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Abstract
Coccidioides spp is considered to be one of the most important fungal pathogen of humans. It is the causal agent 

of coccidioidomycosis, a systemic and endemic mycosis with a significant impact on public health, mainly in the 
United States, Central and South America. The host innate immune system appears to play an important role in the 
initial interaction and recognition of Coccidioides infection and the subsequent development of adaptive immunity. In 
this review article, I focus on the interaction between the innate immune response and Coccidioides in an attempt to 
increase our knowledge of the pathogenesis of this fungus.
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Introduction
Coccidioidomycosis, commonly known as San Joaquin Valley 

fever, is a systemic and endemic mycosis caused by the dimorphic 
fungal pathogen Coccidioides spp. It is acquired by the inhalation of 
airborne fungal propagules (arthroconidia; spores) produced by the 
fungus saprobic phase, followed by the initiation of an elaborated 
parasitic cycle unique among the medically important fungi [1]. The 
spores undergo isotropic growth, giving rise to large multinucleate cells 
or “spherules” which typically range from 40 to 120 µm in diameter 
[2,3]. The genus Coccidioides includes two species (C. posadasii and C. 
immitis), distinguished on the basis of molecular and biogeographical 
differences [4]. Coccidioidomycosis is endemic in certain desertic and 
semiarid regions of the southwestern US, northern Mexico and Central 
and South America, including Guatemala, Honduras, Venezuela, 
Paraguay, Argentina, northern Colombia and northeast Brazil [5,6]. It is 
estimated that 100 000 new cases occur in the US each year [7]. Human 
infection occurs after inhalation of fungal spores (arthroconidia). 
The majority of Coccidioides infections in people either produce no 
symptoms or a self-limited pneumonia. Although this mycosis is rarely 
life-threatening, most patients who do not recover spontaneously 
develop extrapulmonary infections [7].

Host immune responses can be divided into two phases, the innate 
and the adaptive. The innate immune response is represented by host 
cells with the capability to recognize foreign molecules through the 
expression of pattern recognition receptors (PRR) whose activation 
is triggered by interaction with pathogen-associated molecular 
patterns (PAMPs); the adaptive immune response is characterized 
by the participation of different T lymphocyte subsets that recognize 
specific antigens. Recent studies have shown that in mice vaccinated 
with a live attenuated strain of Coccidioides, the adaptive immune 
response is directed by an increase in macrophage and dendritic cell 
numbers and activation of lymphocytes, resulting in the production 
of a mixed T-helper (Th) 1-, 2- and 17-type immune response [8]. 
Thus, it is suggested that the adaptive immune response is partly 
controlled by the initial recognition of fungal cells and subsequent 
activation of the innate immune response. However, this immune 
response and its regulation during the coccidioidal infection process, 
which may contribute to resistance or susceptibility to the mycosis, 
is not yet fully understood. Understanding the interaction between 
the host and Coccidioides spp, as well as the mechanisms of the host 
immune responses to coccidioidal infection are consequently essential 

prerequisites for development of new therapeutic strategies and the 
design of vaccines against coccidioidomycosis. In this review, we will 
focus on recent observations of the role played by the innate immune 
response during coccidioidal infection. 

