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temiendo lo que pueda haber en el

futuro.”
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Abstract

Air pollution is an environmental issue that concerns human health all around the world.

The air quality is affected by human emissions, meteorological conditions, and topog-

raphy. The measurement of pollutants is an important task to make better decisions

for controlling high pollution concentrations. However, air quality sensing usually has

problems due to machine failures, routine maintenance, among others. As a result, air

quality datasets could have missing information that sometimes could represent more

than 10% of the data. The correct reconstruction of these missing values plays an es-

sential role in further environmental studies. In this work, we model the reconstruction

of missing data as a problem of recovery of graph signals. Therefore, we evaluate the

robustness of a graph signal reconstruction method in a dataset of Particular Matter

(PM2.5) in the Aburrá Valley, Colombia. We observe that 1) the model has better per-

formance during dry months than in wet or transition seasons, and 2) the model could

not follow pollution peaks because the algorithm assumes smooth changes in time. This

model could be suitable to reconstruct data in the Aburrá Valley in dry seasons for other

environmental studies.

Keywords: air quality, missing data, data reconstruction, graph signal processing.
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Resumen

La contaminación atmosférica es un problema ambiental que afecta a la salud humana

mundialmente. La calidad del aire se ve afectada por emisiones antropogénicas, por

condiciones meteorológicas y por la topograf́ıa. La medición de contaminantes at-

mosféricos es una tarea importante para la toma de decisiones, por ejemplo, para contro-

lar altas concentraciones de contaminación en una ciudad. Sin embargo, en la medición

de la calidad del aire generalmente hay problemas debidos a fallas de los equipos, man-

tenimiento de rutina, entre otros. Como resultado, los conjuntos de datos de calidad del

aire pueden tener información faltante, que a veces puede representar más del 10% de

los datos. La reconstrucción de estos valores faltantes juega un papel importante en los

estudios ambientales. En este trabajo, modelamos la imputación de datos faltantes como

un problema de reconstrucción de señales gráficas. Evaluamos la robustez de un método

de procesamiento de señales gráficas en un conjunto de datos de Material Particulado

(PM2.5) en el Valle de Aburrá, Colombia. Observamos que 1) el modelo tiene un mejor

desempeño durante los meses secos que durante temporadas húmedas o de transición

y 2) el modelo puede no predecir picos de contaminación dado que el algoritmo asume

cambios suaves en el tiempo. Este modelo podŕıa ser útil para reconstruir datos en el

Valle de Aburrá en temporadas secas para ser utilizados en futuros estudios de calidad

del aire.

Palabras clave: calidad del aire, datos faltantes, reconstrucción de datos, proce-

samiento de señales gráficas.
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Section 1

Introduction

Air quality is a problem that concerns many cities around the world since air pollutants

have negative impacts on human health. Air pollution causes an increase in mortality

rate in several health problems such as strokes, heart diseases, chronic obstructive pul-

monary diseases, lung cancer, and acute respiratory infections. More than 90% of people

in the world breathe polluted air, and more than 7 million people die as a consequence

of long-term exposure to polluted air every year [33]

Nowadays, measuring the air quality for monitoring the pollutant concentrations is an

important task in urban areas. Monitoring with reliable datasets helps to identify 1) pol-

lution concentration, 2) pollution hotspots, 3) pollution transport, and 4) extreme pol-

lution events. Nevertheless, it is complicated to monitor, analyze, control, and manage

air pollution in cities, especially in regions with complex topographic and meteorological

conditions [8].

Often there are problems with air quality datasets as a result of missing data. Missing

values can be due to 1) machine failures, 2) communication failures, 3) routine mainte-

nance, and 4) human error, or other factors [42]. Lack of data can affect the performance

of air pollution trend analyses, forecasting studies, and epidemiological studies, among

others. Therefore, reconstructing the missing data becomes helpful to be able to use the

information.

Researchers have proposed different methods to solve the problem of incomplete or

unreliable data. Some studies omit data by removing rows or columns that contain

missing values. However, this method can lead to omitting useful information that

will increase the error in air quality analysis [18]. Instead of removing the missing

information, data reconstruction methods keep the whole sample by filling missing values

with imputed data. A variety of reconstruction approaches have been proposed and used.

1



Introduction 2

For example, statistical imputation [2], machine learning-based imputation [23], neural

networks [22, 24], and signal processing approaches [12, 42] are widely used methods in

air pollution studies.

Single imputation methods like mean [32, 38] and linear interpolation [31] are perhaps the

easiest way to compute missing data. They fill the missing values using the corresponding

mean or median of the observed values. Moreover, Nearest Neighbor (NN) algorithm

fills the missing values using the value of the nearest neighbor (row) available, at the

same time weighting the distances in proportion to the number of missing values in each

row [3, 21, 44]. Alahamade et al. [2] combined different approaches to estimate the

time series of missing pollutants. They used single and multiple imputation methods,

such as NN imputation, Simple Moving Average (SMA), and Multivariate Imputation

via Chained Equations (MICE) to impute ozone (O3) concentration values.

