with
one hidden layer. There are two main W2V models: Continuous Bag of Words (CBoW) and
Skip-Gram (SG). This thesis only considers CBoW, which aims to predict a word based on a
given context.
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Figure 3.27: W2V-CBoW model using one word for context

W2V-CBoW is implemented with a fully connected neural network with a single hidden
layer, which only takes one word for the context as shown in Figure 3.27. The input words are
represented as one-hot encodingX = {x1, x2, x3, ..., xv}, i.e., as binary vectors. An example of
one-hot encoding representation is shown in Figure 3.28, where a vocabulary of all the words in
the text is created and a word is encoded as a vector of the same dimensions of the vocabulary.
The vocabulary in this example is only the words in the sentence “I want a Hawaiian Pizza”. Then,
each dimension corresponds to a word in the vocabulary, in order to have a vector with all zeros
and a 1, which represents the corresponding word (“Hawaiian”).
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  I         want          a      Hawaiian  Pizza

0 0 0 01

Figure 3.28: Example of one-hot encoding representation

Then, the size of the hidden layer is set to the dimensionality of the resulting word vectors. The
vocabulary size V and the number of the linear neurons N are the hyper-parameters related with
the hidden layer size. The connections from hidden layer to output layer can be described by a
weight matrixW

V ×N
with V rows, and N columns (see Equation 3.75). The input to the network

considers only one word for context and it is encoded using one-hot encoding representation
meaning that only one input row is set to one and rest of the input rows are set to zero. Hence,
a vector wki is obtained which represents the associated word i in the input layer, and other
rows from the weight matrix are ignored. Then,wki is passed through a softmax activation. The
activations of the hidden layer are stored, being those “the word vectors”.

h = XTW =
[
x1, x2, x3, · · · , xk, · · · , xv

]


w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

...
...

wk1 wk2 · · · wkN
...

...
...

...
wv1 wv2 · · · wvN


=
[
xkwk1, xkwk2, xkwk3, · · · , xkwkN

]
=
[
wk1, wk2, wk3, · · · , wkN

]
:= W ki

(3.75)

Multiple context words can be used to do the same, thus neighbor words in this representation
are considered to train the NN. Figure 3.29 shows the model that takes C context words that is
similar to a “window size”.

The selection of the neighbor words depends on the C, which is necessary to model the
temporal context of each word. The temporal context is obtained by computing the average of the
activations of the hidden layer over all of the words in the the context. C was set at 7, because it
is the average number of words per sentence in the transcripts in this thesis.
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Figure 3.29: W2V-CBoW model using multiple words for context

3.4.5 Bidirectional Encoder Representations from Transformers

BERT is an unsupervised and deeply bidirectional pre-trained model proposed in [72]. Unidi-
rectional models consider previous words to predict a target word, unlike bidirectional models
which use the previous and the following words. This method is based in transfer learning and
transformers models. The idea of transfer learning because the model is first trained on two
unsupervised tasks. The first one is based on Masked Language Modeling (MLM), which aims
of predicting a missing word in a sentence. The second one is Next Sentence Prediction (NSP),
where the system is trained to predict whether a sentence follows another. BERT allows the words
in the corpus to be represented into lower dimensional feature vectors using “Transformers”,
which is an attention-based encoder-decoder type first proposed in [90].

The transformer processes all elements simultaneously by forming direct connections between
individual elements through a process known as attention. The transformer is composed by
encoder and decoder layers with connections in between. BERT only considers the encoder layer
that a high level maps an input sequence into an abstract continuous representation that holds and
comprises all the learned info in the input.

Figure 3.30 shows the overall architecture used by the MLM tasks in BERT, where 15% of the
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Figure 3.30: Masked language modeling architecture for BERT

words in each sequence are replaced with a [MASK] token, in order to predict the original value
of the masked words, based on the context provided by the other words that are not masked. Each
of the special tokens and words have a specific predefined ID giving by each model, whether the
model does not know an specific word represented by ## at the beginning, the unknown token
([UNK]) is added. Since a RNN is not used and the transformer encoder reads the entire sequence
of words at once, the system needs to know the positions of each word in order to perform the
relations between the words. Thus, a positional encoding layer is considered for this task, which
injects positional information into the embeddings by sine and cosine functions. For odd time
steps a cosine function satisfies Equation 3.76, where pos refers to the position, i the dimension
and dmodel = 512 is the maximum length of a sequence, and for even time steps a sine function
using Equation 3.77. Cosine and sine functions were chosen because they have linear properties
that allow to the model an easily learn.

PE(pos, 2i+ 1 = cos

(
pos

100002i/dmodel

)
(3.76)

PE(pos, 2i = sin

(
pos

100002i/dmodel

)
(3.77)

The Transformer encoder in BERT is a stack of 12 encoder layers, each of which operates on
the output of the layer that came before. The encoder layer (see Figure 3.31) is composed by a
multi-head attention module, followed by a residual connection with a layer normalization, a feed
forward network composed by 2 fully connected layer with a ReLu in between, to finally apply a
residual connection with a layer normalization.
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Figure 3.31: Transformer encoder for BERT

BERT actually learns multiple attention mechanisms, called heads, which operate in parallel to
one another. The model can capture a broader range of relationships between the words via multi-
head attention. In Figure 3.32, multi-head attention applies multiple self-attention mechanisms.
This allows to look at each individual word in different windows for a better encoding. The first
step to compute self-attention is to feed the input into three fully connected layers in order to create
a query, key, and value vector for each word. The matrices Queries (Q), Keys (K) and Values (V )
are the set of the aforementioned vectors, where the rows correspond to the words and the columns
to the weight dimension (64). It is necessary to score each word of the input sequence against
the actual word. The score matrix is calculated by taking a dot product matrix multiplication
between Q and K. It allows to know how much focus should a word put on the other words.
Next, the scores are scaled down by dividing the square root of the Q and K dimension, which
allows for more stable gradients, and then the result is passed through a softmax to normalize the
scaled scores. The above process can be summarized by Equation 3.78. The obtained scores are
multiplied by the Values, for finally passing the result across a fully connected layer.

Z = Softmax
(
Q×KT

√
64

)
V (3.78)

In multi-head attention, it is necessary to split the matrices into adding vectors before applying
self-attention. Each of these vectors goes to the same self-attention process separately, known
as head. Note that attention heads do not share parameters, each head learns a unique pattern
attention. The used BERT model is known as BERT-Base, that consists of 12 encoder layers and
12 heads, where it has 144 attention mechanisms.

Additionally, for NSP task, BERT accepts as special tokens [CLS] and [SEP]. [CLS] marks the
beginning of the sequence and [SEP] marks the sentence boundary. For instance, in Figure 3.33
is shown an example of a compound sentence. The compound sentence starts with the [CLS]
token and is delimited by [SEP], which indicates the end of each sentence. The difference with
respect to the MLM task in the word embedding and positional encoding process, it is that the
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Figure 3.32: Self attention to the left and Multi-Head attention to the right

sentence positional encoding is added to indicate which sentence each word belongs to. In this
thesis, BERT is used in order to extract the feature embeddings of the transcriptions.

+ + + + + + + + + + +

+ + + + + + + + + + +

[CLS] I like all food [SEP] I love eat ##ing [SEP]
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Figure 3.33: Word embedding and positional encoding process in Next Sentence Prediction task
for BERT.
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Datasets

4.1 Call-center Datasets

These datasets consist of recordings from Colombian banking and insurance call-centers. The
interactions were acquired with a sampling rate of 8 KHz. They were annotated according to two
different emotion labels: positive (satisfied) and negative (unsatisfied). The calls were transliter-
ated following the verbatim protocol, using headphones to maximize the transcription accuracy.
The banking call-center dataset consists of a total of 2363 recordings, 1285 male and 1078 female
subjects. The customer opinions were recorded in voicemail. After labeling, 1093 utterances for
Satisfied Customers-Banking Call Center (SC-BC) and 1270 for Dissatisfied Customers-Banking
Call Center (DC-BC) were obtained. The whole vocabulary of the lemmatized transcriptions
without stopwords (e.g., the, of, in, on, etc.) contains 4757 words. The average duration of the
recordings is 14±9 seconds for SC-BC and 29±21 for DC-BC. The insurance call-center dataset
contains 283 recordings, 111 male and 172 female subjects. After labeling, 229 interactions for
Satisfied Customers-Insurance Call Center (SC-IC) and 54 for Dissatisfied Customers-Insurance
Call Center (DC-IC) were obtained. The whole vocabulary of the lemmatized transcriptions with-
out stopwords (e.g., the, of, in, on) contains 4926 words. The average duration of the interactions
is 1136±481 seconds for SC-IC and 1257±662 for DC-IC.

4.2 Genetic Alzheimer’s Dataset

The E280A or Paisa mutation [16] that is the most common cause of genetic Early-Onset
Alzheimer’s EOA in Colombia. The most common symptoms of this mutation are memory
deficits in the third decade of life, develop of progressive cognitive impairments such as verbal

57
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disfluency, changes in personality and behavior, among others. Nevertheless, there are some
phenotype variations such as epilepsy, cerebellar ataxia, verbal impairment, gait difficulties,
Parkinsonism, among others. This mutation affects 25 extended families with more than living
5,000 members who historically lived in isolated regions of Andes mountains in the Colombian
state of Antioquia. Nowadays, approximately one half the living members of this kindred live
in Medellı́n (the capital of Antioquia) and the rest live in nearby towns in Antioquia. This
population is remarkable for its unusual size and for the high level of participation of longitudinal
studies. The members of this kindred can be Genetic Carriers (GC) or Non-Genetic Carriers
(NGC). GCs inherit this mutation but they do not show any symptom of AD, however, GCs
are able to pass the allele onto their offspring. This database is being recorded since 2018 in
the University of Antioquia by Grupo de Neurociencias de Antioquia and GITA Lab. The data
consist of spontaneous speech recordings and their transliterations from 114 Spanish speakers
from Colombia, 28 asymptomatic subjects belonging to families with the Paisa mutation that are
GC and 36 that are NGC, 23 MCI patients with EOA, and 27 HC subjects. The task consisted
of asking the participants to describe the cookie theft picture [56]. The average duration of the
recordings is 84±48 seconds for the GC subject, 83±42 seconds for the NGC subject, 53±25 for
the MCI patients, and 42±19 for HC subjects. The transcriptions were produced by a professional
for linguistics following the verbatim protocol, using headphones to maximize the transcription
accuracy. The whole vocabulary of the lemmatized transcriptions without stopwords (e.g., the,
of, in, on, etc.) consists of 922 words. The data was labeled by expert listeners according to the
MMSE and MoCA scales. Additional information of the participants including age, gender, and
their neurological state are included in Table 4.1.

Table 4.1: General information of the subjects in the Genetic Alzheimer’s Dataset

MCI HC GC NGC
Gender [F/M] 12/11 15/12 16/12 22/14
Age [F/M] 48.1(5.5)/51.0(7.9) 49.5(7.7)/53.2(7.7) 31.5(5.6)/31.8(5.0) 32.1(6.4)/33.5(4.8)
Education [F/M] 5.8(3.4)/7.3(6.2) 7.3(3.6)/8.8(4.6) 10.6(2.8)/11.0(3.3) 13.5(2.6)/12.4(2.7)
MMSE [F/M] 25.0(4.3)/25.7(2.3) 28.5(1.4)/28.8(1.2) 29.4(0.8)/29.5(0.9) 29.5(0.9)/29.6(0.8)
MoCA [F/M] 14.9(5.2)/15.7(4.0) 20.7(4.2)/22.3(5.4) 24.5(2.3)/24.3(2.7) 25.5(2.3)/25.9(2.7)
MCI patients: AD patients with mild cognitive impairment. GC subjects: asymptomatic genetic carriers.
NGC subjects: asymptomatic non-genetic carriers. HC subjects: healthy control subjects. Values are
expressed as mean (standard deviation). F: female. M: male. Age and education are given in years.
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4.3 Alzheimer’s Dementia Recognition through Spontaneous
Speech Dataset

The Alzheimer’s Dementia Recognition through Spontaneous Speech (The ADReSS) dataset
was created for the Alzheimer’s speech classification task in the Interspeech ADReSS challenge
2020 [91]. The participants were native English speakers, matched for age and gender. It consist
of spontaneous speech recordings and transcripts describing the cookie theft picture [56]. The
recordings consider full enhanced audio and normalized sub-chunks, which were segmented using
voice activity detection algorithm based on a signal energy thresholding. They were normalized
across all speech segments to control the variation caused by the recording conditions. This thesis
uses the same training (108 recordings) and test (48 recordings) set provided by the challenge.
Additional information of the HC subjects, and AD patients considering age, gender, and MMSE
are included in Table 4.2.

Table 4.2: General information of the subjects in the ADReSS dataset.