Innate Immune Cells Involved in the Host Defences 
Against Coccidioides 

Professional phagocytes such as neutrophils (polymorphonuclear 
leukocytes [PMN]), monocyte/macrophages and dendritic cells 
(DC), work together with epithelial and endothelial cells to provide 
the first line of defence against microbial pathogens. Phagocytes are 
believed to be the most effective cell type involved in the control of 
coccidioidal infection. PMN are an important component of the 
inflammatory response and are the first cells recruited to the site of 
infection, where they participate in the host defence by killing microbes 
through oxidative and non-oxidative mechanisms. Several studies have 
shown that PMN play an important role in host defence against a wide 
range of microbes. Depletion of these cells increases host susceptibility 
to medically important fungi including Candida albicans [9-12], 
Aspergillus fumigatus [13,14], Paracoccidioides brasiliensis [15] and 
Histoplasma capsulatum [16]. However, in other studies the opposite 
effect has been observed. Thus, mice depleted of PMN and infected 
with Cryptococcus neoformans showed smaller fungal burdens and 
survived longer than controls [17], while in mice infected with C. 
albicans, neutrophil depletion did not alter fungal burden or caused 
systemic dissemination [18]. This illustrates the complex role played 
by these phagocytic cells. In vitro studies have shown that human 
PMN exert phagocytic and fungicidal activity against C. immitis; 
however this depends of both the strain and fungal morphotype 
involved. Thus, arthroconidia and endospores are more susceptible 
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than mature spherules [19]. Histopathological analyses of lungs of 
infected mice during the first 2 weeks post-challenge revealed an 
infiltration of higher numbers of neutrophils surrounding the mature 
spherules, which ruptured and released their endospores [20]. More 
recently, flow cytometry analysis was used to confirm neutrophils as 
the major cells involved in this response, their being rapidly recruited 
to the lung in response to experimental pulmonary infection with C. 
posadasii [21,22]. Nevertheless, the contribution of neutrophils to 
early defence against Coccidioides remains incompletely defined. We 
have hypothesized that neutrophils respond to the fungal insult and 
that this mechanism could be associated with the contents released by 
these parasitic cells; furthermore, the higher numbers of neutrophils 
observed in the lungs can be correlated to the fungal burden in this 
organ [21-23]. This intense inflammatory response at infection sites 
may contribute to lung tissue damage, possibly exacerbating the course 
of fungal disease. 

In addition to their phagocytic role, macrophages also have the 
ability to mediate antimicrobial effects against several pathogens; 
thus, the mechanisms involved in the recognition, activation and 
regulations of these antimicrobial and phagocytic effects are pivotal 
to understanding the innate immune response developed against 

of murine peritoneal and alveolar macrophages, nonhuman primate 
alveolar macrophages and human peripheral blood monocytes with 
coccidioidal arthroconidia, endospores or initial spherules [22,24-
30]. The phagocytic cells were able to engulf the fungal propagules 
but not to kill them without being activated or stimulated [24-27,29]. 
However, the addition of recombinant gamma interferon (IFN-γ) 
or tumour necrosis factor alpha (TNF-α) appeared to activate the 
fungicidal capability of murine alveolar and peritoneal macrophages 
and human mononuclear phagocytes, as demonstrated both by 
reduced recovery and inhibited development of the fungus [28,31]. 
Controversially, it was demonstrated that peritoneal macrophages 
challenged with initial spherules of C. posadasii and activated with 
IFN-γ and lipopolysaccharide (LPS) showed a similar fungicidal 
effect to that observed in non-stimulated macrophages [22,30]. These 
results may suggest that the fungicidal/fungistatic effect exerted by 
macrophages against Coccidioides depends on the fungal morphotype, 
indicating that arthroconidia and endospores are more susceptible to 
these mechanisms than initial or mature spherules.

DC are considered to be professional antigen-presenting cells 
which reside in and patrol the skin and mucosal surfaces, playing 
an important role in mediation of the innate immune system with 
subsequent activation of T cell responses to provide a cell-mediated 
immunity against microbial pathogens [32]. In vitro studies have shown 
that human immature DC have the ability to bind and internalize C. 
posadasii spherules in a time- and temperature-dependent manner, 
an interaction that induces the maturation and activation of these 
phagocytic cells in a similar way to TNF-α [33]. In a further study, 
it was observed that bone marrow-derived DC (BMDC) from DBA/2 
mice (a strain relatively resistant to coccidioidal infection) showed 
a significant up-regulation of toll-like receptor (TLR)-2 and TLR4 
gene expression, secretion of IL-12 and a modest increase in T cell 
co-stimulatory molecule production compared with BMDC from 
BALB/c mice (which are highly susceptible to coccidioidal infection) 
[34]. These results indicate that DC may play a critical role in the initial 
recognition of this fungal pathogen and subsequent formation of a 
cellular immune response [33].

