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Abstract

The Colombian Tropical Dry Forest (TDF) is an important ecosystem due

to its high levels of endemism. This ecosystem is currently under threat

due to deforestation generated by cattle, mining, and urban development

since more than 200 years. Therefore, it is urgent the need to carry out

conservation activities which require to understand the ecological hetero-

geneity and the states of the sites. Traditionally, environmental conserva-

tion experts measure it through direct observation, but these methods are

invasive to the study landscapes. A proficient alternative is the passive

acoustic monitoring with the use of computational tools. However, there

are no acoustic methods to determine the heterogeneity using successional

states of sites. This document proposes a new method to automatically

identify the transformation in separate sites within areas in the Colombian

TDF. The methodology follows 5 steps: First, establish if the recording

has a high noise level. If is a noisy recording, it is not analysed. Second,

calculate the selected acoustics indices for the recording. Third, based on

the recording hour the stage of daily acoustic patterns is selected. Four,

Use GMM models to identify the transformation type. Five, calculate the

proposed acoustic heterogeneity index. To achieve this, we did an analysis

of acoustic variables to determine the most informative. It was proposed to

include two new variables spectral centroid and spectral band-with, since

these help to better identification of succesional states. Also, it was explor-
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ing the acoustic patterns found 3 stages with similar behavior: morning

(5-8), day(8-17), and night (17-5). Our proposal was tested with a data-set

provided by Alexander Von Humboldt Institute. This data-set consists of

a group of acoustic recordings recorded in two local sites: La Guajira and

Bolivar. The method to identify the transformation level achieved an F1

score of 92% and 90% for La Guajira and Bolivar regions. We use the

Acoustic Heterogeneity index to create maps that allow to see similarities

among the studied sites. Also, we found that the method can detect special

sites that can be associated with anomalies in the landscapes. As far as

the authors know, this proposal is the first method to find heterogeneity

in ecosystems that perform high capabilities to create informative maps

about the site states using acoustic indices analysis.
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En memoria de Fausto y Vanesa.

”Si la vida es solo un sueño pasajero, el despertar es lo que realmente nos

arroja al vaćıo”
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Nomenclature

Abbreviations

AH Acoustic Heterogeneity

EM Expectation-Maximization

ESM Entropy ofspectral Maxima

GMM Gaussian Mixture Models

KS Kolmogorov-Smirnov

MAP Maximum A Posteriori

MD Musicality Degree

MID Mid-band activity

NDSI Normalised Difference Soundscape Index

PAM Passive Acoustic Monitoring

PSD Power Spectral Density

SB spectral bandwidth

SC Spectral Centroid

SF Spectral Flatness
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TDF Tropical Dry Forest

UBM Universal Background Model

Mathematical nomenclature

α Estimated techno-phony index

β Bio-acoustics index

Σ̂i GMM covariance Matrix

λ Parameters of GMM

µ Median

µGi vector mean of GMM

f Spectrum specific frequency value

k Frequency index

M Number multi-modal Gaussian densities

Mt[n] Fourier transform magnitude

n Frequency bin

Nf Total number of frequency bins

Nr the number of recordings in site i

Pf Spectrum Values of each frequency f

S Number of study sites

s Site index

t Time frame

Tm Number of transformation levels
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Uj Maximum value in the frequency bin j

W Welch’s power spectral density estimate

w Cell in the spectrogram

wGi GMM mixture weights

X(k) Normalized spectrum magnitude in the k index
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Chapter 1

Introduction

1.1 Problem description and justification

The population growth generate accelerated rates of natural ecosystems

degradation. In particular, the Tropical Dry Forest (TDF) of Colombia

has only 8% of its original distribution, which makes it one of the most

fragmented ecosystems in the country (Moreno and Goméz, 2019). It is

due to ranching land large stretches, and deforestation for farming explo-

ration since colonial times. TDF has unique flora and fauna components

with high levels of endemisms and Beta diversity, whereby it is urgent the

need to carry out conservation plans (Mendoza, 1999). In order to iden-

tify the landscape transformation effects and thus make better decisions

in conservation actions, it is necessary to develop efficient and high bi-

ological methods, finding explicit spatial models of connectivity (Dickson

et al., 2018; McRae et al., 2008). The functional connectivity can be under-

stood as the degree to which the landscape facilitates movement between

resource patches Bélisle (2005), and landscape heterogeneity can be defined

as ”the complexity and/or variability of a system property in space and/or
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1.1. PROBLEM DESCRIPTION AND JUSTIFICATION

time” Li (1995). Landscape heterogeneity research is fundamental, as it

has implications, in the habitat selection, movement of organisms (Wiens

et al., 1993), and the management and conservation of natural ecosystems

(Moreno and Goméz, 2019).

Traditionally conservation experts determine the connectivity models by di-

rect observation creating species inventories, which require a large amount

of money and time and also perturbs the studied sites (Pimm et al., 2015).

However, the technological revolution of the last years has resulted in the

invention of alternatives to trade off the disadvantages of traditional meth-

ods. One of these alternatives is Passive Acoustic Monitoring (PAM) that

studies wildlife and its environments by using soundscape. The sound-

scape is the composition of three sound sources : Geo-phony (Geology

sounds like rain, wind, etc), Biophony (Biological sounds by animals), and

Anthro-pophony (human sounds, like engines, human voice, etc). All of

these sound are distributed along the spectrum, indeed they vary accord-

ing to the seasons and the day time (Villanueva-Rivera et al., 2011).Then,

PAM uses acoustic recordings placed in the interest sites for hours, days,

or months, storing data. This data need to be processed to extract ecolog-

ical information. Nowadays, PAM is becoming a useful tool for ecological

surveys, and an alternative for the traditional monitoring of ecosystems

because it does not generate significant disturbances in the studied envi-

ronments (Napoletano et al., 2011a).

Given the sound landscape’s complexity and the need to analyze large

amounts of ecoacoustic data, representative acoustic metrics are necessary

to identify biological characteristics in recordings. Researchers have de-

veloped acoustic indices inspired by ecological measures to quantify the

biological content of sounds (Doohan et al., 2018). These indices esti-

mate energy distribution and complexity of ecological systems, and help to

6



1.1. PROBLEM DESCRIPTION AND JUSTIFICATION

extract ecosystems information: species richness, equality among commu-

nities, acoustic niches, and sound heterogeneity (Towsey et al., 2014a).

There is still a long way to go to understand the relationship between

soundscapes and biodiversity. In special the understanding of landscapes

heterogeneity has too many implications for the management and conser-

vation of natural ecosystems (Bormpoudakis et al., 2013). Understand

the heterogeneity among sites is fundamental to promote the maintenance

of habitat quality to avoid the extinction of species (Moreno and Goméz,

2019).

There are two definitions to understand the perturbation state of the ecosys-

tems. The first one is the permanency: it helps to conceive the ecosystems

ability to persist in the original state despite disturbances (Hutson and

Schmitt, 1992). The second one, the transformation is the capability for

an ecosystem to become another (Folke et al., 2010). The identification

of permanency and transformation in an ecosystem are helpful to guide

environmental conservation policies. As far as the authors know, there are

not proposals to automatically determine the heterogeneity between sites

using their transformation and acoustics. Integrating acoustic indices can

offer information to better understand the heterogeneity between sites of

an ecosystem, and it would be the first step to create methods that allow

determining connectivity within an landscape.

Therefore, in this work it was proposed a methodology that associating

the changes in the ecosystem transformation of forest cover, allows to au-

tomatically identify heterogeneity between different sites in the TDF of

Colombia. Results search to generate maps that can achieve an idea of

connectivity between the forest remnants and increase the characterization

of the protected areas to facilitate the persistence of rare species in the
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1.2. OBJECTIVES

tropical dry forests of Colombia.

