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Abstract: This paper presents an alternative constraint handling approach within a specialized
genetic algorithm (SGA) for the optimal reactive power dispatch (ORPD) problem. The ORPD
is formulated as a nonlinear single-objective optimization problem aiming at minimizing power
losses while keeping network constraints. The proposed constraint handling approach is based on
a product of sub-functions that represents permissible limits on system variables and that includes
a specific goal on power loss reduction. The main advantage of this approach is the fact that it
allows a straightforward verification of both feasibility and optimality. The SGA is examined and
tested with the recommended constraint handling approach and the traditional penalization of
deviations from feasible solutions. Several tests are run in the IEEE 30, 57, 118 and 300 bus test
power systems. The results obtained with the proposed approach are compared to those offered by
other metaheuristic techniques reported in the specialized literature. Simulation results indicate that
the proposed genetic algorithm with the alternative constraint handling approach yields superior
solutions when compared to other recently reported techniques.

Keywords: genetic algorithms; reactive power dispatch; metaheuristic optimization; penalty functions;
constraint handling

1. Introduction

The optimal reactive power dispatch (ORPD) consists of scheduling available reactive power
sources so that operational constraints are met while optimizing a given objective function (typical
minimization of power losses or voltage deviation from a desired level). The ORPD plays an important
role on the economic and secure operation of power systems. It is a complex combinatorial optimization
problem involving a nonlinear objective function, nonlinear constraints and a mixture of continuous
and discrete control variables [1]. The control variables of the ORPD are transformer tap settings,
generator set points and reactive power compensations. Initial attempts to approach the ORPD
problem resorted to linear programming [2], nonlinear programming [3], quadratic programming [4],
interior point methods [5], Newton based method [6], dynamic programming [7] and mixed integer
programming [8]. Although these techniques are computationally fast they do not perform well when
dealing with non-convex problems and discrete variables. Also they tend to converge to local minima
and have difficulties handling a large number of decision variables.

The ORPD constitutes an example of a non-convex and multi-modal optimization problem. Due to
its nature, several metaheuristic optimization techniques have been tested to solve this problem in
the last two decades. The main advantage of metaheuristic techniques is that they can handle both
discrete and continuous variables. Furthermore, they do not require differentiability of the objective
function or constraints, overcoming the disadvantages of classic optimization algorithms.
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In [9] the ORPD is solved by means of Particle Swarm Optimization (PSO). This metaheuristic
was first introduced by Eberhart and Kennedy in 1995 [10] and is based on the sociological behaviour
associated with bird flocking. Several modifications to improve the performance of this technique have
been proposed and some of them have been applied to the ORPD such as parallel vector evaluated
PSO algorithm [11] and coordinated aggregation PSO algorithm [12].

Genetic and evolutionary algorithms have also been used to approach the ORPD. These techniques
mimic the process of natural selection using the concepts of inheritance, mutation selection and
crossover [13,14]. In [15] reactive power optimization is performed by means of a Genetic Algorithm
(GA) aiming at minimizing the total support cost from generators and reactive compensators. In [16]
a quantum-inspired evolutionary algorithm is developed for real and reactive power optimization.
Mean-Variance Mapping Optimization (MVMO) has also been successfully applied to solve the ORPD
problem [17]. The working principle of this methodology is based on a special mapping function
applied for mutating the offspring on the basis of mean and variance of the set comprising the
n-best solutions currently obtained in the algorithm. Hybrid approaches, combining characteristics
of two or more metaheuristic techniques are reported in [18,19]. Comparisons of different solution
techniques applied to the ORPD problem can be consulted in [20] and [21]. Finally, a review regarding
metaheuristic techniques applied to the ORPD problem can be reviewed in [22]. Despite the current
trend using novel metaheuristic techniques for solving the ORPD problem, classic metaheuristics such
as GA, when properly designed, can be highly competitive.

Genetic and evolutionary algorithms are directly suited to unconstrained optimization. Therefore,
the application of such type of algorithms to constraint optimization is a challenging effort. The most
common method in GA to handle constraints is the use of penalty functions [23]. In this paper,
two different formulations of penalty functions (also called fitness functions) are considered. The first
formulation guarantees constraint enforcement by penalizing deviations from the feasible region,
and it is the one commonly used in dealing with the ORPD problem. The second one consists of
a product of sub-functions which gives the planner the chance to select a specific target on power
losses and considers voltage and power flow limits as soft constraints. Such penalty function is devised
in such a way that its maximum value is equal to one, only if all voltage magnitudes and power flows
are within specified limits and the target on power losses has been achieved. This way, it permits
a straightforward verification of both feasibility and optimality. Such penalty function also allows
identifying the limit beyond it is not possible to reduce power losses without compromising feasibility.
The contributions of this paper are twofold:

(a) An alternative constraint handling approach within a specialized genetic algorithm (SGA)
is presented for the ORPD problem. The proposed constraint handling approach is based
on a product of sub-functions that allows a straightforward verification of both feasibility
and optimality.

(b) A comparison with other metaheuristic techniques is provided, showing the superiority of the
proposed approach. Also, results for the IEEE 300 bus power system (not reported before for
the ORPD problem) are reported with the aim of providing solutions for comparative studies in
later works.

This paper is organized as follows: Section 1 presents an introduction of the ORPD problem and
a literature review regarding the main techniques used to solve it. Section 2 presents the mathematical
formulation of the ORPD problem. Section 3 describes the implemented SGA and the alternative
constraint handling approach. Section 4 presents the results with IEEE 30, 57, 118 and 300 bus tests
systems and a comparison of results with other metaheuristic techniques. Finally, Section 5 presents
the conclusions.
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2. Problem Statement

The ORPD has traditionally been solved to reduce active power losses and improvement of
voltage profile, subject to various equality and inequality constraints. Power system operators typically
include the ORPD problem in operational planning studies rather than in real time applications.
The mathematical formulation of the ORPD problem is as follows [22,23].

2.1. Objective Function

The objective function considered in this case is the minimization of active power losses given by
Equation (1). Where Ploss denotes the total active power losses of the transmission network, gk and θij
are the line conductance and the angular difference of buses i and j, respectively; finally, NK is the total
number of network branches:

Min Ploss = ∑
k∈NK

gk

(
V2

i + V2
j − 2ViVjcosθij

)
(1)

An alternative or complementary objective function is the minimization of absolute value of total
voltage deviations (TVD) usually expressed as shown in Equation (2). In this case, NL is the number of
load buses in the power system, Vi is the voltage magnitude of bus i and Vre f i is the voltage magnitude
reference of the ith bus (usually 1.0 pu) [24–26]:

Min TVD = ∑
i∈NL

∣∣∣Vi −Vre f i

∣∣∣ (2)

Although the TVD is a commonly used metric to evaluate quality of solutions of the ORPD
problem, it only measures the distance of the operating point to a given reference and does not
consider the fact that real power systems operate within certain operative limits. In real power systems,
a TVD value of zero is not achievable, since it would imply that all voltages are equal to a given
reference. A more realistic way of assessing the feasibility of an operative condition is considering
an operative range rather than a fixed reference. This alternative is implemented in this paper as
explained in Section 3.3.2.

2.2. Equality Constraints

The equality constraints of the ORPD problem are the real and reactive power balance Equations
which are given by (3) and (4), respectively. In this case, NB is the number of buses; Pgi and Qgi are the
active and reactive power generation in node i, respectively; Pdi and Qdi are the active and reactive
demand in node i, respectively; finally, Gij and Bij are the transfer conductance and susceptance
between bus i and bus j, respectively:

Vi ∑
j∈NB

Vj
[
Gijcosθij + Bijsinθij

]
− Pgi + Pdi = 0 (3)

Vi ∑
j∈NB

Vj
[
−Gijsinθij + Bijcosθij

]
−Qgi + Qdi = 0 (4)

2.3. Inequality Constraints

Inequality constraints of the ORPD are given by Equations (5)–(9). Superscripts min and max
account for minimum and maximum limits of the respective variable.
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2.3.1. Generator Constraints

Generator voltages and their reactive power outputs are restricted by upper and lower limits as
indicated in Equations (5) and (6). In this case, NG is the number of generators in the power system;
Vgi and Qgi are the voltage magnitude and reactive power of the ith generator, respectively:

Vmin
gi ≤ Vgi ≤ Vmax

gi , i = 1, . . . , NG (5)

Qmin
gi ≤ Qgi ≤ Qmax

gi , i = 1, . . . , NG (6)