Interaction of this fungal pathogen with epithelial and endothelial 

Toll-like Receptors (TLRs) in the Recognition of 
Coccidioides Infection

The majority of the interactions described above are mediated by 
a cluster of molecules called pattern recognition receptors (PRRs), 
located on the plasma or endoplasmic membranes of virtually all 
nucleated cells. PRRs recognize pathogen-associated molecular 
patterns (PAMPs), which are shared among groups of pathogens. Toll-
like receptors (TLRs) have been the best characterized of PRR so far 
[35]. TLRs recognize several microbial cell wall components (lipids, 
carbohydrates, structural proteins) as well as nucleic acid structures 
that are broadly expressed by several microorganisms [36]. To date 
10 TLRs have been identified in humans (TLR1-10) and 12 in mice 
(TLR1-9 and TLR11-13) [37]. These TLRs have a cytoplasmic domain 
known as the Toll/interleukin-1 receptor (TIR). Once a TLR binds to 
its ligand, an activation process is initiated with a signalling pathway 
via TIR domain-containing adaptor proteins. Several adaptor proteins 
that participate in TLR-mediated mechanisms have been described; 
these molecules include the myeloid differentiation primary-response 
protein 88 (MyD88), Toll/interleukin-1 receptor (TIR) domain-
containing adaptor protein (TIRAP), MyD88-adaptor-like protein 
(Mal), TIR domain-containing adaptor-including interferon-β (TRIF), 
and TRIF-related adaptor molecule (TRAM). These adaptors mediate 
the activation of transcription factors such as the nuclear factor-κB (NF-
κB) and the interferon regulatory factor (IRF), which in turn induce 
the expression of inflammatory and anti-inflammatory cytokine and 
chemokine genes [38,39]. Thus, several fungal components or PAMPs 
(mainly of Aspergillus, Candida and Cryptococcus) are recognized 
by a number of TLRs; i.e,. TLR2/1, TLR4, TLR3, TLR2/6, TLR7, and 
TLR9 [40]. Although BMDC from a mouse strain (DBA/2) resistant 
to coccidioidal infection showed a high expression of TLR2 and TLR4 
after infection with C. posadasii arthroconidia [34], Viriyakosol et al. 
[41] reported that peritoneal macrophages from TLR4 knockout mice 
(TLR4-/-) as well as phagocytic cells from C3H/HeJ mice which had a 
point mutation in TLR4 exhibited no defect in cytokine production 
compared to control mice after stimulation with formalin-killed 
spherules (FKS). By contrast, macrophages from TLR2-/- and MyD88-/- 
mice made less TNF-α, MIP-2 and IL-6 than did macrophages from 
wild type animals [41]. When TLR4-defective C3H/HeJ mice were 
infected with a sublethal dose of C. posadasii they were as susceptible 
to fungal infection as C3H/OuJ mice which had intact TLR4 [42]. 
Moreover, blockade of TLR4 using a specific antibody did not affect 
IL-12 secretion by DC infected with C. posadasii arthroconidia [42]. 
Interestingly, TLR4 defective mice had a significant lower fungal 
burden in spleen [42]. Taken together, the above results suggest that 
TLR2 signalling via MyD88, but not TLR4, could be involved in the 
initial inflammatory response against coccidioidal infection. Additional 
TLRs could also be activated by this fungal pathogen.

Other PRR Involved in the Recognition of Coccidioides 
Infection

The other major PRR family is that of the C-type lectin receptors 
(CLRs), including the following: Dectin-1 which recognizes β-glucans 
[43]; Dectin-2 which recognizes both high-mannose structures and 
α-mannan [44,45]; mannose receptor (MR) which recognizes N-linked 
mannan [46]; DC-SIGN (a receptor on the dendritic cells) which also 

cells has not been studied. It may be that after interaction with 
Coccidioides and their subsequent activation of dendritic cells, as 
well as macrophages and neutrophils, act as a bridge to the adaptive 
immune response in this fungal infection. 