Other imputation methods are more sophisticated such as machine learning-based im-

putation. Liu et al. [23] used a Low-Rank Matrix Completion (LRMC) algorithm to

reconstruct PM10, PM2.5, NOx, O3, and SO2 data. This approach reconstructs a matrix

from the observed subset of its entries based on the low-rank property of the origi-

nal matrix. However, LRMC assumes the original data is low-rank, which could not be

true. That approach is limited since air pollution presents complex temporal and spatial

relationships [42].

Unlike the methods described above, neural networks are widely used and have a good

performance. Kalteh & Berndtsson [22] used neural networks to interpolate precipitation

data. They used Multi-Layer Perceptron (MLP) and Self Organization Maps (SOM).

Ma et al. [24] used an approach based on Long Short-Term Memory (LSTM) neural

network, transfer learning, and iterative estimation to impute consecutive missing values.

However, neural network methods require large amounts of data for neural network

training.

Graph Signal Processing (GSP) is an emerging research field that analyzes signals living

on irregular structures captured by graphs. GSP has many applications such as climate

analysis [9, 11, 26] and sensor networks [40, 45]. GSP is a powerful tool when there

are missing data problems. For example, this tool has been used to reconstruct missing

data from the sea surface temperature, the global sea-level pressure, and the daily mean

PM2.5 datasets of California [37], to name a few.

There are some studies in the domain of GSP for reconstructing missing data. Qiu et

al. [37] have demonstrated the excellent performance of GSP methods in data recon-

struction with several experiments. For example, they used the California daily mean

PM2.5 concentration dataset with percentages of valid data ranging from 90% to 45%.
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They proposed a batch method that was compared with Natural Neighbor Interpolation

(NNI) [41], Low-Rank Matrix Completion [25], graph regularization [30], and graph-time

Tikhonov [36]. When the sampling rate is 40%, they found that their method achieves

better performance than all the compared methods.

Giraldo and Bouwmans [12] also used a dataset of the daily concentration of PM2.5 in

California and a dataset of sea surface temperature. They used a Sobolev reconstruction

method that was compared with Qiu’s method and NNI. They found that their method

outperforms NNI in the sea surface temperature and PM2.5 concentrations while having

approximately the same performance that Qiu’s method.

Unfortunately, most of these approaches have been applied in the domain of computer

science. Few methods consider the complexity of the atmosphere and its different phe-

nomenon. In general, data reconstruction methods evaluate air pollution as a problem

in time and space. However, air pollution also depends on meteorological, climate, and

geographical conditions [39].

Big cities located in complex terrains such as valleys, usually experience serious air pol-

lution problems. The transport of air pollutants emitted from urban valleys depends on

topographical conditions, wind fields, and the dynamics of the Atmospheric Boundary

Layer (ABL) [14]. Topography affects pollutant concentrations because it acts as an im-

permeable barrier for atmospheric flows [43]. The ABL height determines the pollutant

concentration because the Convective Boundary Layer (CBL) acts as an interface for

exchanging momentum, water vapor, gases, and pollutants from the surface to the atmo-

sphere [7]. Anthropogenic emissions build up and lead to critical air pollution episodes

when there are unfavorable meteorological conditions [16].

Medellin is a city in the Aburrá Valley, a highly complex mountainous terrain located

between the west and central Colombian mountains [16]. In this region, the air quality

depends on emissions sources, meteorological conditions, and topographic barriers [39].

Since 2014 the air quality has been a relevant concern in this city. The local govern-

ment has established an air quality monitoring network since 2013. It is a system that

makes real-time monitoring of hydrological, meteorological, and air quality conditions.

However, this system, like others around the world, presents missing values that could

represent more than 10% of the data. Imputation or reconstruction of air pollutants

data is an essential task, notably when the number of missing values is significant [23].

In this work, we model the air pollution data as a problem of reconstruction of time-

varying graph signals. This model has the advantage of considering both spatial and

temporal information and does not require a large amount of data, unlike previous

approaches. The prior assumption of this model is that the data vary smoothly both in
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space and in time. That is to say, the concentration of pollutants should be similar in

nearby areas, and the change in time is gradual [12].

Our methodology will be applied to air pollution data in the Aburrá Valley in Colombia.

The measurement, prediction and management of atmospheric pollution is a challenge

in the region because it is affected by different phenomena and their interactions. We

evaluate the performance of the graph model by using statistical metrics such as Root

Mean Square Error (RMSE) and Coefficient of Correlation (R2). The principal objective

of this study is to test the robustness of the model to reconstruct properly the missing

data involving PM2.5 concentration changes due to meteorological variability, e.g., the

case where there is a change from dry to rainy season. This research work is organized

as follows. In Section 2, we describe the study area and its meteorological conditions.

