


Pulse-level characterization of qubits on quantum devices

David Andrés Quiroga Salamanca

Tesis o trabajo de investigación presentada(o) como requisito parcial para optar al título de:

Ingeniero de sistemas

Asesores (a):

Fredy Alexander Rivera Vélez PhD

Raphael C. Pooser PhD

Línea de Investigación:

Computación Cuántica

Grupo de Investigación:

Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)

Universidad de Antioquia

Facultad de Ingeniería, Departamento de Ingeniería de Sistemas

Medellín, Colombia

2021



© Copyright 2021 by David Andres Quiroga

Some rights reserved.

i



DEDICATION

To my mom, my best friend and those who have believed in me.

ii



ACKNOWLEDGMENTS

This work was completed with the collaboration of professors Fredy A. Rivera

Velez and Javier F. Botia Valderrama from Universidad de Antioquia and Oak

Ridge National Laboratory staff scientists Prasanna Date in the Beyond Moore

group and Raphael C. Pooser in the Quantum Information Sciences group.

iii



ABSTRACT OF THE DISSERTATION

PULSE-LEVEL CHARACTERIZATION OF QUBITS ON QUANTUM

DEVICES

by

David Andres Quiroga

Universidad de Antioquia, 2021

Medelĺın, Antioquia

Internal advisor Fredy Rivera, Universidad de Antioquia

External advisor Raphael C. Pooser, Oak Ridge National Laboratory

Recent research has tackled the problem of mitigating noise present in quantum com-

puters in the Noisy Intermediate-Scale Quantum (NISQ) era to enable precise com-

putations and to benefit from the intrinsic properties of quantum mechanics [Pre18].

For this matter, an important task is the characterization of qubits available in

quantum devices so as to provide insights on how to reduce noise on the final out-

put of a quantum circuit. Characterization comprises analysis of noise sources and

this information can be used to reduce noise with methods such as Cycle Bench-

marking [EWP+19], Quantum Error Mitigation [SEFT20], Quantum Error Correc-

tion [Sho95] and others [KLR+08] [TBG17]. Here, we study optimization of pulses

through Quantum Optimal Control (QOC) to obtain higher gate fidelity [BCR10].

We will explore an algorithm that performs calibration on specific quantum gates by

implementing optimized pulse schedules to subsequently use the algorithm for analy-

sis of noise sources. Using calibrated gates as input, several benchmarking protocols,

including pulse noise extrapolation, leakage analysis from quantum optimal control,

and machine learning based classification of qubit readout, will be tested to extract

precise information on how noise influences the analyzed qubits. We will explain and

discuss different techniques for obtaining properties of qubits and quantum comput-

iv



ers. We will implement state discrimination with a Machine Learning (ML) focus

to analyze readout errors caused by factors such as cross-talk and leakage into higher

quantum states. We will perform noise fitting of optimized pulses and evaluate the

effectiveness of important quantum algorithms at the pulse level.

Investigaciones recientes han abarcado el problema de mitigar ruido presente en

computadores cuánticos en la era NISQ para permitir computaciones precisas y para

encontrar ventajas en las propiedades intŕınsecas de la mecánica cuántica [Pre18].

Para tal efecto, una tarea importante es la caracterización de qubits disponibles

en computadores cuánticos para proveer información sobre cómo reducir ruido en

la salida final de un circuito cuántico. La caracterización comprende el análisis de

fuentes de ruido y esta información puede ser usada para reducir ruido con métodos

como Cycle Benchmarking [EWP+19], Quantum Error Mitigation [SEFT20], Quan-

tum Error Correction [Sho95] y otros [KLR+08] [TBG17]. Aqúı estudiamos opti-

mización de pulsos a través de QOC para obtener fidelidades de compuerta más

altas [BCR10]. Exploraremos un algoritmo que realiza calibración a compuertas

cuánticas espećıficas implementando pulsos optimizados para consecuentemente uti-

lizar el algoritmo para análisis de fuentes de ruido. Usando compuertas calibradas

como entrada, varios protocolos de benchmarking incluyendo extrapolación de ruido,

análisis de fuga con control cuántico óptimo y clasificación de datos de salida de

qubits basada en machine learning serán probados para extraer información precisa

de cómo el ruido influye los qubits analizados. Explicaremos y discutiremos difer-

entes técnicas para obtener propiedades de qubits y de computadores cuánticos.

Implementaremos discriminación de estados con un enfoque en ML para alanizar

errores de lectura causados por factores como charla cruzada y fuga hacia esta-

dos cuánticos más altos. Realizaremos ajuste del ruido de pulsos optimizados para

evaluar la efectividad de algoritmos cuánticos importantes a nivel de pulsos.
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CHAPTER 1

INTRODUCTION

Quantum devices are known to be susceptible to noise caused by the environ-

ment they are placed in, as qubits tend to provide accurate calculations only when

certain conditions on temperature, external variables and computation time are

met [RK21]. Such limitations have served as a starting point to design hardware

that enables fault-tolerant qubit manipulation up to a certain degree, as well as to

design circuits with a small amount of gates to diminish the time required for a com-

plete unitary evolution. Due to this, ideas such as creating superconducting chips

for quantum computers [KSB+20] and ways to shorten the amount of required basis

gates to obtain a specific operator have risen and are being applied with increas-

ingly better results, as can be seen with transpiling [ZPW19] [WSM20] and a clever

selection of basis gates [AMMR13]. Many other high-level approaches that attempt

to reduce the effects caused by external conditions on qubits are also advancing at

an accelerated pace [NRK+18b] [BIS+18] as universal quantum computers provided

by companies like IBM, Microsoft, and Rigetti are accessible for public use with a

great amount of experiments being performed on a daily basis, enabling researchers

to advance the state of the art.

For the purpose of improving the analysis and possibilities for achieving fault-

tolerant quantum computations, characterizing noise acting on qubits becomes a

priority as each individual noise source is subject to various conditions and inter-

acts with the system’s subprocesses in distinct ways. Subprocesses that interact

both with a classical and quantum computer like pulse application and readout

tend to exhibit errors due to interaction of the quantum system – both the qubits

and their control signals – with the environment, and their sources can range from

systematic error to stochastic error to leakage into higher quantum energy states.
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Other types of noise sources interact with quantum computers more naturally, as

qubits experience coherence errors and decoherence which ultimately steer them to-

wards the ground state, as is represented with T1 and T2 relaxation times. While

metrics are offered to help explain certain errors on quantum gates [RK21], some

errors require a deeper analysis to be fully described and therefore benchmarks are

used to experimentally identify the variables that explain these types of noise. Met-

rics used in benchmarks provide information on specific types of errors occurring on

a qubit and on the quantum computer as is the case of single and multi-qubit error

rates [KLR+08], assignment fidelity [AKE+20] and addressability [GCM+12]. In

this way, benchmarks seek to analyze and describe errors to determine how ”good”

a quantum computer is compared to another. IBMQ offers a brief summary of met-

rics available for both qubits and quantum computers, and provides reliable error

rates obtained through benchmarks. Quantum computers are expected to improve

over the years in the amount of available qubits, error rates and connectivity,

Gate-level benchmarks like cycle benchmarking [EWP+19], randomized bench-

marking [KLR+08], and tomographic mappings [NC11] have been used to success-

fully characterize a wide range of quantum computers [WBD+19] [MNW+17]. De-

spite these benchmarks offering useful information, they act without giving infor-

mation on how pulse shapes impact the fidelity of their default gates, potentially

resulting in pessimistic results if the pulses are not calibrated at the time of per-

forming the benchmark. Benchmarks acting at the pulse level offer insights into

information that is otherwise unavailable for benchmarks applicable only to gates,

as more flexibility exists for driving a qubit into quantum states and different output

levels can be used. Here, pulse optimization can be performed to prepare quantum

gates that allow the analysis of error effects resulting from different pulse shapes,

driving times and phases. Specific benchmarks we will study and use in this project
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are the Benewop benchmark (pulse noise extrapolation) [GPD20a], the leakage anal-

ysis performed in [WER+20] using QOC, and readout classification using ML tech-

niques [AKE+20] [MGCC15].
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CHAPTER 2

OBJECTIVES

2.1 General objective

Apply benchmarks at the pulse level to obtain information about the existing noise

on qubits of a quantum device through statistical methods, ML and QOC, charac-

terizing those qubits.

2.2 Specific objectives

• Perform an analysis of the properties of an IBM quantum computer such as

T1 (spin-lattice) and T2 (spin-spin) relaxation times and error rates, and how

they impact the presence of noise on qubits.

• Utilize Machine Learning techniques to study the impact of low-level readout

errors on quantum devices.

• Implement state-of-the-art benchmarking protocols to characterize noise in a

quantum computer.

• Measure the effectiveness of default and random pulses on different qubits of

an IBM quantum computer and compare their fidelity with optimized pulses

and random pulses.

• Provide conclusions that help explain the results obtained by each approach

to noise characterization.
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CHAPTER 3

METHODOLOGICAL FRAMEWORK

3.1 Noise and errors

Quantum systems are essentially open systems, where the environment is always

interacting with the qubits and quantum gates on quantum devices, even if in a

small degree. This is due to the physical settings a quantum device may function

on, as even though each setting may be different, they all require specific conditions

to function properly. Be it temperature, external magnetic forces or inaccurate pulse

shaping, many factors lead to the necessity of considering errors arising from noise

in the system. The gate model of quantum computing is a clear example of a model

which works best by considering quantum systems as closed systems, since the final

result of an ideal quantum evolution is determined by noiseless gates being applied

to qubits. That is, given a noiseless unitary quantum gate U to be applied to a state

|ψ0〉, the final quantum state is described by the equation

|ψfinal〉 = U |ψo〉 .

Similarly, when working with density matrices, a state |ψ0〉 represented as ρ0

evolves by

ρfinal = Uρ0U
†.

Despite the gate model not inherently describing interaction with the environ-

ment, some formulations found in [NC11] and notes by Zlatko Minev utilize the gate

model in conjunction with considerations of the way the environment may interact

with a quantum system. But first, it is helpful to explain the way classical noise

may act on a system through a Markovian process.
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Take a classical system with one bit of information initially equivalent to 0. Noise

and external factors may eventually flip the value of the bit after a set amount of

time with a certain probability p, or leave it unchanged with probability 1−p. Given

a vector ~p = [p0, p1] being a vector of probabilities corresponding to the probability a

bit is initially 0 (p0) and 1 (p1), and the probability a bit is flipped or left unchanged

represented by another vector ~q = [q0, q1] with q0 being the probability a bit is 0

and q1 the probability a bit is 1 after a set time t, the process of bit values changing

can be expressed as q0
q1

 =

1− p p

p 1− p


p0
p1

 .
This corresponds to a representation of classical noise in stochastic processes. A

contracted version of the equation is

~q = E~p

where E corresponds to the transition matrix from probabilities ~p to ~q. The

notation proves to be very convenient when dealing with quantum states since they

are simply a normalized vector of numbers that represent the probability of a qubit

being in the |0〉 state, |1〉 state or a superposition of both, equivalent to ~q and ~p

with the transition matrix holding great resemblance to a quantum gate. In fact,

noise acting on a qubit can be represented as a quantum gate and the transition

matrix E can be treated as a noisy I gate for the scenario previously described

when acting on a state |p〉. Due to this, a bit-flip error in classical computation

described by a Markovian process can be translated to quantum computation in a

rather seemingless way.

