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A B S T R A C T

Classically, CD4+ T-cells have been referred as cytokine-producing cells and important players in immune re-
sponses by providing soluble factors that potentiate several effector immune functions. However, it is now
evident that CD4+ T-cells can also elaborate cytotoxic responses, inducing apoptosis of target cells. Cytotoxic
CD4+ T cells (CD4+ CTLs), exhibit cytolytic functions that resemble those of CD8+ T-cells; in fact, there is
evidence suggesting that they may have a role in the control of viral infections. In this article, we discuss the role
of CD4+ CTLs during HIV infection, where CD4+ CTLs have been associated with viral control and slow disease
progression. In addition, we address the implication of CD4+ CTLs in the context of antiretroviral therapy and
the partial reconstitution of CD8+ T-cells effector function.

1. Introduction

CD4+ T-cells are critical components of immunity, and by produ-
cing various cytokines and expressing co-stimulatory ligands, they
contribute to innate immune responses, potentiate CD8+ T-cell effector
functions, and promote B-cell antibody production. CD4+ T-cells also
limit exacerbated immune responses through various im-
munoregulatory mechanisms [1]. Nonetheless, it has been observed
that CD4+ T-cells may have direct antiviral effector functions through
the lysis of infected cells [2]. Indeed, it has been proposed that cyto-
toxic CD4+ T-cells (CD4+ CTLs) constitute a unique CD4+ T-cell pro-
file, which is generated via the interaction of human leukocyte antigen
class II (HLA-II)/peptide with T-cell receptor (TCR) in the presence of
specific polarizing factors [3]. Importantly, a protective role of CD4+

CTLs has also been suggested in infections caused by several viruses
such as Epstein–Barr virus [4], dengue virus [5], and influenza virus
[6]. However, they may also have a pathogenic role in viral hepatitis
[7]. In addition, the antitumor activities of CD4+ CTLs have been de-
monstrated [8,9]. Therefore, CD4+ CTLs responses may be relevant in
cases of dysfunction or immune evasion of other cytotoxic cells, such as
CD8+ T-cells and natural killer (NK) cells, or in tissues with regulated
cell traffic, such as lymphoid follicles, which exhibit low levels of cy-
totoxic cells because of low expression of the follicle homing receptor
CXCR5 [10].

Antigen-specific CD4+ CTLs have been detected in patients with
HIV infection [11–15]. Moreover, despite the high degree to which

CD4+ T-cells are compromised in HIV infection [16], this cell popula-
tion may have antiviral activities in some scenarios. For a detailed
discussion on the origin, phenotypes, and effector functions of CD4+

CTLs and their roles in antiviral immunity, readers are referred to few
published papers [2,3,17–19]. In the present review, we discuss the
mechanisms underlying CD4+ CTL induction during HIV infection and
the phenotypes, effector mechanisms, and roles in disease progression.
We focus on patients treated for HIV infection, in whom CD4+ T-cells
can be reconstituted following viral suppression induced by anti-
retroviral therapy (ART).