Section 3 presents a description of the model and the data used. Section 4 includes a

description of the numerical model configuration and the experimental set-up. Then, in

Section 5 we present the results of the graph model reconstruction. Finally, Section 6

presents the most important conclusions of the study.



Section 2

Study Area

The Aburrá Valley is a narrow valley with 64 km in length and 18.2 km wide. It is located

in the Central Andes mountain (6°N - 6.5°N, and 75.3°W - 75.6°W); and its topography

is irregular and sloping. The heights of mountains are between 1500 and 2800 m above

sea level [15, 16, 27]. Figure 2.1 shows the geographical location, the topography of

the Aburrá Valley, and the monitoring stations used in this work. The valley has a

bimodal annual cycle of precipitation with two periods of higher rainfall (April to May

and September to October), and two drier seasons (December to February and June to

August) [5]

In the Aburrá Valley, the ABL height depends on meteorological conditions. The ABL

height is higher during June and lower during March [15, 19]. This change in the ABL

height can explain why during March and April the atmospheric pollution conditions

are worse than in June. Moreover, low clouds form in the valley during March. These

clouds decrease the radiative fluxes on the surface within the valley. As a result, the

winds are calm at the local scale, and turbulent processes in the atmosphere are affected.

These modifications lead to a low removal of atmospheric pollutants [10]. A similar

phenomenon occurs during November where there is a transition between wet and dry

seasons. However, the concentrations of PM2.5 registered during this month are lower

than during the first transitional period (March-April). This phenomenon is due to the

behavior of the trade winds on the surface that is different during November [28].

The Metropolitan Area of the Aburrá Valley (AMVA) is a large urban agglomeration

made up of ten municipalities. Medellin is the principal city in the valley, and is an

important economic center. The AMVA is the second most important metropolitan

area in Colombia, and has approximately 4 million inhabitants [8, 16]. Currently, it is

the second-largest urban area and has one of the most important industrial centers in

5



Study Area 6

Figure 2.1: The geographical area of the Aburrá Valley, located in the department of
Antioquia (in orange to the right), Colombia. The map shows (in red to the left) the
location of the monitoring stations.

the country. As a consequence, industry and transportation produce a high quantity of

air pollutants.

The most critical episode of pollution was reported in 2016 (in February-March) in

the Aburrá Valley. This episode was related to local meteorological conditions and

atmospheric boundary layer variability [1, 16, 35]. Peláez et al. [35] found that in

Medellin, between the years 2012-2017, the average annual concentrations of PM2.5

exceeded the guideline value given by the World Health Organization (WMO). PM2.5

has a bimodal behavior in the region because there is a peak in March and another in

November. The maximum concentration of PM2.5 is in March as a consequence of the

transition between the dry and wet seasons. Moreover, this pollutant has a noticeable

diurnal cycle. It has a peak of pollution in the morning (around 8:00) and another

smaller peak at night (around 20:00) [17].



Section 3

Methodology and Data

This section presents the preprocessing steps of data and the model. Figure 3.1 shows

the framework of this study. First, we have raw data of air quality from the Aburrá

Valley. Afterward, a preprocessing and exploratory analysis is done in this dataset. The

graph model is executed to reconstruct the missing data. Finally, three experiments are

executed, and the results are analysed.

3.1 Air quality data

The air quality data come from the governmental institution Early Warning System of

Medelĺın and the Aburrá Valley SIATA (Spanish acronym). SIATA provides air qual-

ity, meteorological, and hydrological data on their website www.siata.gov.co. Several

researchers have used this dataset to identify: 1) what is the state of air quality in the

metropolitan area, 2) what is the distribution of pollutants, and 3) what is the danger

of pollutants in public health [1, 4, 8, 29].

In this study, we work with information between January 1st and December 31st, 2019

obtained from automatic stations of SIATA. The selected stations are distributed among

nine of ten municipalities of the Aburrá Valley, and the data includes hourly measure-

ments of PM2.5. Table 3.1 shows the description of each station used in this work. PM2.5

Raw Data

- Preprocessing

- Find Missing Data

- Exploratory Analysis

- Parameter Optimization (  )

- Model Solution
           

- Model Evaluation

Figure 3.1: Methodology overview.
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Methodology and Data 8

was selected due to its major contribution to the air pollution problems in the Aburrá

Valley and its impacts on human health. We selected 2019 because of data availability

and better meteorological characterization. The database was preprocessed as required

by the graph model using Python.

Table 3.1: Summary of stations of the SIATA in the Aburrá Valley.