Since noise can affect a quantum system in many different ways, some authors

include noise from the environment into a quantum circuit as if it were an additional

6



Figure 3.1: A representation of an open quantum system with the principal system
ρ and the environment ρenv [NC11].

qubit or system. This way of expressing a noisy quantum system is described with

the equation

E(p) = trenv[U(p⊗ penv)U †]].

where penv is the noisy quantum state acting as a subsystem of the circuit, U is a

unitary gate being applied to the quantum states and E represents the measurement

of the final noisy state. This representation can be visualized in Figure 3.1.

The rest of this section will explain the effects of different types of errors stem-

ming from noise present in quantum systems that do not currently allow perfect

applications using quantum devices. These errors can be classified as coherent,

decoherent and incoherent [PBE+03], or broadly classified as only coherent and

incoherent [FWB+16].

3.1.1 Coherent errors

Considering quantum gates being rotations on a Bloch sphere, errors that arise

from over-rotations by an angle ε on a qubit are determined by coherent errors, and

they are attributable to systematic control noise, cross-talk, global external fields

7



and unwanted qubit-qubit interactions [GD17] [KLR+20]. Between coherent and

incoherent erors, noise in a realistic quantum device will often be coherent and the

different between both errors could be significant [BEKP18] as studies have shown

[SWS15] [KLDF16] [WGHF15] [PGH+14] [MPGC13] coherent errors leading to large

differences between average-case and worst case fidelity measures. Based on what

was stated previously with noisy quantum gates being applicable to the gate model

of quantum computation, it is of interest to also detail the way a noisy quantum gate

can be used in mathematical expressions. Let Ũ(φ) be a noisy quantum gate which

intends to apply a noiseless U(φ) gate to a qubit with a desired rotation of φ. Take

U as equivalent to a rotation gate Rx around the X axis, for simplicity. The effects

of noise cause the Ũ(φ) gate to miss the desired angle by ε and therefore introduce

an extra operator U(ε) to explain the over-rotation of the qubit. The general effect

of the noisy gate is the following

Ũ(φ) = U(ε)U(φ).

It can be shown that U(ε)U(φ) is equivalent to U(φ + ε) and therefore Ũ(φ) =

U(φ+ ε)

The effects of coherent errors are most visible when applying a specific quantum

gate many times in succession, as the target expectation value tends to decrease

with respect to its ideal value in a way that quickly leads it to zero. That is, while

a single quantum gate Ũ(φ) applied on a state |ψ〉 gives

|ψtarget〉 = U(φ+ ε) |ψ〉

and an over-rotation of ε, a repetition of d noisy Ũ(φ) gates resolves to

|ψtarget〉 = U(d(φ+ ε)) |ψ〉 = U(d ∗ φ+ d ∗ ε) |ψ〉 = U(d ∗ ε)U(d ∗ φ) |ψ〉

and therefore an over-rotation of d ∗ ε. Actually, if we consider the expectation

value Z of a measurement applied to the resulting quantum circuit, we can find the

8



Figure 3.2: The decomposition of a noisy gate into an ideal gate and a gate repre-
senting coherent noise (retrieved from Zlatko’s lectures).

accumulation of errors resulting from the noisy gates. In the case presented, the

ideal and noisy expectation values are, respectively

〈ψtarget|Z|ψtarget〉 = cos(dπ),

〈ψ̃target|Z|ψ̃target〉 = cos(dπ + dε).

Here, the difference in expectation values for d gate applications results in

〈ψ̃target|Z|ψ̃target〉 − 〈ψtarget|Z|ψtarget〉 = cos(dπ + dε)− cos(dπ)

= cos(dπ)cos(dε)− sin(dπ)sin(dε)− (−1)d

= (−1)d(cos(dε)− 1) ≈ −1
2
(−1)dd2ε2 +O(ε3)

and it is proved that coherent error results in a quadratic error. This unwanted

increase in rotation makes coherent errors an important source of noise that limit the

amount of desirable quantum gates to be applied on a quantum circuit before results

become useless. Due to this, pulse shaping, calibration and quantum error correction

of coherent errors in general are tasks of great interest in the internal processes of

quantum devices for realizing scalable fault-tolerant quantum computing. [GD17]
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Crosstalk

Crosstalk is a combination of unwanted interactions between coupled qubits on a

quantum chip, as no single noise model captures all aspects of crosstalk [DGL+20].

The importance of this noise source is attributed to it being the most dominant

source of gate errors [MSS+19] [MZHH19], demonstrated on architectures that in-

clude trapped ion and superconducting systems. [ACLS+17] [KKY+19] [NRK+18a]

[OLA+08] Additionally, coherence errors caused by crosstalk can accumulate as an

algorithm is run on a circuit [BQP+19], with an increasing impact in multi-qubit

calculations. Crosstalk is generated when qubits resonate with each other in a way

that given a pair of neighboring qubits, the quantum state stored in one qubit affects

the quantum state stored in its neighbor qubit. This may be caused by frequency

crowding (qubits being driven at frequencies too close together) or a high interac-

tion strength between the qubits, leading to residual coupling [DGL+20]. Nonethe-

less, studies are also being performed for finding crosstalk between sets of qubits.

Correlations between in-phase and quadrature signals of different pulse settings on

neighboring qubits also hint towards crosstalk between them [AKE+20]. These def-

initions share the same practical effect as errors named addressing errors, and both

terms are used interchangeably in some sources. [HHR+05] [HST+20] [NMM+14]

Leakage

Leakage into higher energy states is a common problem in the control of quantum

systems, particularly in the case of the transmon architecture [KYG+07], where it

can be long-lived and grow to significant levels [CKQ+16]. Leakage can be described

as the interaction with a second excited quantum state |2〉 when the energy of

a quantum system exceeds the boundary set for both ground (|0〉) and excited

(|1〉) energy levels. When leakage is present on a qubit, the quantum state can be
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expressed as |ψ〉 = α |0〉+β |1〉+γ |2〉 with γ 6= 0 [DGL+20]. Leakage can be caused

by imprecision in quantum control, crosstalk between qubits and poorly configured

quantum systems. Contrary to the assumption that a quantum device is set on a two-

level qubit subspace, quantum systems such as quantum dots and superconducting

qubits have multiple levels [CKQ+16] [GFMG13] [NAB+09] [YN05]. For example,

IBMQ quantum device Hamiltonians can be seen to have a three-level version of

qubits or ”qutrits”, and accessing the third level can be done experimentally by

tuning the qubit frequencies and calibrating amplitudes to go from the |0〉 state

to the |1〉 state, and then repeating a similar process to find the |2〉 state [Tea21a].

Using IBMQ quantum devices and OpenPulse [AKE+20], level one kerneled IQ data

can show evidence of a |2〉 state as a third group of data points as shown in Figure

3.3. Leakage errors have been greatly studied, and consequently reduced in quantum

computers on calibrated pulses by using Derivative Reduction by Adiabatic Gate

(DRAG) pulse shaping [MW13]. Despite calibration being a standard procedure

for suppressing these errors, Quantum Error Correction (QEC) still faces obstacles

due to small leakage errors appearing below the threshold for efficiently employing

topological QEC [Fow13]. This can be explained by qubits in a leakage state having

a randomizing effect on interacting qubits.

3.1.2 Incoherent errors

As with coherent errors, incoherent errors are an important limitation in the preci-

sion of coherent control in quantum information processing [BEH+04]. Incoherent

errors are caused by static or slowly varying fluctuations in the system’s Hamil-

tonian [PBE+03] which, while not being described by a unitary operator, can be

corrected by applying unitary operations that refocus them. Incoherent errors can
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Figure 3.3: Resulting IQ data points from excecuting a miscalibrated pulse on
IBMQ’s Armonk device, showing the first two quantum states |0〉 and |1〉 at Q ≈ 0
with leakage into a possible |2〉 state at Q ≈ −0.5.
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also be of many forms such as amplitude damping, phase damping, bit-flip and

phase-flip errors [CSA+21] [SZL+19] [ZMM17], and are generally notable when an-

alyzing the expectation values of measured quantum states.

Similar to coherent errors, incoherent errors may also depend on a parameter p

that signifies error, this time being the difference in expectation values from a +1

on an operator O when in the presence of noise. In the case of bit-flip errors, p

can represent the probability of a |1〉 state being flipped to become the |0〉 state,

while 1−p represents the probability of the state being left unchanged. The density

operator of this error representation is the following:

ρ =

p 0

0 1− p


Here, measurement on each Pauli operator is described by

〈X〉 = Tr(X̂ρ) = 0

〈Y 〉 = Tr(Ŷ ρ) = 0

〈Z〉 = Tr(Ẑρ) = Tr


1 0

0 −1


p 0

0 1− p


 = Tr

p 0

0 p− 1

 = 2p− 1.

That way, the sum of expectation values of the Pauli operators 〈X〉2 + 〈Y 〉2 +

〈Z〉2 = (2p − 1)2 in stead of the ideal 12. The application of a gate G d times

would therefore result in an expectation value 〈Z〉 = (2p− 1)d ≈ 1− 2dp where the

incoherent error results as linear in p. Expectation values represent measurements

of a Bloch sphere on different bases, with the main basis gates of interest being

P ∈ {I,X, Y, Z}. The Tr or trace operation used in this demonstration is briefly

explained in section 3.2.2.
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3.1.3 SPAM errors

State preparation and measurement (SPAM) errors are a particular kind of errors

that do not relate as much to coherent errors and incoherent errors as they do to

the internal processes underwent at the beginning and the end of a circuit. They

mostly differ in the fact that SPAM errors do not accumulate with circuit depth

[lid13]. Due to this, surface QEC is significantly less sensitive to measurement

errors than to gate errors [GS20]. Much can also be said about the disadvantages

of possessing SPAM errors, as fault-tolerant quantum computation is limited by

these errors. Particularly, because benchmarking protocols like Quantum Process

Tomography are sensitive to SPAM errors [GCM+12]. The same also holds true

the shorter the circuit is, as the proportion of impact gate errors tend to have on

circuits start to reduce when compared to SPAM errors. In a way, SPAM errors

provide a bound on gate fidelity measured through benchmarks that rely heavily on

individual measurements, creating the need to apply partial benchmarks that use

less measurements to try to ignore these errors. For example, experimentally while

Quantum Process Tomography may provide errors of 5% for calibrated π pulses

on IBM machines, Randomized Benchmarking (a benchmark that is insensitive to

SPAM errors) can show errors less than 0.1%. Two specific procedures are performed

on measurement processes to allow corrected readout results:

1. Using good discriminators on IQ pulse data to improve assignment fidelity

since out of the numerous possibilities for models, not all are simple and effective

enough to use as discriminators on a quantum device while maintaining high fidelity.