1.2 Objectives

1.2.1 General Objective

To develop a methodology to identify the heterogeneity among areas in

TDF through acoustic recordings and to associate the heterogeneity with

ecosystem changes.

1.2.2 Specific Objectives

1. To identify acoustic variables that allow discriminating TDF areas.

2. To propose a methodology to define transformation levels using clas-

sification methods.

3. To propose a methodology to associate changes in the ecosystem with

the TDF areas based on the results of classification methods.

4. To validate the proposed method with the TDF-IAVH database
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Chapter 2

Literature review

The understanding of the heterogeneity of a region helps to improve our

knowledge about the biology of disturbance, the movement of organisms,

dispersal decisions (Clobert et al., 2009), habitat choice (Vermeij et al.,

2010) or even evolution (Maan and Seehausen, 2011). Also, it could provide

information on species dynamics in landscapes (Pijanowski et al., 2011).

Likewise, landscape acoustic patterns allow to understand key acoustic

events (Farina et al., 2016). In this chapter a brief review of state of

art is presented in what concerns to the studies of heterogeneity using the

soundscape.
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2.1. ECO-ACOUSTIC AND BIO-ACOUSTIC ANALYSIS

2.1 Eco-acoustic and bio-acoustic analysis

The soundscape is the collection of biological, geophysical, and anthro-

pogenic sounds that make up a specific site (Pijanowski et al., 2011). Ani-

mals such as birds, mammals, amphibians, and fishes produce sounds that

reflect aspects of their behaviors including reproduction, predation, and

migration (Hill, 2008). The acoustic community is defined as a group of

species that produce sounds (Farina et al., 2016). These sounds can be used

to quantify changes according to a disturbance since some communities such

as birds change their acoustic behavior in a certain habitat (Doyon et al.,

2005). Also, they are related to the quality of the environment (Pijanowski

et al., 2011). On the other hand, sounds can provide evidence of current

ecological conditions (Joo et al., 2007) and be indicators of environmental

health (Gregory and van Strien, 2010).

Some acoustic communities produce more sounds during the day (e.g. song-

birds, insects) or at night (e.g. insects, frogs, bats, snapping shrimps).

However, other animals deviate from this pattern, such as cicadas that

sing when the temperature is maximum (Sueur and Sanborn, 2003). Then,

acoustic signals are heterogeneous in time and space (Blackman et al., 2014)

and are recorded through sound recorders that are displayed in the inter-

est sites for hours, days, or months. Consequently, these data need to be

processed to extract ecological information. Eco-acoustics is the discipline

that research ecosystems through sound signals. This is a good alterna-

tive to direct observation methods due to it is a passive alternative and it

does not generate significant changes in studied environments (Napoletano

et al., 2011b).
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2.2. ACOUSTIC INDICES

2.2 Acoustic indices

In the PAM field, there is a need to identify representative variables that

permit a complete characterization of soundscapes. Researchers have faced

this by the use of signal physical variables as well as the development of

acoustic indices. Similar to ecological measurements, acoustic indices have

been divided into alpha indices and beta indices. Alpha (within communi-

ties) and beta indices (between groups) were designed to describe phases of

biological communities. Acoustic indices are related directly to biodiversity

aspects such as species vocal activity and do not need a particular species

detection (Borker et al., 2019). Alpha acoustic indices estimate acoustic

diversity in a single site, and Beta gives information on how communi-

ties or acoustic landscapes differ between different sites or times (Sueur,

2018). Despite acoustic indices are unstable due to their noise sensitivity,

the multivariate analysis has served to detect disturbed habitats (Gómez

et al., 2018), and explore the variations of different tropical ecosystems

(Sueur, 2018).

2.3 Daily acoustic patterns

Studies show that species considered indicators of ecosystem health such as

birds (Deichmann et al., 2017), insects (Aide et al., 2013), and frogs (Boull-

hesen et al., 2019) do not present sound peaks in the same hours. Some

species produce peaks at sunrise and sunset, and others in the hours of the

day or night (Wimmer et al., 2013; Towsey et al., 2014a). These peaks

vary according to study site, daily hour, and season of the year (Towsey

et al., 2014a). Animal sounds change throughout the year. Some species

sing immediately after sunrise while during the day they remain with low

12



2.3. DAILY ACOUSTIC PATTERNS

activity, and start singing after sunset (Farina et al., 2013). Fuller et al.

(2015) studied patches of subtropical forests. He found that the acoustic

indices NDSI, H, and AEI represent the configuration of the soundscape

where NDSI and H show relationships with the richness of bird species, H

and ADI may indicate that these indices are sensitive to nocturnal activity

(insect activity). In Deichmann et al. (2017), the composition of the sound-

scape was analyzed based on activity peaks. The study shows that for this

area, there is a peak of activity during the night from approximately 6 p.m.

to 6 a.m., with less noise activity during the day (approximately 8:00 a.m.

to 4:00 p.m.). They also use the hours of sunrise 5 a.m.-8 a.m., and sunset

5 p.m.-8 p.m. as peaks for counting bird species. For the Wimmer et al.

(2013) and Towsey et al. (2014b) work, an open forest with small areas

of tropical forest was studied. Both studies showed that from 05:15 a.m.

to 08:14 a.m. are the hours in which the greatest number of bird species

can be detected. The Towsey et al. (2014b) study used acoustic indices,

and false-color spectrum’s to determine species richness at different times

of the day. This work shows that the songs of species such as crows can be

identified in the 24 hours of the day.

Despite the acoustic patterns that have been widely studied, the works

are based only on particular species and habitats. Acoustic patterns vary

according to the place conditions such as the location, the weather, and

the disturbances (Pijanowski et al., 2011). The reason being of this is

since the sounds of different species are distributed in the day according

to their acoustic niches (Krause, 1993) to avoid the overlapping of sounds

(Planqué and Slabbekoorn, 2008). In consequence, due to these differences

between soundscapes, it is not possible to generalize the temporal patterns

of acoustic behaviors. For that reason its relevant that the study of the

heterogeneity must be linked to the soundscape daily patterns.

13



2.4. HETEROGENEITY METHODS

2.4 Heterogeneity methods

In the monitoring of ecosystems, in particular, the TDF is important to

design effective conservation strategies. Ambient sound heterogeneity can

be interpreted as a source of environmental heterogeneity (Bormpoudakis

et al., 2013).

There are several works in dynamics of landscape using ecoacoustic in-

formation. Some studies have focused on detecting the changes due to

impacts according to a certain disturbance during a study period. As the

quantification of shelterwood logging influence on soundscapes due to natu-

ral resources exploitation (Deichmann et al., 2017; Doser et al., 2020; Gasc

et al., 2018). Gómez et al. (2018) have shown that it is possible to au-

tomatically identify cover types using sound recordings. Likewise, Duque-

Montoya (2019) work used unsupervised ways to measure the transforma-

tion but with lower accuracy in the TDF case of study. In these approaches,

machine learning is used to analyze acoustic indices to estimate the health

of sites but not the heterogeneity of a system.

On the other hand, studies have worked to detect sites with different land-

scape characteristics using acoustic dissimilarities. Hayashi et al. (2020)

identify significant differences in location and time factors between oil palm

plantations and surrounding forests. Similarly, Villanueva-Rivera et al.