Code Station

12 MED: Estación Tráfico Centro
25 MED: Centro-Occidente UNAL
28 ITA: Casa de la Justicia
31 CAL: Corp. Universitaria Lasallista
38 ITA: I.E Concejo de Itagǘı
44 MED: El Poblado-Tanques de la Y
48 MED: Estación Tráfico Sur
69 CAL: E.U Joaquin Aristizabal
78 EST: La Estrella-Hospital
79 MED: I.E Pedro Octavio Amado
80 MED: Villa Hermosa
81 BAR: Torre Social
82 COP: Ciudadela Educativa La Vida
83 MED: Belén-I.E Pedro Justo Berrio
84 MED: INEM Sede Santa Catalina
85 MED: San Cristobal
86 MED: Aranjuez-I.E Ciro Mendia
87 BEL: I.E Fernando Vélez
88 ENV: E.S.E Santa Gertrudis
90 ITA: Estación de Polićıa los Gómez

MED: Medelĺın, ITA: Itagǘı, SAB: Sabaneta, BAR: Barbosa,

BEL: Bello, COP: Copacabana, ENV: Envigado, CAL: Caldas,

EST: La Estrella.

3.2 Reconstruction model

A graph is usually represented as a set of nodes and a set of edges. This representation

is encoded with the adjacency matrix W ∈ RN×N , where N is the number of nodes.

Similarly, the value W(i, j) inside the adjacency matrix represents the connectivity

between the node i and j, i.e., if these nodes are connected the value W(i, j) is different

from zero. Another important matrix is the diagonal degree matrix defined as D(i, i) =∑N
j=1W(i, j). The Laplacian matrix is defined as L = D −W. Figure 3.2 shows the

graph corresponding to the dataset of PM2.5 in the Aburrá Valley. This graph was

constructed with a k Nearest Neighbors (k-NN) with k = 5 [34].



Methodology and Data 9

Figure 3.2: Graph representation of the PM2.5 dataset in the Aburrá Valley.

In this work, the PM2.5 is represented with a matrix X ∈ RN×M , where N is the number

of stations, and M is the number of data points in time. Similarly, the temporal differ-

ences operator was introduced by Qiu et al. [37] as a matrix Dh ∈ {−1, 0, 1}M×(M−1),

and it is defined as follows:

Dh =



−1

1 −1

1
. . .

. . . −1

1


∈ {−1, 0, 1}M×(M−1) (3.1)

In the same way, the sampling matrix contains the information of whether a station at

a specific time is failing, i.e., the sampling matrix tells us the location of missing data.

This matrix J ∈ {0, 1}N×M is given as follows:

J(i, j) =

1 if i ∈ St,

0 if i /∈ St,
(3.2)

where St is the set of good nodes at time t. Finally, the reconstruction method solves

the following optimization problem:
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min
X̂

1

2
‖J ◦ X̂−Y‖2F +

λ

2
tr
(

(X̂Dh)TLX̂Dh

)
(3.3)

where Y ∈ RN×M is the matrix of observed values (the data that we know). This

optimization problem is solved with conjugate gradient method [37].

3.3 Evaluation of the model performance

Residual methods are widely used for evaluation of environmental models, these methods

calculate the difference between observed and modelled data points [6]. In this work, we

used two residual metrics, frequently used in environmental data reconstruction studies

[13, 20, 21, 23, 37, 38], to evaluate the performance of the reconstruction model: 1) Root

Mean Square Error (RMSE) and 2) Mean Absolute Error (MAE). In addition, we used

the Coefficient of determination (R2) to test the ability of the model to preserve the

pattern of data. The metrics are defined in Equations 3.4, 3.5 and 3.6.

RMSE is a metric for determining the error that summarises the difference between the

observed and reconstructed concentration values. This metric expresses the error in the

same units as the original data [6].

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (3.4)

MAE is a metric similar to RMSE, except that the absolute value is used instead, thus,

reducing the bias towards large events and is a more sensitive measure of residual error

[6].

MAE =
1

n

n∑
i=1

|xi − x̂i| (3.5)

Coefficient of determination R2 is a square version of the Pearson correlation coefficient

and ranges from 0 to 1. It describes the variance between the observed and the predicted

concentrations [6].

R2 =

( ∑n
i=1 (xi − x̄)(x̂i − x̃)√∑n

i=1(xi − x̄)2
√∑n

i=1(x̂i − x̃)2

)2

(3.6)



Section 4

Experimental Framework

Since we are unable to directly determine the performance of the reconstruction method

on missing data, a portion of the actual data sets was randomly removed to estimate

the ability of the model to reconstruct these data. The real corrupted data were not

taken into account in the reconstruction method.

In this work, the graph reconstruction method was implemented in MATLAB. We per-

formed three experiments (Figure 4.1). In the first experiment, we use the whole dataset,

i.e., the 20 stations during all the year 2019. We compute the RMSE, MAE and R2 for

several missing data percentages in the set {0.1, 0.2, ..., 0.9}. Furthermore, a Monte

Carlo cross-validation with three repetitions was performed.