2.3.2. Transformer Constraints

Transformers tap settings are bounded by lower and upper constraints as indicated in Equation (7),
where NT is the number of transformers with tap setting in the power system:

Tmin
i ≤ Ti ≤ Tmax

i i = 1, . . . , NT (7)

2.3.3. Shunt VAR Constraints

Shunt VAR compensations are restricted as indicated in Equations (8) and (9), where NC and NL
are the number of shunt capacitors and reactors, respectively; while Qci and QLi are the reactive power
injected by the ith capacitor and reactor, correspondingly:

Qmin
ci ≤ Qci ≤ Qmax

ci i = 1, . . . , NC (8)

Qmin
Li ≤ QLi ≤ Qmax

Li i = 1, . . . , NL (9)

2.3.4. Security Constraints

These constraints include voltage limits in load buses and transmission line loading as indicated
in Equations (10) and (11). In this case, VLi and Sli are the voltage magnitude the ith bus and apparent
power flow in line li, respectively:

Vmin
Li ≤ VLi ≤ Vmax

Li , i = 1, . . . , NG (10)

Sli ≤ Smax
li , i = 1, . . . , NK (11)

3. Implemented Genetic Algorithm

Genetic Algorithms are inspired by the mechanisms of natural evolution. They offer an adaptive
search based on the Darwinian principle of reproduction and survival of individuals that best
adapt themselves to environmental conditions. These algorithms have been successfully applied
in optimization problems of great complexity as shown in [27–30]. As well as other metaheuristic
techniques, GAs are commonly used to tackle non-convex multimodal optimization problems, and do
not guarantee finding global optimal solutions. The application of basic principles of genetics to
mathematical optimization begins with the random or pseudo-random generation of an initial set
of solutions (population). The algorithm starts by reading system data and defining the codification
of solutions (chromosome). As it will be explained later, the codification was envisaged to take into
account real power systems. Then, the SGA parameters are set and an initial population is generated.
In this case, it is guaranteed that all candidate solutions are feasible (all control variables are within
specified limits). Each individual must be read and decoded by the algorithm indicating the set points
of control variables (voltage of generators, transformer taps, capacitors and reactor banks). With this
information a power flow is run and power losses are computed. After that, the operators of the SGA
are applied (selection, crossover and mutation) until a stopping criterion is met. Further details of
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the different stages regarding the SGA are explained below. Figure 1 depicts the flowchart of the
implemented SGA.Energies 2018, 11, x 5 of 24 
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3.1. Codification

The proposed codification was devised to be suitable for real power systems. Transformers taps as
well as capacitor and reactor banks are discretized based on system data when this one is available or
using default parameters when it is not. Figure 2 illustrates the representation of a potential solution to
the ORPD problem. It consists of a vector with the discretization of all control variables. Such variables
are the setpoints of generators, transformers taps and reactive power injections (from both capacitors
and reactors). Control variables are discretized as follows:

Voltage setpoints of generators are in a typical range of [0.95, 1.1] pu, coded between discrete
values in the range [−100, 100]. However, any other range limit can be considered (depending on
specific system data).

Each capacitor is coded using the limits and step size reported for each power system test
case. The number of steps for a given capacitor bank is computed using its capacity and step size
(if provided). In this way, each capacitor might be coded differently. For example, in the IEEE 30
bus test system all capacitor banks have a maximum capacity of 5 MW; however, the step size is not
provided in the original data; in this case, the step was set by default at 0.05 MVAR.

Energies 2018, 11, x 5 of 24 

 

 
Figure 1. Flowchart of the implemented SGA. 

3.1. Codification  

The proposed codification was devised to be suitable for real power systems. Transformers taps 
as well as capacitor and reactor banks are discretized based on system data when this one is available 
or using default parameters when it is not. Figure 2 illustrates the representation of a potential 
solution to the ORPD problem. It consists of a vector with the discretization of all control variables. 
Such variables are the setpoints of generators, transformers taps and reactive power injections (from 
both capacitors and reactors). Control variables are discretized as follows: 

Voltage setpoints of generators are in a typical range of [0.95, 1.1] pu, coded between discrete 
values in the range [−100, 100]. However, any other range limit can be considered (depending on 
specific system data).  

Each capacitor is coded using the limits and step size reported for each power system test case. 
The number of steps for a given capacitor bank is computed using its capacity and step size (if 
provided). In this way, each capacitor might be coded differently. For example, in the IEEE 30 bus 
test system all capacitor banks have a maximum capacity of 5 MW; however, the step size is not 
provided in the original data; in this case, the step was set by default at 0.05 MVAR.   

 
Figure 2. Codification of the implemented GA. 

Transformers taps vary within the range [ 𝑇 , 𝑇௫ ]  that may be different for every 
transformer. If the limits of the tap setting and step size are provided in the system data, this 
information is used in the codification. The number of steps is calculated as the integer number that 

Figure 2. Codification of the implemented GA.



Energies 2018, 11, 2352 6 of 23

Transformers taps vary within the range [Tmin
i , Tmax

i ] that may be different for every transformer.
If the limits of the tap setting and step size are provided in the system data, this information is used in
the codification. The number of steps is calculated as the integer number that results from dividing the
tap settings range (Tmax

i − Tmin
i ) by the step size; otherwise, a default range of [−10, 10] with steps of

1% is considered.

3.2. GA Operators

Initial population is randomly generated within the specified limits of each control variable. This is
done to guarantee feasible candidate solutions. After that, the corresponding fitness function of each
candidate solution is evaluated. In order to compute power losses, it is necessary to decode and run
a power flow for each candidate solution. This is done with the software Matpower 5.1 [31]. Once the
fitness function of each candidate solution is calculated, the selection operator is carried out. In this
case, selection is performed by tournament method. The recombination or crossover stage combines
the information of selected individuals in every subset of control variables (multipoint crossover);
Figure 3 illustrates this stage. Mutation rate is dynamic (starts with a high rate and decreases steadily
in every generation) and can be applied differently to every subset of control variables. For example,
the mutation rate is lower for the subset of capacitors than it is for the subset of transformers tap;
consequently, at the end of the evolution process, there is a greater probability of change in transformers
taps than in capacitor banks. In this case, the mutated element takes a random value within its limits.
This is done to conserve the feasibility of candidate solutions.

In every cycle or generation, the offspring replace the parents only if they represent solutions
with better fitness functions. The process of selection, crossover and mutation is repeated until the
SGA reaches a specific stopping criterion. Such stopping criterion is determined by a maximum
number of generations or when a target on fitness function has been achieved without any violation of
system constraints.
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3.3. Constraint Handling Approaches

Evolutionary algorithms usually perform unconstrained searches, and thus require additional
mechanisms to handle constraints. In the ORPD problem, equality constraints (3) and (4) are met by
the load flow solution while constraints on control variables can be handled directly in the problem
codification. The remaining constraints to be enforced are voltage magnitudes in load buses and
power flow limits in lines (security constraints given by Equations (10) and (11)). These constraints
are commonly enforced by some sort of penalty function. Two penalty functions are explored in this
paper as detailed below.
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3.3.1. Traditional Penalty Function Approach

A penalty function guarantees constraint enforcement by penalizing deviations of candidate
solutions from the feasible region of the problem. There are different ways of forming a penalty
function and several versions of them have been applied in the ORPD problem as reported in [22]
and [32]. For comparative purposes, the penalty function approach shown in Equation (12) was
selected, which is named as Ff 1 (fitness function 1):

Ff 1(x) = Ploss(x) + µVV(x) + µP f P f (x) (12)

In this case, x is the general representation of the optimization variables. In (12) the second and
third terms correspond to the traditional penalty function approach, where V(x) and P f (x) represent
constraint violations on voltage magnitudes in buses and power flows in lines, respectively. µV and
µP f are penalty constants. Both V(x) and P f (x) are sub-functions that represent the distance to the
feasible region of the problem; each of these are expressed in general form as D(x) in Equation (13):

D(x) = ∑
j

max
{

0,
(
xminj − xj

)}
+ max

{
0,
(
xj − xmaxj

)}
(13)

where xj, xminj and xmaxj represent the optimization variables and their operational limits, respectively.
The fitness function used here primarily aims to control the voltage profile and power flow limits.
However, it can also be used to handle constraints on other variables such as voltage levels of
particular nodes (which cannot operate within conventional ranges), lines with special load capability,
etc. Note that V(x) is an alternative way of representing TVD. In this case, this expression considers
the fact that voltages operate within a given range and are not compared to a fixed reference.