AD patients HC patients
Number of subjects [F/M] 43/35 43/35
Age [F/M] 66.7(6.0)/66.5(7.6) 66.6(6.0)/65.9(7.3)
MMSE [F/M] 16.8(5.0)/19.0(5.8) 29.0(1.3)/29.0(1.0)
AD: Alzheimer’s disease patients. HC: healthy control subjects.
Values are expressed as mean (standard deviation). F: female. M: male.
Age is given in years.

4.4 PC-GITA

The transcriptions from the recordings of spontaneous speech of 50 PD patients and 50 HC
subjects are considered in this thesis to analyze the suitability of the NLP methods to discriminate
the disease. The speech recordings are part of the PC-GITA corpus [92]. For this thesis only
recordings of monologues are considered. The task consisted of asking the participants to talk
about their daily routines. The average duration of the monologues is 48±29 seconds for the
patients and 45±24 for the healthy subjects. The transcriptions were produced following the
verbatim protocol, using headphones to maximize the transcription accuracy and to minimize
possible human errors. The whole vocabulary of the lemmatized transcriptions without stopwords
(e.g., the, of, in, on, etc.) consists of 1182 words. The patients were evaluated by an expert
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neurologist and labeled according to the MDS-UPDRS-III score. Table 4.3 shows additional
information of the subjects.

Table 4.3: General information of the subjects in the PC-GITA dataset. Time since diagnosis, age
and education are given in years. ap calculated through Chi-square test. bp calculated through t
test.

PD patients HC subjects Patients vs. controls
Gender [F/M] 25/25 25/25 p=1.00a

Age [F/M] 60.7(7.3)/61.3(11.7) 61.4(7.1)/60.5(11.6) p=0.98b

Education [F/M] 11.5(4.1)/10.9(4.5) 11.5(5.2)/10.6(4.4) p=0.88b

Time since diagnosis [F/M] 12.6(11.5)/8.7(5.8)
MDS-UPDRS-III [F/M] 37.6(14.0)/37.8(22.1)
PD patients: Parkinson’s disease patients. HC subjects: Healthy control subjects. Values are expressed
as mean (standard deviation). F: female. M: male. Time since diagnosis, age and education are given
in years. ap calculated through Chi-square test. bp calculated through t-test.

4.5 Depression in Parkinson’s Disease

The data considered transliterations of spontaneous speech from 60 Spanish speakers from
Colombia, 25 D-PD patients and the remaining 35 ND-PD patients. They were labeled according
to the depression item of the MDS-UPDRS-I. D-PD are the patients with the item higher than zero
and ND-PD patients are those with the item equal to zero. The participants were requested to talk
about their daily routines. After performing the tasks, the patients were immediately evaluated
by the neurologist. The average duration of the monologues is 84±34 seconds for the D-PD
patients and 80±37 for the ND-PD patients. The transcripts were obtained from audio files that
were manually transcribed following the verbatim protocol, using headphones to maximize the
transcription accuracy. The whole vocabulary of the lemmatized transcriptions without stopwords
contains 1240 words. Additional information of the PD patients including age, gender, education
level, time since diagnosis, and their neurological state are included in Table 4.4.
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Table 4.4: General information of the subjects in the Depression in Parkinson’s Disease dataset

D-PD patients ND-PD patients D-PD vs. ND-PD
Number of subjects [F/M] 15/10 17/18 p =0.99a

Age [F/M] 66.1(10.3)/68.8(9.1) 60.3(13.2)/66.3(10.3) p =0.24b

Education [F/M] 9.8(3.8)/11.1(5.1) 11.2(5.1)/13.8(4.1) p =0.05b

Time since diagnosis [F/M] 6.4(5.3)/8.1(4.5) 13.7(12.7)/7.3(4.8) p =0.26b

MDS-UPDRS-III [F/M] 33.3(18.8)/35.3(16.6) 26.5(10.2)/36.3(1.7) p =0.81b

MDS–UPDRS–Depression [F/M] 1.4(0.7)/1.3(0.7) 0.0/0.0 p =0.05b

D-PD patients: Depressive Parkinson’s disease patients. ND-PD patients: Non-Depressive Parkinson’s
disease patients. Values are expressed as mean (standard deviation). F: female. M: male. Time since
diagnosis, age and education are given in years. ap calculated through Chi-square test. bp calculated
through Mann-Whitney U-test.

4.6 Interactive Emotional Dyadic Motion Capture

The IEMOCAP [93] is an acted, multi-speaker and multimodal dataset collected by the University
of Southern Carolina. It contains 12 hours of audios, dialog transcripts, video and motion capture
of dyadic interactions between ten different English native speakers. This consists of five sessions,
which contain a total of 10039 utterances and an original sampling rate of 16kHz. Each session
is displayed by a pair of speakers (male and female) in scripted and improvised scenarios. The
utterances are transliterated by 3 human annotators to reduce the transcription error. They are
discretely labeled according to 9 categorical attributes: anger, happiness, excitement, sadness,
frustration, fear, surprise, other and neutral state. Additionally, this dataset contains dimensional
scaled attributes from 0 to 5 such as valence, arousal, dominance. In this thesis, they are centered
in 2.5 in order to divide the quadrants of the arousal-valence plane. Notice in Table 4.5 that
the data is highly imbalance especially for classes related to negative valences. This problem is
addressed by performing data augmentation in both modalities. For the speech recordings, the
amount of data was augmented by adding Gaussian noise with different SNR (20 dB, 30 dB,
40 dB) to every signal. For the transcripts, the data augmentation was performed by means of
translate the text from English to Spanish and then from Spanish to English.



62 CHAPTER 4. DATASETS

Table 4.5: Number of samples after data augmentation for speech and text in IEMOCAP dataset.

Task Arousal Valence Quadrants
AA PA PV NV AP AN PN PP

Original size 3427 1288 4082 633 2990 437 196 1092
DA for Speech 26472 13684 35032 5124 22968 3504 1620 12064
DA for Text 13236 6842 17516 2562 11484 1752 810 6032
DA: Data Augmentation. AA: Active Arousal. PA: Passive Arousal. PV: Positive
Valence. NV: Negative Valence. AP: Active Positive. AN: Active Negative.
PN: Passive Negative. PP: Passive Positive.



Chapter 5

Experiments and results

This thesis proposes multimodal analysis based on acoustic and linguistic information to assess
different scenarios: (1) customer satisfaction, and (2) neuro-degenerative diseases. This section is
divided into five different experiments: (1) Evaluation of customer satisfaction, (2) Assessment of
Genetic AD, (3) Linguistic analysis to discriminate PD, (4) Depression in Parkinson’s disease, and
(5) User state modeling based on arousal-valence plane for customer satisfaction and health-care.

5.1 Evaluation of Customer Satisfaction

In this experiment, customer satisfaction analysis is performed considering two different datasets
related to insurance and banking call-centers separately. The datasets were presented in Section 4.1.
The analysis is based on the discrimination of satisfied and dissatisfied customer interactions.

5.1.1 Methodology

The general methodology addressed in this experiment is illustrated in Figure 5.1. Articulation
and prosody features are considered for speech, while W2V, BERT, and the Spanish version of
BERT (BETO) are extracted for linguistic analysis.

Acoustic Analysis

The acoustic analysis in this study is based on the articulation and prosodic features proposed
previously [94], [95]. The onset and offset transitions are detected based on the presence of the
fundamental frequency. Chunks of chunks of 40 ms a shift of 10 ms of speech are taken to the left
and to the right of each border to form offsets and onsets.

63
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Transcripts

Feature
Extraction

Speech
Classification

Satisfied

Customer

Prediction

Word
Embeddings

Articulation and
Prosody

Dissatisfied

Customer

Figure 5.1: Scheme of the methodology addressed in this thesis for the evaluation of customer
satisfaction

Articulation analysis is based on the energy content and the formant frequencies. The energy
content is modeled considering 22 frequency bands according to the Bark scale, and 12 MFCCs
along with their derivatives. The feature set is completed with the first two formant frequencies
and their derivatives, computed from the voiced segments. A total of 122 descriptors are extracted
(see Table 5.1). Four statistical functionals are computed for all articulation descriptors: mean,
standard deviation, kurtosis and skewness, forming a 488-dimensional feature vector per utterance.
Prosody analysis is based on the fundamental frequency contour, the energy, and the duration. F 0

and energy contour are modeled considering the tilt, the mean square error (MSE), and the first
and last voiced and unvoiced segments. Features based on duration consider voiced rate, duration
of pauses and ratios. A total of 103 descriptors are extracted (see Table 5.1).

Linguistic Analysis

The linguistic analysis in this study is based on word-embeddings such as W2V, BERT, and
BETO. Four functionals (mean, standard deviation, kurtosis and skewness) are computed over all
word-embeddings for each method to form a static vectors for each speaker. Table 5.2 shows the
number of computed NLP features for each method.

5.1.2 Optimization and Classification

The classification is performed using a Radial Basis Function-Support Vector Machine (RBF-
SVM). The validation process for the banking call-center dataset follows a bootstraping strategy
of 70%-15%-15% as is shown in Figure 5.2.A., where 70% of the data is used for training, 15% to
optimize the hyper-paramaters of the SVM, and 15% for testing. The experiments in the insurance
call-center dataset follows a 5-fold cross-validation strategy as illustrated in Figure 5.2.B. The
data is divided into k = 5 subsets, one subset is used to test the model, and the rest (k − 1 = 4)
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Table 5.1: List of computed acoustic descriptors

Articulation features
1-22 Bark band energies in onset transitions
23-34 MFCCs in onset transitions
34-46 First derivative of the MFCCs in onset transitions
47-58 Second derivative of the MFCCs in onset transitions
59-80 Bark band energies in offset transitions
81-92 MFCCs in offset transitions
93-104 First derivative of the MFCCs in offset transitions
105-116 Second derivative of the MFCCs in offset transitions
117 First formant Frequency
118 First Derivative of the first formant frequency
119 Second Derivative of the first formant frequency
120 Second formant Frequency
121 First derivative of the Second formant Frequency
122 Second derivative of the Second formant Frequency

Prosodic features
1-6 F 0 contour
7-12 Tilt of a linear estimation of F 0 for each voiced segment
13-18 MSE of a linear estimation of F 0 for each voiced segment
19-24 F 0 on the first voiced segment
25-30 F 0 on the last voiced segment
31-34 Energy contour for the voiced segments
35-38 Tilt of a linear estimation of energy contour for voiced segments
39-42 MSE of a linear estimation of energy contour for voiced segment
49-54 Energy on the last voiced segment
55-58 Energy-contour for unvoiced segments
59-62 Tilt of a linear estimation of energy contour for unvoiced segments
63-66 MSE of a linear estimation of energy contour for unvoiced segments
67-72 Energy on the first unvoiced segment
73-78 Energy on the last unvoiced segment
79 Voiced rate
80-85 Duration of voiced segments
86-91 Duration of unvoiced segments
92-97 Duration of pauses
98-103 Duration of ratios
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Table 5.2: List of computed linguistic descriptors

Linguistic features
1-100 W2V
100-868 BERT
868-1636 BETO

are used to train the model and to perform an internal 4-fold cross-validation to optimize the
hyper-paramaters of the SVM. The optimal parameters of the RBF-SVM are found through a
grid search where C ∈ {10−4, 10−3, ..., 104} and γ ∈ {10−4, 10−3, ..., 104}. The optimization
criterion is the f-score obtained in the development set. The classification considers each feature
set and the combination using an early fusion strategy to merge linguistic and acoustic features
before performing the classification.

A

Train

Database

Development

Test

C, γ

Train

B

Database Train/Development

Database
k-1

1-Fold

C, γ
4-Fold

CV

Train

k-Folds

Figure 5.2: Database distribution for the evaluation of customer satisfaction: A) Bootstraping
strategy for customer satisfaction in banking call-centers. B) Cross-validation strategy for customer
satisfaction in insurance call-centers. CV: cross-validation. N: number of samples.Database
distribution. CV: cross-validation. N: number of samples.

5.1.3 Results and Discussion

Two different experiments are performed related to customer satisfaction: (1) automatic classifi-
cation of customer satisfaction in banking call-centers, (2) automatic classification of customer
satisfaction in insurance call-centers. The same procedure to extract features is considered for both
datasets. The performance of the classifiers is evaluated according to their F-score, Unweighted
Average Recall (UAR), Sensitivity (Sens), Specificity (Spe), and the Area Under the receiver
operating characteristic Curve (AUC).
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Banking Call-Center

This experiment is performed using the banking call-center dataset presented in Section 4.1. Five
different feature sets are considered for acoustic and linguistic analyses: (1) articulation, (2)
prosody, (3) W2V, (4) BERT, and (5) BETO. The results for each feature set separately are shown
in Table 5.3. Acoustic features show the highest results with 0.70 of F-score for articulation, and
0.72 for prosody. Linguistic results are the less accurate with an average F-score of 0.51.