2. Origins and phenotypes of CD4+ CTLs in HIV infection

To develop into effector subsets, naive CD4+ T-cells receive acti-
vating signals from professional antigen-presenting cells (APCs), such as
dendritic cells, macrophages, and B-cells. These signals are delivered
via HLA-II/peptide/TCR interactions and are accompanied by sec-
ondary co-stimulatory signals, such as CD80/CD86 binding to CD28.
The third signal is mediated by local cytokines and is primarily re-
sponsible for polarization to a specific CD4+ T-cell effector profile [20].
This effector specificity requires a differentiation program that directs
CD4+ T-cells toward a particular cytotoxic profile. Similar to other
CD4+ T-cell populations, such as Th1, Th2, and Th17 cells, CD4+ CTLs
receive specific yet undefined, cytokine signals to express transcrip-
tional and effector profiles that sustain lytic activity [2]. Type-I inter-
ferons (IFN) and interleukin (IL)-2 may provide the third signal
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required for CD4+ CTL polarization (Fig. 1). In mouse CD4+ T cells,
these cytokines induce cooperative action of the transcription factors B
lymphocyte-induced maturation protein-1 (Blimp-1) and T-bet via the
signal transducer and activator of transcription (STAT) 2 for upregu-
lating the cytotoxic molecules granzyme B and perforin [21]. The
transcription factor eomesodermin (Eomes) is also an important reg-
ulator of CD4+ CTL effector functions [22,23]. CD4+ T-cells expressing
class I–restricted T-cell–associated molecule (CRTAM) preferentially
acquire cytotoxic profiles following activation, because this surface
receptor promotes the expression of Eomes, granzyme B, and perforin
[24]. Moreover, considering the plasticity of CD4+ T-cell responses
[25], memory Th1, Th17, or other cell subsets could eventually re-
program their transcriptional profiles in favor of cytotoxic potential
(Fig. 1). Accordingly, co-stimulation of antigen-specific Th1 cells with
OX40 and 4-1BB by APCs in the presence of IL-2 promotes the acqui-
sition of T-bet, Eomes, and cytotoxic activities [22]. In the presence of
IL-2, Th1 and Th17 cells also reportedly co-express granzyme B with
IFN-γ and IL-17, respectively [26]. In addition, common γ-chain (IL-2,
IL-7, IL-15) and pro-inflammatory (TNF-α and IL-6) cytokines, along
with Toll-like receptor (TLR)-2 and TLR-8 ligands, can promote gran-
zyme B release and viral replication in HIV-infected memory CD4+ T-
cells [26] (Fig. 1). These observations indicate that under the in-
flammatory conditions of HIV infection, activated memory CD4+ T-
cells exhibit cytotoxic potential, despite active HIV replication.

HLA-II expression is restricted to professional APCs under steady-
state conditions, and compromise of these cells by disease may further
limit the production of CD4+ CTLs. Yet, at least three sources of antigen
presentation have been associated with HIV infection. First, HIV-in-
fected dendritic cells or macrophages, or APCs that have phagocytosed
other infected cells, can process and present antigens to naive CD4+ T-
cells or antigen-specific CD4+ CTLs in a HLA-II-dependent manner

[27,28]. Second, non-APCs can upregulate HLA-II molecules following
pathogen challenge or cytokine stimulation. For instance, in the pre-
sence of inflammatory conditions or after stimulation with IFN-γ, in-
testinal epithelial cells upregulate HLA-II molecules [29–31] and may
be targets of CD4+ CTLs. Third, activated CD4+ T cells can bind HIV
gp120 via surface receptors, and after processing can present identi-
fying peptides to other antigen-specific CD4+ T-cells [32]. Other ex-
amples of T–T interactions have been reported [33–35], and these may
also play important roles in the induction of CD4+ CTL responses to
HIV infection of CD4+ T cells. Finally, it should be noted that CD4+

CTLs are non-specifically cytotoxic following recognition of envelope
protein-expressing target cells [11]. These observations are relevant to
scenarios of active viral replication and high antigen burden, and partly
explain the CD4+ CTL responses elicited by a HIV envelope gp160
vaccine in immunized volunteers [36–38].

HLA-II-restricted HIV-specific CD4+ CTLs were first detected 30
years ago in cerebrospinal fluids from patients with acquired im-
munodeficiency syndrome [39]. In later studies, vaccination of ser-
onegative volunteers with an HIV Env protein vaccine elicited CD4+ T-
cell responses with HLA-II regulated lytic activity [36–38]. Other re-
ports also show recognition of Gag, Env and/or Pol peptides by CD4+

