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Resumen

Los estados doble y triplemente excitados de sistemas trielectŕonicos, constituyen un problema coulombiano
de cuatro cuerpos, el cual es altamente correlacionado. Para su tratamiento hemos desarrollado un programa
de Interaccíon de Configuraciones (CI) basado en funciones de Hylleraas (Hy), para momento angular y de
esṕın arbitrarios. El ćomputo de resonancias se ha implementado mediante un escalado complejo uniforme
(UCS). Nuestro ćodigo nos permite calcular estados resonantes del ion negativo del Helio con la mayor
precisíon posible.
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Abstract

Doubly and triply excited states of three-electron systemsprovide the case for a highly correlated four-
body Coulomb problem. We have developed a sophisticated three-electron Configuration Interaction (CI)
code based on explicitely correlated Hylleraas (Hy) functions for arbitrary total angular momentum and
spin, which has been implemented with an uniform complex scaling (UCS) method to deal with resonant
states. At present, this UCS-HyCI tool allows us to perform computations to uncover resonant states of
the Helium negative ion, with the highest accuracy possible.
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1. Introducción

To deal with many-electron atomic systems, sever-
al approaches have been developed through the years.
Among them, the Configuration Interaction (CI) method
is the most powerful method known for the accurate
calculation of atomic structure.

The standard or classical CI method provides a tech-
nique to calculate approximate (but accurate) variation-
al energies, and also many-electron wavefunctions in

terms of antisymmetric products of one-electron hydro-
genic wavefunctions or any other form of one-electron
functions. The use of one-electron functions of central
symmetry as basis set and the well-known expansion
of the electron-electron repulsion potential in spherical
harmonics
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notably simplifies the calculations, since the radial and
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Figura 1. The complex rotation method un-
covers the resonant states while continuum
states rotates2θ into the lower half of the
complex plane.

angular parts are evaluated separately. Nevertheless, the
rate of convergence of the classical CI method is rather
slow, both with radial and angular systematic additions.
Anyway we must note that the classical CI method is
exactin nature provided we include a full set of config-
urations.

Being so, the limitations come from practical issues.
For example, recent computations for a three-electron
negative ion like He− [1], where electron correlation
effects dominate, show that in order to obtain accurate
eigenenergies and eigenfunctions, one must reach up to
∼ 10000 configurations in a typical CI approach. The
way to overcome such difficulty is to modify the CI
method to accelerate the convergence. For instance, we
may abandon the advantages of using basis functions
of central symmetry and to adopt correlated configura-
tion basis functions (it means that the radial function
explicitely contains the termsrij). This is the approach
we follow in this work, to be applied to a three-electron
atomic system like He− ion.

2. Hylleraas CI Method

In our approach each configuration of the variation-
al basis set contains radial, angular and spin parts, as
follows:

ψ(r1, r2, r3) = A{R(r1, r2, r3, r12, r23, r31)
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where the radial part consist of:
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and the angular part
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is a vector-coupled spherical harmonics product repre-
senting a final state of definite total angular momentum

L and projectionML. The correlated termsrij , are de-
fined as the norms of the vectors:rij = ri − rj for i, j
taking cyclically values into the{1, 2, 3} set.χ(1, 2, 3)
is the spin part of the wavefunction, andA is the anti-
symmetrizer for three particles.

The major difficulty that one faces when all powers
r

j12
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j23
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j31
31 are present in the basis set is the evaluation

of the radial integrals involved, which become much
more complicate than in the classical CI method.
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(5)
A method to solve the integral (5) has been introduced
by Z.-C. Yan and G.W.F. Drake [2]. A full ’ab initio’
computational code in C/C++ has been implemented
in our group to compute Hylleraas CI eigenvalues and
eigenfunctions for arbitrary total angular momentum
and spin symmetries [3].