(2012) identified the relationship between acoustic diversity and metrics

of the vertical forest. Studies like Bormpoudakis et al. (2013) found am-

bient sound heterogeneity using self-organizing maps clustering, and the

relation with habitat types and Burivalova et al. (2019) measure the acous-

tic heterogeneity based on the quantifying of soundscape saturation and a

maximum power of spectrum.
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2.4. HETEROGENEITY METHODS

These works show that soundscapes are related according to their land-

scape and level of transformation. Therefore habitats types and succes-

sional states of the ecosystems have started to be identified using sound-

scape. However, in what the author knows, none of these works have

into account the transformation levels to determine the heterogeneity of

landscapes. Complementing the heterogeneity studies with transformation

information have a great potential in which connectivity studies relate. In

conclusion, automatic tools to identify the heterogeneity based on the trans-

formation state could achieve environmental retrieval monitoring studies.
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Chapter 3

Proposed methodology to

heterogeneity estimation

We proposed a methodology to estimate the acoustic heterogeneity based

on the transformation due to perturbations of each site. The proposed

method is showed in figure 3.1, which consists of 5 steps. First, to ex-

clude the noisy recordings using Bedoya et al. (2017) method explained

in the subsection 3.2.1. Second, calculating the selected acoustics indices

for the recordings. In the subsection 3.2.2 is presented the study to select

the most informative indices. Third, to select the recording hour stage.

Temporal pattern analysis was carried out to identify the stages of the

day for the TDF (see section 3.3). In four step, implement GMM models

to identify the level (high, medium or low) of ecosystem transformation.

The GMM models were estimated using the training recordings (labeled

with the transformation level of the site). A GMM was estimated for each

transformation and for each hour stage (morning 5-8, day 8-17, and night

17-5). Then, for each recording a model to estimate the transformation

level is used. The hour of the recording establishes the model selected. To

16



train the GMM models the Expectation-Maximization algorithm was used.

With each recording indices, the Log-likelihood is estimated. The transfor-

mation level can be determined using the maximum log-likelihood for each

GMM. Finally, calculate the acoustic heterogeneity between the interesting

sites. To achieve these groups the n log-likelihood values are used for each

site to obtaining a kxn matrix (were k is the number of log-likelihood trans-

formation levels). From these matrices calculate the acoustic heterogeneity

degree explained in section 3.5.

Figure 3.1: Acoustic heterogeneity identification method
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3.1. DATA AND MATERIALS

3.1 Data and materials

The database was provided by Alexander Von Humboldt Institute (IAVH).

This dataset was recorded at TDF areas in the Caribbean region of Colom-

bian Cañas river and the Arroyo river basins as show in the fig 3.2. Two re-

gions were analyzed in this work: Cesar, San Juan Nepomuceno in Boĺıvar,

and Mingueo, La Guajira. Boĺıvar’s recordings were obtained in the middle

stream river, Cesar in the Garupal river, and Guajira in the reed’s river.

The recordings were obtained from December 2015 to March 2017. TDF

areas are between 0 and 1000 meters above sea level, with high levels of

endemism, high rainfall changes, and dry periods between 3 and 6 months.

The study sites in each area were categorized the transformation level gra-

dient (high, medium, low), which was derived from the forest/non-forest

analysis in the time series between 1990 and 2012 (IDEAM 2012). The

transformation level was labeled according to the proportion of retained

and new forests on each sub-watershed. The information was established

using geographic information (hydrology, digital elevation models –DEM-,

topographic attributes, roads, urban and rural centers, Corine Land Cover

vegetation maps, among others) with a grid of 1x1 km2. High transfor-

mation refers to sub-watershed with a low proportion of retained or new

forest and the highest proportion of lost forest. Low transformation refers

to the high proportion of retained or new forest and low proportion of lost

forest. The medium transformation refers to the remaining sub-watershed.

These labels were assigned by IAVH researchers specialized in vegetation

and species of ecosystems. Wildlife acoustics recorders (SM2, SM3) were

programmed to record every 10 minutes in 5 continuous days and stop

recording 5 days, with a 5 minutes recording duration. We split the record-

ings for train (70%), test(20%) and validation (10%). The acoustic indices

selection (section 3.2.2), the temporal pattern analysis (section 3.3), and
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3.1. DATA AND MATERIALS

the train the GMM models were carried out with train recordings.

With the train recordings it was done the acoustic indices selection (section

3.2.2), and the pattern analysis study (section 3.3), also we train the GMM

models.

Figure 3.2: TDF Regions analyzed: La Guajira and Bolivar

Using the proposal of automatic noise detection (see section 3.2.1) we iden-

tified a 9.58% of noisy recordings. In the figure 3.1 are showed the total

number of recordings of each site for Bolivar and La Guajira region.

Table 3.1: Selected Recordings for Bolivar and La Guajira sites

La Guajira Records number Bolivar Records number
12/JSC5069 0 2279 654-302298 0 2065
5070MIRALT 0 2127 /ESPAN5067 0 1904
12/M0S5067 0 1746 4/GUAM5070 0 1447
OLO-302151 0 1648 123/LAS40-3785 1343
2/POLO5072 0 1468 3/13-654SM3786 1333
1221/T5M-S3786 1276 654-SM5071 0 1248
LAS40-5069 0 1214 4/GUAM5072 0 1158
61221/T6M-3787 1048 ASILAR5071 0 2 1837
2/MIRAMEDI3788 913 0214/BRA2S3786 683
TM4-302143 0 683 LOROSM5069 0 502
/RMT2-5071 0 617 654-302151 0 228

The noisy recordings correspond to Power Spectral Density (PSD) high
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3.2. SIGNAL PROCESSING

levels and low signal to noise ratio of the initial samples that were discarded

in this studio. Finally, the methodology was used with a 28765 number of

recordings. Bolivar and La Guajira trained data were split in 80% for

the GMM model train and 20% for validation. In Bolivar, the study was

carried out with 10998 training recordings and 2749 validation recordings.

In the case of La Guajira was used 12015 training recordings and 3003 for

validation recordings.

3.2 Signal processing

3.2.1 Noise analysis

One of the most relevant geophonic elements in the ecology field is the

rain. It modifies the environment’s physical properties (relative humidity)

(Busby and Brecheisen, 1997), which influences reproduction patterns and

organizational structure in tropical species such as anurans (Saenz et al.,

2006) and birds (Gregory and van Strien, 2010). However, to analyze the

audio signal, high intensity of rain does allow the identification of songs of

the animals.

The method proposed by Bedoya et al. (2017) is a good estimator for de-

tecting recordings with rain and anthropogenic elements. This method is

based on PSD. PSD indicates how the power of the signal is distributed in

frequencies. The non-parametric Welch method (Welch, 1967) was imple-

mented to calculate the PSD, which uses the fast Fourier transform based

on short time averages with modified periodograms. 90% of the rain record-

ings were located in the 600-1200 Hz frequency band. This bandwidth was

used as a parameter in the PSD calculation. To avoid false positives Signal
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Noise ratio (SNR) was calculated. SNR establishes a relationship between

desired signal power level and background noise power. In this work, we

modified the Bedoya et al. (2017) algorithm calculating an automatic noise

threshold of PSD using its geometric and arithmetic mean as thresholds

following Duque-Montoya and Isaza (2018) method. The thresholds were

calculated for each site. In this way, the recordings that pass the PSD

threshold are considered with high noise levels and they are not taken into

account for this methodology. The acoustic indices were calculated with

the not noisy recordings (those that do not exceed the PSD threshold).