Table 5.3: Results for the banking call-center dataset using each feature set separately

Features Experiment F-score UAR Sens Spe AUC C γ

Acoustic Articulation 0.70 70.4 59.4 80.5 0.76 10e-2 10e-4
Prosody 0.72 72.4 72.4 72.4 0.81 10e+2 10e-5

Linguistic
W2V 0.52 52.7 45.9 58.9 0.52 10e0 10e-4
BERT 0.51 51.5 39.4 62.7 0.51 10e+1 10e-5
BETO 0.51 51.3 40.6 61.1 0.50 10e0 10e-5

Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity. AUC: Area
under the ROC curve. C and γ are the optimal meta-parameters obtained in development
for RBF-SVM. Unweighted average recall, Sensitivity and Specificity are given in [%].

Table 5.4 shows the results using early fusion to combine the different feature sets, without
including BETO. Even though BERT and BETO produce a similar performance, in the fusion
of features BERT obtained higher results in this experiment. Notice that highest performance
in this table is obtained for the combination of articulation, prosody, and W2V, indicating not
improvement in comparison to only using prosody.

The score distributions for each feature set, and the combination of articulation, prosody and
W2V are shown in order to observe more information related to the behavior of the classifiers (see
Figures 5.3 and 5.4). The scores correspond to the distance to the hyperplane in the RBF-SVM.
The dark gray bars correspond to the scores for DC-BC, the white bars are the scores computed
for the SC-BC, and the light gray bars correspond to the intersection between both sets, and reflect
the classification errors. Note that for prosody the score range is wider in comparison with the
other results, while when the early fusion between articulation, prosody and W2V is performed
the score range is narrower.

The ROC curves are illustrated in Figure 5.5. These curves allow to show the results more com-
pactly. The features related to acoustics obtained the highest performances, while the linguistics
for this task have to be improved.
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Table 5.4: Results for the banking call-center dataset using early fusion of the different feature
sets.

Experiment F-score UAR Sens Spe AUC C γ
Art-Pro 0.69 69.3 62.4 75.7 0.69 10e-2 10e-4
Art-W2V 0.69 69.0 58.2 78.9 0.75 10e-1 10e-4
Art-BERT 0.64 64.5 52.9 75.1 0.70 10e-1 10e-5
Pro-W2V 0.67 67.3 63.5 70.8 0.74 10e-1 10e-4
Pro-BERT 0.64 63.9 55.9 71.4 0.67 10e+2 10e-5
W2V-BERT 0.51 52.1 38.8 64.3 0.51 10e0 10e-5
Art-Pro-W2V 0.70 70.1 63.5 76.2 0.78 10e-1 10e-5
Art-Pro-BERT 0.67 67.6 57.1 77.3 0.74 10e-1 10e-5
Art-W2V-BERT 0.64 63.9 54.1 73.0 0.69 10e-1 10e-5
Pro-W2V-BERT 0.63 63.1 55.9 69.7 0.66 10e+1 10e-4
Art-Pro-W2V-BERT 0.67 67.6 59.4 75.1 0.73 10e-1 10e-5
Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity.
AUC: Area under the ROC curve. C and γ are the optimal meta-parameters obtained
in development for RBF-SVM. Unweighted average recall, sensitivity, and specificity
are given in [%].

A B C

Figure 5.3: Scores for the banking call-center dataset obtained for: A) Articulation. B) Prosody.
C) W2V.
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A B C

Figure 5.4: Scores for the banking call-center dataset obtained for linguistic features: A) BERT.
B) BETO. C) Early fusion between articulation, prosody and W2V.

Figure 5.5: ROC Curve for the banking call-center dataset obtained for different feature sets. Art:
articulation. Pro: prosody.
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Insurance Call-Center

The same five feature sets and the insurance call-center (see Section 4.1) are considered for this
experiment. Due to the unbalance in the data, a sub-set of the SC-IC class is chosen to match the
size of the DC-IC set. The experiment is performed five times with different random sub-sets of
SC-IC, reporting the average of these experiments. The results using each feature set separately
are shown in Table 5.5. Unlike the experiments performed with the banking call-center dataset,
linguistic features obtained the most accurate results, and BETO produce an slightly improvement
(1%) in performance in comparison with BERT.

Table 5.5: Results for the insurance call-center dataset of each feature set separately

Features Experiment F-score UAR Sens Spe AUC C γ

Acoustic Articulation 0.54 54.3 52.6 55.9 0.57 10e0 10e-4
Prosody 0.56 56.1 60.7 51.5 0.58 10e1 10e-4

Linguistic
W2V 0.70 70.6 74.1 67.0 0.75 10e0 10e-5
BERT 0.70 70.6 63.3 77.8 0.76 10e-1 10e-5
BETO 0.71 71.3 65.9 76.7 0.76 10e0 10e-5

Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity. AUC: Area
under the ROC curve. C and γ are the optimal meta-parameters obtained in development
for RBF-SVM. Unweighted average recall, Sensitivity and Specificity are given in [%].

Table 5.6 shows the results using the early fusion strategy without considering BERT. The
combination of features using BETO obtained higher performance for BERT in this experiment.
The combination of prosody and BETO produce the most accurate results (F-score=0.73), where
the sensitivity increased in comparison with using only BETO.

Figures 5.6 and 5.7 show the scores obtained for each feature set, and the combination of
prosody and BETO. Similar as in the banking call-center experiment, the dark gray bars correspond
to the scores for DC-IC, the white bars are the scores computed for the SC-IC. The combination
of prosody and BETO improves the performance and decreases the number of outliers in the
distribution in comparison with only using BETO.

The ROC curves obtained are shown in Figure 5.8.Note that similar results are not obtained
for both approaches even though both are classifying satisfaction. It may be produced because
the information is derived from two different sources, for the insurance call-center dataset the
interaction between client and advisor, and for the banking call-center dataset customer opinions
recorded in a voicemail.
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Table 5.6: Results for the insurance call-center dataset using early fusion of the different feature
sets.

Experiment F-score UAR Sens Spe AUC C γ
Art-Pro 0.55 55.2 53.7 56.7 0.57 10e0 10e-4
Art-W2V 0.65 65.0 63.7 66.3 0.72 10e+1 10e-5
Art-BETO 0.72 72.0 67.8 76.3 0.79 10e-1 10e-5
Pro-W2V 0.70 69.8 71.1 68.5 0.75 10e0 10e-4
Pro-BETO 0.73 73.5 71.5 75.6 0.80 10e-1 10e-5
W2V-BETO 0.71 70.8 67.1 74.5 0.79 10e-1 10e-5
Art-Pro-W2V 0.67 67.0 65.9 68.1 0.72 10e+1 10e-5
Art-Pro-BETO 0.73 73.1 71.9 74.4 0.79 10e-1 10e-5
Art-W2V-BETO 0.72 71.9 70.7 73.0 0.79 10e-1 10e-5
Pro-W2V-BETO 0.71 70.8 69.0 72.7 0.79 10e-1 10e-5
Art-Pro-W2V-BETO 0.72 72.0 71.1 73.0 0.78 10e0 10e-5
Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity.
AUC: Area under the ROC curve. C and γ are the optimal meta-parameters obtained
in development for RBF-SVM. Unweighted average recall, sensitivity, and specificity
are given in [%].

A B C

Figure 5.6: Scores for the insurance call-center dataset obtained for: A) Articulation. B) Prosody.
C) W2V.
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A B C

Figure 5.7: Scores for the insurance call-center dataset obtained for: A) BERT. B) BETO. C)
Early fusion between prosody and BETO.

Figure 5.8: ROC Curve for the insurance call-center dataset obtained for different feature sets.
Art: articulation. Pro: prosody.
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5.2 Assessment of Genetic Alzheimer’s disease

AD is highly characterized by the deterioration of the capability to produce coherent language that
affects lexical, grammatical and semantic processes. In addition to language disorders, different
studies have shown abnormalities in language production, characterized by the difficulty to access
semantic information intentionally, which affects the speech fluency of the patients [25]. The
dataset considered in this experiment is presented in Section 4.2. This thesis proposes the use
of acoustic and NLP methods to extract features from transcriptions to discriminate between
asymptomatic subjects belonging to families with AD that are Genetic Carriers (GC), that are not
Genetic Carriers (NGC), and EOA patients with MCI.

5.2.1 Methodology

Figure 5.9 shows the general methodology addressed in this study. This experiments adopted the
same methodology as in Section 5.1 regarding the extraction of acoustic and linguistic features.
Four functionals (mean, standard deviation, kurtosis and skewness) are computed over all the
acoustic and linguistic features sets to form a static vectors for each speaker.

Feature
Extraction

Acoustic

Linguistic

Classi�cation

HC

Figure 5.9: Scheme of the methodology addressed in this thesis for the assessment of Alzheimer’s
disease

5.2.2 Optimization and Classification

The classification is performed using an RBF-SVM. The validation process is a modification of the
regular Leave-One-Speaker-Out (LOSO) strategy (see Figure 5.10). During the regular LOSO, the
meta-parameters of the classifier have to be decided on the best parameters in the development for
all the N speakers. However, these results are optimistic, since up to N parameter sets are found,
i.e., N different classifiers. The proposed validation in this study uses the regular strategy with an
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internal 6-fold cross-validation to optimize the hyper-paramaters of the SVM. N different optimal
hyper-parameters will be obtained and stored. The found settings were sorted and the median
of all of these values was obtained in order to have only one C and one γ. Finally, the LOSO
strategy is performed again with the fixed parameters. The optimal parameters of the RBF-SVM
are found through a grid search where C ∈ {10−6, 10−3, ..., 105} and γ ∈ {10−6, 10−3, ..., 105}.
The optimization criterion was the F-score obtained in development, and as a tiebreaker method
Area Under the Curve (AUC).

Database Train/Development

N-1

Test Sample

Database Train

N-1

Test Sample

C, γ6-Fold
CV

C, γ

N-Times

N-Times

Modification of 
The Regular LOSO

Regular LOSO
Cross Validation 

Strategy

Figure 5.10: Database distribution for the assessment of Alzheimer’s disease. CV: cross-validation.
N: number of samples.

5.2.3 Results and Discussion

Linguistic differences between AD patients and HC subjects can be shown via word cloud
representations (see Figures 5.11 and 5.12). The texts are pre-processed using noise removal
and lexicon normalization, in order to build the word clouds. This representation allows the
viewer to see which words are used more or less frequently. The bigger the word in the cloud, the
more frequently it is used. Most of the words are similar since all groups performed the cookie

theft task, where the attention is focused in words such as kid (“niño”), cat (“gato”), mother
(“mamá”, “señor”), and cookie (“galleta”). Note that the word “mamá” is in male form due to the
lemmatization process. The GC and NGC groups mention the mother as “mamá” and “señor”,
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while MCI patients and HC subjects recognize the mother easier as “señor” (Mrs). The MCI
patients more frequently use the Colombian crutch “pues” followed by the HC subjects. This may
denote usually a lack of fluency in the speech. Additionally, the age may influence the lexicon,
since on average the MCI and HC are 20 years older than GC and NGC subjects.

A B

Figure 5.11: Word cloud representation for the assessment of genetic carries in Alzheimer’s
disease: A) GC subjects. B) NGC subject.

A B

Figure 5.12: Word cloud representation for the assessment of Alzheimer’s disease patients with
MCI: A) MCI patients. B) HC subjects.

The experiments consider two classification tasks: (1) MCI vs. HC, and (2) GC vs. NGC.
Other classification tasks are not considered since the corpora are not balanced with respect to
the age. Kruskal-Wallis test with Bonferroni correction was performed to evaluate whether there
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was a significant difference between groups. The null hypothesis of the medians coming from the
same distribution was rejected (p� 0.05) in all cases.

GC vs. NGC

Table 5.7 shows the classification results considering each feature set individually. Prosody and
BERT produce the highest results for GC vs. NGC. Despite the fact that BERT obtained a higher
F-score than prosody, sensitivity and specificity are more balanced for prosody.

Table 5.7: Results for the assessment of genetic carries in Alzheimer’s disease using each feature
set separately

Features Experiment F-score UAR Sens Spe AUC C γ

Acoustic Articulation 0.47 46.9 39.3 52.8 0.47 55e-1 55e-5
Prosody 0.67 67.2 60.7 72.2 0.70 10e1 10e-5

Linguistic
W2V 0.53 53.1 39.3 63.9 0.52 10e0 10e-5
BERT 0.68 68.8 50.0 83.3 0.74 10e0 10e-5
BETO 0.65 65.6 53.6 75.0 0.72 55e-1 10e-5

Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity. AUC: Area
under the ROC curve. C and γ are the optimal meta-parameters obtained in development
for RBF-SVM. Unweighted average recall, Sensitivity and Specificity are given in [%].

Table 5.8 shows the results using the early fusion strategy. The combination of features does
not improve the results of classification using each feature set separately.