3.3.2. Alternative Constraint Handling Approach

An alternative constraint handling approach is based on the fitness function shown in Equation
(14), named as Ff 2 (fitness function 2). This function is an adaptation of the one proposed in [33] which
was first introduced in the context of expansion planning for congestion management. In this case
fVN(i), fCR(j) and floss represent sub-functions for voltage magnitude in load bus i, power flow in line
j and power losses assessment, respectively. As regards voltage magnitudes Ff 2 is used to guarantee
that they remain within acceptable limits, rather than comparing them to a fixed reference as done by
TVD given by (2). Figure 4 depicts the sub-functions under consideration. Note that floss allows the
planner to set a goal on power loss minimization. In this case, it is assumed that the system operator has
a reasonable estimation of the network power losses. Also note that if all quantities are given in per unit,
the maximum value of Ff 2 is equal to one, independently of the number of constraints. This represents
an advantage over traditional penalty functions since it allows the algorithm to stop when the optimal
solution (previously selected by the planner) is achieved. It also permits to quickly assess the quality of
a given solution which is given by how close Ff 2 is to its maximum value. This way, the verification of
both feasibility and optimality of candidate solutions is straightforward. Since Ff 2 is a multiplication of
sub-functions, with only one variable or limit out of bounds the fitness function is penalized indicating
that the solution associated to such operational point is neither optimal nor feasible:

Ff 2 =

[
NL

∏
i=1

fVN(i)

][
NK

∏
j=1

fCR(j)

]
floss (14)
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Figure 4. Sub-functions for: (a) voltages in load buses, (b) power flows in lines and (c) active
power losses.

The mathematical expressions for the sub-functions depicted in Figure 4 are given by Equations
(15)–(17).

fVN(i) = min
{

eλv(Vmaxi−Vi), eλv(Vi−Vmini)
}

(15)

fCR(j) = min eλb(LoadRjmax−LoadRj) (16)

floss = eλl(lossre f−Ploss) (17)

where Vmaxi and Vmini are the maximum and minimum voltage limit on node i, respectively;
LoadRjmax and LoadRj are the maximum power flow limit on line j and its actual value, respectively;
and lossre f represents the goal on system real power losses which is compared to actual power losses
Ploss. The lambdas in every sub-function determine the hardness of the constraint. Smaller values of
lambda indicate softer constraints (see Figure 5).

Note that within sub-function fVN(i) and fCR(j) it is possible to set specific voltage limits per
node and specific power flow limits per line. This characteristic allows defining nodes and lines with
special limits for the ORPD problem.
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4. Tests and Results

To show the applicability of the proposed approach several tests were performed on the IEEE 30,
57, 118 and 300 bus test systems. Specialized literature regarding the ORPD problem usually reports
solutions on IEEE 30, 57 and 118 bus test systems. Also, several tests were performed using the IEEE
300 bus test system with the aim of providing solutions for comparative purposes in later works.
All tests were carried out on a personal computer equipped with an Intel Core i7 (Quadcore) 3.6 GHz
processor and 8 GB of RAM memory. Test system data can be consulted in [34–36]. Active and reactive
power generation limits as well as active generator settings (except for the swing generator) are taken
from [36]. A summary of the test systems data is presented in Table 1.

Table 1. Main characteristics of the test systems under study.

Characteristic IEEE 30 IEEE 57 IEEE 118 IEEE 300

# buses 30 57 118 300
# load buses 24 50 64 231
# generators 6 7 54 69

# transformers 4 15 9 107
# capacitors 9 3 12 8
# reactors 0 0 2 6
# branches 41 80 186 411

# Control variables 19 25 77 190
Base case Ploss (MW) 5.833 27.864 132.863 408.316
Base case TVD (pu) 0.58217 1.23358 1.439337 5.4286

4.1. Input Parameters

Parameters of the SGA used for all simulations are described in Table 2. For simplicity purposes,
these set of parameters were tuned to be used with all tests systems. As regards fitness function 2
(given by (14)), it is necessary to set a goal on power losses for every test system. Such goal must be
set by the system planner taking into account the particularities of the network. An ambitious goal
on power loss reduction might result in unfeasible solutions while a conservative one might result in
sub-optimal solutions. Different goals on power loss reduction were tested and those that resulted in
feasible solutions are reported in Table 3.

Table 2. Genetic Algorithm parameters.

Parameter Value

Population size 60
Maximum number of generations 300
Mutation rate (transformers taps) 20%

Mutation rate (rest of the chromosome) 5%
Individuals used in tournament selection 20

Table 3. Goals on system power losses for fitness function 2.

IEEE Case Current Power Losses (MW)
Goal on System Power Losses

(% Total Gen) (MW)

30 5.833 1.58 4.57
57 27.864 2.55 23.69
118 132.863 2.61 108.55
300 408.316 1.57 368.63

Note that for fitness function 1 (given by (12)) there is no need of setting a specific goal on power
losses; since in this case, the algorithm always aims at minimizing losses even at the expense of not
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fully enforcing security constraints. For both fitness functions voltage limits on load buses were set
as Vmax

Li = 1.1 and Vmin
Li = 0.9, µV and µP f are 10,000 and 1000, respectively. This values were found

through several simulation trials. It was found that lower penalization values would not enforce
voltage and power flow limits. Lambdas for fitness function 2 are: λv = 0.1, λb = 0.05, λl = 0.1.

Maximum and minimum limits of control variables for the IEEE test cases, with a base of 100 MVA,
are given in Table 4 [34–36]. Note that the main differences among these cases are maximum limits of
capacitor banks and reactors.

Table 4. Limits of control variables for different IEEE cases (pu).

IEEE Case Vmax
G Vmin

G Tmin
i Tmax

i Qmax
C Qmin

C Qstep
C Qmax

L Qmin
L Qstep

L

30 1.1 0.95 0.9 1.05 0.05 0 0.0005 - - -
57 1.1 0.95 0.9 1.1 0.10 0 0.001 - - -
118 1.1 0.95 0.9 1.1 0.20 0 0.001 −0.40 0 0.002
300 1.1 0.95 0.9 1.1 3.25 0 0.05 −3.00 0 0.05

4.2. Results with the IEEE 30 Bus Power System

The IEEE 30 bus power system comprises nineteen control variables: six generator voltage
magnitudes (at buses 1, 2, 5, 8, 11 and 13), four tap changing transformers (at branches 6–9, 6–10,
4–12 and 28–27) and nine shunt capacitor devices (at buses 10, 12, 15,17, 20, 21, 23, 24 and 29).
The total system demand is 283.4 MW [34–36]. As it is well known, power losses are greatly affected
by maximum voltage limits of generators. Allowing higher voltage limits results in lower power losses
and vice versa. In regards to the IEEE 30 bus power system, some studies consider upper voltage limits
of 1.1 pu while some others consider 1.05 pu. Therefore, several tests were performed considering
both limits for comparative purposes. Table 5a,b present the comparison of results when the upper
voltage limit of generators is set to 1.1 pu. In Table 5a ABC, FA and HFA stand for artificial bee colony,
firefly algorithm and hybrid firefly algorithm, correspondingly; while CLPSO, DE and BBO stand for
comprehensive learning particle swarm optimization, differential evolution and biogeography-based
optimization, respectively. The solutions obtained with the proposed methodology, using Ff 1 and Ff 2,
are presented in the last two columns of Table 5b. In this case GSA, MFO and IGSA-CSS stand for
gravitational search algorithm, moth-flame optimization and improved gravitational search algorithm
with conditional selection strategies. Finally, FAHLCPSO stands for fuzzy adaptive heterogeneous
comprehensive-learning particle swarm optimization. Power losses and total voltage deviation (TVD)
given by Equations (1) and (2), correspondingly, are also computed for other metaheuristics using the
reported values of control variables with the software Matpower 5.1 [31]. Also V(x) and P f (x) are
computed as given by Equation (13). Note that both expressions represent the distance to the feasible
region for voltage and power low limits, respectively. Power losses obtained with the proposed SGA
were 4.5399 MW and 4.5692 MW with total voltage deviations of 2.0105 pu and 1.8333 pu for Ff 1
and Ff 2, correspondingly. However, both V(x) and P f (x) are zero, which indicates that the solution
found by the SGA guarantees the operation of the system within feasible ranges. When the SGA is
implemented with Ff 1, it obtains lower power losses but higher voltage deviations. Note that the
SGA outperforms other metaheuristic techniques reported in Table 5a,b when using Ff 1; however,
DE, MFO and BBO obtain slightly better results (with less than 1% of difference) than the proposed
methodology when applying Ff 2. Table 5c presents the comparison of results when the upper voltage
limit of generators is set to 1.05 pu. In this case, OGSA, ALC-PSO, KHA, CKHA, and NGBWCA
stand for opposition-based gravitational search algorithm, particle swarm optimization with an aging
leader and challengers, krill heard algorithm, chaotic krill heard algorithm and Gaussian bare-bones
water cycle algorithm, respectively. Power losses obtained with the proposed SGA were 5.072 MW
using both objective functions. As expected, power losses in this case are higher than those obtained
considering higher voltage limits (see Table 5a,b). Nevertheless, the proposed SGA was able to obtain
better solutions than those obtained with other metaheuristics.
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Table 5. Best control variable settings reported for power loss minimization of the IEEE 30 bus test
system with different algorithms considering 1.1 pu as the maximum setpoints of generators.