3. Computation of resonances: uniform complex
scaling (UCS).

In order to compute resonances, we make use of a
complex scaling method. Whenr → reiθ, the Hamilto-
nian becomes an operator rotated in the complex plane
as:

H(θ) = Te−i2θ + V e−iθ (6)

and we diagonalize the resulting complex non-hermitian
(but symmetric) matrix with standard LAPACK alge-
bra packages. Such UCS technique uncovers resonant
states as schematized in Figure 1. The uncovered res-
onance is aS-matrix pole in the complex plane with
energy given by

E = Er − i
Γr

2
(7)

whereEr is the resonance position andΓr is the reso-
nance width. They are found by closely inspecting the
stabilization path of the resonance with the rotation an-
gle (see Figure 2).
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Figura 2. He− 4P e complex eigenvalue spectrum computed with a) Hylleraas CI. b)classical CI. In the insets, the stabilization of the
resonance location by varing the rotation angleθ is shown. Resonance parameters are taken where∂E/∂θ approaches a minimum.

4. Results and conclusion.

We present computations for the4P e symmetry of
He− negative ion. We compare our Hylleraas CI results
with those obtained with a classical CI approach us-
ing a B-splines basis set [1]. In the classical CI case,
we include 9279 configurations to achieve converged
results, including configurations built up withs, p, d, f
and g one-electron orbitals (i.e., 3078spp, 2907sdd,
171 sff , 171sgg, 2304ppd and 648pdf ). In this ap-
proach we obtain the resonant parameters

Er = −2,06507 a.u., Γr = 0,00142 a.u., (8)

for the first4P e 1s3p2 Feshbach resonance of the He−

system. The complex rotated eigenvalue spectrum is
shown in Figure 2 (a). At variance, in the present Hyller-
aas CI computation, we have includedonly 378 corre-

lated configurations of thespp angular type. The radi-
al part of the basis in Eq. (3) is a simple product of
Slater type orbitals (e−αr for thes states andre−βr for
p states). The correlation powersj12 andj23 run from
0 to 3. Nonlinear parametersα andβ for 6 s and 11p
states, respectively, are generated by an even tempered
geometrical sequence, i.e., exponents are built up with
a seriesαi = α0ξ

i, with i = 1 . . . 6 andα0 = 2 for
s states andβi = β0ξ

i with i = 1 . . . 11 and β0 =
0,5 for p states. A factorξ = 1,2 ensures to complete
the configurational space with diffuse states and avoids
many linear dependencies in the basis set. Remaining
redundancies in the basis set are eliminated before the
Hamiltonian is diagonalized, by removing from the ba-
sis set those states related to eigenvalues near to zero of
the overlap matrix. The resonance parameters obtained
with the Hylleraas CI method are (see Figure 2(b)):
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Er = −2,06502 a.u., Γr = 0,00134 a.u., (9)

that compare rather well with (8) and it clearly shows
the advantage of using correlated configurations. In con-
clusion, we have reached comparable results between
classical CI and Hylleraas CI not only with a much re-
duced size of the Hamiltonian to be diagonalized but al-
so within thespp symmetry only. We remark that radial
correlated coordinatesrij contribute also to accelerate
the angular correlation, at variance with the classical
CI. Our Hylleraas computation may be also compared
with results presented by Bylicki [4]. Further work is
now in progress to obtain resonant states at higher en-
ergies and to be able to compute photoionization cross
section with the Hylleraas CI method.

Acknowledgement

J.C. Cardona work is supported by COLCIENCIAS
through acrédito condonable.

Referencias

[1] J. L. Sanz-Vicario and E. Lindroth and N. Brandefelt.Phys.
Rev. A.66, 052713 (2002)

[2] Z.-C. Yan and G. W. F. Drake.J. Phys. B: At. Mol. Opt. Phys.,
30 4723, (1997)

[3] J.C. Cardona,Hylleraas-type computations for three-electron
atomic systemsMs.Sc. Thesis. Universidad de Antioquia, 2004.

[4] M. Bylicki. J. Phys. B: At. Mol. Opt. Phys., 30 189, (1997)

543