For the second experiment, a Monte Carlo cross-validation with seven repetitions was

performed. The RMSE was computed for several sampling densities, for each month of

Ja
n 

7-
23

Fe
b 

25
 - 

Ma
r 1

6

Stations

Experiment 1 Experiment 2 Experiment 3

Jan

Feb

Mar

Abr

May

Jun

Jul

Nov

Oct

Sep

Aug

Dec

Stations

Jan

Feb

Mar

Abr

May

Jun

Jul

Nov

Oct

Sep

Aug

Dec

Stations

Removed Data

Original Missing
Data

Data used to
reconstruct

Figure 4.1: Experimental framework
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the year 2019 in the dataset of the Aburrá Valley. In this case, we remove the samples

from specific months while using the available data from the rest of the dataset. The

sampling densities are in the set {0.1, 0.2, ..., 0.9}, where each sampling density means

the amount of valid information. For example, when the sampling density is 0.9 the

reconstructed data is 10%.

The third experiment also computes the RMSE, but in this case for the dry and first

transition season. The dry season is between the days January 7 and 23, while the

transition season (dry to wet) is between February 25 and March 16. In this experiment,

the RMSE is performed for each station, and thus a Monte Carlo cross-validation with

three repetitions is done. The percentage of reconstructed data in this case is in the set

{1, 0.8, ..., 0.2}, where percentage of 1 (100%) means that the whole data in the selected

window is missing for a specific station.



Section 5

Results and Discussion

This section presents the results of an exploratory data analysis of PM2.5 in the Aburrá

Valley. Moreover, this section shows the results of the different experiments performed

of data reconstruction under different percentages of missing values.

5.1 Exploratory data analysis

An exploratory data analysis was performed to establish the quality of the time series of

PM2.5. This analysis determines the quantity and length of gaps of missing data. The

amount of missing data in the dataset is 6.57%, with 6029 gaps of different time lengths.

Table 5.1 shows the general information of missing data gaps. Most of the data gaps

are in the interval of g ≤ 3h, which means that the length of almost all gaps is 3 hours

or less. Similarly, Table 5.1 shows that approximately 7% of the missing data is in the

interval 3h < g ≤ 12h. Finally, we have less than 1% of missing gaps for time windows

greater than 24 hours.

Table 5.1: General information of missing data gaps.

Gaps Missing data (%)

g ≤ 3 h 92.52
3 h < g ≤ 12 h 6.68
12 h < g ≤ 24 h 0.48
24 h < g ≤ 36 h 0.08
36 h < g ≤ 48 h 0.03
48 h < g ≤ 60 h 0.00
60 h < g ≤ 72 h 0.00

g > 72 h 0.20

g: length of gap in time, h: hour

13
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Table 5.2 shows detailed information about the missing data of the PM2.5 database. We

have the number of gaps of each station for every month in the year 2019. Furthermore,

we show the maximum length of a gap in hours for every month. For example, in January

the station 12 has 35 gaps of different lengths, and the maximum gap is 79 continuous

hours. The maximum missing gap is 99 continuous hours in the whole dataset for station

81 in September. One of the worst cases is station 48 in May because it has a big gap of

73 continuous hours and 55 gaps of different lengths. Table 5.2 also shows that the least

corrupted data is in station 69, where we do not have more than 20 gaps each month,

and there is only a considerable gap in September.

Table 5.2: Detailed monthly information of missing data of PM2.5 in the Aburrá
Valley for each station.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Station Number of gaps (number of hours of the maximum gap)