T-cells and in vitro lysis of peptide-pulsed or HIV-infected target cells
[11,40,41]. The first ex vivo study of CD4+ CTLs in patients with HIV
infection was performed by Appay et al, who showed the presence of an
important proportion of perforin-expressing CD4+ T cells. These had a
CD27− CD28− CCR7− CD45RA− CD45RO+ CD11a+ CD11b+ phe-
notype [12], that is related to late stages of differentiation [42]. In-
terestingly, perforin+ CD4+ T-cell numbers were increased in HIV
seroconverted patients compared with seronegative controls, and these
cells exhibited an activated phenotype (CD38 and Ki-67 expression);
the number of these cells were further augmented during chronic in-
fection [12]. Consistent with the fully differentiated stage, perforin-
expressing CD28− CD4+ T-cells had reduced proliferative capacity, and
this was related to clonal expansion during the early stages of HIV in-
fection [12]. Additionally, an expanded subset of p24-specific
CD45RO+ CCR7− CCR5+ CD4+ T-cells with lytic capacity was found
in peripheral blood from a long-term non-progressive patient [14]. This
cell subset also expressed NK cell markers such as CD161 and CD244,
but the absence of the TCR Vα24, characteristic of NKT-cells [14].
CCR5 expression, and the activated state indicated by high expression
of CD38 was associated with high susceptibility of the CD4+ CTL subset
to HIV infection [26,43], thus limiting antiviral potential. Recently,
Johnson et al. evaluated transcription and phenotype profiles of CD4+

CTLs in patients with HIV infection [15], and these data were consistent
with previous reports showing a fully mature profile and expression of
NK cell markers [12,14]. Specifically, the CD4+ CTLs in these studies
were characterized by a CD57+ KLRG1+ CD161+ IL-7R− phenotype
and expression of T-bet and Eomes, similar to that observed in CD8+ T-
cells [15]. Studies in Simian Immunodeficiency virus (SIV)-infected
macaques have also demonstrated a CD45RA- CD28+ CD95+ CCR7-

phenotype in CD4+ CTLs [44]. Phenotypes of CD4+ CTLs in patients
with HIV infection are listed in Table 1. Collectively, these data indicate
that memory CD4+ CTLs are generated early during HIV infection after
APC priming and differentiation from other CD4+ T-cell effector sub-
sets (Fig. 1). Due to activation and expression of the HIV co-receptor
CCR5, CD4+ CTLs are susceptible to HIV infection and are likely de-
pleted rapidly. Yet a fraction of CD4+ CTLs is clonally expanded and
acquires a fully differentiated quiescent profile with low proliferative
capacity. This profile is maintained throughout chronic infection.

3. Effector mechanisms of CD4+ CTLs during HIV infection

Similar to CD8+ T-cells, CD4+ CTLs mediate cytolytic activities
through granule-dependent and independent mechanisms [2] (Table 1
and Fig. 2). An early study of the lytic capacity of CD4+ T-cells from
patients with HIV infection showed induction of target cell death

Fig. 1. Model of differentiation of CD4+ CTLs. Priming of naïve CD4+ T-cells
by an APC in the presence of IL-2 and type I IFN promote the polarization of
CD4+ CTLs. Moreover, CD4+ CTLs can originate from Th1 and Th17 subsets,
most likely in response to IL-2. Finally, in inflammatory conditions, such as HIV
infection, memory CD4+ T-cells express cytotoxic molecules through the action
of common γ-chain cytokines IL-2, IL-7 and IL-15, TNF-α and IL-6, or TLR-2 and
8 ligands.
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through calcium-independent mechanisms, and independently of the
release of lytic granules [11]. FAS ligand or TNF-related apoptosis-in-
ducing ligand (TRAIL) may underlie these effector mechanisms [45,46].
Other reports demonstrated granule-dependent cytolysis by HIV-spe-
cific CD4+ CTLs, in which cell death was abrogated by the inhibitor of
perforin-mediated killing concanamycin and/or by the chelating agent
ethylene glycol tetraacetic acid (EGTA) [12,41]. Another report showed
that HIV-specific CD4+ CTL clones can differentially exert granule-de-
pendent and independent cytotoxicity [47]. Resembling CD8+ T-cells
and NK cells, CD4+ CTLs have been characterized as perforin- or
granzyme-expressing cells [12,14,44,48], and the marker of cell de-
granulation CD107a [49] is also used to identify CD4+ CTLs [15,50].
Moreover, transcriptomic analyses showed that, after antigen-specific
stimulation, CD107a+ CD4+ CTLs express lytic granule-effector pro-
teins such as granulysin, granzyme A, H, K and B, and perforin [15].