(a)

Control
Variable Initial [35] ABC [19] FA [19] CLPSO [37] DE [35] BBO [38] HFA [19]

VG1, pu 1.05 1.1 1.1 1.1 1.1 1.1 1.1
VG2, pu 1.04 1.0615 1.0644 1.1 1.0931 1.0944 1.054332
VG5, pu 1.01 1.0711 1.07455 1.0795 1.0736 1.0749 1.075146
VG8, pu 1.01 1.0849 1.0869 1.1 1.0736 1.0768 1.086885
VG11, pu 1.05 1.1 1.09164 1.1 1.1 1.0999 1.1
VG13, pu 1.05 1.0665 1.099 1.1 1.1 1.0999 1.1
T11, pu 1.078 0.97 1 0.9154 1.0465 1.0435 0.980051
T12, pu 1.069 1.05 0.94 0.9 0.9097 0.90117 0.950021
T15, pu 1.032 0.99 1 0.9 0.9867 0.98244 0.970171
T36, pu 1.068 0.99 0.97 0.9397 0.9689 0.96918 0.970039

QC10, pu 0 5 3 4.9265 5 4.9998 4.700304
QC12, pu 0 5 4 5 5 4.9870 4.706143
QC15, pu 0 5 3.3 5 5 4.9906 4.700662
QC17, pu 0 5 3.5 5 5 4.9970 2.305910
QC20, pu 0 4.1 3.9 5 4.406 4.9901 4.803520
QC21, pu 0 3.3 3.2 5 5 4.9946 4.902598
QC23, pu 0 0.9 1.3 5 2.8004 3.8753 4.804034
QC24, pu 0 5 3.5 5 5 4.9867 4.805296
QC29, pu 0 2.4 1.42 5 2.5979 2.9098 3.398351
Ploss, MW 5.811 4.8149 4.7694 4.6018 4.5417 4.5435 4.7530
TVD, pu 1.1501 1.6815 1.9542 4.1671 1.9737 2.0662 2.3333
V(x), pu 0.0097 0 0 1.4560 2.220 × 10−16 0 0.0061
P f (x), pu 0 0 0 0 0 0 0

(b)

Control
Variable GSA [39] MFO [40] IGSA-CSS [41] FAHLCPSO [42] SGA (Ff1) SGA (Ff2)

VG1, pu 1.071652 1.1000 1.081281 1.1000 1.1000 1.1000
VG2, pu 1.022199 1.0943 1.072177 1.0387 1.0940 1.0970
VG5, pu 1.040094 1.0747 1.050142 1.0161 1.0745 1.0805
VG8, pu 1.050721 1.0766 1.050234 1.0290 1.0767 1.0835
VG11, pu 0.977122 1.1000 1.100000 1.0123 1.1000 1.1000
VG13, pu 0.967650 1.1000 1.068826 1.1000 1.1000 1.1000
T11, pu 1.098450 1.0433 1.0800 1.0223 1.0510 1.0680
T12, pu 0.982481 0.9000 0.9020 0.9107 0.9000 0.9080
T15, pu 1.095909 0.97912 0.9900 1.0098 0.9830 0.9990
T36, pu 1.059339 0.96474 0.9760 0.9744 0.9670 0.9750

QC10, pu 1.653790 0.0500 0.0000 0.034125 0.0500 0.0420
QC12, pu 4.372261 0.0500 0.0000 0.0500 0.0500 0.0235
QC15, pu 0.119957 0.048055 0.0380 0.020981 0.0500 0.0445
QC17, pu 2.087617 0.0500 0.0490 0.0500 0.0500 0.0480
QC20, pu 0.357729 0.040263 0.0395 0.035512 0.0435 0.0290
QC21, pu 0.260254 0.0500 0.0500 0.040005 0.0500 0.0455
QC23, pu 0.000000 2.5193 0.0275 0.031928 0.0270 0.0370
QC24, pu 1.383953 0.0500 0.0500 0.048800 0.0500 0.0465
QC29, pu 0.000317 0.021925 0.0240 0.021000 0.0240 0.0135
Ploss, MW 5.5372 4.5410 4.7620 6.8230 4.5399 4.5692
TVD, pu 1.6552 2.0316 1.1487 0.7914 2.0105 1.8333
V(x), pu 0 0 0 0 0 0
P f (x), pu 0 0 0 0 0 0

(c)

Control
Variable OGSA [26] ALC-PSO [24] KHA [25] CKHA [25] NGBWCA [43] SGA (Ff1) SGA (Ff2)

VG1, pu 1.0500 1.0500 1.0500 1.0500 1.0502 1.0500 1.0500
VG2, pu 1.0410 1.0384 1.0381 1.0473 1.0382 1.0445 1.0445
VG5, pu 1.0154 1.0108 1.0110 1.0293 1.0107 1.0245 1.0240
VG8, pu 1.0267 1.0210 1.0250 1.0350 1.0212 1.0265 1.0260
VG11, pu 1.0082 1.0500 1.0500 1.0500 1.0503 1.0500 1.0500
VG13, pu 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500
T11, pu 1.0585 0.9521 0.9541 0.9916 0.9520 1.0500 1.0490
T12, pu 0.9089 1.0299 1.0412 0.9538 1.0295 0.9000 0.9000
T15, pu 1.0141 0.9721 0.9514 0.9603 0.9720 0.9880 0.9880
T36, pu 1.0182 0.9657 0.9541 0.9670 0.9661 0.9660 0.9650

QC10, pu 0.0330 0.0090 0.0089 0.0092 0.0097 0.0500 0.0500
QC12, pu 0.0249 0.0126 0.0000 0.0000 0.0125 0.0500 0.0500
QC15, pu 0.0177 0.0209 0.0141 0.0153 0.0212 0.0500 0.0500



Energies 2018, 11, 2352 12 of 23

Table 5. Cont.

QC17, pu 0.0500 0.0500 0.04989 0.0497 0.0541 0.0500 0.0500
QC20, pu 0.0334 0.0031 0.0314 0.0302 0.0043 0.0500 0.0500
QC21, pu 0.0403 0.0293 0.0345 0.0500 0.0289 0.0500 0.0500
QC23, pu 0.0269 0.0226 0.0241 0.0134 0.0229 0.0360 0.0360
QC24, pu 0.0500 0.0500 0.0500 0.0500 0.0498 0.0500 0.0500
QC29, pu 0.0194 0.0107 0.0107 0.0121 0.0106 0.0280 0.0275
Ploss, MW 5.5192 5.4711 5.5407 5.4285 5.4720 5.0272 5.0272
TVD, pu 0.8540 0.3001 0.2963 0.3524 0.3003 0.7369 0.7372
V(x), pu 0 0 0 0 5 × 10−4 0 0
P f (x), pu 0 0 0 0 0 0 0

Figure 6 depicts the convergence of the algorithm for both objective functions for four independent
runs (considering 1.1 pu as voltage limit of generators). Note that when using Ff 2 the algorithm requires
fewer generations to reach convergence, which has a positive impact in computational time.
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Figure 6. Convergence curves for (a) Ff 1 and (b) Ff 2 considering four independent runs (IEEE 30 bus
power system).