Figures 5.13 and 5.14 show the score distributions for each feature set and the combination of
W2V and BERT. The dark gray bars correspond to the scores for NGC subjects, the white bars are
the scores computed for the GC subjects. Note that for prosody the range of the scores for the
NGC subjects is wider, and for the GC most of the subjects are concentrated close to the decision
boundary of the RBF-SVM.

The ROC curves obtained are shown in Figure 5.15. Prosody, BERT and BETO obtained the
highest performances. BERT and BETO produce similar results, which concludes that for our
approach the translation to Spanish did not show a strong impact on the results.
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Table 5.8: Results for the assessment of genetic carries in Alzheimer’s disease using early fusion
of the different feature sets.

Experiment F-score UAR Sens Spe AUC C γ
Art-Pro 0.52 51.6 53.6 50.0 0.55 10e0 10e-5
Art-W2V 0.49 50.0 32.1 63.9 0.49 10e0 10e-5
Art-BERT 0.60 60.9 42.9 75.0 0.69 10e0 10e-5
Pro-W2V 0.53 54.7 32.1 72.2 0.52 10e-1 10e-4
Pro-BERT 0.63 64.1 46.4 77.8 0.68 10e0 10e-5
W2V-BERT 0.65 67.2 42.9 86.1 0.62 10e-1 10e-5
Art-Pro-W2V 0.53 54.7 32.1 72.2 0.53 10e0 10e-5
Art-Pro-BERT 0.62 62.5 46.4 75.0 0.70 10e0 10e-5
Art-W2V-BERT 0.53 54.7 35.7 69.4 0.64 55e-1 10e-5
Pro-W2V-BERT 0.61 60.9 50.0 69.4 0.65 10e0 10e-5
Art-Pro-W2V-BERT 0.62 64.1 39.3 83.3 0.63 10e-1 10e-5
Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity.
AUC: Area under the ROC curve. C and γ are the optimal meta-parameters obtained
in development for RBF-SVM. Unweighted average recall, sensitivity, and specificity
are given in [%].

A B C

Figure 5.13: Scores for the assessment of genetic carries in Alzheimer’s disease obtained for: A)
Articulation. B) Prosody. C) W2V.
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A B C

Figure 5.14: Scores for the assessment of genetic carries in Alzheimer’s disease obtained for: A)
BERT. B) BETO. C) Early fusion between W2V and BERT.

Figure 5.15: ROC Curve for the assessment of genetic carries in Alzheimer’s disease obtained for
different feature sets. Art: articulation. Pro: prosody.
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MCI patients vs. HC subjects

Table 5.9 shows the classification results considering each feature set individually to discriminate
AD patients with MCI. The most accurate results for MCI vs. HC are obtained using acoustic
features, while linguistics do not produce good performance.

Table 5.9: Results for the assessment of Alzheimer’s disease patients with MCI using each feature
set separately

Features Experiment F-score UAR Sens Spe AUC C γ

Acoustic Articulation 0.66 66.0 69.6 63.0 0.70 55e-1 55e-5
Prosody 0.66 66.0 56.5 74.1 0.70 10e1 10e-5

Linguistic
W2V 0.48 48.0 39.1 55.6 0.46 55e0 10e-5
BERT 0.50 50.0 43.5 55.6 0.45 10e0 10e-5
BETO 0.50 50.0 39.1 59.3 0.55 55e-1 10e-5

Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity. AUC: Area
under the ROC curve. C and γ are the optimal meta-parameters obtained in development
for RBF-SVM. Unweighted average recall, Sensitivity and Specificity are given in [%].

Table 5.10 shows the results using the early fusion strategy. In general, when articulation and
prosody features are combined, the performance of the classifier improves in comparison with
each feature set separately.

Table 5.10: Results for the assessment of Alzheimer’s disease patients with MCI using early
fusion of the different feature sets.

Experiment F-score UAR Sens Spe AUC C γ
Art-Pro 0.74 74.0 65.2 81.5 0.77 10e0 10e-5
Art-W2V 0.58 58.0 52.2 63.0 0.63 10e0 10e-5
Art-BERT 0.54 54.0 47.8 59.3 0.57 10e0 10e-5
Pro-W2V 0.48 48.0 39.1 55.6 0.50 10e0 10e-5
Pro-BERT 0.48 48.0 39.1 55.6 0.50 10e0 10e-5
W2V-BERT 0.50 50.0 47.8 50.0 0.52 10e0 10e-5
Art-Pro-W2V 0.66 66.0 60.9 70.4 0.68 10e0 10e-5
Art-Pro-BERT 0.58 58.0 56.5 59.3 0.59 10e0 10e-5
Art-W2V-BERT 0.50 50.0 543.5 60.0 0.53 55e-1 10e-5
Pro-W2V-BERT 0.43 44.0 30.4 55.6 0.44 10e0 10e-5
Art-Pro-W2V-BERT 0.54 54.0 43.5 63.0 0.55 10e0 10e-5
Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity.
AUC: Area under the ROC curve. C and γ are the optimal meta-parameters obtained
in development for RBF-SVM. Unweighted average recall, sensitivity, and specificity
are given in [%].



80 CHAPTER 5. EXPERIMENTS AND RESULTS

Figures 5.16 and 5.17 show the scores obtained for each feature set, and the combination
of prosody and BETO. The dark gray bars correspond to the scores for HC subjects, the white
bars are the scores computed for the MCI patients. The combination of articulation and prosody
improves the performance and decreases the number of outliers in the distribution in comparison
with only using articulation.

A B C

Figure 5.16: Scores for the assessment of Alzheimer’s disease patients with MCI obtained for: A)
Articulation. B) Prosody. C) W2V.

Figure 5.18 shows the ROC curves. Note that for this classification task the linguistic em-
beddings do not get satisfactory results. This may occur due to some unknown words by the
algorithms related to characteristic lexicon from the region, or mispronunciations of the words.
The GC and NGC subjects are at a mean age of close to 30 years, while the patients and HC are at
a mean age 50. The MCI patients and HC subjects have a lower education level, and many come
from rural regions, thus their lexicon is more characteristic of the region and tends to produce
more mispronunciations of the words. Regarding BERT and BETO models, the results with BERT
were slightly higher, which concludes that for our approach the translation to Spanish did not
show a strong impact on the results.

The comparison with the regular LOSO strategy was performed, where the difference between
the F-scores between both validation approaches was 3% on average, which confirms that the
regular LOSO is more optimistic. More detail about the comparison between the two validation
methods in Appendix A.
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A B C

Figure 5.17: Scores for the assessment of Alzheimer’s disease patients with MCI obtained for: A)
BERT. B) BETO. C) Early fusion between articulation and prosody.

Figure 5.18: ROC Curve for the assessment of Alzheimer’s disease patients with MCI obtained
for different feature sets. Art: articulation. Pro: prosody.
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5.3 Linguistic Analysis to Discriminate Parkinson’s Disease

This thesis proposes the use of NLP methods to extract features from transcriptions to discriminate
between HC subjects and PD patients. Although acoustic analysis has shown to be a suitable
tool to study symptoms of PD patients, there are components related to language production that
are not modeled with that approach. The aim is to to model language deficits exhibited by PD
patients.

5.3.1 Methodology

The database for this approach was presented in Section 4.4. The transcriptions were obtained
from spontaneous speech recordings, where the participants were asked to describe their daily
routines. Figure 5.19 shows the main steps followed in this study to perform the text analysis.
The data is split into train and test sets, in order to perform a LOSO strategy to validate this
approach. Text processing for all NLP techniques is performed to remove noisy entities and to
standardize and clean the text. The feature extraction step includes classical approaches such as
BoW and TF-IDF, along with word-embeddings like W2V. Stemming process is not considered in
the Lexicon normalization step for W2V. The classification is performed to discriminate between
PD patients and HC subject.

 

Noisy entities

cleaned text

BoW, TF IDF,
W2V 

Training 

set
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sample

Pre-

processing

removal, lexicon
normalization

Pre-
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Feature
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Feature
extraction
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Figure 5.19: Scheme of the general methodology to discriminate Parkinson’s disease using NLP
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5.3.2 Optimization and Classification

The discrimination capability is performed using an RBF-SVM and Random Forest. The data
is distributed following a LOSO strategy as it is shown in Figure 5.20. The criterion for the
meta-parameters optimization is performed following a 10-fold cross validation strategy. The
optimization is based on the accuracy obtained in the development data. Notice that this process
might be slightly optimistic since we have a different set of meta-parameters for each test
sample; however, the results show that the distribution of the meta-parameters is stable across
the different test sets. The optimal parameters are found through a grid search, where C ∈
{10−4, 10−3, ..., 104} and γ ∈ {10−4, 10−3, ..., 104} for the RBF-SVM, and number of trees
N ∈ {5, 10, 20, 30, 50, 100} and maximum depth D ∈ {2, 5, 10, 20, 30, 50, 100} for the RF. The
optimal hyper-parameters are found based on the median of the values of the hyper-parameters
obtained for each fold.

Database Train/Development

N-1

Test Sample

10-Fold
CV

Figure 5.20: Database distribution for the assessment of Parkinson’s disease using NLP. CV:
cross-validation. N: number of samples.

5.3.3 Results and Discussion

The Word cloud representations between PD patients and HC subjects are shown in Figure 5.21.
The text are preprocessed using noise removal and lexicon normalization, in order to build the
word clouds. The patients frequently used words such as “casa” (house) or “ver televisión” (watch
television). and fillers in Spanish like “pues”, while words such as “trabajar” (work), “salir” (go
out), “gustar” (like) or “bueno” (good) appear more frequently in HC subjects. In addition to
the words related to the daily activities of the subjects, in PD patient appears more frequently a
Colombian fuller word “pues” (≈ well in English), denoting a lack of fluency in the speech of the
patients. Note that the patients said the same words most of the time since there are fewer words
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that look representative in the cloud in comparison to the cloud of the HC subjects, where there is
more variety.

A B

Figure 5.21: Word cloud representation for the assessment of Parkinson’s disease using NLP: A)
PD patient. B) HC subject

Classification results in Table 5.11 considers the three feature sets individually and their
combination in an early fusion strategy. The performance of the classifiers is evaluated according
to their Unweighted Average Recall (UAR), Sensitivity (Sens), Specificity (Spe), and the Area
Under the receiver operating characteristic Curve (AUC). Highest results are obtained for W2V
using RBF-SVM (UAR=72%) and for BoW (UAR=70%) using RF. On the one hand, the results
related to BoW could indicate that the occurrence of the words may be relevant in order to
discriminate the disease. On the other hand, W2V is a more robust method that allows extracting
contextual information from the text. The early fusion strategy did not improve the performance,
indicating that the considered features are not complementary and further research is required
to find an optimal strategy to merge such information. However, this could be due to the high
dimensionality and a large amount of sparse cells provide by BoW and TF-IDF.

Notice that in general specificity is lower than sensitivity, which indicates that PD patients
were better discriminated in most of the cases. This difference between specificity and sensitivity
suggests that AUC is a better statistic to compare the approaches. The highest AUC is obtained
with the BoW features using RF (0.76).

The approaches that provide highest AUC values are obtained using RF, where the distribution
of the scores is shown Figures 5.22. The dark gray bars correspond to the scores for HC subjects,
the white bars are the scores computed for the PD patients, and the light gray bars correspond
to the intersection between both sets, and reflect the classification errors. Note that the scores of
the PD patients are less sparse than those obtained for the HC subjects, and the scores for the
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Table 5.11: Classification results for the assessment of Parkinson’s disease using NLP.

Features RBF-SVM RF
UAR Sens Spe AUC C γ UAR Sens Spe AUC N D

BoW 62.0 70.0 54.0 0.60 10e+1 10e0 70.0 74.0 66.0 0.76 100 20
TF-IDF 58.0 58.0 56.0 0.60 10e+1 10e0 67.0 68.0 66.0 0.71 100 100
W2V 72.0 92.0 52.0 0.66 10e0 10e0 67.0 74.0 60.0 0.71 5 5
Fusion 60.0 62.0 58.0 0.62 10e+1 10e0 66.0 68.0 64.0 0.71 100 5
Notes: UAR: unweighted average recall. Sens: sensitivity. Spe: specificity. AUC: Area under the ROC curve.
C and γ are the optimal meta-parameters obtained in development for RBF-SVM. N and D are the optimal
meta-parameters obtained in development for RF. Unweighted average recall, Sensitivity and Specificity
are given in [%].

TF-IDF features are more overlapped. W2V and fusion RF scores are more overlapped and sparse,
especially for HC subjects, where a higher variance is observed, therefore this may provide a less
stable solution.

A B

Figure 5.22: Scores for the assessment of Parkinson’s disease using NLP obtained for the RF
classifier for: A) BoW. B) TF-IDF.