3.2.2 Acoustic indices selection

Acoustic communities have complexity, amplitude, and frequency charac-

teristics that vary significantly by wild gradients and regions (Carruthers-

Jones et al., 2019). Doser et al. (2020) recommend incorporating multiple

attributes to better capture the characteristics of the soundscape and bio-

diversity. Then it was decided to make a multivariate analysis of indices

that allow us to obtain representative characteristics of transformation in

the TDF. The acoustic indices were selected in accordance to discriminate

between transformation states.

Due that transformation identification was done with a classification algo-

rithm, the most discriminate indices must be found for each transforma-

tion, then a boxplot analysis was carried out. It can be see in appendix

A and figures 3.3 and 3.4. Using the distribution of the data related to

transformation states, seven indices were selected according to the differ-

ence of the median for each class (low, medium, high), and the quartile

separation. Each index is described in the table 3.2: Spectral Maxima En-

tropy (ESM), Musicality Degree (MD), Normalized Difference Soundscape
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Index (NDSI), Mid-band activity (MID), Spectral Flatness (SF). These

indices describe important characteristics of the landscape as Biophony,

Antropophony, geophony (Towsey et al., 2014a; Pijanowski et al., 2018).

Table 3.2: Acoustic indices

index Equation Description

Spectral
Flatness
(SF)

Nf

√∏j=1
Nf

Wj

W̄

The spectral flatness (SF) estimates
how the degree of frequencies in a
spectrum are evenly distributed
(such as noise). SF is geometric ratio
and arithmetic means of a sub-band
in the power spectrum
(Sueur and Farina, 2015)

Mid-band
activity (MID)

∫ 482Hz

3500Hz
Pf

Area below of the mid-band
(482 Hz-3500 Hz) for the values
of spectrum Pf , where spectral
amplitude exceeds the mean
(Sueur and Farina, 2015)

Musicality
Degree
(MD)

∑f−1
f

log(W2
j+1−W2

j )

log(fj+1−fj)

Nf−1

Measures the signal complexity.
W is the Welch power spectral density,
f is a specific frequency value
(De Coensel, 2007)

Normalised
Difference
Soundscape
Index
(NDSI)

β−α
β+α

A normalized measure of biophony
ratio to technophony. For pure
technophony NDSI=-1 and for pure
biophony NDSI=1.β is the
bioacoustics index and α is
the estimated technophony, which
is measured similarly to β for
the frequency band between 200 Hz
and 1500 Hz (Kasten et al., 2012).

Entropy of
spectral Maxima
(ESM)

−
∑j=1

Nf
Ujlog2Uj

The Shannon index applies to frequency
maximum values in the spectrogram,in
the band between 482 Hz and 8820 Hz
(biophony band expanding). If w
represents a cell in the spectrogram in
the passage of time i and the frequency
bin w and Uj is the maximum value in
the frequency bin j (Towsey et al., 2014a)

We propose to include the Spectral Centroid (SC) as acoustic index since

it helps to measure acoustic activity. SC has been used in Alzheimer’s

disease diagnosis by electroencephalography studies (Kulkarni and Bairagi,

2017). It is also used in musical genres classification using audio signals
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3.2. SIGNAL PROCESSING

(Tzanetakis and Cook, 2002). From what the authors know, SC had not

been used for the acoustic analysis of ecosystems. SC measures the shape

and position of the spectrum. Then SC High values equal large amounts

of energy, it can be defined as:

Cf =

∑N
n=1Mt[n] ∗ n∑N
n=1 Mt[n]

(3.1)

Where Mt[n] is the Fourier transform magnitude in t frame and n fre-

quency bin of the audio signal. In sound landscape analysis terms, this

new variable scales linearly by multiplication in the frequency bin n of the

numerator, which indicates that it gives greater importance to the higher

frequency signals and less importance to lower frequencies. For the use of

the SC index its necessary to work with a data-set without outliers. In this

work it was excluded a 9.8% of noisy recordings, using the Bedoya et al.

(2017) algorithm explained in session 3.2.1. The Spectral Bandwidth (SB)

measures spectrum shape but in frequency values terms, and corresponds

to the following equation:

SB =
∑
k

X(k)(k − Cf )2 (3.2)

Where k is a non-negative frequency index, and X (k) is the spectrum

normalized magnitude in the k index. This variable indicates frequency

variations in spectrum scaled with amplitude, so it gives importance to

frequencies that vary from the SC. This is useful to take into account the

edges that move away from the SC, but it is necessary to pre-filter the

signal before using this index since the acoustic indices can be affected by

geo-phonic or anthro-phonic noises.
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The Outliers were eliminated calculating the noisy recordings using the

algorithm presented in session 3.2.1.. to analyze the relevant variables,

Violin diagrams analysis were carried out on the acoustic indices in which

each index was compared with transformations levels as it was have shown

in figures 3.3 and 3.4.

Figure 3.3: Violin plots of calculated acoustic indices for Bolivar where
the X axis are the acoustic indices, the Y axis are the levels and the col-
ors represent the transformation state (green:high transformation, orange:
medium transformation, and blue: low transformation).

Figure 3.4: Violin plots of calculated acoustic indices for La Guajira, where
the X axis are the acoustic indices, the Y axis are the levels and the col-
ors represent the transformation state (green:high transformation, orange:
medium transformation, and blue: low transformation).

The MD index presented a similar behavior between the two studies cases

(Bolivar and La Guajira). Additionally, MD presented different levels in

each transformation label, that is the reason why it was an index to be taken
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into account for the study. Similarly, Indices such as ESM, NDSI, SC and

WE presented good discrimination between two transformation levels as is

shown in the same figures. Note that some indices are not homogeneous

between two transformation. For example, the NDSI index has high values

for high and low transformation at Bolivar, while for La Guajira the NDSI

has high values for low and medium transformation. Other indices as the

MD present similar behaviors for both regions.

3.3 Day acoustic patterns

Identifying the heterogeneity and landscape transformation in TDF was

found valuable to understand the acoustic heterogeneity. However, it was

not found information about the daily acoustics patterns on the Colom-

bian TDF. For this reason, it was decided to propose a study to find such

temporal patterns. The expected hypothesis was to found similar acoustics

behavior among close hours recordings, and high differences with distant

hours recordings.

The acoustics indices mentioned above were used to find clusters on a

multidimensional space. The indices were estimated for all the training

data, and clustering analysis was performed. In this case, it was neces-

sary to use non supervised computational intelligence algorithms to group

similar recordings. The clustering method was K-means, which is based

on Euclidean distance to partition the data set into local groups (Stein-

haus, 1955). From clustering analysis were obtained 7 clusters validated

by Silhouettes index (Starczewski and Krzyżak, 2015), that found optimal

dispersion data grouping/partition using the mean intra-cluster distance

and the mean nearest-cluster distance.
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Groups obtained were grouped by the period of the day. It is important

to note that the time of the recording was not included in the variables

(descriptors analyzed by the cluster). The descriptors for the clustering

were only the selected acoustic indices indicating that temporal patterns

are identified according to the indices. From temporal analysis were found

three periods of prominent activity, morning, day, night allowing for better

soundscape characterization. The acoustic indices multivariate analysis is

necessary for integration of descriptive elements due each one has particular

behaviors infrequency, amplitude, and acoustic complexity.

Each centroid is the most representative element of each cluster and from

there the distance is measured to estimate whether a recording is from one

cluster or another. The K-means centroid clusters algorithm are present in

table 3.3.