4.3. Results with the IEEE 57 Bus Power System

The IEEE 57 bus power system consists of eighty branches (lines and transformers), seven generators,
fifteen transformers (available for tap changing), and three shunt capacitor devices (at buses 18, 25 and
53). The total system demand is 1250.8 MW [36]. A comparison of the best solutions found with
different metaheuristics for the ORPD problem applied to this power system is reported in Table 6a,b
with a base of 100 MVA. In this case SOA stands for seeker optimization algorithm. The maximum
voltage limit of generators was set to 1.06 pu for comparative purposes. Power losses, voltage
deviations, as well as V(x) and P f (x) were computed for other metaheuristics using the reported
values of control variables. Note that the proposed SGA was able to obtain better results than the
other metaheuristics, especially when using Ff 1; however, at a expense of higher TVD. Furthermore,
the values obtained with the SGA for P f (x) and V(x) are approximately zero, meaning that the
solution found meets the operational constraints defined for this system, which is not always the
case for the other reported metaheuristics. Figure 7 depicts the convergence of the algorithm for both
objective functions considering four independent runs. Note that fewer generations are required to
reach optimality when Ff 2 is implemented.
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Table 6. Best control variable settings for power loss minimization of IEEE 57 bus test system with
different algorithms.

(a)

Control
Variable Initial [35] SOA [44] CLPSO [39] DE [44] BBO [39] ALC-PSO [24] MFO [40] NGBWCA [43]

VG1, pu 1.0400 1.0541 1.0541 1.0397 1.0600 1.0600 1.06000 1.0600
VG2, pu 1.0100 1.0529 1.0529 1.0463 1.0504 1.0593 1.05870 1.0591
VG3, pu 0.9850 1.0337 1.0337 1.0511 1.0440 1.0491 1.04690 1.0492
VG6, pu 0.9800 1.0313 1.0313 1.0236 1.0376 1.0432 1.04210 1.0399
VG8, pu 1.0500 1.0496 1.0496 1.0538 1.0550 1.0600 1.06000 1.0586
VG9, pu 0.9800 1.0302 1.0302 0.9451 1.0229 1.0451 1.04230 1.0461
VG12, pu 1.0150 1.0302 1.0342 0.9907 1.0323 1.0411 1.03730 1.0413
T4−18, pu 0.9700 0.9900 0.9900 1.0200 0.9669 0.9611 0.95011 0.9712
T4−18, pu 0.9780 0.9800 0.9800 0.9100 0.9902 0.9109 1.00760 0.9243
T21−20, pu 1.0430 0.9900 0.9900 0.9700 1.0120 0.9000 1.00630 0.9123
T24−26, pu 1.0430 1.0100 1.0100 0.9100 1.0087 0.9004 1.00760 0.9001
T7−29, pu 0.9670 0.9900 0.9900 0.9600 0.9707 0.9106 0.97523 0.9112
T34−32, pu 0.9650 0.9300 0.9300 0.9900 0.9686 0.9000 0.97218 0.9004
T11−41, pu 0.9550 0.9100 0.9100 0.9800 0.9008 0.9000 0.90000 0.9128
T15−45, pu 0.9550 0.9700 0.9700 0.9600 0.9660 0.9000 0.97186 0.9000
T14−46, pu 0.9000 0.9500 0.9500 1.0500 0.9507 1.0275 0.95355 1.0218
T10−51, pu 0.9300 0.9800 0.9800 1.0700 0.9641 0.9876 0.96736 0.9902
T13−49, pu 0.8950 0.9500 0.9500 0.9900 0.9246 0.9756 0.92788 0.9568
T11−43, pu 0.9580 0.9500 0.9500 1.0600 0.9502 0.9000 0.96406 0.9000
T40−56, pu 0.9580 1.0000 1.0000 0.9900 0.9966 0.9000 0.99980 0.9000
T39−57, pu 0.9800 0.9600 0.9600 0.9700 0.9628 1.0121 0.96060 1.0118
T9−55, pu 0.9400 0.9700 0.9700 1.0700 0.9600 0.9944 0.97899 1.0000
QC18, pu 0 0.0988 0.0988 0 0.09782 0.0994 0.099968 0.0914
QC25, pu 0 0.0542 0.0542 0 0.05899 0.0590 0.05900 0.0587
QC53, pu 0 0.0628 0.0628 0 0.06289 0.0630 0.06300 0.0634
Ploss, pu 0.2786 0.2487 0.2489 0.3594 0.2454 0.2618 0.242529 0.2674
TVD, pu 4.1788 1.0775 1.0929 4.1788 1.3548 2.2077 1.4885 2.1427
V(x), pu 0.7951 0 0 0.7951 0 0.1428 7.29 × 10−5 0.3913
P f (x), pu 0.2948 0.0035 0.0022 0.2948 3.49 × 10−4 0.0829 0 0.0895

(b)

Control
Variable GSA [39] OGSA [26] KHA [25] CKHA [25] SGA (Ff1) SGA (Ff2)

VG1, pu 1.0600 1.0600 1.0556 1.0600 1.0600 1.0600
VG2, pu 1.0600 1.0594 1.0595 1.0590 1.0594 1.0594
VG3, pu 1.0600 1.0492 1.0414 1.0487 1.0490 1.0523
VG6, pu 1.0081 1.0433 1.0314 1.0431 1.0418 1.0451
VG8, pu 1.0549 1.0600 1.0549 1.0600 1.0600 1.0600
VG9, pu 1.009.8 1.0450 1.0415 1.0447 1.0435 1.0484
VG12, pu 1.0185 1.0407 1.0398 1.0410 1.0396 1.0473
T4−18, pu 1.1000 0.9000 0.9211 0.9179 1.0190 1.0130
T4−18, pu 1.0826 0.9947 1.0214 1.0256 0.9130 1.0040
T21−20, pu 0.9219 0.9000 0.9912 0.9000 1.0320 1.0580
T24−26, pu 1.0167 0.9001 0.9119 0.9020 1.0070 1.0200
T7−29, pu 0.9962 0.9111 0.9101 0.9104 0.9410 0.9670
T34−32, pu 1.1000 0.9000 0.9946 0.9005 0.9780 0.9930
T11−41, pu 1.0746 0.9000 0.9457 0.9000 0.9100 1.0370
T15−45, pu 0.9543 0.9000 0.9914 0.9000 0.9380 0.9430
T14−46, pu 0.9377 1.0464 1.0714 1.0797 0.9250 0.9480
T10−51, pu 1.0167 0.9875 0.9945 0.9887 0.9350 0.9660
T13−49, pu 1.0525 0.9638 0.9814 0.9914 0.9030 0.9250
T11−43, pu 1.1000 0.9000 0.9715 0.9000 0.9260 0.9660
T40−56, pu 0.9799 0.9000 0.9001 0.9002 1.0140 0,9950
T39−57, pu 1.0246 1.0148 1.0136 1.0173 0.9740 1.0380
T9−55, pu 1.0373 0.9830 1.0089 1.0023 0.9430 0.9840
QC18, pu 0.0782 0.0682 0.0894 0.0994 0.0510 0.0970
QC25, pu 0.0058 0.0590 0.0459 0.0590 0.0570 0.0580
QC53, pu 0.0468 0.0630 0.0625 0.0630 0.0630 0.0435
Ploss, pu 0.2940 0.2642 0.2618 0.2748 0.23836 0.24325
TVD, pu 2.8536 2.1764 2.4490 2.2741 2.7021 1.7616
V(x), pu 0.4369 0.1036 0.0851 0.0818 0 0
P f (x), pu 0.0483 0.0948 0.0107 0.1445 9.9 × 10−7 0
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Figure 7. Convergence curves for (a) Ff 1 and (b) Ff 2 considering four independent runs (IEEE 57 bus
power system).

4.4. Results with the IEEE 118 Bus Power System

The IEEE 118 bus test system has seventy-seven control variables; these consist of fifty-four
generator buses, nine tap changing transformers, twelve capacitor devices and two reactor devices.
The total system demand is 4242 MW [36]. The optimal settings of control variables are presented in
Table 7a,b; power losses, voltage deviations, V(x) and P f (x) were computed for other metaheuristics
using the reported values of control variables. In this case, power losses are given with a base of
100 MVA. Note that the solutions obtained with the proposed approach are better than those reported
with other metaheuristics. Furthermore, the values obtained with the SGA for P f (x) and V(x) are
zero, which means that the solution found meets all operational constraints. Figure 8 depicts the
convergence of the algorithm for both objective functions considering four independent runs. Note that
in general fewer generations are needed to reach optimality when using Ff 2.
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Table 7. Best control variable settings for power loss minimization of IEEE 118 bus test system with different algorithms.