12 35 (79) 31 (9) 40 (11) 54 (6) 55 (8) 45 (12) 41 (6) 28 (11) 26 (3) 35 (40) 31 (5) 22 (5)
25 25 (7) 16 (7) 24 (12) 38 (7) 53 (8) 69 (12) 69 (7) 46 (11) 73 (8) 67 (9) 53 (23) 42 (9)
28 14 (74) 19 (4) 15 (10) 18 (3) 8 (11) 18 (12) 26 (4) 21 (10) 18 (8) 24 (3) 11 (5) 16 (6)
31 23 (77) 23 (3) 21 (13) 45 (5) 46 (5) 42 (14) 35 (28) 18 (11) 35 (15) 38 (7) 48 (11) 37 (21)
38 17 (3) 21 (2) 28 (9) 19 (2) 38 (5) 47 (77) 21 (3) 21 (10) 16 (2) 22 (2) 16 (20) 26 (3)
44 22 (3) 20 (14) 37 (19) 33 (4) 37 (74) 44 (14) 28 (4) 24 (25) 25 (15) 37 (4) 37 (5) 34 (8)
48 55 (4) 26 (5) 19 (9) 55 (13) 55 (73) 83 (45) 95 (6) 61 (9) 74 (3) 66 (5) 50 (4) 53 (10)
69 16 (7) 14 (3) 7 (2) 11 (3) 12 (3) 11 (12) 16 (7) 14 (16) 14 (76) 11 (2) 18 (5) 17 (3)
78 25 (6) 16 (4) 9 (3) 15 (3) 17 (9) 18 (12) 22 (4) 21 (10) 14 (75) 19 (4) 18 (3) 17 (4)
79 15 (3) 13 (5) 19 (4) 20 (4) 18 (2) 21 (12) 23 (3) 30 (5) 17 (3) 12 (3) 17 (4) 16 (3)
80 20 (4) 11 (14) 12 (4) 23 (2) 23 (3) 32 (12) 38 (15) 22 (9) 21 (3) 25 (3) 25 (21) 37 (7)
81 25 (4) 15 (9) 11 (5) 21 (4) 48 (3) 38 (15) 38 (3) 28 (7) 23 (99) 31 (2) 36 (5) 29 (5)
82 15 (33) 17 (10) 8 (3) 18 (3) 22 (2) 28 (12) 15 (4) 23 (9) 17 (4) 22 (6) 19 (4) 22 (7)
83 18 (14) 11 (3) 7 (5) 16 (3) 12 (5) 24 (12) 22 (3) 20 (13) 14 (3) 13 (3) 10 (6) 13 (3)
84 21 (11) 10 (4) 8 (2) 24 (5) 19 (14) 27 (12) 20 (2) 23 (6) 17 (8) 18 (3) 21 (9) 22 (5)
85 18 (4) 12 (15) 11 (4) 16 (4) 21 (17) 24 (12) 20 (2) 23 (11) 19 (7) 20 (4) 21 (26) 19 (8)
86 16 (3) 19 (3) 8 (3) 10 (2) 13 (7) 19 (12) 13 (2) 23 (10) 15 (6) 14 (3) 17 (18) 26 (5)
87 19 (75) 19 (6) 14 (3) 19 (3) 18 (2) 26 (12) 45 (2) 50 (9) 24 (4) 20 (3) 31 (4) 38 (5)
88 24 (3) 13 (5) 8 (3) 16 (10) 23 (3) 24 (12) 16 (3) 26 (10) 14 (95) 17 (3) 28 (3) 11 (6)
90 17 (4) 15 (2) 11 (3) 12 (6) 17 (5) 27 (12) 25 (8) 22 (11) 16 (7) 15 (3) 22 (4) 15 (79)

Figure 5.1 illustrates some examples of different cases of gap distribution. There are

distinct cases of missing data as shown in Figure 5.1. For instance, a) some months have

several gaps and one or more of them have a big length, b) other months have few gaps

but one or more of them are big gaps, c) other months also have numerous gaps but

all of them are small, and d) the best case is where we have months with few gaps and

these have a small length.

5.2 Results of the reconstruction model

Table 5.3 shows the performance of the analysis for different missing data percentages

for the first experiment. The RMSE and the MAE decrease and the coefficient of

determination increases, as the number of missing data decrease. We can see that

the performance of the model is good for missing data less than 50% according to the

R2 in Table 5.3.
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Figure 5.1: Some examples of the distribution of gaps in the dataset. (a) Many and
big gaps, (b) few and big gaps, (c) many and small gaps, and (d) few and small gaps.

Table 5.3: Metrics for different missing data percentages {10%, 20%, ..., 90%}. Root
mean square error (RMSE), Mean Absolute Error (MAE), and coefficient of determi-

nation (R2).

Indicators Missing data percentage

90% 80% 70% 60% 50% 40% 30% 20% 10%

RMSE 10.17 7.66 6.79 6.32 5.98 5.76 5.59 5.46 5.36
MAE 5.45 4.21 3.68 3.34 3.08 2.87 2.69 2.54 2.40

R2 0.62 0.77 0.82 0.85 0.87 0.89 0.90 0.91 0.92

Figure 5.2 shows the level of agreement between the original data and the reconstructed

data in the first experiment. We can see that the scatter plots get skinnier as soon as

the missing data percentage decreases. Figure 5.3 shows a part of the time series for the

original and reconstructed data in the first 15 days of August in Station 69. Similar to

the scatter plots in Figure 5.2, the level of agreement between the original data and the

reconstructed data increases when the percentage of missing data decreases. However,

the model cannot follow some pollution peaks since the model assumes smooth changes

in time.

The reconstructed signal in Figure 5.3 is not exactly the same as the original, even when

the data is not artificially corrupted, because the model minimizes the error, i.e., the
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Figure 5.2: Scatter plots of the reconstruction results of value pair between original
data and corresponding reconstructed values. Missing data percentage of (a) 80%, (b)
60%, (c) 40%, and (d) 20%.

model does not search for the exact same value to reduce noise. For example, if we have

a peak of pollution and the model does not artificially corrupt that peak, the algorithm

could consider that peak as noise. As a result, the model could smooth that peak.

Figure 5.3: A part of the time series for the original (green) and reconstructed data
for three percentages of missing data, 80% (coral), 40% (violet), and 20% (blue).