microbial pathogens. Studies have been made in vitro of the interaction 
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recognizes mannan [47]; galectin-3 which recognizes β-mannosides 
[48]; and the soluble mannose-binding lectin (MBL) which recognizes 
mannan and acts as an opsonin [49]. It is noteworthy that various CLRs 
(including Dectin-1, DC-SIGN and galectin-3) have been identified as 
TLR2 co-receptors [40]. Several of these CLRs appear to be involved in 
the recognition of Candida albicans [50]. In the case of Coccidioides, 
it has been reported that RAW 264.7 macrophages overexpressing 
Dectin-1 produced more cytokines when challenged with FKS, live 
spherules or purified β-glucan than control RAW cells; in addition, 
blockade of Dectin-1 with a specific antibody inhibited cytokine 
production in murine peritoneal macrophages [41]. In another 
study, DC from C57BL/6 mice (a susceptible strain for coccidioidal 
infection) made more IL-10 and less IL-23 and IL-12p70 than DC 
from DBA/2 resistant mice; interestingly, this response was inhibited 
when an anti-Dectin-1 antibody was employed [51]. This response was 
attributed to the expression of a truncated splice variant of Dectin-1 in 
susceptible mice; moreover, RAW cells transduced to express the full-
length Dectin-1 responded better to Coccidioides than cells expressing 
truncated Dectin-1 [51]. These results indicate that the susceptibility 
observed in mice could be partially attributed to a process of alternative 
splicing in the Dectin-1 gene [51]. 

MR has been involved in the recognition and internalization of 
medically important fungi [46,52]. Thus, DC exhibited the capability 
to bind C. posadasii spherules through a MR-dependent mechanism, 
based on the observation that addition of mannan to co-cultures of 
these cells inhibited this binding process [33].

Pulmonary surfactant proteins belong to the C-type lectins or 
C-type collectins; these glycoproteins are secreted by alveolar type II 
cells or airway Clara cells [53,54]. Surfactant proteins-A (SPA) and 
D (SPD) appear to play an important role in the innate host defence 
mechanism against several clinically important fungal pathogens [55-

of SPA and SPD were altered in the lungs of C. posadasii-infected mice, 
but not in those of immunized infected animals [60]. In addition, it 
was observed that SPA and SPD could bind to antigens obtained from 
lysate or culture filtrate of C. posadasii [60]. These results indicate 
that pulmonary surfactant proteins may be involved in the initial 
recognition of Coccidioides and subsequent activation and regulation 
of the immune response.

Fungal Components of Coccidioides that Interact with 
PRRs

The fungal cell wall is a complex structure that comprises mannan, 
glucans, and chitin which are covalently cross-linked in a network 
[61]. The fungal components or PAMPs that interact with host cells 
through different PRRs have been well characterized for other fungi, 
particularly C. albicans [50]. The major component of the spherule 
cell wall of Coccidioides is 1,3-β-glucan [41], whose recognition is 
mediated through an interaction with Dectin-1 present on both 
DC and macrophage surfaces [41,51], while the MR present on DC 
recognize fungal mannan in the coccidioidal cell wall [33]. SPA and 
SPD bind to unidentified molecules present in lysate or culture filtrate 
antigens of C. posadasii [60]. The fungal components of Coccidioides 
that are recognized by TLR2 and TLR4 remain unknown. A schematic 
representation of the possible coccidioidal fungal components 
activating the different PRRs is shown in Figure 1. However, it is 
important to note that several TLR could cooperate with each other 
in recognition of fungal components; furthermore, other molecules 

Evasion Mechanisms of Coccidioides from the Host 
Defence

Several strategies have been developed by various fungal pathogens 
to escape or evade the host immune system. These mechanisms involve 
interaction with PRRs including TLRs [62], as well as morphological 
changes, especially in dimorphic fungi [40]. In the case of Coccidioides, 
the infectious particles or arthroconidia (barrel-shaped cells measuring 
2-6 µm in diameter) undergo isotropic growth, giving rise to large 
multinucleated cells (spherules) that range from 40 to 120 µm 
in diameter [2,3], and thus hamper phagocytosis. Arthroconidia 
also possess an anti-phagocytic surface derived from the original 
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Figure 1: Interaction of PRRs and coccidioidal components. 