(a)

Control
Variable MFO [40] NGBWCA [43] FAHCLPSO [42] Control

Variable MFO [40] NGBWCA [43] FAHCLPSO [42]

VG1, pu 1.0173 1.0215 1.0120 VG91, pu 1.0496 0.9989 1.0298
VG4, pu 1.0402 1.0431 1.0523 VG92, pu 1.0600 1.0001 1.1005
VG6, pu 1.0292 1.0312 1.0666 VG99, pu 1.0551 1.0467 1.0498
VG8, pu 1.0600 1.0539 1.0597 VG100, pu 1.0584 1.0213 1.0565
VG10, pu 1.0374 1.0271 1.0725 VG103, pu 1.0442 1.0416 1.0413
VG12, pu 1.0250 1.0316 1.0333 VG104, pu 1.0333 1.0174 1.0189
VG15, pu 1.0268 1.0129 1.0012 VG105, pu 1.0281 1.0223 1.1000
VG18, pu 1.0298 1.0075 1.0058 VG105, pu 1.0161 1.0340 1.0222
VG19, pu 1.0275 1.0102 1.1000 VG110, pu 1.0215 1.0103 1.0115
VG24, pu 1.0483 1.0208 1.0971 VG111, pu 1.0280 1.0345 1.1000
VG25, pu 1.0600 1.0531 1.0899 VG112, pu 1.0042 1.0160 1.0500
VG26, pu 1.0600 0.9941 1.1000 VG113, pu 1.0350 1.0181 1.0099
VG27, pu 1.0267 1.0291 1.0654 VG116, pu 1.0484 1.0330 1.0500
VG31, pu 1.0101 1.0275 1.0318 T8, pu 1.01360 1.0051 1.0214
VG32, pu 1.0226 1.0201 1.0322 T32, pu 1.10000 0.9614 1.0533
VG34, pu 1.0556 1.0014 0.9999 T36, pu 1.00380 0.9961 1.0555
VG36, pu 1.0548 1.0412 0.9998 T51, pu 0.98263 0.9523 0.9995
VG40, pu 1.0419 1.0400 1.0501 T93, pu 0.98430 1.0521 1.0619
VG42, pu 1.0429 1.0512 1.0231 T95, pu 1.01390 0.9520 1.0318
VG46, pu 1.0450 1.0170 1.0005 T102, pu 1.10000 0.9812 1.0490
VG49, pu 1.0589 1.0510 0.9897 T107, pu 1.10000 0.9510 0.9660
VG54, pu 1.0284 1.0392 0.9998 T127, pu 0.96831 0.9754 0.9732
VG55, pu 1.0289 1.0331 1.0222 QL5, pu 0 −0.0723 0.0035
VG56, pu 1.0283 1.0372 1.0008 QC34, pu 0 0.0483 0.101922
VG59, pu 1.0512 1.0564 1.0731 QL37, pu −0.03126 −0.2390 0.017500
VG61, pu 1.0534 1.0565 1.0258 QC44, pu 0.10 0.0032 0.04400
VG62, pu 1.0506 1.0489 1.0059 QC45, pu 0 0.0372 0.069894
VG65, pu 1.0596 1.0435 1.0630 QC46, pu 0 0.0624 0.071289
VG66, pu 1.0600 1.0435 1.0312 QC48, pu 0.000842 0.0172 0.066668
VG69, pu 1.0600 1.0489 1.0636 QC74, pu 0.022054 0.0013 0.110952
VG70, pu 1.0600 1.0113 1.1000 QC79, pu 0.20 0.0621 0.15000
VG72, pu 1.0526 1.0382 1.0500 QC82, pu 0 0.0463 0.105509
VG73, pu 1.0600 0.9926 1.0981 QC83, pu 0.10 0.0560 0.055540
VG74, pu 1.0600 0.9934 1.0444 QC105, pu 0 0.0653 0.151895
VG76, pu 1.0390 1.0324 1.0037 QC107, pu 0.06 0.0072 0.044140
VG77, pu 1.0502 1.0185 1.0559 QC110, pu 0.06 0.0108 0.022310
VG80, pu 1.0600 1.0021 0.9999 Ploss, pu 1.164254 1.2147 1.162479
VG85, pu 1.0600 1.0312 1.0882 TVD, pu 2.3416 1.452 2.5204
VG87, pu 1.0599 1.0212 1.0303 V(x), pu 0 0 0
VG89, pu 1.0600 1.0387 1.0001 P f (x),pu 0 0 0
VG90, pu 1.0431 1.0071 1.0018
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Table 7. Cont.

(b)

Control
Variable ALC-PSO [24] GSA [39] SGA (Ff1) SGA (Ff2) Control

Variable ALC-PSO [24] GSA [39] SGA (Ff1) SGA (Ff2)

VG1, pu 1.0218 0.9600 1.0880 1.0947 VG91, pu 0.9997 1.0032 1.0955 1.0985
VG4, pu 1.0432 0.9620 1.1000 1.1000 VG92, pu 1.0012 1.0927 1.0993 1.0992
VG6, pu 1.0224 0.9729 1.0963 1.0970 VG99, pu 1.0481 1.0433 1.0955 1.0992
VG8, pu 1.0543 1.0570 1.0828 1.0820 VG100, pu 1.0332 1.0786 1.1000 1.1000
VG10, pu 1.0901 1.0885 1.0910 1.0895 VG103, pu 1.0422 1.0266 1.0993 1.0985
VG12, pu 1.0325 0.9630 1.0940 1.0992 VG104, pu 1.0183 0.9808 1.0963 1.1000
VG15, pu 1.0140 1.0127 1.0850 1.0955 VG105, pu 1.0226 1.0163 1.0948 1.0985
VG18, pu 1.0080 1.0069 1.0888 1.0947 VG105, pu 1.0344 0.9987 1.0895 1.1000
VG19, pu 1.0104 1.0003 1.0850 1.0992 VG110, pu 1.0349 1.0218 1.0963 1.1000
VG24, pu 1.0200 1.0105 1.0978 1.0985 VG111, pu 1.0425 0.9852 1.1000 1.0977
VG25, pu 1.0551 1.0102 1.1000 1.1000 VG112, pu 1.0162 0.9500 1.0835 1.0985
VG26, pu 0.9932 1.0401 1.1000 1.0992 VG113, pu 1.0188 0.9764 1.0963 1.0977
VG27, pu 1.0288 0.9809 1.0933 1.0977 VG116, pu 1.0331 1.0372 1.0985 1.0992
VG31, pu 1.0288 0.9500 1.0888 1.0977 T8, pu 1.0065 1.0659 0.9920 1.0000
VG32, pu 1.0248 0.9552 1.0895 1.0970 T32, pu 0.9617 0.9534 1.0450 1.0110
VG34, pu 1.0362 0.9910 1.0940 1.0887 T36, pu 0.9745 0.9328 0.9870 1.0050
VG36, pu 1.0407 1.0091 1.0940 1.0925 T51, pu 0.9404 1.0884 0.9790 0.9500
VG40, pu 1.0391 0.9505 1.0843 1.0955 T93, pu 1.0531 1.0579 0.9800 0.9550
VG42, pu 1.0507 0.9500 1.0873 1.0985 T95, pu 0.9539 0.9493 1.0040 0.9990
VG46, pu 1.0171 0.9814 1.0903 1.1000 T102, pu 0.9448 0.9975 0.9960 1.0730
VG49, pu 1.0492 1.0444 1.1000 1.1000 T107, pu 0.9502 0.9887 0.9600 0.9720
VG54, pu 1.0424 1.0379 1.0903 1.0992 T127, pu 0.9747 0.9801 0.9840 0.9800
VG55, pu 1.0339 0.9907 1.0903 1.0992 QL5, pu −0.0075 0.0000 −0.0050 −0.0020
VG56, pu 1.0393 1.0333 1.0888 1.0992 QC34, pu 0.0677 0.0746 0.0500 0.0160
VG59, pu 1.0585 1.0099 1.1000 1.1000 QL37, pu −0.2399 0.0000 −0.0050 0.000
VG61, pu 1.0569 1.0925 1.0993 1.0992 QC44, pu 0.0038 0.0604 0.0145 0.0890
VG62, pu 1.0491 1.0393 1.0948 1.0977 QC45, pu 0.0179 0.0333 0.0025 0.0270
VG65, pu 1.0437 0.9998 1.1000 1.0992 QC46, pu 0.0780 0.0651 0.0155 0.0470
VG66, pu 1.0716 1.0355 1.1000 1.0992 QC48, pu 0.0789 0.0447 0.0350 0.0040
VG69, pu 1.0535 1.1000 1.1000 1.1000 QC74, pu 0.0000 0.0972 0.0005 0.1070
VG70, pu 1.0111 1.0992 1.0880 1.0985 QC79, pu 0.0717 0.1425 0.0190 0.0220
VG72, pu 1.0389 1.0014 1.0955 1.1000 QC82, pu 0.0589 0.1749 0.0470 0.0650
VG73, pu 0.9932 1.0111 1.0955 1.0977 QC83, pu 0.0561 0.0428 0.0025 0.0020
VG74, pu 0.9912 1.0476 1.0775 1.0940 QC105, pu 0.0641 0.1204 0.0005 0.1860
VG76, pu 1.0335 1.0211 1.0768 1.0805 QC107, pu 0.0000 0.0226 0.0380 0.0135
VG77, pu 1.0191 1.0187 1.0895 1.09475 QC110, pu 0.0110 0.0294 0.0130 0.0495
VG80, pu 1.0247 1.0462 1.0993 1.1000 Ploss, pu 1.2153 1.2776 1.0633 1.0846
VG85, pu 1.0324 1.0491 1.1000 1.0992 TVD, pu 1.4651 2.2243 5.5245 5.7253
VG87, pu 1.0243 1.0426 1.0985 1.0970 V(x), pu 0 0 0 0
VG89, pu 1.0303 1.0955 1.1000 1.1000 P f (x), pu 0 0 0 0
VG90, pu 1.0072 1.0417 1.0910 1.0985
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Figure 8. Convergence curves for (a) Ff 1. and (b) Ff 2 considering four independent runs (IEEE 118
bus power system).