The ROC curves obtained using the RF classifier are shown in Figure 5.24. This figure allows
to show the results more compactly. ROC curve for BoW is the most stable, however, the AUC
and the curves are close to each other.
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A B

Figure 5.23: Scores for the assessment of Parkinson’s disease using NLP obtained for the RF
classifier for: A) W2V. B) Fusion.

Figure 5.24: ROC Curve for the assessment of Parkinson’s disease using NLP obtained for the RF
classifier
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5.4 Depression in Parkinson’s Disease

Depression is one of the typical non-motor symptoms that most Parkinson’s patients develop.
Impairments in speech production together with depression produce negative effect in the com-
munication capabilities and social interaction of patients. This thesis considers a combination
of acoustic and linguistic methods to model depressive patterns in PD. The used datasets in this
experiment are presented in Section 4.5 and Section 4.4. To the best of my knowledge, this is the
first study focused on evaluating depression symptoms in PD patients combining acoustic analysis
and NLP.

5.4.1 Methodology

Articulation and prosody dynamic features are considered for speech, while word embedding are
extracted for linguistic analysis. All features are shown in Table 5.12, where for speech signals is
taken chunks of 40 ms a shift of 10ms, only considering onset segments, and for linguistic the
embedding for each word in the utterance.

Table 5.12: Dynamic features considered in this approach for the assessment of depression in
Parkinson’s disease.

Features type Descriptors Dimension

Articulation
The energy content in the transitions is modeled
considering by the Bark scale, and 12 MFCCs
along with their derivatives

Number of voice
segments × 58

Prosody
Coefficients of 5-degree Legendre polynomials to
model the pitch and the energy contour, separately,
and the duration of each voiced segments

Number of voiced
segments × 13

Word
embeddings BERT embeddings from the last layer

Number of words
× 768

GMM-UBM to model acoustic and linguistic features is considered. Figure 5.25 shows the
scheme of the GMM-UBM based approach implemented in this thesis. These models are well
known for their effectiveness and scalability to model the spectral distribution of speech, especially
for text-independent speaker recognition applications. The inputs of the GMM-UBM are the
extracted features after applying PCA with 80% of cumulative variance.

GMMs represent the distribution of the feature for each ND-PD and D-PD patient. This PD
patients are considered from depression in PD database presented in Section 4.5. The GMM
model is derived from the UBM by adapting the parameters (mean vectors, covariance matrix,
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Figure 5.25: GMM-UBM based approach addressed in this thesis for the assessment of depression
in Parkinson’s disease

and mixture weights). The UBM is trained with two Gaussian components with the data from HC
subjects of PC-GITA database presented in Section 4.4. The number of Gaussian components was
selected based on the performance, and on the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). A user model for each patient is adapted to build a supervector by
concatenating the mean vector and the diagonal of the covariance matrix, to form a static vector
that represent each patient. Finally, each supervector from the GMM-UBM model is used as input
features to discriminate between D-PD and ND-PD as is shown in Figure 5.26.
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Depressive 

PD patient
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Figure 5.26: Scheme of the methodology addressed in this thesis for the assessment of depression
in Parkinson’s disease
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5.4.2 Optimization and Classification

The extracted supervector is used as input in the classification. Similar to Section 5.2, the
classification is performed using an RBF-SVM and following a LOSO strategy. The criterion for
the meta-parameters optimization is performed following a 6-fold cross validation strategy. The
optimal parameters C ∈ {10−4, 10−3, ..., 104} and γ ∈ {10−4, 10−3, ..., 104} of the RBF-SVM
are found through a grid search. The classification is performed for each feature set separately
and for the combination using an early fusion strategy to merge linguistic and acoustic features
before performing the classification. Late fusion strategies were also considered, but the results
were not satisfactory. The baseline considers four functionals (mean, standard deviation, kurtosis
and skewness) to form a static vectors for each speaker. These functionals are computed over the
described acoustic and linguistic features sets.

5.4.3 Results and Discussion

Linguistic differences between D-PD and ND-PD patients can be shown via word cloud represen-
tation (see Figure 5.27). The text are preprocessed using noise removal and lexicon normalization,
in order to build the word clouds.There are sligthly differences between the word clouds of D-PD
and ND-DP patients. Note that D-PD patients frequently used words that are directly linked to
routine activities such as “breakfast” (desayunar), “lunch” (almorzar), and “dinner” (comer or
cenar). Words as “salir” (go out), “bueno” (good) and “work” (trabajar) appear more frequently in
ND-DP patients.

BERT embeddings are using to capture the contextual and linguistic information since word
counting methods are mostly used for inference and may not provide enough information regarding
this problem.

Four different feature sets are considered for acoustic and linguistic analyses: (1) baseline,
(2) baseline after applying PCA, (3) the GMM-UBM supervectors, and (4) the GMM-UBM
supervectors after applying PCA over the feature space. The results for each feature set separately
are shown in Table 5.13. Highest results are obtained using articulation and BERT features. The
GMM-UBM based approaches are the most accurate to model depression disturbances in PD,
where articulation obtained an F-score=0.72, and with PCA prosody and BERT an F-score=0.70.

Table 5.14 shows the results for the combination of the different features sets using the early
fusion strategy. GMM-UBM model after applying PCA shows the highest result while combining
articulation and BERT features (F-score=0.77). This result is higher than the one obtained with
the baselines, and with each individual feature set. The combinations of features that included
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A B

Figure 5.27: Word cloud representation for the assessment of depression in Parkinson’s disease:
A) D-PD patient. B) ND-PD patient

Table 5.13: Results for the assessment of depression in Parkinson’s disease using each feature set
separately

Experiment Features F-score Sens Spe AUC Number of
features

Space
Reduction

Baseline
Articulation 0.60 72.0 51.4 0.61 488 -
Prosody 0.53 40.0 62.9 0.51 52 -
BERT 0.65 60.0 68.6 0.70 3072 -

Baseline
and PCA

Articulation 0.63 76.0 54.3 0.70 16 3.3
Prosody 0.55 40.0 68.6 0.54 15 28.9
BERT 0.54 52.0 54.3 0.55 37 1.2

GMM-UBM
Articulation 0.72 76.0 68.6 0.75 232 -
Prosody 0.49 20.0 77.1 0.47 52 -
BERT 0.64 48.0 77.1 0.63 3072 -

PCA and
GMM-UBM

Articulation 0.65 72.0 60.0 0.72 56 24.1
Prosody 0.70 72.0 68.6 0.69 16 30.8
BERT 0.70 56.0 80.0 0.70 508 16.8

Notes: AUC: area under the curve. Sens:Sensitivity. Spe: Specificity. Space Reduction,
Sensitivity and Specificity are given in [%]. Space reduction: the proportion of the modified
features sets after applying PCA.

prosody do not show satisfactory results, thus future work will explore other features related to
prosody to increase the robustness of the model.

The approaches that provide highest AUC values are obtained using PCA and GMM-UBM for
articulation, BERT and its fusion, where the distribution of the scores is shown in Figures 5.28.A,
5.28.B, and 5.28.C, respectively. The dark gray bars correspond to the scores for ND-PD patients,
the white bars are the scores computed for the D-PD patients, and the light gray bars correspond to
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Table 5.14: Results for the assessment of depression in Parkinson’s disease using early fusion of
the different feature sets.

Experiment Features F-score Sens Spe AUC Number of
features

Space
Reduction

Baseline

Art-Pro 0.60 68.0 54.3 0.59 540 -
Art-BERT 0.62 52.0 68.6 0.71 3560 -
Pro-BERT 0.65 60.0 68.6 0.70 3124 -
Art-Pro-BERT 0.62 56.0 65.7 0.69 3612 -

Baseline
and PCA

Art-Pro 0.60 56.0 62.9 0.54 31 5.7
Art-BERT 0.60 56.0 62.9 0.65 53 1.5
Pro-BERT 0.53 40.0 62.9 0.49 52 1.7
Art-Pro-BERT 0.55 52.0 57.1 0.56 68 1.9

GMM-UBM

Art-Pro 0.56 48.0 62.9 0.66 284 -
Art-BERT 0.63 48.0 74.3 0.66 3304 -
Pro-BERT 0.64 44.0 80.0 0.63 3124 -
Art-Pro-BERT 0.61 44.0 74.3 0.66 3356 -

PCA and
GMM-UBM

Art-Pro 0.67 60.0 71.4 0.70 72 24.4
Art-BERT 0.77 76.0 77.1 0.78 564 17.1
Pro-BERT 0.66 56.0 74.3 0.72 524 16.8
Art-Pro-BERT 0.72 76.0 68.6 0.77 580 17.3

Notes: AUC: area under the curve. Sens:Sensitivity. Spe: Specificity. Art: Articulation.
Pro: Prosody. Space Reduction, Sensitivity and Specificity are given in [%]. Space reduction: the
proportion of the modified features sets after applying PCA.

the intersection between both sets, and reflect misclassifications. Note that the scores of the D-PD
patients are less sparse than those obtained for the N-DP patients for articulation, contrary in BERT.
The combination of articulation and BERT shows an improvement regarding the consistency in
the discrimination of the reference and control class, therefore this may provide a more stable and
complementary solution.

The ROC curves obtained using the GMM-UBM model, after applying PCA are shown in
Figure 5.29. The highest AUCs are obtained with the early fusion strategy, for all cases. The
approach seems to be promising, although further research and more data are required to improve
these results.



92 CHAPTER 5. EXPERIMENTS AND RESULTS

A B C

Figure 5.28: Scores for the assessment of depression in Parkinson’s disease obtained with RBF-
SVM classifier for PCA and GMM-UBM:
A) Articulation. B) BERT. C) Art-BERT

A B

Figure 5.29: ROC curve graphics for the assessment of depression in Parkinson’s disease for PCA
and GMM-UBM: A) Each feature set separately. B) Early fusion strategy.



5.5. USER STATE MODELING BASED ON THE AROUSAL-VALENCE PLANE 93

5.5 User State Modeling Based on the Arousal-Valence Plane
for Customer Satisfaction and Health-Care

This thesis proposes a methodology focused on modeling the user’s state using speech and natural
language from spontaneous audio recordings and their transcripts for the evaluation of scenarios
such as customer satisfaction and assessment of patients with neuro-degenerative diseases. Speech
signals and their transcripts are used to train these systems based on the arousal-valence plane
representation [6], which performs a quantitative analysis of emotions and can handle the fact of
continuously emotional and mood changes that can be present in the human behavior. The trained
systems are used in three scenarios related to customer satisfaction and health-care: (1) evaluation
of customer satisfaction in call-centers, (2) assessment of depressive symptoms in PD patients,
and (3) assessment and classification of AD.

Different models were trained to discriminate each quadrant in the arousal-valence plane
and to obtain a set of posterior probabilities and embeddings to be used as input features. The
challenge is to model the user state based on this information to be applied in different scenarios,
such as customer satisfaction and health-care.

5.5.1 Methodology

The thesis considers to train different models based in several classification tasks to discriminate
different quadrants in the arousal-valence plane:

• Bi-class classification of active vs. passive arousal (AA vs. PA): the Active Arousal (AA)
class is the combination between the quadrants AP and AN, and the Passive Arousal (PA)
class considers PP and PN quadrants as is shown in Figure 5.30.A.

• Bi-class classification of positive vs. negative arousal (PV vs. NV): in this case the Positive
Valence (PV) class combines AP and PP quadrants, and Negative Valence (NV) class
combines AN and PN quadrants as is shown in Figure 5.30.B.

• Multi-class classification of active positive vs. active negative vs. passive negative vs.
passive positive (AP vs. AN vs. PN vs. PP): the last model is trained to classify the four
different quadrants as is shown in Figure 5.30.C.

The aforementioned processes are performed in order to decide which is more effective for
this problem, bi-classification or multi-class classification. The proposed models are implemented
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Figure 5.30: Classification tasks according to the arousal-valence plane: A) AA vs. PA, B) PV vs.
NV, C) AP vs. AN vs. PN vs. PP

in both acoustic and linguistic analysis. Each analysis considers different architectures. From the
speech signals, a 2D-Mel spectrogram is obtained to be used as input in the acoustic model, and
the BERT embeddings are extracted from the transcripts, which are the input of the linguistic
model. At the end, for each architecture is obtained a set of embeddings and posterior probabilities
to be used as input features for different applications.

Acoustic Model

Figure 5.31 shows the proposed architecture for the acoustic analysis, which consists of three
main parts: (1) a CNN with two layers, (2) a Bidirectional Gated Recurrent Unit (Bi-GRU) with
two stacked layers, and (3) a dense layer at the end. The CNN and the Bi-GRU perform the
operations in parallel, and considering as their input the 2D-Mel spectrogram. A summary of the
proposed architectures for the CNN, GRU and dense layers are shown in Table 5.15.