Table 3.3: K-means centroids clusters

Index k0 k1 k2 k3 k4 k5 k6

ESM 0.82 0.95 0.89 0.85 0.90 0.84 0.76

MD 0.38 0.47 0.41 0.39 0.45 0.33 0.59

NDSI 0.71 0.79 0.34 0.50 0.91 0.96 0.94

MID 0.83 0.97 0.65 0.18 0.15 0.09 0.10

WE 0.24 0.63 0.24 0.24 0.17 0.08 0.11

SC 0.34 0.08 0.09 0.36 0.09 0.33 0.57

SB 0.62 0.48 0.45 0.79 0.40 0.60 0.47

Some indices showed stability between clusters, and others showed vari-

ations among them. ESM and MD had stability in the clusters. Other

indices indicate heterogeneity among clusters, so we notice that each clus-

ter recordings have a relation with some hours.
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3.3. DAY ACOUSTIC PATTERNS

To identify this relation, histograms of the number of recordings and each

day hour are shown in figure 3.5. Graphical analysis indicates that each

cluster group recordings correspond to an hour stage (day, night, and morn-

ing).

Figure 3.5: K-means clusters histograms: In green the night stage, in red
the day stage and in blue the morning stage. The X axis are the hours of
the day and Y axis are the number of recordings for each cluster

We grouped the similar clusters labeled by blue, red, and green squares

in figure 3.5 and table 3.3. These squares represent 3 stages in which

the clusters have similar behaviors among them (intra stages) and differ-

ent behaviors with other stages (inter stages). The cluster with the same

hour stage grouped recordings with hours in common. Then the cluster-
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ing methods identify sound patrons of temporal heterogeneity in the day.

The morning stage (blue square) grouped the clusters 1 and 2 that have

the majority of recordings between the 5 and 8 hours. The day stage (red

square) grouped the clusters with the majority of recordings between 8

and 17 hours. The night stage (green square) group the majority of clus-

ters with night recordings. Also, similar behaviors were observed in NDSI,

MID, WE, SC (yellow labeled on table 3.3) that were the indices with the

best discriminative stage behavior. To verify the similarities among the

stages, we apply the Kolmogorov-Smirnov statistic Hodges (1958) which

finds whether 2 clusters are drawn from different distribution (KKS-test,

large values represent that samples are from distinct distribution). The

test was applied in cluster pairs (table 3.4), finding that clusters in the

same stage belong to the same distribution.

Table 3.4: Kolmogorov-Smirnov (KS) statistic between clusters, column
kx,ky represent the 2 samples:cluster x vs cluster y

kx,ky KS-test kx,ky KKS-test kx,ky KS-test

4,5 0.108 5,6 0.051 0,1 0.038

4,0 0.274 5,2 0.327 6,2 0.367

4,6 0.116 5,3 0.383 6,3 0.41

4,2 0.252 5,1 0.348 6,1 0.374

4,3 0.294 0,6 0.379 2,3 0.055

4,1 0.259 0,2 0.09 2,1 0.106

5,0 0.383 0,3 0.083 3,1 0.089

To validate the identified the stages analysis, we decided to graph the mean

spectrograms of recordings for each cluster which are shown in figure 3.6.

Spectrum’s indicate notable differences among stages and the similarity

among clusters on the same stage (green squares). These behaviors prove

that stages were correctly established.
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3.3. DAY ACOUSTIC PATTERNS

Figure 3.6: Recording mean spectrum’s for each Cluster. Where the X axis
are the day hour, the Y axis are the frequencies. Colors represent intensity
of the power, and the green squares indicate the stage membership

On the other hand, indices captured spectral tendencies are directly related

to the entities of the soundscape. The adapted NDSI index has ranged from

0 to +1 (presence in the range 0.5-1.5 kHz vs presence in the range 2-8 kHz).

NDSI evidence high values for the night stage (table 3.3). This behavior

can be supported by the high intensities in the 3-7 kHz range and lower in-

tensities in the 0-2 kHz range. Clusters spectrum of day stage showed high

values in 0-2 kHz frequencies, which describe a behavior similar to Gage

et al. (2017), and lower levels in the range 2-8 kHz, that explain the lower

NDSI index level. A similar analysis of NDSI shows the relations between

the index and the value in the morning stage. The MID index shows the

fraction of spectrum cells in the mid-band (0.5 kHz – 3.5 kHz). In the same

way as the above analysis, the index presents high values for the morning

stage, lower levels for the night stage, and medium values for the day stage.
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These levels can be corroborated with spectral activity on the 482 Hz – 3500

Hz. The morning stage sounds can be related to the highest avian acoustic

activity (Doser et al., 2020), the day stage describes low community activ-

ity, perhaps due to the extreme climate of the TDF (Mendoza, 1999). The

activity at the night stage probably is related insects’ acoustic activity and

anuran communities (Aide et al., 2013). In consequence, for the correct

identification and measuring of the heterogeneity, it was necessary to take

into account each stage. So, it was proposed to generate a model for each

one.

Some indices presented little variations between hours of the day (ESM,

MD, SB). Others works present high heterogeneity as NDSI that it had

already shown its potential in the (Gage et al., 2017) study. MID evidence

that the middle band (1.5 to 2.5 kHz) presents significant differences be-

tween day hours. WE and SC prove the discrimination capacity only by

two stages. Average spectrum infers that morning (5-8) have entities that

cause sounds with high activity from 0 to 8 kHz, and at night there is a

high activity from 3 to 7 kHz.

Daylight hours have the most activity from 0 to 2 kHz and a lower activ-

ity at frequencies above 3 kHz. This behavior is contrary to what found

Burivalova et al. (2019), which found more activity during daylight hours

in a tropical forest. These differences among sites check the soundscape

spatial heterogeneity at similar day hours. Perhaps this type of activity

in the TDF is a consequence of extreme weather that reaches up to 35

degrees Celsius (Mendoza, 1999). It is probably that species in TDF seek

to find hours of the day where the weather is not so extreme. However,

further research must be performed to validate this assumption. In this

ecosystem, the temporal patterns should be studied on a larger time scale

(months, years) because that brings changes in information. As a result of
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the temporally study, we propose to create a GMM model for each hour

stage/day acoustic pattern.

3.4 Identification of transformation level

Following the methodology flow, it must be done the noisy recording elim-

ination and the calculation of selected acoustic indices for each recording

with the methods explained in the 3.2 session. Next, the transformation

is estimated using the three models (morning, day, and night) for Bolivar

and Guajira areas. To obtain each model, it was proposed to use Gaus-

sian Mixture Models (GMM) (Reynolds et al., 2000). The GMM allows to

establish the general behavior for each transformation level in each hour

stage. The distribution is a linear combination of M multi-modal Gaussian

densities P(x) ;

P (x|α) =
M∑
i=1

wGi

(2π)
D
2 |Σi|

1
2

exp[−1

2
∗ (x− µGi)′ ∗ Σ−1

i (x− µGi)] (3.3)

Where µGi and Σi are GMM mean and co-variance matrices. With the con-

straint of
∑M

i=1wi = 1 ,and the parameters are denoted as λ = wGi, µGi,Σi.

For the train model stage, GMM parameters were estimated by Expectation-

Maximization (EM) that iterative refines the parameters to increase the

likelihood to each transformation label. For the GMM training, the number

of components must be estimated. Grid-search was used with the purpose

to find the optimal number of components for each Gaussian on the two

geographical regions, observe the figure 3.7.
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Figure 3.7: Graph of Grid search for the number of components (X axis)
and accuracy performance (Y) in each stage for Bolivar and La Guajira

It was used the training set of recordings for train the GMMs with diagonal

co-variance matrices. The number of components that show table 3.5 were

the best configuration based on train accuracy.