4.5. Results with the IEEE 300 Bus Power System

The IEEE 300 bus test system has one hundred ninety control variables. These consist of sixty-nine
generator buses, one hundred seven tap changing transformers, eight capacitor devices and six reactor
devices. The total system demand is 23525.85 MW [36]. So far, no results for the ORPD problem
applied to this system have been reported in the specialized literature. The best control variable
settings obtained with the SGA are presented in Table 8.

Power losses are given with a base of 100 MVA and voltage limits on generators are set to 1.1 pu.
In this case, a reduction of 9.9% in power losses is obtained when using Ff 2. Also, note that the
values of P f (x) and V(x) are approximately zero, which means that the solution found meets the
operational constraints. The solution reported in Table 8 can be used for further comparisons in future
research. Figure 9 depicts the convergence of the algorithm for both objective functions considering
four independent runs. Note that as with the previous systems, the SGA reaches optimality with fewer
generations when Ff 2 is implemented.
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Figure 9. Convergence curves for (a) Ff 1 and (b) Ff 2 considering four independent runs (IEEE 300 bus
power system).
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Table 8. Best control variable settings for power loss minimization of IEEE 300 bus test system.

Control
Variable Initial SGA (Ff1) SGA (Ff2) Control

Variable Initial SGA (Ff1) SGA (Ff2) Control
Variable Initial SGA (Ff1) SGA (Ff2)

VG8, pu 1.0153 1.0887 1.0962 VG9051, pu 1.0000 1.0992 1.0985 T366, pu 0.9565 1.0520 1.0080
VG10, pu 1.0205 1.0962 1.0992 VG9053, pu 1.0000 1.0985 1.0940 T367, pu 1.0000 0.9270 0.9160
VG20, pu 1.0010 1.0910 1.0925 VG9054, pu 1.0000 1.0955 1.1000 T368, pu 1.050 0.9860 1.0150
VG63, pu 0.9583 1.1000 1.0970 VG9055, pu 1.0000 1.0977 1.0977 T369, pu 1.0730 1.0430 1.0010
VG76, pu 0.9632 1.0775 1.0587 T1, pu 1.0082 1.0480 0.9690 T370, pu 1.0500 0.9260 0.9960
VG84, pu 1.0250 1.0962 1.0985 T3, pu 0.9668 0.9310 1.0480 T371, pu 1.0506 1.0250 0.9230
VG91, pu 1.0520 1.1000 1.0970 T4, pu 0.9796 1.0380 1.0520 T372, pu 0.9750 0.9240 1.0260
VG92, pu 1.0520 1.0992 1.0992 T5, pu 1.0435 1.0050 1.0190 T373, pu 0.9800 0.9480 0.9720
VG98, pu 1.0000 1.0985 1.0985 T6, pu 0.9391 0.9370 0.9970 T374, pu 0.9560 0.9970 0.9910
VG108, pu 0.9900 1.0842 1.0940 T7, pu 1.0435 1.0130 0.9970 T375, pu 1.0500 1.0080 1.0080
VG119, pu 1.0435 1.0992 1.1000 T8, pu 1.0435 1.0140 1.0460 T376, pu 1.0300 0.9390 1.0520
VG124, pu 1.0233 1.0992 1.0985 T9, pu 1.0435 0.9610 1.0550 T377, pu 1.0300 1.0230 1.0850
VG125, pu 1.0103 1.0692 1.0992 T17, pu 1.0000 0.9790 0.9780 T378, pu 0.9850 1.0200 0.9920
VG138, pu 1.0550 1.1000 1.0940 T18, pu 1.0000 1.0080 1.0240 T379, pu 1.0000 1.0330 1.0190
VG141, pu 1.0510 1.0985 1.0992 T19, pu 1.0000 1.0850 1.0790 T380, pu 1.0300 0,9850 0.9360
VG143, pu 1.0435 1.1000 1.0977 T20, pu 1.0000 1.0620 1.0320 T381, pu 1.0100 0,9260 1.0110
VG146, pu 1.0528 1.0962 1.0985 T21, pu 1.0000 0.9750 0.9780 T382, pu 1.0500 1.0560 1.0800
VG147, pu 1.0528 1.0992 1.0970 T22, pu 1.0000 1.0810 1.0760 T383, pu 1.0300 1.0150 0.9920
VG149, pu 1.0735 1.0895 1.0970 T24, pu 1.0000 0.9980 1.0620 T384, pu 1.0000 1.0340 1.0380
VG152, pu 1.0535 1.0137 1.0962 T25, pu 1.0000 0.9560 1.0690 T385, pu 0.9700 1.0010 0.9990
VG153, pu 1.0435 1.0962 1.0970 T26, pu 1.0000 0.9210 1.0110 T386, pu 1.0000 1.0300 1.0480
VG156, pu 0.9630 1.0977 1.0962 T29, pu 1.0000 0.9960 1.0040 T387, pu 1.0200 0.9590 0.9940
VG170, pu 0.9290 1.0955 1.0970 T30, pu 1.0000 0.9790 0.9790 T388, pu 1.0700 0.9750 1.0470
VG171, pu 0.9829 1.1000 1.1000 T31, pu 1.0000 0.9910 0.9140 T389, pu 1.0200 1.0000 0.9890
VG176, pu 1.0522 1.1000 1.0992 T32, pu 1.0000 0.9710 1.0890 T390, pu 1.0000 1,0460 1.0370
VG177, pu 1.0077 1.0985 1.0992 T33, pu 1.0000 1.0950 1.0830 T391, pu 1.0223 1.0080 1.0250
VG185, pu 1.0522 1.0992 1.0977 T34, pu 1.0000 0.9380 1.0130 T392, pu 0.9284 0.9800 0.9320
VG186, pu 1.0650 1.0992 1.0955 T35, pu 1.0000 1.0700 1.0880 T393, pu 1.0000 0.9970 0.9890
VG187, pu 1.0650 1.0985 1.0940 T36, pu 1.0000 1.0290 1.0710 T394, pu 1.0000 0.9080 1.0890
VG190, pu 1.0551 1.0857 1.0842 T38, pu 0.9583 1.0050 0.9980 T395, pu 1.0000 1.0530 0.9390
VG191, pu 1.0435 1.1000 1.0970 T293, pu 1.0000 0.9760 0.9830 T396, pu 0.95 0.9320 1.0580
VG198, pu 1.0150 1.0992 1.0955 T306, pu 1.0000 0.9620 1.0960 T397, pu 1.0000 1.0130 1.0740
VG213, pu 1.0100 1.0992 1.0992 T311, pu 1.0000 1.0220 1.0270 T398, pu 1.0000 1.0000 1.0190
VG220, pu 1.0080 1.0940 1.0947 T322, pu 1.0000 1.0830 1.0120 T399, pu 1.0000 1.0270 0.9540
VG221, pu 1.0000 1.0970 1.0992 T335, pu 0.9470 1.0460 1.0240 T400, pu 1.0000 1.0110 0.9990
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Table 8. Cont.