2. ”Let the set of n physical qubits we wish to correct be called the register (the

register does not have to include every qubit in the processor). The T matrix SPAM

correction technique can be described as follows: Let x, x′ ∈ {0, 1}n be classical
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states of the n qubits in the register, and define elements of a 2n × 2n matrix T by

T (x|x′) = T (x1...xn|x′1...x′n) = Tr[Ex1...xnρx′1...x′n ].

Here Ex is the multiqubit POVM element characterizing the nonideal imple-

mentation of the projector |x〉 〈x|, and ρx′ is the density matrix produced after

attempting to prepare classical state |x′〉 〈x′|. Each column x′ of T is the raw proba-

bility distribution prob(x), measured immediately after preparing x′. In the absence

of any SPAM error,

T (x|x′) = δxx′ ,

the 2n × 2n identity. The complete implementation of the technique is to measure

T and classically apply T−1 to subsequently measured probability distributions”

[GS20].

To verify SPAM errors appearing in a quantum computation, they can be cal-

culated by the standard measure of single-qubit SPAM error [MGCC15]

ε =
T (0|1) + T (1|0)

2

or by the total SPAM error [HP19]

||Tmeas − I||.

3.2 Metrics

3.2.1 T1 and T2 relaxation times

The T1 time of a qubit is the time it takes for a qubit to decay from the excited

state to the ground state [Tea20]. This time is called the relaxation time or spin

relaxation time and it is deeply related to incoherent errors as these drive the qubit
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towards an expectation value of 0 and is impacted more by the time a circuit is being

driven than by the amount of gates being applied to the circuit. It is measured by

using Inversion Recovery, a common process in other fields as well [BFdS20], where

the signal energy of an electromagnetic pulse being applied to a qubit is fitted to an

exponential decay by setting different delay times from the moment the pulse was

applied. The function used for fitting results to obtain the T1 time is

f : Aexp
−t
T1 + C

as can be seen in Figure 3.4. T1 times are indispensable for the solution of chemical

problems [BHP80], and many investigations depend on a high accuracy of T1 [SZ77].

Similarly, the T2 time is the time required for dephasing of a qubit to ocurr,

and can be called coherence time or phase relaxation time [HDSS02] [WZY05]. It

is measured by using a process named Hahn echo, a term used in NMR [Tea20]. To

set up a Hahn echo experiment, a Ramsey experiment is performed by applying a

π/2 pulse, a π pulse and another π/2 pulse at the end before measuring the qubit.

The decay time resulting from fitting signal results from this experiment shows the

T2 time. The importance of both relaxation and coherence times resides in them

needing to be much longer than the gate operation time in order to hold useful

results without much deterioration [STHL10].

3.2.2 Single and multi qubit metrics and error rates

Metrics for qubits and quantum gates are a common way of measuring overall fidelity

of gates or interactions with the environment as error rates. In a general sense,

metrics enable quantitative analysis on the quality of a quantum system [RK21].

An important and very common metric for measuring fidelity of a quantum gate is

process fidelity where, given a density matrix ρ, a noisy quantum gate G̃ and the
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Figure 3.4: Using inversion recovery to find the decay time T1 from fitting an expo-
nential decay to the pulse signals and delays before measurement.

same noiseless quantum gate G, the process fidelity of the gate is calculated with

the equation [EWP+19] [FL11].

F (G(ρ), G̃(ρ)) = Tr[G(ρ)G̃(ρ)].

T r represents the trace of the matrix and it is equivalent to finding the sum of all

its diagonal elements. The trace can also represent similarity between two quantum

gates. It is easy to tell that the process fidelity depends directly on the initial

state ρ when calculating the process fidelity. This leads to only having partial

results on the fidelity of a gate as the whole basis isn’t being considered. Such a

problem can be solved by utilizing the average gate fidelity [BWG+18] and averaging

over applications of the gate on all basis states. Section 3.3.1 describes how the

average gate fidelity can be used in that way to benchmark a quantum gate through

Quantum Process Tomography. A general although more ambitious way to find the

average gate fidelity is to integrate over the surface of the Bloch sphere through the
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equation [CB07] [BOS+02]

〈F 〉 =
1

4π

∫
Tr[G(ρ)G̃(ρ)]dΩ.

Also using the trace of a matrix, the trace distance measures the distinguisha-

bility of two quantum states through [Rus94]

D(G(ρ), G̃(ρ)) =
1

2
Tr[

√
(G(ρ)− G̃(ρ))†(G(ρ)− G̃(ρ))].

Conveniently, the trace distance relates to the process fidelity enabling one to

be found through the other. This is expressed by the inequality

1−
√
F (G(ρ), G̃(ρ)) ≤ D(G(ρ), G̃(ρ)) ≤

√
1− F (G(ρ), G̃(ρ))

Another distance metric between noisy and ideal gates that measures distuin-

guishability is given by [FvdG99] [Blu17]

||G− G̃||d = maxρ(||(G⊗ I)[ρ]− (G̃⊗ I)[ρ]||1).

An essentially different matrix that focusses on finding the difference between two

probability distributions is the Hellinger distance Given two probability distributions

p and q with individual samples pi and qi, the Hellinger distance is

1√
2

√∑
i

(
√
pi −
√
qi)

2.

The way the Qiskit library returns measurements greatly benefits from the Hellinger

fidelity, which is the same as 1−Hellinger distance.

Relevant error rates adopted by IBM for single and multiple qubits on their

quantum devices are found using Randomized Benchmarking, a benchmark that es-

sentially ignores SPAM errors by implementing different lengths of gate repetitions,

explaining the really low error rates obtainable. In reality, error rates found through
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Randomized Benchmarking are only useful when they are low enough to be fitted

onto an exponential function, whereas high error on the gates could return mean-

ingless error rates. Single qubit Clifford error rates can be found using the basic

procedure while two-qubit Clifford error rates are available when applying simulta-

neous Randomized Benchmarking. Alternatively, error rates of particular gates can

also be found. A description of Randomized Benchmarking can be found in section

3.3.1 under Randomized Benchmarking.

3.2.3 Addressability

The addressability metric can be defined as the additional errors induced on subsys-

tem or qubit k from controlling k′ and is calculated through the following equation:

δrk|k′ = |rk − rk|k′|

The addressability metric combines the errors from classical cross-talk leakage

errors and quantum coupling between the systems. This also quantifies the increase

in error rate from simultaneous control on different qubits. Therefore, addressability

relates to the differences in the measured average gate fidelities in the experiments

performed on two qubits [GCM+12]. Also, addressability error can have an inverse

proportion to the amount of detuning between qubits. A procedure using Random-

ized Benchmarking to calculate this metric can be found in section 3.3.1.
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3.3 Benchmarks

3.3.1 Gate Model Benchmarks

Quantum State Tomography

Quantum State Tomography [VR89] (or QST for short) is, as its name states, a

way to determine the resulting state from applying a quantum gate G. It stands

as a standard for verification and benchmarking of quantum devices [CPF+10].

This is done by performing measurements on a set of observables equivalent to

the Pauli basis, and using the expectation values to fully determine the quantum

state [SBRF93] [HHR+05] [LKS+05] [JKMW01] [DWM95] [LR09]. To that effect,

the Pauli basis gates P ∈ {I,X, Y, Z} are applied to the qubits before measurement

is performed in order to obtain expectation values on those bases in the following

manner:

〈X〉 = Tr(X̂ρ) = Tr


0 1

1 0


a b

c d


 = Tr

c d

a b

 = c+ b,

〈Y 〉 = Tr(Ŷ ρ) = Tr


0 −i

i 0


a b

c d


 = Tr

−ci −di

ai bi

 = (b− c)i,

〈Z〉 = Tr(Ẑρ) = Tr


1 0

0 −1


a b

c d


 = Tr

 a b

−c −d

 = a− d,

〈I〉 = Tr(Îρ) = Tr


1 0

0 1


a b

c d


 = Tr

a b

c d

 = a+ d.

The way to find the resulting density matrix that represents the quantum state

is by mapping the expectation values as a linear sum of Pauli matrices [PvJ11]

ρ =
1

2
(〈I〉 I + 〈X〉X + 〈Y 〉Y + 〈Z〉Z).
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QST is especially susceptible to SPAM noise, since a very small circuit is con-

structed with only one quantum gate besides measurement and the gate to be ana-

lyzed. Due to this, QST may not provide accurate fidelity measurements as it always

presents a deviation from the intended state. It may even become infeasible for larger

systems due to the amount of measurements required which is 4n for a number of

qubits n considering a combination of each gate of the Pauli basis [CPF+10].

Quantum Process Tomography

Quantum Process Tomography (QPT) works on a similar procedure as QST, with

the main difference that a more complete characterization of the qubit is performed.

Instead of a quantum state, a quantum operation or process is identified and thus

more information can be made available [RK21] [CN97] [PCZ97]. The implication of

QST only being able to identify a quantum state is that a gate, for example, cannot

be reconstructed by using the expectation values found in QST and therefore would

make many of the applications thought of today unfeasible. The way QPT makes

this possible is by once again performing measurements in all the basis gates and

also preparing a circuit in all the basis states too. The difference being that QPT

focuses on an average gate fidelity by performing the same measurements done in

QST from different starting points on the Bloch sphere. For the single qubit case,

each Pauli gate P ∈ {I,X, Y, Z} is combined with the same set P to find transi-

tions from and to each Pauli gate with a set describing those combinations being Q ∈

{{I, I}, {I,X}, {I, Y }, {I, Z}, {X, I}, {X,X}, {X, Y }, {X,Z}, {Y, I}, {Y,X}, {Y, Y },

{Y, Z}, {Z, I}, {Z,X}, {Z, Y }, {Z,Z}}. The combination of Pauli gates and their

effect on all measurements performed can be evidenced by taking each ith couple

from Q and finding its expectation value by measuring the trace of

Tr(Q̂i,0ρQ̂i,1).
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Figure 3.5: ”(color online) Quantum process tomography of the ZX−π/2 gate with
T2 = 178ns. (a) Experimentally extracted Pauli transfer matrix. The gate fidelity is
Fg = 0.8830 raw and Fmle = 0.8799 after applying a maximum likelihood algorithm.
(b) Ideal Pauli transfer matrix representation of the ZX−π/2 gate.” [CGC+13].