In addition to direct lytic mechanisms, CD4+ CTLs secrete the an-
tiviral cytokines IFN-γ and TNF-α [12,14,26,43], which promote an-
tigen presentation and inflammatory responses [51]. The β-chemokines
macrophage inflammatory protein (MIP)-1α and MIP-1β [41,47,52]
also block HIV binding and entry into target cells [53,54]. Finally,
virus-specific CD4+ CTLs may upregulate IL-21 after antigen stimula-
tion [15] and could promote humoral responses [44] or boost CD8+ T-
cells [55] during HIV/SIV infection. A summary of CD4+ CTLs effector
mechanisms in patients with HIV infection is shown in Table 1.

It is important to note that all of the studies described above were
performed using blood-derived CD4+ CTLs. Yet in contrast with blood
cells, the cytolytic potential of CD4+ T-cells was shown to be limited in
lymphoid tissues [56], which are major sites of HIV/SIV replication
[57]. These differing cytolytic profiles in blood and lymph nodes cor-
respond with differential expression levels of T-bet and Eomes. In blood
samples, granzyme B- and perforin-expressing CD4+ CTLs pre-
ferentially expressed T-bethi and Eomes+, whereas the frequency of this
population was low–undetectable in lymph node tissues. This tran-
scriptional profile is reflected by low expression of granzyme B and
perforin in lymph node-confined CD4+ T-cells, limited upregulation of
cytotoxic molecules following HIV peptide stimulation, and delayed
granule release. In concordant evaluations of transcriptional and
functional signatures, CD107a+ CD4+ T-cells from blood and lymph
nodes formed separate single-cell clusters, and effector molecules,Ta
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Fig. 2. Two scenarios of CD4+ CTLs anti-HIV control. CD4+ CTLs are
characterized by the expression of CD57, KLRG1, CRTAM, T-bet and Eomes.
They also exhibit granule-dependent (release of cytotoxic molecules) and in-
dependent (FASL) cytotoxic mechanisms and can secrete IFN-γ, TNF-α and β-
chemokines. The first scenario of an antiviral role of CD4+ CTLs during HIV
infection is in the case of HIV-infected macrophages or dendritic cells (1),
which can present endocytic or cytosolic antigens in an HLA-II-restricted
manner. A second scenario is in the setting of a poor CD8+ T-cells response (2),
such as in the presence of HIV escape mutations, immune evasion, and ex-
haustion, evidenced by the expression of the inhibitory receptor programmed
death (PD)-1.
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including IFN-γ, perforin, and β-chemokines, were poorly expressed in
lymph node-confined CD107a+ CD4+ T-cells [56]. Taken together,
these CD4+ T-cell features confer limited cytolytic potential and im-
mune surveillance capacity in lymph nodes. Similar characteristics have
been reported for CD8+ T cells [58], but despite the low cytotoxic
potential of T-cells, HIV elite controller patients maintain low viral
loads in the absence of therapy. Thus, non-cytolytic factors appear to be
involved in the control of HIV in lymphoid tissues [56,58].

4. Roles of CD4+ CTLs during untreated HIV infection

Antigen-specific CD4+ T-cell responses have been associated with
HIV control and slow disease progression [59–62]. However, HIV-spe-
cific CD4+ T-cells are preferentially infected by HIV [63], and high
viremia hampers their responses [64]. Thus, because antigen-specific
CD4+ T cells are the main targets of HIV, their antiviral roles remain
controversial. Nonetheless, the roles of CD4+ CTLs during HIV infection
are supported by considerable evidence. Specifically, i) HIV elite