The CNN considers two layers of 8 and 4 channels, both with a kernel size of (1,3). In each
layer is performed a batch normalization, a max pooling of (1,2), a dropout, and as the activation
an Exponential Linear Unit (ELU). The output of the CNN is finally flattened to obtain the vector
C. Notice that the operations are only performed in the frequency dimension in order to keep
the temporal information as much as possible. The Bi-GRU consists of 2 stacked layers of 128
hidden states, with batch normalization in the last layer. The stacked GRU, with the second GRU
taking in outputs of the first GRU and computing the final results. The final hidden states H are
then concatenated with the output of the CNN (C). The next step is the dense layer, that considers
2 linear layers of 1024, and 512 neurons. In the linear layers is applied a batch normalization,
a dropout and as activation function a Gaussian Error Linear Unit (GELU). The final step is
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Figure 5.31: Acoustic architecture addressed in this study for modeling the user state based on the
arousal-valence plane

Table 5.15: Dimensions of the proposed architecture for the acoustic model for modeling the user
state based on the arousal-valence plane

Convolution Bi-GRU
Layers Input Output Layers Input Output

Convolutional 8-ch k(1,3) (2, 50, 64) (8, 50, 62) Stacked Bi-GRU 128h (50, 128) (50, 256)
Max pooling k(1,2) (8, 50, 62) (8, 50, 31) Flatten (50, 256) 12800
Convolutional 4-ch k(1,3) (8, 50, 31) (4, 50, 29)
Max pooling k(1,2) (4, 50, 29) (4, 50, 14)
Flatten (4, 50, 14) 2800

Dense Layer
Layers Input Output

Concatenate Covolutional+Bi-GRU 2800+12800 15600
Linear 15600 1024
Linear 1024 512
Linear 512 2 or 4
Notes: ch: channels. k: two dimensional kernel. h: number of hidden states. The input and output for
convolutional and max pooling are defined as (ch, sequence length, frequency axis). The input in the
Bi-GRU layer is defined as (sequence length, ch×frequency axis) and the output as (sequence length,
number of directions×hidden states)
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the classification layer, which is defined by the number of neurons y, 2 o 4 depending on the
classification task, and then is followed by a Sigmoid or a Softmax activation function for bi-class
or multi-class, respectively.

Multi-channel spectrograms and CNNs have been shown good performance in emotion
recognition tasks. This work takes into account the CNN to emphasize on capturing the energy
inside the different frequency bands of the spectrogram [96], [97]. The recurrent neural network
models has been previously adopted for prosody-prediction in different speech systems [98],
[99]. In our case, the Bi-GRUs are used in order to capture prosodic information given 500 ms
sequences.
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Classification
layer

y

Embeddings
Bidirectional

LSTM
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Sequence
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LSTM

LSTM

h1 h1
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Figure 5.32: Linguistic architecture addressed in this study for modeling the user state based on
the arousal-valence plane

Figure 5.32 shows the linguistic architecture that consists of 2 main steps: (1) a Bidirectional
LSTM (Bi-LSTM), and (2) a Dense layer. The Bi-LSTM processes a sequence of 7 BERT word
embeddings with an overlap of 1 word embedding. It consists of two bidirectional layers with 128
hidden states and a batch normalization layer. The hidden states consider the sequence to one as
the final embedding. The proposed architecture is summarized in Table 5.16.

The classification layer is the same as in the acoustic scheme. Despite the fact that it is well
known that BERT is capable of capturing contextual information, in this work a Bi-LSTM is
considered in order to focus on a smaller sequences of 7 words based on the learned information.
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Table 5.16: Dimensions of the proposed architecture for the linguistic model

Layers Input Output
Bi-LSTM 128h (7, 768) (2, 128)
Flatten (2, 128) 256
Linear 256 2 or 4
Notes: h: number of hidden states. The input of the Bi-LSTM is
defines as (sequence length, word embedding length) and the output
as (number of directions, number of hidden states).

Application of the Model

The methodology addressed to apply the obtained models is shown in Figure 5.33. The pre-trained
models were derived from training, separately acoustic and linguistic using the IEMOCAP dataset
to discriminate different quadrants in the arousal-valence plane. In training, the learning rate was
set at 10−4 for all models, and the ADAM optimizer and cross-entropy as loss function was used.
There are three different pre-trained models given different classification tasks as was mentioned
before: (1) AA vs. PA, (2) PV vs. NV, and (3) AP vs. AN vs. PN vs. PP.

Transcripts

Speech Classification
Feature Extraction

Embeddings 

Pre-trained Acoustic
Architecture

Pre-trained Linguist
Architecture

or PosteriorsBERT
Embeddings

2D
Spectrogram

Figure 5.33: Methodology addressed in this study for modeling the user state based on the
arousal-valence plane

The aim to train two different classification models is to evaluate the suitability of two
different bi-class models vs. one multi-class model. After pre-training the models, it is assumed
that information can be extracted from this plane to model emotional and mood changes. The
remaining three datasets are used as test to validate this assumption. As the labels for the databases
are not the same, the models are used to extract embeddings from the last layer and also the
log-likelihood posterior probabilities as two different feature sets. Then, the classification for the
remaining datasets are performed using an RBF-SVM.
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5.5.2 Optimization and Classification

The pre-trained model was obtained using the sessions 1-4 from the IEMOCAP database and
validate with session 5. The extracted posterior probabilities and embeddings for the three
remaining dataset were classified with an RBF-SVM. The validation process used for the ADReSS
challenge considers the pre-defined train and test set as it was mentioned in Section 4.3. However,
a bootstraping strategy of 80% for training and 20% for development is addressed to optimize
the meta-parameters of the classifier. The customer satisfaction dataset follows a bootstraping
strategy of 70%-15%-15% as is shown in Figure 5.2.A. For the depression in PD dataset the
validation process followed a modification of a nested leave one out cross-validation strategy, with
an internal 6-fold cross-validation to optimize the hyper-paramaters of the SVM. This validation
process is illustrated in Figure 5.10. It is the same as the one used in Section 5.4, since the
same dataset is considered. The optimal parameters of the SVM in the validation processes were
found by using a grid search where C ∈ {10−4, 10−3, ..., 104} and γ ∈ {10−4, 10−3, ..., 104}. The
optimal hyper-parameters were found based on the median of the values of the hyper-parameters
obtained for each fold. The classification is performed for embeddings and posterior probabilities
separately, and for the combination of different modals using an early fusion strategy. Early fusion
consisted of merging linguistic and acoustic features before performing the classification and
making the final decision. This is performed to analyze the suitability of the different features
sets.

Different baseline models are considered in order to validate the suitability of this approach.
For depression in PD and for call-centers dataset, the “IS16 ComParE-[100] feature set from
openSMILE is considered in acoustics. For the Alzheimer’s classification task the baseline was
taken from the ADReSS challenge. The baseline for linguistic for the mentioned three cases
was performed using the regular BERT embeddings. Four functionals (mean, standard deviation,
kurtosis and skewness) were computed over the BERT embeddings to form a static vector for
each speaker.

5.5.3 Results and Discussion

Four different experiments are performed related to this approach: (1) classification of the
arousal-valence plane, (2) classification of customer satisfaction, (3) classification of depression
in Parkinson, and (4) classification of Alzheimer’s disease, The performance of the classifiers
is evaluated according to their weighted F-score, Unweighted Average Recall (UAR), weighted
Precision (Prec), weighted Recall (Rec), and Area Under the ROC curve (AUC).
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Classification of the Arousal-Valence Plane

This experiment aims to test the proposed models. The classification is performed using the
sessions 1-4 to train and to validate the model, and session 5 is used for testing. The classification
performance was higher for the 2D-Mel spectrogram using the real and the imaginary part together,
which improve respect to each part separately 3%. Table 5.17 shows the results of the acoustic
and linguistic models to discriminate: (1) Arousal: AA vs. PA, (2) Valence: PV vs. NV, and (3)
Quadrants: AP vs. AN vs. PN vs. PP. The linguistic model produces higher performance than
the acoustic. The classification of the valence obtained the most accurate results for both models.
Arousal proved to be a difficult task to classify considering that is a two-class problem and the
obtained results.

Table 5.17: Test results for the model using session 5 from IEMOCAP dataset

Model UAR F-score Prec Rec

Acoustic
Model

Arousal 69.1 0.67 0.68 0.69
Valence 79.7 0.83 0.86 0.79
Quadrants 59.7 0.58 0.61 0.60

Linguistic
Model

Arousal 73.8 0.76 0.77 0.74
Valence 80.8 0.84 0.89 0.81
Quadrants 60.2 0.65 0.72 0.60

Notes: UAR: unweighted average recall. Prec: precision.
Rec: recall. Unweighted average recall is given in [%].

Figures 5.34, and 5.35 show two Mel spectrogram examples for active and passive arousal .
The audio recording from a female speaker consisted on the phrase in Spanish “Vamos a conversar
a la sala” ( in English “Let’s talk in the dining room”). The absolute subtraction between the real
and imaginary parts are considered in order to visualize the differences between each spectrogram.
Note that the active arousal presents slight differences in the high and low frequencies, while the
passive arousal exhibits more differences in the low frequencies.
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Figure 5.34: Mel spectrogram of the active arousal in the arousal-valence plane.

Figure 5.35: Mel spectrogram of the passive arousal in the arousal-valence plane.
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Classification of Customer Satisfaction

The banking call-center dataset in Section 4.1 is considered for this experiment. The input features
consist of the embeddings and the log-likelihood posterior probabilities from the linguistic
and acoustic models. The classification is performed using an RBF-SVM, following the same
validation process described in Section 5.1. Table 5.18 shows the results of the baseline models
for acoustics and linguistics to compare the suitability of the proposed approach. Acoustics
consider as baseline openSMILE, which obtained an F-score of 0.73. BERT is used as baseline
for linguistics with an F-score of 0.51.

Table 5.18: Baseline results for classification of customer satisfaction in the banking call-center
dataset

Features Baseline UAR F-score Prec Rec
Acoustic openSMILE 72.7 0.73 0.72 0.74
Linguistic BERT 51.5 0.51 0.51 0.52
Notes: UAR: unweighted average recall. Prec: precision.
Rec: recall. Unweighted average recall is given in [%].

Table 5.19: Results for classification of customer satisfaction in the banking call-center dataset
using the log-likelihood posterior probabilities

Features Experiment UAR F-score Prec Rec AUC

Acoustic
Model

Arousal 65.9 0.66 0.66 0.66 0.70
Valence 64.8 0.65 0.65 0.65 0.69
Arousal+Valence 64.5 0.64 0.64 0.65 0.72
Quadrants 69.0 0.69 0.69 0.69 0.77

Linguistic
Model

Arousal 75.8 0.76 0.76 0.76 0.81
Valence 74.9 0.75 0.75 0.75 0.82
Arousal+Valence 76.6 0.77 0.77 0.77 0.84
Quadrants 78.9 0.79 0.79 0.79 0.87

Early Fusion
Acoustic +
Linguistic

Arousal 72.7 0.73 0.73 0.73 0.77
Valence 63.1 0.63 0.63 0.63 0.66
Arousal+Valence 69.9 0.70 0.70 0.70 0.72
Quadrants 78.6 0.79 0.79 0.79 0.85

Notes: UAR: unweighted average recall. Prec: precision. Rec: recall.
Unweighted average recall is given in [%].

Table 5.19 shows the classification performance using the log-likelihood posterior probabilities
as input. Arousal+Valence are defined as the early fusion of those posteriors. Highest results are
obtained using the posteriors from the quadrant’s model. Linguistics obtained the most accurate
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results (F-score=0.79), while the early fusion strategy does no improve the performance of each
feature set separately.

Figure 5.36 shows the confusion matrices for the best classification results using acoustics,
linguistic, and early fusion respectively. The upper left boxes represent the proportion of true neg-
atives (specificity), the upper right the proportion of false negatives, the lower left the proportion
of false positives, and the lower right the proportion of true positives (sensitivity). The darker
the box, the higher the proportion. Note that the sensitivity and specificity are more balanced for
linguistics (see Figure 5.36.B).

A B C

Figure 5.36: Confusion matrices of the highest results for classification of customer satisfaction
in the banking call-center dataset using the log-likelihood posterior probabilities: A)Acoustic
model-Quadrants. B) Linguistic model-Quadrants. C) Acoustic+Linguistic model-Quadrants.

Figures 5.37 and 5.38 show the bar plot of the log-likelihood posterior probabilities obtained
from the acoustic and linguistic model respectively. The bar plots allow showing the behavior of
the posteriors more compactly. The bar on the left side of each plot is the posteriors of the SC-BC
subjects and on the right side the posteriors of the DC-BC subjects. The difference between
SC-BC and DC-BC can be easily observed in the two-class problem of AA vs. PA, and PV vs.
NV (see Figures 5.37.A and 5.38.A). Note that for the SC-BC, the arousal tends to be higher for
the active and lower for the passive. The valence for the SC-BC subjects tends to be higher for
positive and lower for negative, which agrees with what has expected if the customer is satisfied
with the service.
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Figure 5.37: Bar plots for customer satisfaction in the banking call-center dataset using the
log-likelihood posterior probabilities from the acoustic model: A) Arousal and Valence. B)
Quadrants.
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Figure 5.38: Bar plots for customer satisfaction in the banking call-center dataset using the
log-likelihood posterior probabilities from the linguistic model: A) Arousal and Valence. B)
Quadrants.
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Table 5.20 shows the classification performance using the embeddings as input. The highest
results are obtained using the early fusion of the arousal and valence and with the quadrants. The
information embedded around the entire arousal-valence plane is most accurate for this task in
order to capture information related to customer satisfaction.