Choi matrices [Cho75] are a useful tool that not only represent expectation

values being prepared in one Pauli basis against another Pauli basis measurement,

but enables the calculation of a complete gate fidelity very similar to average gate

fidelity. These Choi matrices are reconstructed through expectation values in the

same way as QST, and are also a standard for representing a quantum gate. An

example of a Choi matrix resulting after applying QPT to a ZX−π/2 gate is shown

in figure 3.5. SPAM errors have a slightly deeper effect in QPT as an additional gate

is used to prepare the quantum state which will be measured and therefore both

SPAM and coherence errors will slightly worsen fidelity values found from using this

benchmark.

Randomized Benchmarking

Randomized Benchmarking (RB) is a benchmark that is based on repetitions of

gates belonging to a unitary group G ⊆ U(d) (where d = 2n with n being the

number of qubits the gates act on) to obtain single and multi-qubit error rates, as
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well as error rates for the individual gates that belong to said group. A common

group of interest when performing RB is the Clifford group, which are gates that

can generate the Pauli group, along with the Pauli group itself. The gates that

generate the Pauli group are the Hadamard and the stabilizer S for the single qubit

case with the addition of the CNOT gate for the two qubit case [Got98b]. Some

authors also use the term Clifford quotient group [KS14] [Tol18]. Clifford gates are

specially useful for RB because each of the gates can be realized efficiently on a

quantum processor [MGE11], thus reducing unwanted noise to some degree. The

general outline of the procedure done in RB is the following:

1. Generate a sequence of m+1 quantum gates where the first m gates are chosen

randomly from the Clifford group in a uniform manner. The last gate is the inverse

of the first gates so that the resulting circuit operator is the identity gate, given

the property of unitary matrices that states a unitary matrix O multiplied by its

transposed conjugate O† results in the I matrix. The benchmark uses twirling over

the chosen sequence in order to obtain Clifford gates at each step of the sequence,

multiplied by 1 or -1. That is: given operators {P,O} ∈ G, Otwirl = OPO† where

−1n ∗Otwirl ∈ G with n ∈ {0, 1}. The final inverse gate is therefore the inverse of a

Otwirl being uniquely determined by the mth gate, further simplifying the operations

required in the benchmark.

2. Measure the survival probability Tr[EψSim(ρψ)] for a set of generated se-

quences with ρψ being the initial state, Eψ the POVM element towards which the

sequence will be measured and Sim being the final noisy sequence operator belonging

to the ith sequence. ρψ includes preparation errors while Eψ represents measurement

errors also.

3. Calculate the average sequence fidelity over random sequence runs, where the
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average sequence Sm is used in

Fseq(m,ψ) = Tr[EψSm(ρψ)].

4. ” Fit the results for the averaged sequence fidelity [Eq. (2)] to the model

F (1)
seq(m,ψ) = A1p

m +B1 + C1(m− 1)(q − p2)pm−2

derived below. The coefficients A1, B1, and C1 absorb the state preparation and

measurement errors as well as an edge effect from the error on the final gate. The

difference q − p2 is a measure of the degree of gate-dependence in the errors, and p

determines the average error-rate r according to the relation

r = 1− p− (1− p)/d.

In the case of gate-independent and time-independent errors the results will fit the

simpler model

F (0)
seq(m,ψ) = A0p

m +B0

derived below, where A0 and B0 absorb state preparation and measurement errors

as well as an edge effect from the error on the final gate.” [MGE11]

An important metric resulting from the benchmark is the average error per

Clifford sequence formulated as

EPC =
2n − 1

2n
(1− p)

in the case of gate-independent and time-independent errors, compensating for state

preparation and measurement (SPAM) errors by considering only the exponential

decay of sequences of random gates [GCM+12]. By using the error per Clifford

and the amount of gates per Clifford, an error per gate value can be determined.

The inverse of the Clifford sequence is efficiently calculated by the Gottesman-

Knill theorem in [Got98a]. For further understanding of the procedure, an in-depth

mathematical explanation of the RB procedure can be found in [MGE12].
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RB has been widely used to characterize gates in NMR systems [RLL09] [CCL01]

[WHE+04], atomic ions for different types of traps [KLR+08] [BUV+09] [BWC+11]

[OCNP10] [GTL+16] [BHL+16] [GMT+12], solid-state spin qubits [VHY+14] and

superconducting qubits [CGT+09] [CDG+10] [BKM+14] [MWS+17] [CGC+13]. De-

spite the limitation of only obtaining information for the gates included in the Clif-

ford group, several alternative uses have been devised using RB such as estimating

the error of a particular gate through interleaving [MGJ+12], purity [MFM+16]

[WGHF15] and leakage analysis [WG18] [WBE16]. This method accounts for the

drawbacks presented with QPT as fewer measurements are necessary to character-

ize gates on qubits and it does so in a way that is insensitive to errors arising from

SPAM with the limitation that the total gate duration of the sequence needs to be

lower than the coherence time of the qubit [CGC+13]. Another important limitation

is that for the noise fitting of RB to work, low error rates are needed as very high

error rates may deviate from fitting to an exponential decay to rather fitting to a

different model, possibly rendering results useless. The benchmark has been used

to characterize single-qubit, two-qubit [CGC+13] and three-qubit [MSS+19] error

rates and in fact, the single qubit gate error rates and CNOT error rates presented

in IBM quantum computer properties are calculated using RB for particular gates.

For the case of characterizing specific gates and qubits in a quantum computer,

RB acquires additional uses as both finding the error rates for specific gates and

quantifying addressability in a pair of neighboring qubits are tasks of interest. One

of the most common ways to find the error rates on specific gates belonging to the

Clifford group is interleaving, where a variation is made in the preparation of circuits

to be measured. In interleaved RB, the target gate is applied between every other

Clifford gate in an attempt to make the errors dependent on the performance of

the target gate through randomization. Figure 3.6 illustrates the way the circuits
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are prepared. The procedure explained in detail found in [MGJ+12] is done the

following way:

1. Implement the standard randomized benchmarking previously described.

2. ”Choose K sequences of Clifford elements where the first Clifford Ci1 in each

sequence is chosen uniformly at random from Clifn, the second is always chosen to

be C, and alternate between uniformly random Clifford elements and deterministic

C up to the mth random gate [see Fig. 1(b)]. The (m+1)th gate is chosen to be the

inverse of the composition of the first m random gates and m interlaced C gates (we

adopt the convention of defining the length of a sequence by the number of random

gates). The superoperator representing the sequence is

Vim = Aim+1 ◦ Cim+1 ◦ (©m
j=1[C ◦ AC ◦ Aij ◦ Cij ]).

For each of the K sequences, measure the survival probability Tr[EψVim(ρψ)] and

average over the K random sequences to find the new sequence fidelity Fseq(m,ψ).

Fit Fseq(m,ψ) to one of the new zeroth or first-order models to obtain the depolar-

izing parameter pC. The expressions for these models are given by Eq. (2) where p

is replaced by the new depolarizing parameter pC.” [MGJ+12]

3. ”From the values obtained for p (Step 1) and pC (Step 2), the gate error of

AC (which is exactly given by rC = 1− average gate fidelity of AC) is estimated by

restC =
(d− 1)(1− pC/p)

d
,

and must lie in the range [restC − E, restC + E] where

E = min


(d−1)[|p−pC/p|+(1−p)]

d

2(d2−1)(1−p)
pd2

+ 4
√
1−p
√
d2−1

p

” [MGJ+12]
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Figure 3.6: (color online). Randomized benchmarking protocols. (a)–(b) Schemes
for the standard and interleaved benchmarking protocols. The target gate, C
(green) is interleaved with random gates Ci (orange) chosen from Clifn. A final
gate Cm+1 (red) is performed to make the total sequence equal to the identity oper-
ation [MGJ+12].

Simultaneous RB is specially useful for characterizing errors on different qubits

at the same time, along with characterizing errors for different subsets of qubits. An

example of using simultaneous RB for characterizing three-qubit errors is shown in

figure 3.7, where different configurations of Clifford gates were used to obtain error

rates on three connected qubits.

The addressability protocol implements simultaneous RB using circuits config-

ured as shown in figure 3.8, where gates are applied to pairs of neighboring qubits

to find information on cross-talk errors.

”In short, the addressability protocol is the following three experiments:

Experiment 1: Implement RB on the first subsystem, i.e. twirling with the group

C ⊗ I (see Fig. 1b). Fit the average decay of subsystem 1’s initial state to obtain

α1 and thus the error r1.

Experiment 2: Perform the same experiment on subsystem 2 (see Fig. 1c)

yielding α2 and r2.

Experiment 3: Implement RB on both subsystems simultaneously, i.e. twirl with

C ⊗C, (see Fig. 1d). Fit the decays of the single subsystems (e.g. ZI and IZ) and
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Figure 3.7: (Color Online) (a) Schematic of the experimental setup and connectivity
of the CNOT 2Q gates (control→target). (b) 1Q simultaneous RB {[0], [1], [2]},
(c) 2Q-1Q simultaneous RB {[0, 1], [2]} and (c) 3Q RB {[0, 1, 2]}. Under each is a
sample (b) 1Q (c) 2Q and (d) 3Q Clifford gate [MSS+19].
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Figure 3.8: (color online). (a) General approach to characterize the effect of cross-
talk and unwanted quantum interactions in a processor with multiple subsystems.
The experiments are performed pairwise. For each pair, three experiments are per-
formed: RB is performed on each subsystem while leaving the other subsystem
unperturbed (b and c); then RB is performed simultaneously (d) [GCM+12].

two-qubit correlations (e.g. ZZ) to obtain α1|2, α2|1 and α12. The addressability is

then quantified from Eq. 13, and potential correlations in the errors are flagged by

examining δα = α12 − α1|2α2|1.” [GCM+12]

3.3.2 Discriminating Quantum States Using Machine Learn-

ing and Quantum Machine Learning

Discriminating quantum states

Machine learning (ML) techniques have been used for the discrimination of quantum

measurement data for some time now as an approach to retrieve amplitudes result-

ing from execution of a quantum circuit. One application of these techniques on

quantum measurement trajectories can be seen in [MGCC15], where SVM, KMeans,

LDA, and the RUSBoost algorithms are used to discriminate data belonging to the

|0〉 and the |1〉 states. While these discriminators are not offered out-of-the-box,

Qiskit Pulse enables the use of different ML models to work as readout discrimi-
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nators and also offers a Linear Discriminant Analysis module to use as a custom

discriminator [AKE+20]. The main difference in the studies performed on quantum

measurement trajectories with the way quantum states are being discriminated in

Qiskit Pulse is the form of the data, given that in-phase and quadrature (IQ) sig-

nal data is returned from computations on IBMQ devices that recieve schedules as

inputs.