Table 3.5: Number of components in the transformation identification

Morning Day Night

Bolivar number of components 28 37 30

La Guajira number of components 22 10 33

To identify the transformation level, with each new recording (validation

recordings), acoustic indices were estimated. To calculate the transforma-

tion state for each recording it must choose the maximum log-likelihood

value as the new label transformation state. Results are presented in sec-

tion 4.1

In the study, we generate a unique model for the two study regions. This

was implemented through UBM model (see appendix B). However, results

for GMM models results were better than UBM models. The GMM models

had a performance of 91% for Guajira and 90% for Bolivar, while UBM had
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84% accuracy with training data. The comparison of UBM and GMM cor-

roborated that there are acoustic differences between the two geographical

regions of study. Therefore it is necessary to work with independent models

for each region, just as GMM does. One model per stage was proposed to

implement, with 3 stages (morning, day, and night) and 2 regions (Bolivar

and La Guajira) in our case. Details of results with validation data are

presented in section 4.

3.5 Heterogeneity identification

To estimate acoustic heterogeneity between sites, it was propose an index

based on the automatic transformation level identification (see section 3.4).

With each validation recording, it was calculated the log-likelihood for each

transformation GMM. Therefore, it is a vector of NrixTm, where Nr is

the number of recordings in site i and Tm the number of transformation

levels. It was proposed to define the Acoustic Heterogeneity (AH) of a

site j to another k, as the euclidean distance of median transformation

log-likelihoods as show in the equation.

AH =

√√√√(
Tm∑
i=1

(µ(Loglikelihoodi(sitej))− µ(Loglikelihoodi(sitek)))2

(3.4)

Where Med is the median and i is each transformation. From previous

equation, it was created a matrix of SxS which each of elements are the

normalized AH between sites, and S corresponds to the number sites. The

matrix has to be symmetric, and the diagonal matrix has elements with a

value 0, due to the difference in the log-likelihood of the same sites.
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Chapter 4

Results and discussion

This section presents the transformation identification results (section 4.1)

and the heterogeneity estimation among sites(section 4.2) when using the

validation data. The analysis was performed for each interest region: Gua-

jira and Bolivar.
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4.1 Identification of transformation level

Using the validation recordings, the selected acoustic indices were estimated

(see section 3.2.2). The transformation for each recording was estimated

using 3 GMMs according to the region and hour of recording. Table 4.1

shows the F1 score for each study region.

Table 4.1: Validation classification performance

Stages Morning Day Night Without Stages
Bolivar F1 Score 0.90 0.90 0.87 0.88

La Guajira F1 Score 0.91 0.89 0.92 0.88

Results confirm that it is necessary to implement different models depend-

ing on recording hour (the hour stages analyzed in section 3.3), and results

show that proposal allows us to adequately estimate the level of transfor-

mation. To estimate the differences between transformations, a centroid

analysis for each transformation level was done. The acoustic indices mean

are presented in Tables 4.2 and 4.3.

Table 4.2: Mean by transformation for Bolivar

ESM MD NDSI MID WE SC SB
0 0.84 0.39 0.83 0.31 0.12 0.34 0.53
1 0.82 0.44 0.8 0.26 0.19 0.44 0.66
2 0.87 0.4 0.77 0.43 0.2 0.12 0.45

Table 4.3: Mean by transformation for La Guajira

ESM MD NDSI MID WE SC SB
0 0.82 0.47 0.74 0.18 0.15 0.34 0.55
1 0.87 0.35 0.79 0.21 0.17 0.29 0.65
2 0.85 0.37 0.73 0.2 0.19 0.32 0.68

There were significant differences in the indices that allow a good discrim-

ination between the transformation levels. The spectral complexities that

correspond to the ESM and WE indices tend to vary differently between

transformation levels but with similar values for the two regions. The mean
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of SC showed a similar behavior for the low transformation in both regions.

This is due to acoustic communities that sing at the same frequency (SC on

Table 4.2). High NDSI values and medium values of MID for two regions

(a little more for Bolivar) were linked a high activity in the 2-8 kHz band

and little activity in the 482 Hz – 3500 Hz band.

The automatic identification of transformation results demonstrated the

improvement of the baseline for the TDF, since the maximum result in

the TDF classification of transformation in the previous research was 68%

(Duque-Montoya, 2019). The acoustic indices mean showed discriminate

characteristics in what transformation states in both regions, which high-

lights the great potential to work with hour stages and the two news vari-

ables (SC, SB), and the potential to find acoustic differences through the

day and improve the acoustic heterogeneity analysis of the TDF.

4.2 Acoustic heterogeneity index

Using the validation data, the log-likelihood was calculated per record-

ing using the 3 GMM. Then, according to the region and the hour of each

recording, the heterogeneity matrices were calculated (see section 3.5). The

tables 4.4 and 4.5 show the Acoustic Heterogeneity in Bolivar and La Gua-

jira regions between one point (column) and each other points (rows). In

these tables each cell corresponds to AH between two sites. It was expected

to find lower acoustic heterogeneity among two sites with the same trans-

formation level. So green label cells were assigned to the lower values of

acoustic heterogeneity that belongs to sites with the same label transfor-

mation, and red cells are the sites with the same label transformation but

higher acoustic heterogeneity. Also, it was expected that the sites with the
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same transformation had similarities in soundscape, so it was tried to find

relations of AH and close sites.

Puntos
T5M

S3786

TM4

302143

M0S

5067

5070

MIRALT

POLO

5072

RMT2

5071

JSC

5069

LAS40

5069

MIRAM

EDI3788

T6M

3787’

OLO

302151

Label 0 0 2 0 1 2 0 1 0 0 1

T5M

S3786
0 0,00 0,42 0,67 0,63 1 0,62 0,60 0,47 0,34 0,10 0,52

TM4

302143’
0 0,42 0,00 0,25 0,21 0 0,26 0,26 0,12 0,75 0,50 0,14

M0S

5067
2 0,66 0,25 0,00 0,09 0 0,19 0,21 0,27 1,00 0,75 0,19

5070

MIRALT
0 0,63 0,21 0,09 0,00 0 0,18 0,20 0,24 0,96 0,71 0,19

POLO

5072
1 54,66 0,14 0,17 0,14 0 0,28 0,29 0,11 0,86 0,61 0,08

RMT2

5071
2 0,62 0,26 0,19 0,18 0 0,00 0,03 0,34 0,95 0,71 0,29

JSC

5069
0 0,60 0,26 0,21 0,20 0 0,03 0,00 0,35 0,93 0,69 0,30

LAS40

5069
1 0,47 0,12 0,27 0,24 0 0,34 0,35 0,00 0,77 0,53 0,09

MIRAM

EDI3788
0 0,34 0,75 1,00 0,96 1 0,95 0,93 0,77 0,00 0,25 0,84

T6M

3787’
0 0,10 0,50 0,75 0,71 1 0,71 0,69 0,53 0,25 0,00 59.294.192,00

OLO

302151
1 0,52 0,14 0,19 0,19 0 0,29 0,30 0,09 0,84 0,59 0,00

Table 4.4: Acoustic heterogeneity between sites in La Guajira

The heterogeneity values corroborate the method effectiveness. AH index

indicates that the majority of sites have a low heterogeneity among sites

that were labeled by experts as having the same transformation level and

high heterogeneity values with sites that were labeled with different levels.