Table 5.20: Results for classification of customer satisfaction in the banking call-center dataset
using the embeddings

Features Experiment UAR F-score Prec Rec AUC

Acoustic
Model

Arousal 79.2 0.79 0.79 0.79 0.85
Valence 74.1 0.74 0.74 0.74 0.84
Arousal+Valence 78.3 0.78 0.78 0.78 0.85
Quadrants 74.6 0.75 0.75 0.75 0.84

Linguistic
Model

Arousal 84.5 0.85 0.85 0.85 0.93
Valence 84.5 0.85 0.85 0.85 0.93
Arousal+Valence 87.3 0.87 0.87 0.87 0.94
Quadrants 88.5 0.89 0.88 0.88 0.94

Early Fusion
Acoustic +
Linguistic

Arousal 85.6 0.86 0.86 0.86 0.93
Valence 83.9 0.84 0.84 0.84 0.92
Arousal+Valence 85.6 0.86 0.86 0.86 0.93
Quadrants 84.8 0.85 0.85 0.85 0.93

Notes: UAR: unweighted average recall. Prec: precision. Rec: recall.
Unweighted average recall is given in [%].

A B C

Figure 5.39: Confusion matrices of the highest results for classification of customer satisfaction in
the banking call-center dataset using the embeddings: A)Acoustic model-Arousal. B) Linguistic
model-Quadrants. C) Acoustic+Linguistic model-Arousal.

Figure 5.39 shows the confusion matrices for the best classification results with the embeddings
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using acoustics, linguistic, and early fusion respectively. The sensitivity and specificity are more
balanced for linguistics (see Figure 5.39.B), which concludes that the linguistic model using the
quadrant information is the most suitable for this task. Note that the performance with respect
to the baseline improves with the proposed approach by 6% absolute for acoustics and by 38%
absolute for linguistics.

Classification of Depression in Parkinson

This experiment considers the depression in PD dataset (Section 4.5). The same procedure is
performed, using the embeddings and log-likelihood posterior probabilities from the linguistic and
acoustic models. The classification is performed using a RBF-SVM, following the same validation
process described in Sections 5.2 and5.4. Table 5.21 shows the baseline models for acoustics and
linguistics to compare the suitability of the proposed approach to discriminate depression in PD.
Acoustics consider as baseline openSMILE, which obtains an F-score of 0.55. BERT is used as a
baseline for linguistics with an F-score of 0.65.

Table 5.21: Baseline results for classification of D-PD patients

Features Baseline UAR F-score Prec Rec
Acoustic openSMILE 55.0 0.55 0.53 0.53
Linguistic BERT 65.0 0.65 0.64 0.64.3
Notes: UAR: unweighted average recall. Prec: precision.
Rec: recall. Unweighted average recall is given in [%].

The classification performance using the log-likelihood posterior probabilities is shown in
Table 5.22. The most accurate results are obtained using the early fusion of arousal and valence
for the three models (F-score=0.82). The highest performance is obtained with acoustics, while
the early fusion strategy improves the performance for valence classification.

Figure 5.40 shows the confusion matrices for the best classification results using acoustics,
linguistic, and early fusion respectively. Note that the acoustics and the early fusion strategy
between acoustics and linguistics obtained the same results, i.e., early fusion does not improve the
performance.

Figures 5.41 and 5.42 show the bar plot of the log-likelihood posterior probabilities obtained
from the acoustic and linguistic model respectively. The bar on the left side of each plot is
the posteriors of the D-PD patients and on the right side the posteriors of the ND-PD patients.
Note that for the D-PD patients, the arousal tends to be lower for the active and higher for the
passive, which may indicate that depression in PD for this task is related to the passive arousal,
i.e., emotions in the low quadrants.
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Table 5.22: Results for classification of D-PD patients using the log-likelihood posterior probabili-
ties

Features Experiment UAR F-score Sens Spe AUC

Acoustic
Model

Arousal 68.3 0.69 0.69 0.68 0.72
Valence 63.3 0.63 0.63 0.63 0.61
Arousal+Valence 81.7 0.82 0.82 0.82 0.86
Quadrants 51.7 0.52 0.51 0.52 0.48

Linguistic
Model

Arousal 61.7 0.62 0.64 0.62 0.56
Valence 66.7 0.67 0.70 0.67 0.68
Arousal+Valence 70.0 0.71 0.72 0.70 0.71
Quadrants 51.7 0.52 0.51 0.52 0.48

Early Fusion
Acoustic +
Linguistic

Arousal 68.3 0.69 0.69 0.68 0.67
Valence 78.3 0.78 0.80 0.78 0.81
Arousal+Valence 81.7 0.82 0.82 0.82 0.86
Quadrants 46.7 0.47 0.47 0.47 0.40

Notes: UAR: unweighted average recall. Prec: precision. Rec: recall.
Unweighted average recall is given in [%].

A B C

Figure 5.40: Confusion matrices of the highest results for classification of D-PD patients
using the posterior probability: A) Acoustic model-Arousal+Valence. B) Linguistic model-
Arousal+Valence. C) Acoustic+Linguistic model-Arousal+Valence.
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Figure 5.41: Bar plots for D-PD patients using the log-likelihood posterior probabilities from the
acoustic model: A) Arousal and Valence. B) Quadrants.
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Figure 5.42: Bar plots for D-PD patients using the log-likelihood posterior probabilities from the
linguistic model: A) Arousal and Valence. B) Quadrants.
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Table 5.23 shows the classification performance using the embeddings as input. The highest
results are obtained using the early fusion of the quadrants. The information embedded around
the entire arousal-valence plane is most accurate for this task to capture information related to
depression in PD. However, the posteriors obtained higher performance for this task in comparison
with the embeddings.

Table 5.23: Results for classification of D-PD patients using the embeddings

Features Experiment UAR F-score Sens Spe AUC

Acoustic
Model

Arousal 60.0 0.60 0.61 0.60 0.60
Valence 65.0 0.65 0.65 0.65 0.63
Arousal+Valence 68.3 0.68 0.68 0.68 0.66
Quadrants 60.0 0.59 0.59 0.60 0.68

Linguistic
Model

Arousal 60.0 0.60 0.60 0.60 0.60
Valence 56.7 0.54 0.54 0.57 0.57
Arousal+Valence 60.0 0.59 0.59 0.60 0.56
Quadrants 66.7 0.67 0.66 0.67 0.63

Early Fusion
Acoustic +
Linguistic

Arousal 56.7 0.56 0.56 0.57 0.59
Valence 61.7 0.62 0.62 0.62 0.61
Arousal+Valence 58.3 0.58 0.59 0.58 0.61
Quadrants 70.0 0.70 0.70 0.70 0.73

Notes: UAR: unweighted average recall. Prec: precision. Rec: recall.
Unweighted average recall is given in [%].

A B C

Figure 5.43: Confusion matrices of the highest results for classification of D-PD patients using
the embeddings: A)Acoustic model-Arousal+Valence. B) Linguistic model-Quadrants. C)
Acoustic+Linguistic model-Quadrants.

Figure 5.43 shows the confusion matrices for the best classification results with the embeddings
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using acoustics, linguistic, and early fusion respectively. The sensitivity and specificity are more
balanced for acoustics (see Figure 5.43.A). In general, the acoustic model is the most suitable
for this task. Note that the performance with respect to the baseline improves with the proposed
approach in 27% for acoustics and in 5% for linguistics.

Classification of Alzheimer’s Disease

The ADReSS dataset in Section 4.3 is considered for this experiment. This dataset does not contain
directly linked emotional or affective labels, but it is used to analyze AD using the arousal-valence
plane. The input features consist of the embeddings and log-likelihood posterior probabilities
from the linguistic and acoustic models. The classification is performed using an RBF-SVM,
using the test set provided by the Interspeech ADReSS challenge 2020 [91]. Table 5.24 shows the
baseline models for acoustics and linguistics to compare the suitability of the proposed approach.
Acoustics consider as baseline ADReSS with an F-score of 0.62. BERT is used as a baseline for
linguistics with an F-score of 0.75.

Table 5.24: Baseline results for classification of AD patients from the ADReSS dataset

Features Baseline UAR F-score Prec Rec
Acoustic ADReSS 62.0 0.62 0.64 0.63
Linguistic ADReSS-BERT 75.0 0.75 0.77 0.75
Notes: UAR: unweighted average recall. Prec: precision.
Rec: recall. Unweighted average recall is given in [%].

Table 5.25 shows the classification performance using the log-likelihood posterior probabilities
as input. The highest results are obtained using the arousal for acoustics (F-score=0.75) and the
valence for linguistics (F-score=0.80). Linguistics obtained the most accurate results, while the
early fusion strategy does not improve the performance of each feature set separately.

Figure 5.44 shows the confusion matrices for the best classification using acoustics, linguistic,
and early fusion respectively. Note that the sensitivity and specificity are more balanced for
acoustic (see Figure 5.44.A), while linguistics tend to discriminate better AD patients (see
Figure 5.44.B).

Figures 5.45 and 5.46 show the bar plot of the log-likelihood posterior probabilities obtained
from the acoustic and linguistic model respectively. The bar on the left side of each plot is the
posteriors of the AD patients and on the right side the posteriors of the HC subjects. Note that for
AD, the arousal tends to be slightly lower for the active and higher for the passive. The valence
for the AD patients tends to be higher for positive and lower for negative. The quadrants show



112 CHAPTER 5. EXPERIMENTS AND RESULTS

Table 5.25: Results for classification of AD patients from the ADReSS dataset using the log-
likelihood posterior probabilities

Features Experiment UAR F-score Prec Rec AUC

Acoustic
Model

Arousal 75.0 0.75 0.75 0.75 0.80
Valence 47.9 0.32 0.24 0.48 0.45
Arousal+Valence 68.8 0.69 0.69 0.69 0.72
Quadrants 57.7 0.58 0.59 0.58 0.63

Linguistic
Model

Arousal 48.0 0.48 0.48 0.48 0.43
Valence 79.2 0.80 0.82 0.79 0.85
Arousal+Valence 52.1 0.47 0.53 0.52 0.63
Quadrants 54.2 0.51 0.56 0.55 0.72

Early Fusion
Acoustic +
Linguistic

Arousal 58.3 0.56 0.61 0.58 0.59
Valence 68.8 0.69 0.69 0.69 0.74
Arousal+Valence 66.7 0.66 0.67 0.67 0.73
Quadrants 60.4 0.60 0.61 0.60 0.60

Notes: UAR: unweighted average recall. Prec: precision. Rec: recall.
Unweighted average recall is given in [%].

A B C

Figure 5.44: Confusion matrices of the highest results of AD patients from the ADReSS dataset
using the log-likelihood posterior probabilities: A)Acoustic model-Arousal. B) Linguistic model-
Valence. C) Acoustic+Linguistic model-Valence.
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that AD patients tend to be lower for active and passive positive, and slightly higher for passive
negative. This may be because the labels are not directly linked to affective or emotion. However,
there is a visual difference between AD patients and HC according to the bar plot.

A

B

Figure 5.45: Bar plots for AD patients from the ADReSS dataset using the log-likelihood posterior
probabilities from the acoustic model: A) Arousal and Valence. B) Quadrants.
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Figure 5.46: Bar plots for AD patients from the ADReSS dataset using the log-likelihood posterior
probabilities from the linguistic model: A) Arousal and Valence. B) Quadrants.



5.5. USER STATE MODELING BASED ON THE AROUSAL-VALENCE PLANE 115

Table 5.26 shows the classification performance using the embeddings as input. The highest
results are obtained using the early fusion of the arousal and valence for linguistics (F-score=0.69).
However, The posteriors obtained higher performance for this task in comparison with the
embeddings.

Table 5.26: Results for classification of AD patients from the ADReSS dataset using the embed-
dings

Features Experiment UAR F-score Prec Rec AUC

Acoustic
Model

Arousal 50.0 0.37 0.50 0.50 0.55
Valence 64.6 0.63 0.68 0.65 0.68
Arousal+Valence 52.1 0.38 0.76 0.52 0.45
Quadrants 56.3 0.52 0.60 0.56 0.53

Linguistic
Model

Arousal 56.3 0.50 0.63 0.56 0.68
Valence 66.7 0.67 0.67 0.67 0.71
Arousal+Valence 68.8 0.69 0.70 0.69 0.68
Quadrants 56.3 0.50 0.63 0.56 0.66

Early Fusion
Acoustic +
Linguistic

Arousal 50.0 0.37 0.50 0.50 0.55
Valence 54.2 0.48 0.58 0.54 0.51
Arousal+Valence 52.1 0.38 0.76 0.52 0.51
Quadrants 56.3 0.53 0.59 0.56 0.55

Notes: UAR: unweighted average recall. Prec: precision. Rec: recall.
Unweighted average recall is given in [%].