On IBM quantum computers, the task of state discrimination corresponds to

the first and second level of their quantum hardware’s obtainable results through

OpenPulse [MAB+18], mapping the phase (IQ) signals of their first levels onto qubit

states and counts. While state discrimination can be performed both on level 0 and

on level 1, they solve the problem through a different type of data input. Level

0 focuses on classifying shot trajectories through ML by using filter functions for

each trajectory [CVC+13] and algorithms such as Quadratic Discriminant Analysis

(QDA) and Support Vector Machines (SVM). ML algorithms for discrimination may

be specified on Qiskit if they are formatted as a scikit-learn classifier. Despite Quan-

tum Machine Learning algorithms not having been used to perform discrimination

at readout, it is possible to achieve this by specifying Quantum Machine Learning

algorithms as scikit-learn classifiers.

Quantum Machine Learning

Quantum Machine Learning (QML) focuses on the use of quantum algorithms,

which harness the capabilities of quantum mechanics, to solve common ML prob-

lems and to improve existing algorithms [SSP14] [AH15]. Many algorithms im-

plement quantum basic linear algebra subroutines (qBLAS) that have shown ex-

ponential quantum speedups over the most optimal methods available in classical

computation [BWP+17]. The use of amplitude amplification [BHMT02] and the
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HHL [HHL09] algorithm in QML algorithms result in speedups in computational

and query complexity over their classical counterparts. Methods such as Bayesian

Interference [LYC14], PCA [LMR14], Support Vector Machines [RML14] and many

others [WKS16] [WBL12] [DTB16] have adapted implementations of qBLAS to

achieve speedups of up to O(
√
N) and O(logN). Adiabatic quantum computers

can also provide adequate solutions for ML problems provided that models can be

represented as quadratic unconstrained binary optimization (QUBO) problems as

is theorized in [DAPN21], posing better time and space complexities than their

classical counterparts. The balanced k-means clustering algorithm implemented on

adiabatic quantum computers demonstrates performance similar to the best clas-

sical approaches [AD20]. There exist several limitations on QML algorithms as

only small-scale quantum computers and special-purpose quantum simulators are

currently available to implement them. Particularly, feeding input by encoding

classical data into quantum computers and obtaining the output from calculations

performed constitutes some overhead [Aar15], which can be alleviated to some ex-

tent using qRAM and operating directly on quantum data in a manner similar to

variational methods [PMS+14].

3.3.3 Pulse-level Benchmarks

3.3.4 Benewop Benchmark

The Benewop Benchmark [GPD20b] focuses on performing noise extrapolation at

the pulse level by stretching a pulse for a certain duration to drive a qubit from the

|0〉 state to the |1〉 state. It first utilizes Rabi Oscillations to obtain the parameters

that generate a calibrated π pulse by setting different drive amplitudes and σ values

to a gaussian pulse, a procedure known to be used in IBM quantum devices for
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default gate pulse calibration. After this procedure, the calibrated pulse is applied

with a constant drive amplitude in the middle for a certain drive time to analyze the

relation between drive amplitudes applied to qubits and decay rates for a given Rabi

period. Using this information and after fitting results from different amounts Rabi

cycles, noise factors for the different pulses can be obtained as a mathematically

representative error metric for qubits.

3.4 Quantum Gate Calibration

Quantum gate calibration is a process underwent in the lab immediately after a

quantum device has been fabricated and installed into a system [Tea20], and is

constantly done after a time period to ensure accurate default gate pulse application

up to a certain degree, removing as much accumulated noise as possible.

3.4.1 Frequency Sweep

The first subprocess is performing a Frequency Sweep to search for the qubit fre-

quency. The qubit frequency is the difference in energy between the ground and

excited states [Tea20], and is of upmost importance as a slight difference in fre-

quency GHz could extinguish the chance to reach an excited state in the qubit.

We use Armonk device’s estimated qubit frequency as the center frequency for the

sweep and span a short range of frequencies with small increments to find the fre-

quency that returns the highest measured signal, as appears in Figure 3.9. The

highest measured signal is an indicator of driving a qubit off-resonance, important

for effectively making a change in its state.
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Figure 3.9: Frequency Sweep shot measurement results as black dots fitted to a
Lorentzian shape on the red line.
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Figure 3.10: Rabi Oscillation measurement signals corresponding to shots as black
dots on different drive amplitudes, fitted to a sinusoidal curve on the red line. The
π pulse appears as the amplitude difference between the largest difference in mea-
surement signals.

3.4.2 Rabi Oscillations

After knowing the correct calibrated frequency to drive a transition in the qubit’s

state, we can continue with testing the amplitude of gaussian pulses that represent a

complete transition from |0〉 to |1〉 state. Rabi Oscillations are sinusoidal oscillations

[Tea20] which describe the fraction of the shots that successfully transitioned to

the |1〉 state. In the case of a X gate pulse (π pulse) we expect to observe the

maximum difference in measured signals to represent a complete transition. The

drive amplitude difference corresponding to the maximum measured signal difference

represents the amplitude we will use for the calibrated gaussian pulse, which can be

seen on Figure 3.10.
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3.4.3 Discriminating Quantum States

A posterior process for obtaining the quantum state counts from the result of a pulse-

level execution is discriminating the quantum state signals present at readout in an

in-phase and quadrature (IQ) plane like the one in figure 3.3. This is an important

task as high assignment fidelities allow accurate measurements to be performed on

quantum devices and therefore obtaining more useful results. It is currently done

using ML models to classify trajectory [MGCC15] and IQ data [Tea20] with an

experimental focus. While providers offer quantum state counts by applying their

own readout scheme, users can apply models to discriminate states in a custom

manner to not only obtain higher assignment fidelity but also to infer properties

of a quantum device and benchmark it [AKE+20]. While this experiment can be

performed using any pulse, [Tea20] and [AKE+20] utilize a π pulse to ensure clear

differences in both sets of signals (|0〉 and |1〉 state signals) for further analysis.

3.5 Quantum Optimal Control

One of the biggest challenges for near future quantum computing implementa-

tions is the reduction of noise through strategies implementable with a moderate

number of qubits, while still obtaining high fidelity. Quantum error mitigation

schemes [GPD20a] [SEFT20] [TBG17] have recently been appearing for the task of

noise reduction in quantum computers, and attempts to implement them have been

successful. Among these schemes, Quantum Optimal Control (QOC) has shown

great relevance throughout the history of quantum computers as its objective has

been to stimulate quantum evolution to a desired state through the use of control

laser fields, allowing the design of laser pulse shapes to do so [BCR10]. One impor-

tant use case of QOC is nuclear magnetic resonance spectroscopy as it is focused
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on designing pulse sequences that maximize a certain performance criterion, con-

sequently solving problems like minimizing the time required to produce a given

unitary propagator [KRK+05]. This is done through the optimization of pulses us-

ing machine learning elements such as loss functions and gradient ascent algorithms,

so as to reach maximum overlap with a certain target unitary or quantum gate and

in doing so, greatly improving fidelity [WER+20] and performance indicators for

more precise qubit state transitions. QOC algorithms can focus on different types

of pulses as initial guesses that are then optimized depending on the desired target

pulse shape and iteration update strategies. These can be pulse envelopes such as

piecewise constant pulses, gaussian pulses, square pulses, among others.

3.5.1 GRAPE

Gradient Ascent Pulse Engineering is a gradient ascent-based QOC algorithm which

focuses on piecewise constant pulses being applied to a qubit on a quantum device,

optimizing the pulse by concurrently updating the control amplitudes of the pulse.

One of the GRAPE approach’s biggest advantages is the fact that it only requires

two full time evolutions on the application of a pulse to correctly update all the

control terms of a pulse, updating each one at each step of the quantum system’s

evolution [KRK+05]. The first full time evolution is determined by the application

of unitary propagators to an initial unitary (or density matrix) for each step j. The

equation that represents this at the end of the first evolution is

U(T ) = U(tn)U(tn−1)...U(t0)

where U(tn) = exp[−iH(tn)∇t] is the unitary propagator resulting from the time-

dependent Hamiltonian expressed by H(tn) = H0 +
∑m

j=0 uj(tn)Hj, with H0 being

the independent term and Hj being the pulse-dependent term. Note that the ex-

36



pressed Hamiltonian formula is valid for any amount of pulse-dependent terms,

whereas if only one is supported,
∑m

j=0 uj(tn)Hj becomes u(tn)H. The forward-

propagator at step j is determined by

ρj = UjUj−1...U1

For the second full time evolution, a back-propagator is calculated with the

formula

λj = U †j+1U
†
j+2...U

†
N

These propagators are useful for evaluating the performance function after a full time

evolution, and for calculating the gradient that will modify the control amplitudes

of the pulse. The equations for this are, respectively:

ε > 1− φ = 〈Utarget|U(T )〉

δφ

δuk(j)
= −Re 〈λjUtarget|ρj〉 .

A flow chart of the GRAPE algorithm steps is presented in Figure 3.11.

3.6 Quantum Programming Stacks

We conduct a survey and research on available quantum programming stacks for

connotation of their main assets and features to find the best choice for designing,

implementing and testing QOC algorithms.

3.6.1 Q#

“Q# is Microsoft’s open-source programming language for developing and running

quantum algorithms. It’s part of the Quantum Development Kit (QDK), which
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Figure 3.11: GRAPE algorithm workflow steps.

38



includes Q libraries, quantum simulators, extensions for other programming envi-

ronments, and API documentation. In addition to the Standard Q library, the

QDK includes Chemistry, Machine Learning, and Numeric libraries.” [Bra] This

programming language has no current capability to connect to a real quantum com-

puter [LaR19] and, combined with not offering any built-in QOC algorithms, makes

it not an ideal programming language for the implementation of QOC algorithms.

3.6.2 CirQ

“Cirq is a software library for writing, manipulating, and optimizing quantum cir-

cuits and then running them against quantum computers and simulators. Cirq

attempts to expose the details of hardware, instead of abstracting them away, be-

cause, in the Noisy Intermediate-Scale Quantum (NISQ) regime, these details de-

termine whether or not it is possible to execute a circuit at all.” [Dev] Cirq allows

programmers to define Schedules and Devices to work at the lowest level of algo-

rithm execution, for example specifying the duration of pulses and gates [LaR19].

Unfortunately, Cirq does not currently provide cloud access to Google’s quantum

computers for general users and is therefore not an ideal option.

3.6.3 Strawberry Fields

“Strawberry Fields is an open-source quantum programming architecture for light-

based quantum computers. Built in Python, Strawberry Fields is a full-stack library

for design, simulation, optimization, and quantum machine learning of continuous-

variable circuits.” [KIQ+19] Although only quantum simulators are available, built-

in optimization algorithms and various machine learning tools are provided with the

TensorFlow simulator it uses. [KIQ+19]
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3.6.4 XACC

“XACC is an extensible compilation framework for hybrid quantum-classical com-

puting architectures. It enables the execution of quantum kernels on IBM, Rigetti,

IonQ, and D-Wave QPUs and simulators. XACC is the only quantum-classical pro-

gramming framework that provides a system-level software infrastructure permitting

closer CPU-QPU integration. XACC further differentiates itself by promoting de-

vice interoperability as a core feature and design goal. It is also able to target

different quantum computing models: gate-based and annealing.” [McC] In this

way, XACC can implement QOC capabilities and already does so with its built-in

GRAPE, GOAT and Krotov algorithms.