To analyze the results, the power spectrum graph is a good descriptor of

the soundscape (Kasten et al., 2012). Then to obtain a better understand-

ing of the behavior of both regions, it was plot the mean spectrum’s and

their acoustic indices mean values for each transformation. It is showed

in figure 4.1 and tables 4.2, 4.3. In the figures, it can easily observe high
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site
GUAM
5072

BRA2S
3786

LOROS
M5069

4/GUAM
5070

ASILA
R5071

654-SM
5071

654-30
2298

3/13-654
SM3786

123/LAS
40-3785

ESPAN
5067

654-30
2151

label 1 0 2 1 0 2 0 1 1 1 0
GUAM
5072

1 0 0,31 0,12 0,09 0,18 0.16 0,08 0,38 0,87 0,05 0,53

BRA2
S3786

0 0,31 0 0,43 0,38 0,44 0.44 0,32 0,09 0,57 0,29 0,22

LOROS
M5069

2 0,13 0,43 0 0,09 0,10 0.05 0,12 0,5 0,99 0,14 0,64

4/GUAM
5070

1 0,09 0,38 0,09 0 0,13 0.13 0,07 0,45 0,94 0,08 0,6

ASILAR
5071

0 0,18 0,43 0,1 0,13 0,00 0.08 0,13 0,52 1,00 0,17 0,65

654-SM
5071

2 0,16 0,44 0,05 0,13 0,81 0 0,15 0.52 1,00 0,17 0,65

654-30
2298

0 0,08 0,32 0,12 0,07 0,13 0.15 0 0,4 0,89 0,05 0,54

3/13-654
SM3786

1 0,38 0,09 0,5 0,45 0,52 0.52 0,4 0 0,49 0,37 0,16

123/LAS
40-3785

1 0,87 0,57 0,99 0,94 1,00 1 0,89 0,49 0 0,9 0,4

ESPAN
5067

1 0,05 0,29 0,14 0,08 0,17 0.18 0,05 0,37 0,9 0 0,5

654-30
2151

0 0,53 0,22 0,64 0,6 0,65 0.65 0,54 0,16 0,4 0,5 0

Table 4.5: Acoustic heterogeneity between sites in Bolivar

differences among the Bolivar and La Guajira regions. La Guajira showed

intense activity in range 5-7 kHz for all transformations in the night stage,

lower activity in the morning stage in high transformation, and high ac-

tivity in 7-9 kHz on the day. In the case of Bolivar, it can be observed

3-7 kHz activity in the night, 0-3 kHz activity at morning, and 8-10 kHz

activity for all transformations. In accordance with the Duque-Montoya

(2019) founds, the general spectrum exposes the similarity between high

and medium transformation for both regions. However, if it is done an anal-

ysis using the stages, it can be observed that there are several differences

between the two transformations for the two regions. Then this segmenta-

tion using the temporal patterns permit the better characterization of the

ecosystem and classification of the transformation.
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Figure 4.1: Power Spectrum Graph for each transformation in La Guajira
(a) and Bolivar (b)

With the acoustic heterogeneity matrix, it can create color/intensity maps

to see graphically how it’s the behavior on the soundscape as shown in fig-

ure 4.2. It could be achieved to take a heterogeneity vector of two sites and

convert each value to a color based on a color gradient palette. In the figure

4.2 it can see the heterogeneity sites for the 4 site. Similar to Hayashi et al.

(2020) work it was not detected relationships between physical distances

and the heterogeneity index. Acoustic dissimilarity should theoretically be

consistent with biotic homogenization ( McKinney and Lockwood, 1999;

Olden et al., 2004). However, the image shows that there is a connectiv-

ity line of acoustic similar sites (Follow the blue sites). Also, the mean

spectrograms between sites that have high heterogeneity index levels as

are the sites highlighted with red and green in the image, it can be see the
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4.2. ACOUSTIC HETEROGENEITY INDEX

huge difference between the spectrograms. This suggests the efficacy of our

proposed index based on the analysis of acoustic indices for detecting the

change and the heterogeneity of two sites.

Figure 4.2: Heterogeneity index and generated map for the 2/POLO5072
site

The result of acoustic heterogeneity index for each site was analyzed by

means of the average spectrum’s. There are certain sites that were tagged

with a transformation but the index indicates that they have a greater

similarity with others with a different transformation level. For example,

the La Guajira Tm4-302143 recorder (figure 4.3), originally labeled with

low transformation has a low value of the heterogeneity index with sites

with medium or high transformation. At the same time it has a high het-

erogeneity value with sites with low transformation (miramedi13788 and

T6M3787). The guajira Tm4-302143 soundscape is similar to regions with

other types of transformation. It can be associated with the fact that the

place is in a successional state of transformation Low to Medium trans-

formation. The average spectrogram for the recordings of this location is

shown in Figure 4.3, and the indices mean in table 4.6.
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4.2. ACOUSTIC HETEROGENEITY INDEX

Figure 4.3: Mean spectrum of Tm4-302143 recording. The figure show
patterns on the frequency that are close in between (green and red square)
and different patterns on distant hours (compare of green and red square).

Table 4.6: Mean spectrum of Tm4-302143

Tm4-302151 ESM MD NDSI MID WE SC SB
La Guajira 0.79 0.36 0.81 0.08 0.12 0.26 0.64

Observe the night stage in figure 4.3 (underlined with green in the image)

where there is a high amplitude of 4 to 8 kHz activity. The intensity is

higher between 5 and 7 kHz. The spectrum is more similar to the medium

transformation if compares with the average spectrum of the medium and

low transformation of La Guajira in green squares on figure 4.1. These

behaviors of the spectrogram can be correlated with the mean of acoustics

indices, where NDSI and ESM show high values, and MID, WE low val-

ues (see Table 4.6). This evidence thigh activity and entropy in the 3-8

band that can be interpreted with high biodiversity. Then it is evident

that the heterogeneity index allows identifying intermediate levels of trans-

formation that were not expected and associating similar sites (with low

heterogeneity) in an appropriate way from the acoustic analysis.

It was done the same analysis for the 3/13-654SM3786 recorder of Boĺıvar
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4.2. ACOUSTIC HETEROGENEITY INDEX

Table 4.7: Mean spectrum of recorder 3/13-654SM3786b

3/13 ESM MD NDSI MID WE SC SB
La Guajira 0.78 0.57 0.81 0.53 0.14 0.51 0.49

that was originally label as medium transformation. The method showed

that this place has high heterogeneity index with sites of the same transfor-

mation and low levels of the heterogeneity index with lower transformation.

Observe the average spectrum of this recorder ( figure 4.4). If it focuses

the analysis of the morning time in Boĺıvar (green labels in figure 4.1), it

indicates that frequencies had similar behaviors with low transformation.

The average value of the indices (Table 4.7) showed high values of ESM

and NDSI, and medium values of MID and MD present different behaviors

of medium frequencies than La Guajira region.

Figure 4.4: 3/13-654SM3786 mean spectrum, in green label the morning
stage

The AH index for the LAS40-3785 (Bolivar) presents a special behavior.

This site has high values of heterogeneity for the majority of the sites.

It was calculated the mean spectrum of LAS40-3785 showed in the figure

4.5. The spectrum display high intensities in the medium spectrum and

a power intensity line in the 6-7 kHz frequencies. The characteristics are

very different from other Bolivar sites (see figure 4.1). The site’s behavior
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4.2. ACOUSTIC HETEROGENEITY INDEX

makes that the heterogeneity index was very high for other recordings of

the same region. The spectrum indicates that the site can have particular

behaviors of the acoustic communities, mostly in the medium frequencies.