We compute the daily mean of the original and reconstructed data to evaluate the model
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in another time scale, as shown in Figure 5.4. The model performs better in this case;

even with a high percentage of corruption, the model fits quite well the original time

series. In this case, the model can follow the peaks in pollution.

Figure 5.4: The daily mean of the original and reconstructed data in station 69.
Missing data percentage of (a) 80%, (b) 60%, (c) 40%, and (d) 20%.

Figure 5.5 shows the reconstruction results for the second experiment. The reconstruc-

tion in some months has better results than others. During dry meteorological condi-

tions like January, June, and July the model has a better performance. Nevertheless,

the model does not perform as well as during March, April, May, and November (wet

and transition seasons). The model has worse results during the transition seasons. Air

pollution conditions in the Aburrá Valley are affected by weather conditions in all sea-

sons. During dry months, the meteorological conditions favor the height of the ABL and

the transport of pollutants. These conditions contribute to making better the air quality

conditions. During wet seasons the meteorology affects the ABL height and transport

of pollutants. During wet months air quality conditions are worse. Due to the graph re-

construction model not considering these meteorological variables its performance could

be affected.

Table 5.4 shows the results of the third experiment. In this third experiment, we can

see a similar result to the second one. The ability to reconstruct is better during the

dry season than during the transition season. This is the same behavior observed in the

first experiment, where February and March belong to the transition season. We can

also notice that the increase in missing data percentage decreases the performance of
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Figure 5.5: Reconstruction RMSE results for several months and several sampling
densities with the graph-based algorithm. (a) First semester 2019, and (b) second
semester 2019.

the reconstruction model. Similarly, the RMSE indicates that the general performance

of the reconstruction method is fairly good when the missing information is less than

80%.

Table 5.4: Detailed monthly information of reconstruction. RMSE results of PM2.5 in
the Aburrá Valley for each station. During a dry season (7 - 23 January) and transition

season (25 February - 16 March).

Dry Transition

Station 100% 80% 60% 40% 20% 100% 80% 60% 40% 20%

12 14.64±0.00 9.64±0.27 7.50±0.23 6.93±0.55 6.69±0.82 12.84±0.00 9.67±0.67 8.77±0.59 7.83±0.56 6.47±0.26
25 4.65±0.00 4.24±0.08 4.06±0.03 3.75±0.07 3.70±0.37 6.57±0.00 5.53±0.24 5.05±0.16 4.72±0.25 4.36±0.58
28 6.61±0.00 5.14±0.21 4.68±0.36 4.62±0.58 4.64±0.28 8.60±0.00 7.54±0.67 7.21±0.24 6.86±0.20 6.66±0.70
31 6.12±0.00 5.60±0.16 5.37±0.27 5.18±0.13 5.12±0.54 6.34±0.00 6.22±0.27 6.11±0.11 5.74±0.20 5.42±0.24
38 4.82±0.00 4.33±0.08 4.39±0.07 4.03±0.31 3.74±0.18 6.27±0.00 5.71±0.13 5.11±0.23 5.30±0.10 5.14±0.34
44 6.95±0.00 6.84±0.24 6.20±0.34 5.95±0.34 6.00±0.49 8.22±0.00 8.23±0.15 7.27±0.61 6.99±0.22 7.14±0.83
48 8.73±0.00 7.77±0.27 7.80±0.19 7.20±0.53 6.74±0.61 8.64±0.00 8.57±0.47 8.07±0.20 7.89±0.24 7.79±0.39
69 5.16±0.00 5.16±0.17 5.04±0.25 4.97±0.26 4.79±0.06 6.69±0.00 7.18±0.41 6.58±0.23 6.64±0.38 5.87±0.48
78 4.62±0.00 4.40±0.15 3.85±0.17 3.73±0.16 3.67±0.34 6.10±0.00 5.98±0.49 5.50±0.22 5.54±0.30 5.26±0.25
79 5.71±0.00 5.92±0.18 5.45±0.22 5.03±0.41 4.77±0.15 6.93±0.00 7.14±0.21 6.41±0.52 5.57±0.26 5.94±0.26
80 5.79±0.00 5.49±0.10 4.92±0.16 4.50±0.15 4.07±0.46 7.06±0.00 6.75±0.15 6.63±0.29 6.42±0.16 6.28±0.05
81 14.99±0.00 5.34±0.09 4.97±0.08 4.62±0.31 4.40±0.47 31.68±0.00 7.26±0.18 6.75±0.17 6.58±0.28 6.04±0.51
82 6.62±0.00 5.10±0.30 4.50±0.30 4.41±0.31 4.30±0.34 7.67±0.00 5.28±0.26 5.18±0.16 4.99±0.37 4.82±0.30
83 11.20±0.00 7.99±0.62 6.46±0.50 5.97±0.30 5.24±0.24 11.60±0.00 8.38±0.23 7.83±0.44 6.87±0.08 6.61±0.65
84 4.03±0.00 4.24±0.15 4.08±0.11 4.27±0.13 3.87±0.27 5.58±0.00 5.43±0.17 5.28±0.09 4.71±0.18 4.26±0.30
85 8.20±0.00 4.92±0.23 4.44±0.25 4.29±0.06 4.01±0.10 8.79±0.00 7.98±0.27 6.69±0.35 6.64±0.19 5.96±0.50
86 4.77±0.00 4.42±0.11 4.08±0.26 3.96±0.31 3.67±0.21 7.43±0.00 6.12±0.28 5.12±0.08 4.85±0.10 4.80±0.05
87 5.08±0.00 4.64±0.17 4.32±0.18 4.19±0.08 4.06±0.34 6.76±0.00 5.26±0.10 4.85±0.21 4.94±0.16 4.51±0.67
88 4.27±0.00 4.25±0.07 4.26±0.03 4.01±0.24 3.88±0.14 6.15±0.00 5.92±0.00 5.43±0.13 5.38±0.24 5.14±0.36
90 5.40±0.00 4.60±0.06 4.38±0.13 4.21±0.07 3.83±0.22 7.61±0.00 6.27±0.11 5.57±0.31 5.15±0.44 5.13±0.30