A B C

Figure 5.47: Confusion matrices of the highest results for classification of AD patients from
the ADReSS dataset using the embeddings: A)Acoustic model-Valence. B) Linguistic model-
Arousal+Valence. C) Acoustic+Linguistic model-Quadrants.

Figure 5.47 shows the confusion matrices for the best classification with the embeddings using
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acoustics, linguistic, and early fusion respectively. Note that the performance with respect to the
baseline improves with the proposed approach in 13% for acoustics and in 5% for linguistics,
which concludes that there may be information embedded in the arousal-valence plane to classify
AD.



Chapter 6

Summary and Outlook

This thesis proposed methodologies for acoustic and linguistic analyses in different scenarios
such as customer satisfaction, cognitive disorders in AD, and depression in PD. Five different
experiments were considered: (1) evaluation of customer satisfaction, (2) assessment of Genetic
Alzheimer’s disease, (3) linguistic analysis to discriminate Parkinson’s disease, (4) depression in
Parkinson’s disease, and (5) User state modeling based on the arousal-valence plane.

6.1 Evaluation of Customer Satisfaction

Call-centers collect many speech recordings from different industry sectors such as banks, insur-
ances, telecommunications, among others. The evaluation of customer satisfaction is performed
considering two different datasets related to insurance and banking call-centers (see Section 5.1.
The aim was to detect whether a customer is satisfied or dissatisfied with the service. This experi-
ment considers two different datasets from banking and insurance call-centers. The feature set for
the acoustic analysis includes methods based on F 0, MFFCs, BBEs, energy, voiced rates, among
others. The linguistics features include word-embeddings as W2V and BERT. The results showed
that the performed acoustic analysis is more suitable for the banking dataset, and the linguistic
analysis for the insurance dataset. The classification of the customer satisfaction in the banking
dataset exhibited higher performance using prosody (F-score=0.72), while the early fusion did not
improve the results. However, linguistic features provided better results to discriminate customer
satisfaction in the insurance dataset (F-score=0.71) as same as the early fusion that outperformed
the results with an F-score up to 0.73. According to these results despite the fact that it is the same
classification problem, the information derived from different sources may influence the obtained
performance for each analysis, since the information is derived from the interaction between client
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and advisor for the insurance dataset, and from customer opinions recorded in a voicemail for the
banking call-center dataset. Further work will explore additional features as same as methods to
segment, analyze, and extract information of each interaction client-advisor.

6.2 Assessment of Genetic Alzheimer’s Disease

Acoustic and linguistic analyses were considered to discriminate genetic carriers of the Paisa

mutation as well as EOA (see Section 5.2). This experiment consisted of two different tasks: (1)
GC vs. NGC, and (2) MCI vs. HC. Other classification tasks were not included to avoid the
effect of aging between the groups. The classification between MCI patients with early-onset
Alzheimer and HC subjects was performed. The acoustic analysis mainly consisted of articulation
and prosody, while linguistic analysis was based on word-embeddings methods. Early fusion
of articulation and prosody features exhibited the highest performance for MCI patients vs. HC
subjects with F-scores of up to 0.74. The linguistic-based analysis did not show satisfactory results
in this experiment, which may occur due to the proportion of unknown words that could affect the
performance of models. The effectiveness of the word-embeddings methods is directly linked
to the number of known words by the predefined vocabulary in the corpus on which they were
trained. This may occur due to some unknown words by the algorithms related to characteristic
lexicon from the region, or mispronunciations of the words. The unknown words on average
are 21.4% of the total of words per utterance using the word-embedding methods. Regarding
BERT and BETO models, the results with BERT were slightly higher, which concludes that for
our approach the translation to Spanish did not show a strong impact on the results. The same
features were used to classify GC vs. NGC. Good results were obtained considering the difficult
task that involves the classification of two healthy groups without any AD symptom. Prosody
and BERT exhibited the highest performance with F-scores of 0.67 and 0.68, respectively. The
influence of depression in the GC subjects was discarded by performing a Man-Whitney U-test (p
= 0.89) between GC and NGC regarding the geriatric depression scale of Yesavage. According to
Table 4.1 and to the results, there is no bias at cognitive (MMSE, MoCA) and depression level
between the groups, even though the machine learning algorithm was able to find significant
differences above chance between GC vs. NGC. Therefore we need to investigate other possible
causes that influenced the results. Further work will explore other features related to linguistics to
improve the results, as same as acoustics to analyze the impact of the mutation, and the influence
of the demographic aspects for each group. To the best of my knowledge, this is the first study
focused on automatically evaluating genetic AD using acoustics and linguistics.
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6.3 Linguistic Analysis in Parkinson’s Disease

The linguistic analysis in PD was performed in order to analyze the suitability of NLP methods to
discriminate PD patients vs. HC subjectssee Section 5.3). The proposed approach is a step forward
in the assessment of language impairments that affect communication capabilities in PD. Thus, it
allows studying of different communication deficits that cannot be observed in motor activities.
The feature sets included classical methods such as BoW and TF-IDF along with other techniques
based on word-embeddings like W2V. The classification performance was relatively accurate
to classify PD patients and HC subjects with F-scores of up to 0.72. The results suggested that
there is information in a language that may reflect disturbances in the communication capabilities
of PD patients, as it also observed in previous studies [49]. Further, this information can be
used to discriminate between PD and HC subjects and to evaluate the neurological state of the
patients. The main limitation of this experiment is related to the task performed by the participants,
where they were asked to describe their daily routines. This task cannot reflect properly deficits
in the communication of PD patients since it may introduce an explicit bias in the recordings.
PD patients tend to do mainly passive activities such as having meals, thinking, and take their
medication, while HC subjects showed more variety in their daily activities. Future work will
address other linguistic features and the analysis of the disease severity using linguistics. The
results reported here were the first step towards the automatic evaluation of language impairments
in PD patients in this thesis.

6.4 Depression Assessment in Parkinson’s Disease

This thesis proposed an automatic detection of the depression in PD patients, based on acoustic,
linguistic information, and an approach based on user modeling (see Section 5.4). It aims
to discriminate between depressive and non-depressive PD patients. Depression was labeled
according to the depression item in the first part of the MDS-UPDRS evaluation. The acoustic
analysis was based on articulation and prosody features, while BERT embeddings were used
to perform the linguistic analysis. The GMM-UBM supervector paradigm was addressed to
model the acoustic and linguistic features. The early fusion strategy of acoustic and linguistics
was the most accurate in classification with F-scores of up to 0.77. The proposed approach
using GMM-UBM and the combination of articulation and BERT embeddings increased the
performance of 15% in comparison with the baseline model. The results reported here suggest
that there is information in speech and language that can be directed linked to the depression state
of PD patients. Prosody methods were less accurate, consequently, furthermore prosody related
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features will be explored. The main limitation of this experiment is the amount of data that needs
to be increased in the future. GITA research group is currently collecting more data for further
research not only including tasks of spontaneous conversations but also picture descriptions.
Further experiment will consider to explore other fusion techniques, data modeling methods, and
other set of features. To the best of my knowledge, this is the first study focused on evaluating
depression symptoms in PD patients combining acoustic and linguistic analyses.

6.5 User State Modeling Based on the Arousal-Valence Plane
for Customer Satisfaction and Health-Care

In Section 5.5 a novel approach to evaluate scenarios such as customer satisfaction and the assess-
ment of patients with neuro-degenerative diseases is proposed, using deep learning techniques
and the arousal-plane information. The proposed methodology focused on analyze emotional
and mood changes in acoustics and natural language from spontaneous speech recordings and
their transcriptions. This approach considers the arousal-valence plane representation to perform
a quantitative analysis of emotions, which distributes the human emotions into a 2-dimensional
space to capture information about excitation and polarity of the emotions [6]. Acoustic and
linguistic analyses are used to train multimodal models based on the arousal-valence plane repre-
sentation [6]. Different models were trained to discriminate each quadrant in the arousal-valence
plane and to obtain a set of posterior probabilities and embeddings in order to used them as
features. The trained models were used in three scenarios related to customer satisfaction and
health-care: (1) evaluation of customer satisfaction in call-centers, (2) assessment of depressive
symptoms in PD patients, and (3) assessment and classification of AD. The acoustic analysis
consisted on Mel spectrograms combined with a CNN-RNN based approach to capture the energy
inside the different frequency bands of the spectrogram and prosody information. The linguistic
model was based on the combination of BERT embeddings and a Bi-LSTM approach to focus on
a smaller sequences based on learned information from BERT. Note that the proposed approach
outperformed all baselines in the three classification tasks. On the one hand, the performance
improved for acoustics in about 6% for SC vs. DC, 27% for D-PD vs. ND-PD, and 13% for
AD vs. HC. On the other hand, the linguistic model outperformed the baseline in about 38% for
SC vs. DC, 5% for D-PD vs. ND-PD, and 5% for AD vs. HC. In general, the results with the
proposed model obtained highest performance in comparison to the baselines, which concludes
that there may be information embedded in the arousal-valence plane to discriminate customer
satisfaction, depression in PD, and AD. Customer satisfaction was better discriminate using all of
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the information embedded in the entire arousal-valence plane using the quadrants, as same as for
depression in PD with the difference that the early fusion between the arousal and valence models
obtained the highest results. The discrimination of AD produce higher results using the arousal
information for acoustics and the valence information for linguistic. The log-likelihood posterior
probabilities showed good performance to classify problems related to neuro-degenerative disease,
while the embeddings were suitable to discriminate customer service. Further work will explore
more robust approaches and also information from other datasets will be included to improve the
performance of the system. Additionally, I am working on training linguistic models with the
Spanish translated corpus since this is the original language of most of the tested datasets.
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Appendix A

Regular vs. Proposed
Leave-One-Speaker-Out Strategy to
Classify Genetic Alzheimer’s Disease

Table A.1 shows the results of the classification of genetic AD (Section 5.2) using the regular
LOSO as same as the proposed validation strategy. Note that for this experiment only prosody
obtained higher results using the proposed approach in both classification tasks. The average
of the F-scores for each strategy was computed, where the regular approach was 3% higher. It
may confirms that for this experiment the results performed with the proposed strategy are less
optimistic.

Table A.1: Comparison between the regular and the proposed LOSO strategy for the classification
of genetic AD.

Features Experiment F1-Reg LOSO F1-Prop LOSO
GC vs. NGC

Articulation 0.50 0.47
Acoustic

Prosody 0.65 0.67
W2V 0.58 0.53
BERT 0.69 0.68Linguistic
BETO 0.67 0.65

MCI vs. HC
Articulation 0.69 0.66

Acoustic
Prosody 0.65 0.66
W2V 0.53 0.48
BERT 0.56 0.50Linguistic
BETO 0.53 0.50

Average 0.61 0.58
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with the GITA research group1 and the Pattern Recognition Lab (LME)2:
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Appendix C

Academic events

• Talk (2020). “Depression Assessment in Parkinson’s Disease Using Acoustic Analysis
and Natural Language Processing”. Apkinson-workshop. Voice and speech analysis. Open

Lecture and Workshop. IEEE Poland Section. AGH University of Science and Technology,
Krakow, Poland.

• Workshop 2020, “Speech processing and understanding”. Czech Technical University in
Prague and Friedrich-Alexander-Universität Erlangen-Nürnberg. Prague, Czech Republic.

• Workshop 2019, “Speech processing and understanding”. Friedrich-Alexander-Universität
Erlangen-Nürnberg and Czech Technical University in Prague. Erlangen, Germany.

• Speech and Movement Analysis using your SMArt phone for neurological diseases (SMA2).
Financed by Bundesministerium für Bildung und Forschung (BMBF). 2018 – 2019. Role:
Co-researcher.

• Exchange student at Friedrich-Alexander-Universität Erlangen-Nürnberg (15.10.2019-
30.03.2021)
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• Research stay at Pattern Recognition Lab-LME (15.10.2019-31.04.2020). This grant was
funded by Bayerische Hochschulzentrum für Lateinamerika-BAYLAT.

• Scholarship “Estudiante instructor” (01.02.2019-31.12.2020). This grant is currently funded
by the University of Antioquia.

• Scholarship for exchange students from Universities with a partnership agreement with
Friedrich-Alexander-Universität Erlangen-Nürnberg. This grant is currently funded by
Deutscher Akademischer Austauschdienst-DAAD.
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