controller patients exhibit higher frequencies of circulating HIV-specific
CD107a+ CD4+ CTLs [15], ii) patients with high frequencies of cir-
culating CD57+ or granzyme A+ CD4+ CTLs develop lower viral set
points [15], iii) CD8+ T-cell depletion in SIV or SIV/HIV-infected ma-
caques does not completely eliminate the lysis of peptide-pulsed target
cells in vivo, suggesting a CD4-mediated cytotoxicity [65]. Although
vestigial CD8+ T-cells and NK cells cannot be excluded from these
observations, these results are also supported by the emergence of
virus-specific CD4+ CTLs coinciding with viral control post-CD8 de-
pletion [44]. Further confirming the roles of CD4+ CTLs during HIV
infection, iv) HIV or SIV-specific CD4+ CTLs suppressed viral infection
of CD4+ T-cells [66,67] and macrophages [27,67], and v) both SIV and
HIV Gag-specific CD4+ CTLs exerted in vivo selective pressure, inducing
escape mutations during their control [68,69]. In addition to these lines
of evidence, the induction of CD4+ CTLs by HIV vaccine candidates
suggests that this population provides beneficial lytic activities [37,38].
Moreover, vaccine-induced CD107a+ CD4+ T-cells, but not cytokine-
producing CD4+ T-cells, are resistant to depletion following SIV

Fig. 3. Evaluation of the cytotoxic potential in circulating T-cells in HIV-infected patients under ART. A. Peripheral blood mononuclear cells from HIV-
infected patients receiving ART for more than one year and with suppressed viral load and recovery of CD4+ T-cell counts, where stimulated ex vivo with a pool of
HIV Gag peptides, in the presence of co-stimulatory antibodies anti-CD28 and anti-CD49d. The expression of granzyme B, perforin and CD107a in T-cells (previous
gate in singlet CD3+ cells) was evaluated by flow cytometry after 12 h of culture. In the upper panels, representative contour plots from unstimulated and stimulated
cells are shown. In red and blue, the proportions of CD8+ and CD8− T-cells that are positive for each marker are shown, respectively. In the lower panels, the
frequencies of granzyme B+, perforin+ and CD107a+ in stimulated T-cells from all the patients included is shown. The background of CD107a in unstimulated cells
was subtracted from peptide-stimulated cells. P value of the Wilcoxon test. B. Expression of granzyme B and perforin, as well as CD107a in CD4+ and CD8+ T-cells
after stimulation under similar conditions to that described in A, in addition to polyclonal stimulation with PMA/Ionomycin. P value of the Wilcoxon test. NS: not
statistically significant. C. Frequencies of granzyme B+ and perforin+ CD8− T-cells in seronegative volunteers and HIV-infected patients on ART. The P value of
Mann-Whitney test was> 0.05, not statistically significant (NS). D. Frequencies of perforin+ and CD107a+ CD8− T-cells in HIV-infected patients on ART, and
untreated patients, the latter classified according to their plasma viral load (< 2000 and ≥2000 RNA copies/mL). P value of the Kruskal-Wallis and Dunn’s post-hoc
tests (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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infection in macaques, resulting in lower viral replication [70]. These
data suggest that this cell population controls viral loads through lytic
mechanisms and by intrinsic virus resistance and should be enhanced
by vaccine candidates.

Although antigen-specific CD4+ CTLs are a target of HIV, particu-
larly during acute infection, preserved CD4+ CTL responses could play
antiviral roles in three scenarios. First, CD4+ CTLs are likely important
for the lysis of infected macrophages and dendritic cells [27,67], be-
cause these cells could present a wider diversity of both endocytic and
cytosolic antigens in a HLA-II-dependent manner [71]. Targeting of
these cell types is hence pertinent because they act as cellular HIV re-
servoirs [72]. Secondly, CD4+ CTLs may cooperate with CD8+ T-cells
to achieve lysis of infected cells [15], particularly in the context of a
poor CD8+ T-cell responses, such as those associated with CD8-escape
mutations [73], viral evasion, downregulation of HLA-I molecules [74],
and/or CD8+ T-cell exhaustion [75] (Fig. 2). A third scenario follows
ART-induced viral suppression and is discussed below. Thus, although
HIV-specific CD4+ CTLs are a target of HIV and are depleted early after
infection, the remaining cells may contribute to viral control, particu-
larly by targeting macrophages, dendritic cells, and non-APCs that are
not readily eliminated by CD8+ T cells. Hence, preserved CD4+ CTL
responses may comprise antiviral mechanisms in HIV non-progressor
patients and could be enhanced by vaccine candidates and im-
munotherapeutic approaches.