3.6.5 Qiskit

“Qiskit is an open-source framework for working with quantum computers at the

level of circuits, pulses, and algorithms.” [qis] Also, Qiskit is composed of various use

cases allowing its comprehensive use in low level to real world applications. For the

purpose of implementing QOC algorithms, it allows pulse-level control of a general

quantum device using OpenPulse [CBSG17]. Despite having its own limitations in

the kind of results available after each run of a pulse on a schedule, it provides many

useful insights on the state of a qubit after a pulse has been applied, such as counts

on each state (between the ground and excited states), and signal measurements.

To select the ideal quantum programming stack, the differentiating factor is the

ability to manipulate pulses as well as providing a way to access a quantum device’s

Hamiltonian. Other important factors to consider are pre-existing QOC algorithms

the stack has and the possibility of running an optimized pulse on a quantum device.

The stacks mentioned in this report along with other less relevant stacks for QOC
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Figure 3.12: Comparison between different quantum programming stacks on features
that allow QOC algorithm implementation, as well as testing the pulses optimized
with these algorithms on physical quantum devices.

are compared in Figure 3.12 for finding the ideal option to base QOC algorithms

on.

After comparing various quantum programming stacks, Qiskit proves to be the

ideal quantum programming stack for general QOC algorithm implementation pur-

poses, as it allows to effectively calculate the real fidelity of a pulse through one

of its quantum devices. Although no pre-existing QOC algorithms exist in Qiskit,

Qiskit’s OnePulse allows deeper insight into pulses and quantum device Hamiltonian

configuration which, given the correct values for all variables in the Hamiltonian,

can enable a precise implementation of GRAPE as can be done with their pulse

simulator. Other fundamental stacks to be considered are XACC and QuTiP, as

XACC already implements GRAPE, GOAT and Krotov algorithms, and can access

many different quantum devices to test quantum circuits with an efficient compila-

tion step. QuTiP implements GRAPE and CRAB given a Hamiltonian with all its

variables and values, but can’t test pulses on quantum devices. These two stacks
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help to obtain useful insight on the correct implementation of those algorithms, and

allow to observe fidelity changes and differences.
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CHAPTER 4

METHODOLOGY

4.1 Closed-loop optimization algorithm

A novel QOC hybrid algorithm loosely inspired by GRAPE is proposed and tested,

taking into consideration a few of the limitations present in the implementation of

the GRAPE algorithm on Qiskit, such as not having the values of every variable

in the Hamiltonian [Tea21a], and being unable to otherwise calculate the resulting

propagator for each time step, making it difficult to precisely obtain the gradi-

ent ascent increment for each step. The main difference in this implementation

is reinforcement learning taking the place of propagator calculation. With Open-

Pulse [MAB+18], it is possible to test multiple pulses concurrently on a quantum

device given that each pulse is independent from one another, meaning that each

pulse will run independently and return different results.

The Closed-loop optimization algorithm optimizes a piece-wise pulse by perform-

ing iterative runs on a quantum computer, updating a set of amplitudes by a small

offset on each run to find the amplitudes that hold the highest fidelity towards a tar-

get quantum circuit or unitary. The algorithm implements the divide-and-conquer

programming paradigm to select the set of amplitudes by creating partitions in the

pulse as is shown in Figure 4.2a to then drastically reduce execution time and the

total amount of runs required to perform the optimization. Using this to our ad-

vantage, we can obtain the fidelity from each amplitude update as a replacement

for gradient calculation. To use the algorithm, we first specify an initial schedule

constructed with pulses like random pulses or calibrated pulses, along with other

instructions such as phase shifts. We also set a number p of different pulses parti-

tions with a small offset of α(i − p
2
) on each, where α is a small step, and i is the
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current partition index. Therefore, for a control amplitude at step j, p partitions

with control amplitude

Ui,j = uj + α(i− p

2
) for i = 0, 1, ..., p− 1

are constructed and simultaneously executed on a quantum device to obtain their

counts and update the control pulse with the partition that obtained the highest

fidelity, finally returning a schedule like the one in Figure 4.2b.

As with the GRAPE algorithm, a potential problem is the amount of control

amplitudes to be optimized, and thus the amount of runs required on a quantum

device to correctly update each control amplitude. Actually, updating all the con-

trol amplitudes on this algorithm may be more time-consuming than only utilizing

the propagators on a simulated case, since with IBM’s Armonk device, each batch

of pulses are attached to a queue and are executed on a FIFO basis (except when

reserved for dedicated use, an ideal use case for this algorithm). Despite this, our so-

lution provides a great time reduction in comparison to a straight-forward approach

of running the modified pulse for each amplitude as can be done with current solu-

tions [QC], given the constraint of the shortest pulse length allowed on Qiskit being

64 amplitudes, with most single qubit default pulses consisting of 640 amplitudes.

Our way to solve this problem is by discretizing a pulse onto divisions with less gran-

ularity than the constant piece-wise pulse, dividing the full pulse into d parts to be

updated in the same way as would be done with the highest granularity, except that

only d executions would be necessary to update all the control amplitudes. In this

way, even though not every change in a control amplitude would reach maximum

performance, great fidelity improvements would be made given enough partitions p.

Figure 4.1 illustrates the general outline of this algorithm.
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Figure 4.1: Closed-loop optimization algorithm workflow steps.
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(a) Initial constant pulse separated into 4
divisions.

(b) Optimized π pulse with 4 divisions.

Figure 4.2: Illustration of pulse divisions performed on a constant pulse to optimize
into a π pulse using Quantum Process Tomography.
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4.1.1 Closed-loop optimizer features and constraints

The amplitude updates that hardware-based pulse optimization relies on [QC] can be

a great speed constraint if any fine-tuning were to be performed on an initial pulse.

Because of this, one of the most important features for the use of the algorithm

is the ability to queue multiple pulse schedules at the same time on a quantum

device, reducing the amount of jobs required to fully optimize the pulse. Final pulse

fidelity is determined by the granularity of a pulse optimization, with decent results

being obtainable with as little as two divisions for any amount of p partitions below

the maximum number of experiments C (around 900 as can be seen in the IBM

Quantum Experience main page [Tea]) allowed on a single job of a quantum device.

Readout correction is implemented at result retrieval to reduce effects of noise

appearing on the IQ signals of pulse results. Qiskit offers this functionality by

running a set of measurement calibration circuits before running the actual pulse.

This allows the use of a measurement fitter to obtain accurate readout results at the

cost of an extra job run per division d of the optimization routine. While notable

noise mitigation can be obtained with this functionality [Tea21b], the user can decide

to disable it if a longer optimization process is to be avoided.

The algorithm enables the use of several error modes to specify the way fidelity

is calculated between a custom pulse or its counts and a target unitary. Among the

error modes are Quantum State Tomography [NC11] for a comprehensive measure-

ment of the desired state and QPT [NC11] to analyze the whole spectrum of basis

gates for a given amount of qubits. QPT is mainly implemented as a way to obtain

the fidelity of single-qubit and two-qubit gate pulses, as a total of 144 combinations

of basis gate transitions can be observed. Due to this, two-qubit gate pulses only

permit 6 partitions per job execution on most IBM quantum devices, greatly slow-

ing down the optimization process. A workaround for this problem is utilizing the
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algorithm on several full pulse optimization iterations with a smaller search space

on each consecutive iteration by reducing the α parameter of the algorithm. RB

can also be used to solve slow optimization times on two-qubit gates.

4.1.2 Initial optimizer configuration

For the configuration of the closed-loop optimization algorithm we specify a quantum

device on which we perform the optimization, an initial pulse schedule we wish to

optimize and the target unitary. The initial pulse can be given in several ways

supported by Qiskit’s pulse library, such as a custom pulse, a random pulse with a

certain duration, and a pulse with a Gaussian, Square Gaussian, DRAG or a constant

envelope. In addition to the available options for pulse generation, the algorithm

can also receive a quantum circuit as input to obtain the corresponding calibrated

pulses for each basis gate after a transpilation step. This enables us to specify any

quantum circuit for which we wish to optimize a default calibrated pulse based on

the schedules stored on a specific quantum device. We can also select an amount

of d divisions which represent the amount of different pulses we test in a single run

and the p pulse partitions we wish to utilize, or the amount of runs we will execute

for a given pulse. It is recommended to use the maximum odd amount of divisions a

quantum device can support, equivalent to the amount of pulses a quantum device

can execute in a single run rounded down to the nearest odd number.

For comparing pulses offered by default on IBMQ quantum devices with opti-

mized pulses from the closed-loop pulse engineering algorithm, we optimize a ran-

dom X gate pulse applied on the ibmq bogota device by setting a random initial

constant amplitude between 0.25 and 0.5 with a width of 160 amplitudes for a to-

tal gate duration of 35.552ns. The initial pulse can be seen in Figure 4.3. Also,
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a default DRAG pulse is retrieved from the ibmq bogota device and is shown in

Figure 4.4. This DRAG pulse represents a π rotation as a X gate pulse calibrated

by IBM before retrieval. The optimization procedure was performed using QPT on

each optimization step and error bars were retrieved by running the initial random

pulse, the default pulse and the random optimized pulse 20 times.

4.1.3 Optimizer post-execution result retrieval

After executing the algorithm, we can obtain the best optimized pulse schedule for

our target unitary, along with the pulse fidelity and the counts from its execution.

We can also obtain a complete log of the counts, loss rates and modified schedules

used in the optimization process, so as to gain deeper insight into the pulse amplitude

updates. To obtain the difference in fidelity between the optimized pulse and the

initial pulse, the difference in loss rates between the first loss rate and the final loss

rate can be calculated. Particularly, the last element of each returned list contains

the information corresponding to the optimized pulse.

4.2 Quantum KMeans

The Quantum KMeans algorithm is an implementation of the KMeans in which the

distances between data points and cluster centroids are calculated using destructive

interference on a quantum circuit. To achieve this, classical data must be mapped

onto a quantum circuit, while a quantum algorithm for distance computation must

be implemented. Our algorithm uses two data encoding strategies and sends jobs

in batches to IBMQ devices. The algorithm was written in Python using the Qiskit

library and several data preprocessing functions available through the Scikit-learn

library.
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0.0 40.0 80.0 120.0 160.0

d0

x2.8

Initial random X gate pulse

Figure 4.3: Initial constant random pulse with an amplitude of 0.35 applied to the
ibmq bogota device with the independent axis being the amount of individual pulse
amplitudes and the dependent axis being the amplitude.
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Figure 4.4: Default DRAG π pulse as a calibrated X gate pulse with an amplitude
of ≈ 0.19, σ ≈ 40 and β ≈ −1.16 applied to the ibmq bogota device with the
independent axis being the amount of individual pulse amplitudes and the dependent
axis being the amplitude.