Figure 4.5: LAS40-3785 mean spectrum, in green label the morning stage

Understanding acoustic heterogeneity brings information about environ-

mental health, conservation corridors, and mobility of species. It was found

that studied regions (La Guajira and Bolivar) indicate high acoustic dif-

ferences. This is the first approach to find temporal patterns and measure

acoustic heterogeneity in TDF. Also, the generation of Gaussian models

provides density distributions that allow finding continuous transformation

values. Thanks to this, it was possible to identify transformation levels in

some areas that had been mislabeled as the Tm4-302143 site or determine

particular behaviors of recordings as LAS40-3785 site.
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Chapter 5

Conclusions

The principal contribution of this thesis is the proposal of a methodology

that integrates information from different indices to connect the acoustic

heterogeneity with the site’s transformation levels in an ecosystem. The

methodology allows the analysis between sites to capture information re-

lated to the acoustic heterogeneity with acoustic indices. This work was

tested in two Colombian geographical regions with a dataset of TDF record-

ings provided by Alexander Von Humboldt Institute.

In what acoustic variables respect we proposed two new variables on the

ecoacoustics soundscape analysis: SC and SB. These variables are orig-

inally used in music genre classification but here they are useful to the

classification of the TDF transformation.

It was proposed a methodology to detect the temporal patterns on ecosys-

tems through unsupervised techniques. For the TDF it was found the

existence of 3-hour stages that presented temporal patterns: morning (5-

8), day (8-17), and night (17-0). This is the first attempt to study the

acoustic patterns in the Colombian TDF ecosystem.
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To determine the TDF transformation levels a methodology through acous-

tic recordings was proposed. We include temporal patterns information for

the classification in which it was implemented 3 models (morning, day,

and night) in the Bolivar and La Guajira regions. Regarding the transfor-

mation classification results, the method was tested in two TDF regions

attained a maximum F1 score of 90% for Bolivar and 92% for La Guajira.

These results show the high capability of the proposed method since the

maximum baseline in the TDF classification of transformation was 68%

Duque-Montoya (2019). The differences between this work and other mod-

els implemented in the state of the art are the use of local GMM (individ-

ually regions) to determine the log-likelihoods of each recording. Also, it

was found the use of stages for the classification by hour recordings helps

to the better characterization of ecosystems and helps make up for the lack

of data in some sites that have only data on determining day hours.

It was proposed a method that allows us to identify and quantify acous-

tic heterogeneity between sites of TDF. To achieve this, it was used log-

likelihoods generated in each pair of sites. The method was validated

through the average spectrum. This allows a comparison of soundscape

activity and heterogeneity levels behavior. An advantage of this approach

is that the algorithm not only evaluates whether the transformation of the

forest estimated automatically is similar to the transformation established

a priory by field personnel, but also allows evaluating whether the a priory

classification is appropriate. This method allows to identify intermedi-

ate values transformation and associate sites with similar transformations

through the values of the AH index. These results are key for the manage-

ment of TDF because they not only allow to classify of ecosystems from

their acoustics but also allow to evaluate the congruence between different

sources of information (acoustics and biological characterizations)
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The proposed method is the first step for the development of ecoacoustic

studies oriented to find models of connection between geographical points,

which can be useful to landscapes monitoring, determining transformation

mislabeled zones or with special behaviors, and the development of action

plans to slow down ecosystem degradation. The soundscape is a valuable

element that can help us to understand the natural landscapes, and can

serve as a complement to ecological research projects. There is a long way

to understanding the ecosystem’s soundscape, the relation with the dynam-

ics of the communities, the health state of landscapes, and the mobility of

species. Species recognition studies are needed to complement the entities

related to high amplitude activity and can permit the correlation of acous-

tic indices with landscape behaviors. Then it is needed to continue the

exploration of the characteristics of the soundscape for the development of

new tools. These studies will allow correlating communities’ presence in

the study sites with the hour of the day in the specific hour, as-well as the

environmental health.
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Appendix A

Acoustic indices Analysis

To choose the acoustic indices, an analysis of box diagrams used in the state

of the art was done. Due to the non-normal nature of the data and the need

to have interpretive variables, it was decided to work with variables without

any type of transformation (It was avoid the power transform methods).

The figure A.1 shows the behaviors that some acoustic indices had with

the 3 types of transformation. In red we show the indices that can not

discriminated the transformation using the mean. In the figure we label

with red some acoustic indices that permit to discriminate the transfor-

mation using the mean as an example of the discriminative capacity of the

indices used in this work ( see section 3.2.2) . The analysed indices were the

following ones: Acoustic Complexity Index (ACI) (Farina et al., 2011),Me-

dian of amplitude envelope (M) Depraetere et al. (2012), Acoustic Diversity

Index(ADI) (Towsey, 2013), Crest Factor(CF) (Towsey, 2013), Frequency

Modulation (FM) Villanueva-Rivera et al. (2011), Spectral Flatness (SF)

(Mitrović et al., 2010), Chroma stf, Rolloff, Zero Crossing rate Ellis et al.

(2015), Spectral Band-with and Spectral Centroid (see the table A.1). The

3.2 table shows the indices that were chosen.
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Figure A.1: Acoustic indices boxplots analysis
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It is highlighting the discriminative capacity of the proposed SB and SC

indices (section 3.2.2).
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Appendix B

GMM-UBM approach

In the case of need a general model (a model with several regions), the

GMM approach can be not sufficient for the determine the transformation

type (Classification process) because the regions have statistical differences

in landscape and soundscape. For this type of cases it was propose to use

Universal Background Model (UBM)as alternative to classify TDF in a

general way. The UBM is a large GMM trained to represent the indepen-

dent distribution of features. GMM-UBM can be used as the adaptation

of a new GMM to GMM-UBM trained model, for finding the new param-

eters the Maximum A Posteriori estimation was used, that is a form of

Bayesian adaptation. There are several’s approaches to train a UBM, in

this study, we trained individual UBMs in the sub-populations one for each

transformation level. We use this approach since it can be effective with

unbalanced datasets. The UBM has to be trained with the EM algorithm

Reynolds et al. (2000). Each class parameters are adapted to the UBM,

and finally, the acoustic indices of new recordings are adapted using MAP

estimation. With the new recordings generated GMM, the next step is to

find the distance to each class GMM adaptation with the Bhattacharyya
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distance, and the class with the adapted models shortest distance defines

the predicted class. Bhattacharyya (Bha) distance measures the distance

between two probability distributions (Young, 1974). If we assume GMM

the Bhattacharyya distance is given by:

Bha = (1/8)∗
M∑
i=1

(ûi−ui)T [
Σ̂i + Σ2

2
]−1(ûi−ui)+(1/2)∗

M∑
i=1

ln
| Σ̂i+Σ2

2
|√

|Σ̂i||Σ2|
−wbha

(B.1)

Where û and Σ̂i are UBM mean and covariance matrix. ui and Σi are the

mean vector and covariance matrix of the adapted GMM new experimental

recordings. Each class distance has to be compared and it is chosen the

short distance as the predicted class.

Then an additional performance benchmark was carried out using UBM

with Bolivar, Guajira, and Cesar with 50 % of the data. The adaptation

for each class was found with 30 % obtaining a High-GMM, Low-GMM,

and Medium-GMM. The test was done with recordings adaptation groups

with the remaining 20 %. In contrast with the GMM approach, we found

an 84% of accuracy. One of the advantages of GMM and UBM is that

these models are computationally inexpensive without storage demands

(Reynolds et al., 2000). The general model obtained with GMM-UBM is

better than the general GMM approach for all the sites but not for in-

dividual regions. Although the performance for the GMM-UBM classifier

was not as good as using GBM, the former has great potential for use in

identifying changes in different zones of a particular ecosystem exposed by

the use of Bayesian adaptation. Maybe the lower performance is due to

the lack of data for training the model. Both approaches can discriminate

among different transformation states in TDF. GMM performs good re-

sults, but with the limitation that it only works for each study site with
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different numbers of components. GMM-UBM works with both zones but

with worse performance results.
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