Control
Variable Initial SGA (Ff1) SGA (Ff2) Control

Variable Initial SGA (Ff1) SGA (Ff2) Control
Variable Initial SGA (Ff1) SGA (Ff2)

VG222, pu 1.0500 1.0947 1.0962 T336, pu 0.9560 0.9400 0.9750 T401, pu 1.0000 1.0200 0.9930
VG227, pu 1.0000 1.0992 1.1000 T337, pu 0.9710 0.9970 0.9550 T402, pu 1.0000 1.0020 1.0240
VG230, pu 1.0400 1.0985 1.0662 T338, pu 0.9480 1.0150 1.0300 T403, pu 1.0000 0.9940 1.0130
VG233, pu 1.0000 1.0947 1.0962 T339, pu 0.9590 1.0120 0.9620 T404, pu 1.0000 0.9770 0.9840
VG236, pu 1.0165 1.0992 1.0985 T340, pu 1.0460 1.0840 1.0400 T405, pu 1.0000 0.9570 0.9880
VG238, pu 1.0100 1.0985 1.0970 T341, pu 0.9850 1.0280 1.064 T406, pu 0.9420 0,9900 1.0150
VG239, pu 1.0000 1.1000 1.0992 T342, pu 0.9561 0.9790 0.9740 T407, pu 0.9650 0.9980 1.0660
VG241, pu 1.0500 1.0992 1.0970 T343, pu 0.9710 0.9500 0.9210 T408, pu 0.9500 1,0420 1.0590
VG242, pu 0.993 1.0962 1.0917 T344, pu 0.9520 0.9960 1.0370 T409, pu 0.9420 0.9740 0.9030
VG243, pu 1.0100 1.0985 1.0985 T345, pu 0.9430 1.0620 0.9400 T410, pu 0.9420 0.9120 1.0650
VG7001, pu 1.0507 1.0985 1.0962 T346, pu 1.0100 0.9410 1.0530 T411, pu 0.95650 1.0350 1.0090
VG7002, pu 1.0507 1.0992 1.1000 T347, pu 1.0080 0.9770 1.0060 QC96, pu 3.2500 1.8000 0.8000
VG7003, pu 1.0323 0.9897 1.0940 T348, pu 1.0000 0.9870 0.9850 QC99, pu 0.5500 0.0200 0.4800
VG7011, pu 1.0145 1.1000 1.0962 T349, pu 0.9750 0.9550 1.0230 QC133, pu 0.3450 0.0000 0.1250
VG7012, pu 1.0507 1.0955 1.0992 T350, pu 1.0170 0.9970 0.9810 QL143, pu −2.120 −0.020 −1.740
VG7017, pu 1.0507 1.0985 1.0992 T351, pu 1.0000 1.0450 1.0820 QL145, pu −1.030 0.0000 −0.060
VG7023, pu 1.0507 1.1000 1.0977 T352, pu 1.0000 1.0100 0.9690 QC152, pu 0.5300 0.0900 0.1950
VG7024, pu 1.0290 1.0550 1.0977 T353, pu 1.0000 1.0040 0.9490 QC158, pu 0.4500 0.1450 0.2500
VG7039, pu 1.0500 1.0977 1.0977 T354, pu 1.0000 1.0130 0.9480 QL169, pu −1.5000 −0.060 −0.080
VG7044, pu 1.0145 1.0977 1.0977 T355, pu 1.0150 1.0000 1.0960 QL210, pu −3.000 −0.350 −0.100
VG7049, pu 1.0507 1.0925 1.0977 T356, pu 0.9670 0.9810 1.0580 QL217, pu −1.500 −0.080 −0.040
VG7055, pu 0.9967 1.0985 1.0977 T357, pu 1.0100 0.9140 0.9940 QL219, pu −1.400 −0.260 −0.100
VG7057, pu 1.0212 1.0992 1.0985 T358, pu 1.0500 0.9540 1.0060 QC227, pu 0.4560 0.1450 0.1250
VG7061, pu 1.0145 1.1000 1.0962 T359, pu 1.0000 1.0820 1.0250 QC268, pu 0.0240 0.0120 0.0500
VG7062, pu 1.0017 1.0947 1.0970 T360, pu 1.0522 1.0140 1.0970 QC283, pu 0.0172 0.0075 0.0475
VG7071, pu 0.9893 1.0992 1.1000 T361, pu 1.0522 1.0060 1.0290 Ploss, pu 4.0831 3.5710 3.6798
VG7130, pu 1.0507 1.1000 1.0985 T362, pu 1.0500 1.0480 1.0150 TVD, pu 5.4286 15.744 15.315
VG7139, pu 1.0507 1.0992 1.0992 T363, pu 0.9750 0.9910 1.0610 V(x), pu 0 4.77 × 10−5 0
VG7166,pu 1.0145 1.0940 1.0962 T364, pu 1.0000 0.9180 0.9710 P f (x), pu 0 0 0
VG9002, pu 0.9945 1.0962 1.0962 T365, pu 1.0350 1.0510 1.0040
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4.6. Comparison of Fitness Functions Performance

Table 9 presents a statistical description of the results obtained with the SGA for all test cases over
one hundred runs. Note that using Ff 1 yields better results than using Ff 2. The maximum difference
of both fitness functions regarding the reduction on power losses is about 2.66%; but significantly
different on computation time. Faster results are obtained when using Ff 2. For the IEEE 300 bus test
system the reduction on computation time is about 21.25%; however, for the IEEE 57 bus test system
this reduction is about 90.37%. This advantage is due to the fact that using Ff 2 allows a straightforward
verification of both feasibility and optimality. Consequently, the SGA can stop the process when the
optimal solution is found even if the maximum number of iterations has not been reached.

The standard deviations results using Ff 2 are smaller than those obtained using Ff 1; this means
that the reproducibility of results is higher when the SGA uses Ff 2. On the other hand, success rate is
an indicator of the percentage of runs in which a feasible operational point is obtained before the SGA
reaches the maximum number of generations (number of times the algorithm obtains feasible optimal
solutions). For example, the last column in Table 9 indicates that in 97 of the 100 runs Ff 2 reaches its
optimal value before completing the maximum of generations.

Table 9. Statistical results for power loss minimization for different IEEE power systems based on 100
trial runs.

IEEE Cases 30 57 118 300

Fitness function Ff 1 Ff 2 Ff 1 Ff 2 Ff 1 Ff 2 Ff 1 Ff 2
Best solution,

MW 4.5399 4.5692 23.8365 24.3251 106.3394 108.4626 357.1041 367.9837

V(x), pu 0 0 0 0 0 0 4.77 × 10−5 0
P f (x), pu 0 0 9.9 × 10−7 0 0 0 0 0

Worst solution,
MW 4.5557 4.5700 24.1669 24.3371 111.2652 108.8013 405.4689 373.8592

Mean, MW 4.5448 4.5698 23.9581 24.3345 107.4481 108.5458 371.7911 368.5625
Standard
deviation 0.0040 1.55 × 10−4 0.0706 0.0025 1.0389 0.0311 8.4040 0.6314

Success rate, % - 100 - 100 - 100 - 97
Average CPU

time, s. 27.1713 13.7408 34.4150 16.4009 40.3389 17.8228 77.4805 61.0231

Figure 10 presents a comparison of system power losses (base case and optimized case) for the
test systems under study. Note that for both fitness functions a similar reduction of power losses is
achieved, being slightly higher when the SGA is run with Ff 1. These power losses are computed as
a percentage of the current active power generation in each test power system.
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5. Conclusions

This paper presented an assessment of two different fitness functions applied to the ORPD
within a SGA framework. Such fitness functions represent the classic approach of penalization by
adding terms to the fitness function, and a novel approach that consists of the multiplication of
different sub-functions representing operative system limits and a goal on power system losses.
Although the first approach results in slightly better solutions, it was found that the latter approach
not only guarantees the enforcement of network limits but also contributes to a significant reduction
of computing time. The main advantage of the proposed fitness function relays on the fact that the
optimal solution is known in advance, which was used as stopping criteria for the GA. This fitness
function can also be adapted to account for other type of system constraints; such as stability criteria
or specific voltage or power flow limits in a given bus or branch. Several tests were performed on the
IEEE 30, 57, 118 and 300 bus power systems showing the effectiveness and robustness of the proposed
approach. Also, comparisons with different metaheuristic techniques were performed showing the
superiority of the proposed approach in terms of quality of solutions.
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