51



Out of the two encoding strategies, amplitude encoding of the input dataset

onto qubits provides a convenient way to map n-dimensional input vectors, given

the wide range of different values that can be obtained. Since qubit amplitudes must

have a norm of 1, normalization of input vectors must be done in order to encode

amplitudes onto quantum states. That is, for an n-dimensional input vector

a =

(
a0 a1 ... an

)
, a′ =

a

‖a‖
=

(
a′0 a′1 ... a′n

)
will be encoded as

|ψ〉 = a′0 |0〉+ a′1 |1〉+ ...+ a′n |n〉 .

Another way of encoding data implemented by the Quantum KMeans algorithm

is establishing a rotation angle θ in which qubits are set with an Ry gate. As a

specific case, given a 2-dimensional input vector

a =

(
a0 a1

)
, θ = arctan

a1
a0

is the angle that will be applied as an Ry(θ) gate to a specific qubit.

The next important aspect is calculating distances using a quantum circuit. For

this, a Swap test circuit is applied as shown in Figure 4.5 to find how much two

quantum states differ and therefore act as a distance measurement in the form

D(|x〉 , |y〉) =
√

2− 2| 〈x|y〉 |.

Despite one-on-one distance calculations being a slow approach to a KMeans

algorithm alternative, our implementation partially makes up for the speed difference

by batching the circuits used for distance calculations on IBMQ’s quantum devices,

since as much as 900 circuits can currently be sent in a single job. This reduces the
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Figure 4.5: SwapTest circuit for measuring distances between qubit 1 (second line)
and qubit 2 (third line).

amount of separate jobs a classical computer has to send to a quantum computer

as given c = 900 circuits, only nk
c

jobs are sent for each iteration of the algorithm

in contrast to the nk jobs required for each local simulated iteration. Convergence

speed is also accounted for by including QKMeans++, a quantum version of the

KMeans++ initial cluster center guessing strategy in which initial cluster centers

are assigned to a data point based on the greatest distance it has to its closest cluster

center [AV07]. The general outline of the algorithm is described in Algorithm 1.

4.3 Characterizating crosstalk on a quantum computer

For the task of characterizing crosstalk on a quantum computer using ML and

QML, we start by obtaining IQ signal data from all qubits on a quantum device

when applying a ground and a π pulse to obtain both |0〉 and |1〉 state data. We then

utilize the QML algorithm to group clusters together in a similar fashion as would
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Algorithm 1: Quantum K-Means algorithm in pseudocode

Input: X, backend, init, n clusters,max iter, tol
Output: qkmeans: A trained model

X ←− preprocess(X)
finished←− false
iteration←− 0
if init ==’qk-means++’ then

cluster centers←− qkmeans plusplus(X, cluster centers, backend)
else

cluster centers←− sample n clusters elements from X
end
while not finished and iteration < max iter do

distances←− CSWAP(X, cluster centers, backend)
labels←− indices of minimum distances
new centroids←− group X by labels and average
inertia←−

∑∑
|new centroids− cluster centers|

if inertia < tol then
finished←− true

end
cluster centers←− new centroids
iteration←− iteration+ 1

end

be done with classical ML clustering algorithms, while also performing clustering

using classical ML algorithms. The results would be assignment fidelities for each

qubit that enable the construction of learning curves with information describing

the mean, CI (confidence interval) and convergence rate. We then compare the

resulting scores from the classical KMeans and the QKMeans algorithm on every

qubit in order to make conclusions on the performance of both algorithms when

discriminating quantum states.

The next set of experiments is oriented towards analyzing the data for informa-

tion on cross-talk using correlation coefficients and the assignment fidelities as well

as the CI of each schedule in a set of schedules. This is done by preparing schedules

for the |00〉, |01〉, |10〉 and |11〉 states using two neighboring qubits and fitting two

54



ML models on a dataset comprised of the |0〉 and |1〉 state for a specific qubit (|01〉

and |00〉 with the least significant bit corresponding to the qubit of choice), and

states with all four schedules, respectively. Information on assignment fidelities is

then compared to find any significant cross-talk happening on a qubit coupling. We

also analyze Pearson coefficients between arrays of signal data retrieved in the form

rj(ESi,X , GSi,Y ) where X, Y ∈ {I,Q} and qubit i is in state j ∈ {0, 1} when the

other qubit is in the excited state (ES) and ground state (GS). Results from the

correlation analysis are contrasted to verify cross-talk on neighboring qubit couples.

4.4 Leakage analysis experiment configuration

Based on crosstalk effects found in qubit couples (1, 2) and (2, 3), we perform

a leakage analysis on the pulse data retrieved from the correlation experiments

done in the ibmq bogota device to find evidence of leakage due to crosstalk. With

several studies confirming that leakage may appear due to crosstalk, our task is to

find leakage on the quantum device of interest through the IQ pulse signals from

schedules with configurations set for crosstalk, applying a ML approach. We use

the KMeans clustering algorithm to analyze the effects of clustering with different

amounts of clusters and the assignment fidelity values they provide. To that effect,

we use two and three clusters representing the |0〉 and |1〉 states, and |0〉, |1〉 and

|2〉 states, respectively. We perform the clustering on all qubit couple data retrieved

from preparing the |00〉, |01〉, |10〉 and |11〉 states on each couple to be able to

compare possible leakage into the |2〉 state on all qubit couples. The criteria we

use to determine presence of leakage is determined by both a visual analysis and

an analysis on the assignment fidelity resulting from clustering with two and three

clusters. That is, if we can visually determine a third cluster, more often than not
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we can calculate the amount of leakage contributed by that third cluster. A similar

but more numerical strategy is to compare the assignment fidelity from both cases

of clustering, where if the difference between the scores is small enough, a third state

can be identified as the cluster with the least amount of data points. If the data

points corresponding to the third cluster represent a small proportion compared to

the amount of data points in the other clusters, we can also conclude the presence of

leakage into the |2〉 state. When concluding leakage on a qubit couple, we intend to

mitigate the effects of leakage by erasing leaked data points as if they were atypical

data points, effectively removing effects of leakage at the cost of a small portion of

information. In fact, an additional reason why the proportion of leaked data points

should be taken into consideration is the amount of data points to be potentially

erased.

56



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Gate optimization

After optimizing the initial random gate on imbq bogota with the closed-loop opti-

mization algorithm using 8 divisions and 60 partitions, the resulting pulse rapidly

gained a fidelity of 94.3% in the third job run with a maximum fidelity of 95.9%.

The convergence curve is showed in Figure 5.1. The final optimized pulse is shown

in Figure 5.2. The initial random X gate process fidelity was 0.01332 ± 0.00358,

the optimized X gate process fidelity was 0.93063± 0.00632 and the default X gate

process fidelity was 0.95560± 0.00839. This shows that the gate optimization using

process fidelity successfully improves that metric over random initial pulses, while

being close but not showing improved process fidelity over the default pulse. RB

was also used to test the final single-qubit error rate of the same optimized pulse

and the results were: the random X gate had a fidelity of 0.82939 ± 0.20232, the

optimized X gate fidelity of 0.75382 ± 0.18798 and the default X gate fidelity of

0.99777± 0.00058. Considering that QPT is a more complete benchmark than RB

as measurements over all basis gates are performed, this difference in error rates may

be explained due to a pulse with a very high error showing obsolete results on error

rates calculated using RB, as is confirmed in several studies. Nonetheless, we can

observe that the optimized pulse also holds a decent fidelity when being measured

with RB.
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Figure 5.1: Resulting X gate pulse convergence curve from optimizing the initial
random constant pulse on ibmq bogota with error bars. The blue line shows the
process fidelity of the optimized pulse at each division (or job run), the yellow line
shows the process fidelity of the initial initial random constant pulse and the red
line shows the process fidelity of the default π pulse.
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Figure 5.2: X gate pulse after optimizing the initial random constant pulse on
ibmq bogota.
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Single Both
Q0 0.753 ±0.2218 0.793 ±0.2182
Q1 0.752 ±0.1986 0.714 ±0.1948
Q1 0.666 ±0.1842 0.714 ±0.1947
Q2 0.704 ±0.2211 0.750 ±0.2270
Q2 0.845 ±0.2107 0.702 ±0.2282
Q3 0.798 ±0.2370 0.797 ±0.2346
Q3 0.701 ±0.2357 0.750 ±0.2379
Q4 0.843 ±0.2167 0.750 ±0.2384

Table 5.1: Assignment fidelity scores for the test dataset on all neighboring qubit
couples with |0〉 and |1〉 state schedules for single and |00〉, |01〉, |10〉 and |11〉 state
schedules for both using the classical KMeans approach.

Single Both
Q0 0.881 ±0.0173 0.889 ±0.0175
Q1 0.825 ±0.0278 0.828 ±0.0255
Q1 0.832 ±0.0435 0.821 ±0.0200
Q2 0.914 ±0.0294 0.911 ±0.0180
Q2 0.926 ±0.0224 0.936 ±0.0158
Q3 0.969 ±0.0174 0.963 ±0.0121
Q3 0.951 ±0.0224 0.953 ±0.0133
Q4 0.951 ±0.0189 0.952 ±0.0134

Table 5.2: Fowlkes Mallows scores for the test dataset on all neighboring qubit
couples with |0〉 and |1〉 state schedules for single and |00〉, |01〉, |10〉 and |11〉 state
schedules for both using the classical KMeans approach.

5.2 Classical Machine Learning

When using the KMeans clustering algorithm on the |00〉, |01〉, |10〉 and |11〉 state

schedules for all qubit couplings, we obtained test scores for qubits when its qubit

couple is in the ground and excited state, respectively. Tables 5.1 and 5.2 show these

scores using assignment fidelity and the Fowlkes Mallows score means with confi-

dence intervals. Both scores for inidividual qubits without effects from neighboring

qubits are shown in the first column of tables 5.1 and 5.2.
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Single Both
Q0 0.790 ±0.1489 0.708 ±0.1858
Q1 0.714 ±0.1708 0.751 ±0.0074
Q1 0.793 ±0.1778 0.749 ±0.1656
Q2 0.741 ±0.2186 0.754 ±0.0055
Q2 0.765 ±0.2120 0.781 ±0.2216
Q3 0.795 ±0.2232 0.752 ±0.0064
Q3 0.759 ±0.2200 0.856 ±0.1955
Q4 0.722 ±0.1919 0.751 ±0.0046

Table 5.3: Assignment fidelity scores for the test dataset on all neighboring qubit
couples with |0〉 and |1〉 state schedules for single and |00〉, |01〉, |10〉 and |11〉 state
schedules for both using the quantum KMeans approach.