Mean 6.92±3.15 5.50±1.46 5.04±1.13 4.79±1.01 4.56±1.00 8.88±5.57 6.82±1.27 6.27±1.15 5.98±1.02 5.68±1.01

Table 5.4 shows limitations in some stations, for example, the RMSE in stations 12

and 81 are clearly high in both seasons. The poor results in station 12 during the dry

season could be partly explained by the big gaps of missing data in January (see Table

5.2). Similarly, for 100% of missing data the model heavily relies on spatial information,

and therefore the reconstructed data in this case for station 12 is similar to its closest

stations (25, 80, and 86)(see Figure 5.6). On the other hand, unlike the other cases, the
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Figure 5.6: Spatial imputation results of various stations, each figure represent the
real data (in green) and the reconstructed data (in yellow) when the missing data
percentage was 100%.

station 12 shows better results in wet than in dry season, that is because we have less

gaps in February-March than in January.

As shown in Table 5.4, the RMSE is high in station 81 for 100% of missing data for

both seasons. Figure 3.2 shows that station 81 is geographically far away from the

rest of stations. As a result, the reconstruction of 100% missing data relies entirely on

the closest stations, and the spatial smoothness does not hold quite well in this case.

However, the results improve as soon as we have less than 100% of missing data and we

get some temporal information.

Figure 5.7 shows several Taylor diagrams of the different experiments. Figure 5.7 (a) and

(b) shows the results in station 44 for dry and transition season, respectively. Figure

5.7 (c) and (d) show the Taylor diagrams in station 78. Every point represents the

reconstructed time series for different percentages of missing data, and the black star

represents the original time series. We observe that most of the points are under the

black dotted line, this means that the reconstructed data set has less variation than the

original data. The best results in terms of variance are at station 78 for the transition

season. However, in this case the centered root mean square error is between 4 and 8
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Figure 5.7: Taylor diagrams of PM2.5 data for two stations. (a) and (b) station 44
for dry and transition season, respectively. (c) and (d) station 78 for dry and transition
season, respectively.

for all the percentages of missing values, these results are higher than in the case of

dry season in the same station. We can also see that the correlation increases as the

percentage of missing data decrease. In cases of percentage of missing values lower than

40% the correlation is between 0.9 and 1. Therefore, there is a high level of agreement

between original and simulated data. This result coincides with the analyzes of the other

experiments.



Section 6

Conclusions

In this work, we tested a graph model for the reconstruction of missing data in a dataset

of air quality in the Aburrá Valley. The methodology is composed of a preprocessing

stage, exploratory data analysis, execution of the model, and analysis of the results.

We conclude that the performance of the model improves as soon as the percentage of

missing data decrease. However, the model cannot follow the pollution peaks since the

model assumes smooth changes in time. The model also minimizes the error and reduces

the noise; accordingly, the reconstructed dataset is not precisely the same as the original

data, even in the values not artificially corrupted.

We also concluded that the model works well in general settings, but its performance

decreased when there are extreme meteorological events. The model has a better per-

formance during dry seasons than during wet and transition seasons. During the dry

months the meteorological conditions favor the dispersion of pollutants whereas during

wet months the meteorological conditions contribute to worse air quality conditions.

These weather events were not included in the model, therefore the model performance

is affected.

To future work it could be interesting to analyze the performance of the model in the

daily cycle of pollution, to see if the daily cycle of precipitation affects the results of the

reconstruction method. In addition, an interesting future direction of this work is to

include meteorological information into the model.
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[10] Cuervo López, C. M. (2017). Caracterización del comportamiento del vapor de agua
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[19] Jiménez Mej́ıa, J. F. (2016). Altura de la capa de mezcla en un área urbana,
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