5. Proposed role of CD4+ CTLs during HIV infection in the
presence of ART-induced viral suppression

Typically, HIV replication is suppressed by ART along with in-
creasing CD4+ T-cell counts, depending on nadir CD4+ T-cell numbers
or naive subpopulations at the time of treatment initiation [76–80].
Moreover, patients with HIV infection who recover CD4+ T-cell counts
are unlikely to experience counts below the threshold for opportunistic
infection risk thereafter [81]. Thus, under conditions of ART-induced
viral suppression, recovery of CD4+ T-cells may facilitate cytolytic
functions. Certainly, the lytic activity of CD4+ CTLs in this setting
would be significant, because some alterations in the CD8+ T-cell cy-
totoxic program, in addition to persistent activation and exhaustion, are
evident in patients with HIV infection and are not fully restored by
ART-induced viral suppression [82–85], hence limiting antiviral activ-
ities.

Circulating CD4+ CTLs have been detected in patients with HIV
infection receiving ART [12,50]. However, suppression of viral load
and antigenemia may promote migration of antigen-specific CD4+ CTLs
from the blood to lymphoid tissues, as shown with HIV-specific IFN+

CD4+ T cells [60] and HIV-specific CD8+ T-cells [86]. However, our
evaluations of cytotoxic phenotypes in different cohorts of HIV-infected
individuals suggest that CD107a+ CD8− T-cells, which frequencies
highly coincide with CD107a+ CD4+ T-cells, are low but detectable
after ex vivo HIV Gag stimulation of cells from patients receiving ART
(Fig. 3A and B). CD8− or CD4+ T-cells also contain granzyme B and
perforin in their lytic granules, but at consistently lower concentrations
than in CD8+ T-cells (Fig. 3A and B). In addition, expression levels of
granzyme B and perforin are similar between patients with HIV infec-
tion receiving ART and seronegative individuals, suggesting that the
production of cytotoxic molecules by CD4+ T cells is intact in these
patients (Fig. 3C). Indeed, CD8− T-cells from patients receiving ART
exhibit higher expression levels of perforin than cells from untreated
patients, both with viral load<2000 or ≥2000 RNA copies/mL
(Fig. 3D). Finally, consistent with the migration of antigen-specific
CD4+ CTLs from blood to lymphoid tissues following viral suppression,
patients receiving ART exhibit lower frequencies of Gag-specific
CD107a+ CD8− T-cells than untreated patients (Fig. 3D). Thus, al-
though more studies are required to explore the roles of CD4+ CTLs in
patients with HIV infection who receive ART, these data support the
cytotoxic potential of CD4+ T cells.

6. Conclusions

Beyond help, CD4+ T-cells can exert direct cytolytic functions and
cooperate with other cytotoxic cell populations to control HIV infec-
tion. Yet, considering differences in CD4+ T-cell profiles between blood
and lymphoid tissues, the phenotypic, transcriptional, and functional
signatures of CD4+ CTLs could be better defined to elucidate their roles
in the control of HIV infections. Moreover, considering that most pa-
tients with HIV infection receive ART, future studies should focus on
this patient group. Such investigations will likely contribute to the
understanding of protective T-cell cytolytic functions. Given that lym-
phoid tissues are sites of augmented HIV replication and act as viral
reservoirs, and that lymphoid tissue T-cells are characterized by a lower
granule-dependent cytotoxic potential, as indicated by their transcrip-
tional profiles, these studies may distinguish between granule-in-
dependent or non-cytolytic mechanisms in terms of the control of viral
replication, transcriptional and epigenetic regulation, and their relative
efficacy as targets for immunotherapeutic strategies.
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