Single Both
Q0 0.734 ±0.1624 0.790 ±0.1438
Q1 0.743 ±0.0412 0.740 ±0.0893
Q1 0.756 ±0.0211 0.753 ±0.0263
Q2 0.906 ±0.0029 0.905 ±0.0090
Q2 0.907 ±0.0048 0.900 ±0.0939
Q3 0.915 ±0.0036 0.951 ±0.0093
Q3 0.937 ±0.0098 0.837 ±0.1470
Q4 0.896 ±0.1075 0.889 ±0.1348

Table 5.4: Fowlkes Mallows scores for the test dataset on all neighboring qubit
couples with |0〉 and |1〉 state schedules for single and |00〉, |01〉, |10〉 and |11〉 state
schedules for both using the quantum KMeans approach.

(0, 1) (1, 2) (2, 3) (3, 4)
r0(ESi,X , GSi,Y ) -0.0236 0.0070 -0.0265 -0.0058
r0(ESi,Y , GSi,X) -0.0161 0.0063 -0.0057 0.0042
r1(ESi,X , GSi,Y ) 0.0017 0.0011 0.1814 -0.0434
r1(ESi,Y , GSi,X) -0.0211 0.0214 0.2147 0.0166
r0(ESi+1,X , GSi+1,Y ) 0.0311 0.0869 0.0224 0.0210
r0(ESi+1,Y , GSi+1,X) -0.0394 0.1927 0.0369 -0.0102
r1(ESi+1,X , GSi+1,Y ) 0.02562 0.1923 0.0227 -0.0086
r1(ESi+1,Y , GSi+1,X) -0.0012 0.1111 -0.0111 0.0033

Table 5.5: Pearson correlation coefficients in the form rj(ESi,X , GSi,Y ) where X, Y ∈
{I,Q} and qubit i is in state j ∈ {0, 1} when the other qubit is in the excited state
and ground state and i is the first qubit of the couple, for each qubit coupling on
the device.
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Figure 5.3: Result of running the QKMeans clustering algorithm on the ibmq qasm
simulator for signal data retrieved from qubit 0 of ibmq bogota when applying sched-
ules |00〉, |01〉, |10〉 and |11〉.

5.3 Quantum Machine Learning

Results for the QML approach are obtained in a similar manner as the classical

ML results but with the QKMeans as the selected clustering algorithm. Results for

neighboring qubit couples are shown in tables 5.3 and 5.4 while results for inidividual

qubits are shown in the first column of tables 5.3 and 5.4. Clustering of signal data

on qubit 0 is shown in Figure 5.3.

5.4 Pearson correlation coefficients

With the IQ signal data retrieved on all four schedule variations, we extract arrays

of each feature for a total of 8 arrays. These arrays are used as input to analyze

the Pearson correlation coefficients between each pair of arrays. This procedure is
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Figure 5.4: The qubit coupling map of the ibmq bogota device at the time of signal
data retrieval. The map also shows the frequency values of each qubit and the
CNOT errors between each pair of connected qubits,

implemented for each qubit coupling on the ibmq bogota device with the mapping

shown in Figure 5.4. A heatmap that describes the full spectrum of correlations

between neighboring qubits is illustrated in Figure 5.5. The Pearson correlation

coefficients of interest in the form rj(ESi,X , GSi,Y ) for each qubit coupling are shown

in table 5.5. The further the coefficients are from zero, the higher the correlation.

Similar test and training scores were observed when using the KMeans and the

QKMeans algorithms on single qubits when no other qubit was in the excited state.

The assignment fidelity of the QKMeans was slightly better than that of the KMeans

by 0.2%, while the KMeans held better Fowlkes Mallows scores by 5.6%. This

result describes how well both algorithms cluster the presented data, as only a small

difference in assignment fidelity and Fowlkes Mallows scores can be found. When

observing the Pearson correlation heatmaps, the most significant correlation can be

seen between qubits 1 and 2 as off-diagonal coefficients are the highest, followed by

qubit couples (2, 3), (3, 4), and (0, 1) in descending order, with qubit couple (0, 1)

presenting the lowest scale in Pearson correlation coefficients. This is also verified

with the specific correlations in the form rj(ESi,X , GSi,Y ), where weak correlation

can be found in qubit couples (1, 2) and (2, 3). We use the classical KMeans

Fowlkes Mallows score to perform the correlation analysis due to it presenting the

most stable results out of both clustering algorithm and scores. Weak correlation in
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Figure 5.5: Heatmaps showing the Pearson correlation coefficients between each
array belonging to the signal data of the four prepared schedules acting on each
qubit coupling in the ibmq bogota device. The axes labels follow the following
format for the signal data received: {state} {couple qubit} {real or imaginary part
of the complex number}.
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qubit couples (1, 2) and (2, 3) is corroborated with the ML scores for cases ”single”

and ”both”, showing scores that are further apart than the same cases on the rest of

the qubit couplings. The greatest difference between scores on ”single” and ”both”

cases on qubit couples (1, 2) and (2, 3) are 11% on qubit 1 and 10% on qubit 2,

respectively.

5.5 Leakage analysis results

When applying the leakage analysis strategy explained in section 4.4 with pulse data

retrieved from the ibmq bogota device, we find that most qubit couple results we

perform clustering with three clusters result in an erroneous partitioning of the data

points. Visually, we determine the appearance of leakage on IQ data points when

a third cluster like the one in Figure 3.3 or similar can be identified. That figure

was the result of an experiment to find leakage with an uncalibrated X gate on the

ibmq armonk device, where we can find a clear and great amount of leakage. Out of

all qubit couples, couples (1, 2) and (2, 3) show a slight leakage on the IQ data plane

where after applying the KMeans algorithm, the results of clustering can be shown in

Figure 5.6 and Figure 5.7 while the rest show no leakage, as expected because of the

almost non-existent correlation on the other qubit couples. Despite visual evidence

of leakage appearing, errors in the clustering process can also be observed with qubit

couple (2, 3) as almost 1
4

of the data is clustered in the |2〉 state with some data

points belonging to the |0〉 and |1〉 state being classified as leaked points. With our

criteria of taking into account the proportion of possible data points corresponding

to the |2〉 state to determine leakage, we confirm that while leakage does exist,

the clustering process was faulty and leakage was not completely identified in that

case. This may be due to the amount of real leaked data points being too small,
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Figure 5.6: Application of the KMeans algorithm to cluster three clusters corre-
sponding to states |0〉, |1〉 and |2〉 on qubit couple (1, 2).

potentially causing a class imbalance if clustered correctly. However, qubit couple (1,

2) where we noticed the most amount of correlation provided us with IQ data points

that were compliant with both visual and numerical strategies we use to determine

leakage. This applied to both single and both state combinations. The amount

of leaked data points was ≈ 4.15%, giving a small enough proportion to identify

the third cluster as a leaked state. After applying the error mitigation scheme for

reducing leakage effects, we find a new assignment fidelity of 0.988± 0.0007 on test

data compared to the previous assignment fidelity of 0.978 ± 0.0005 for the single

case, with corresponding values 0.987± 0.0003 and 0.980± 0.0079 for the both case,

having an improvement of ≈ 1% and ≈ 0.7%, respectively.
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Figure 5.7: Application of the KMeans algorithm to cluster three clusters corre-
sponding to states |0〉, |1〉 and |2〉 on qubit couple (2, 3),
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CHAPTER 6

CONCLUSIONS

We observed that the closed-loop optimization algorithm managed to efficiently

optimize a gate on the criteria of process fidelity using the QPT benchmark, while

the RB gate fidelity proved a decent rate using interleaved RB, although lower

than the default pulses’ on both occasions. We can conclude that the different

metrics taken into account by the benchmarks may differ very greatly when the

process fidelity is low enough, rendering those results useless. Finally, closed-loop

optimization algorithms enable the task of quickly optimizing gates up to a slightly

lower process fidelity than default pulses.

We implemented a Quantum KMeans variant with the Qiskit library compatible

with functions from the scikit-learn library. The training and testing scores of this

algorithm were at par with the KMeans algorithm except when clusters weren’t vi-

sually separable, in which case only a small difference in scores was observed. We

demonstrated the use of a cross-talk pulse-level benchmarking scheme on IBM’s

ibmq bogota quantum computer through the use of ML, QML and Pearson corre-

lation coefficients, finding enough evidence to determine weak correlation in qubit

couples (1, 2) and (2, 3). After analyzing the training scores, we also conclude

that the 1 qubit has the worst performance at readout evidenced by the signal data

not being visually separable and the low scores obtained on both clustering algo-

rithms compared to the other qubits. Its poor performance is further verified by

the calibration data showing a high readout error of 8,4%. Training times for QK-

Means were similar to the training times on a KMeans implementation that was

not optimized, whereas the KMeans algorithm available on the scikit-learn library

was faster. Future work for this project is an optimization of the QKMeans algo-

rithm for faster training times given the current constraints of universal quantum
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computers like the one used for this analysis. Despite there being the possibility to

batch several circuits at a single time on a quantum computer for the QKMeans,

the main difference in speed the scikit-learn implementation of KMeans has against

the QKMeans comes from the replacement of one-on-one distance measurements for

distance measurements using a small amount of dot products, greatly reducing its

training time on a classical computer.

Also, we performed a leakage benchmark and error mitigation using the KMeans

algorithm for two and three clusters on ibmq bogota for the same pulse data as

the correlation analysis and found evidence of leakage in qubit couples (1, 2) and

(2, 3) with a correct leakage estimate of ≈ 4.15% on qubit couple (1, 2) through

a visual and numerical leakage identification strategy, while the rest of the qubits

had no observable leakage. We mitigated leakage on qubit couple (1, 2) to improve

the assignment fidelity from 0.978± 0.0005 to 0.988± 0.0007 on the single case and

0.980± 0.0079 to 0.987± 0.0003 on the both case using cross-validation, showing an

improvement of ≈ 1% and ≈ 0.7%, respectively. We therefore confirm the practical

use of a clustering ML algorithm for discriminating quantum states at readout by

providing an experimental process to suppress errors caused by leakage into higher

quantum energy states, which works at the small cost of removing data points

belonging to the |2〉 state as outlier data points.

Future work for this research is performing a full crosstalk, leakage, ML, QML,

QPT and RB analysis based on pulses optimized using the closed-loop optimiza-

tion algorithm, and compare a wider range of metrics to default pulses offered by

IBM quantum devices. Specifically, the application of different ML and QML algo-

rithms on readout using the leakage error mitigation scheme and the use of different

pulse-level benchmarks, along with applications of optics related algorithms for er-

ror mitigation. Future work on other fields is the application of the closed-loop
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optimization algorithm on nuclear magnetic resonance machines and the use of QK-

means for demodulation on optic fiber.
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