and mannose receptor (MR) and pulmonary surfactant proteins (SP)-A and –D 
(SPD)] participate in the recognition of coccidioidal components or PAMPs (e.g. 
β-glucan, mannan and other unknown components). In coccidioidal infection, 
interaction of fungal PAMPs with PRRs activates a signalling pathway which 
occurs at the level of the intracellular adaptor molecule myeloid differentiation 
primary-response protein 88 (MyD88). The participations of other adaptor 
molecules such as Toll/interleukin-1 receptor (TIR) domain-containing adaptor 
protein (TIRAP), MyD88-adaptor-like protein (Mal), TIR domain-containing 
adaptor-including interferon-β (TRIF) and transcription factors including nuclear 
factor-κB (NF-κB) and interferon regulatory factor (IRF) have not been studied 
and remain to be confirmed. TLR-mediated MyD88 signalling and Dectin-1 
activation induce the expression of pro-inflammatory cytokines including 
TNF-α, MIP-2, IL-6, IL-10 and IL-12, thus driving the immune response.

PRR Coccidioidal 
component

Effect References

TLR2
TLR4
Dectin-1
MR
SP-A
SP-D

Unidentified
Unidentified
β-glucans
Mannan
Unidentified
Unidentified

Low TNF-α, MIP-2 and IL-6 levels
Low fungal burden in spleen
High TNF-α, MIP-2, IL-12 and IL-6 levels
Spherule binding to DC
uptake/phagocytosis ?
uptake/phagocytosis ?

[41]
[42]
[41,51]
[33]
[60]
[60]

PRR: Pattern Recognition Receptors; PAMP: Pathogen-Associated Molecular 
Patterns; TLR: Toll-like Receptor; MR: Mannose Receptor; SP: Surfactant Protein; 
DC: Dendritic Cell 
Table 1: Interaction between PRRs and coccidioidal PAMP components, and its 
effect.

Surface -like receptors (TLRs) as well as other C-type lectins [e.g. Dectin-1 Toll

59]. In an in vivo model of coccidioidomycosis, it was found that levels 

act as co-receptors of TLR, especially TLR2. The mechanisms of this 
cooperation need to be elucidated in order to understand the interaction 
between Coccidioides and host cells. The PRR, fungal components and 
effect of the interaction of Coccidioides and host cells are described in 
Table 1. 

including C-type lectin or other carbohydrate-binding proteins could 
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hyphal outer wall layer [63]. It has also been demonstrated that the 
spherule produces an extracellular fibrillar matrix based on a complex 
glycoprotein which interferes with the PMN-spherule interaction [19]. 
Once arthroconidia and endospores are phagocytized, they appear to 
inhibit the fusion of phagosomes [24,26,27], a mechanism that can be 
reversed by prior activation of phagocytes with lymphokine to enhance 
phagosome-lysosome fusion and subsequently kill the fungus [25]. 

Several other virulence factors have been described to account 
for host evasion in Coccidioides. Thus during parasitic fungal growth, 
Coccidioides spherules release an outer wall (SOW) material which is 
engulfed by phagocytic cells at the infection site [64,65]. A glycoprotein 
component of this SOW (SOWgp) is specifically recognized by serum 
from patients with coccidioidomycosis [66]. SOWgp is produced during 
the isotropic growth of the spherules and decreases during endospore 
formation [67]. It is noteworthy that SOWgp is undetectable during the 
endosporulating process in culture, when a metalloproteinase (Mep1) 
is produced [68]. Studies in vitro have shown that the recombinant 
Mep1 enzyme digests the purified SOWgp [65]. Additionally, it was 
shown that a murine alveolar macrophage cell line infected with 
SOWgp-coated parasitic cells enchanced phagocytosis and killing of 
this fungal pathogen in the presence of anti-SOWgp antibody [68]. 
These results may suggest that the SOWgp degradation observed during 
endosporulation could interfere with endospore recognition by specific 
antibodies, evading the opsonization and phagocytosis processes and 
subsequent elimination of the fungal pathogen.

 

to infected WT mice [22]. These results indicate that ROS may to be 
dispensable for innate immunity to coccidioidal infection [22,77].

Nitric oxide (NO) is considered to be one of the most important 
reactive nitrogen intermediates and is produced by an oxidative 
mechanism involving the catabolism of L-arginine [78]. NO production 
by enzymatic action of inducible nitric oxide synthase (iNOS) 
represents one of the major microbicidal mechanisms of phagocytic 
cells against several pathogens [79]. NO synthesis by iNOS can be 
induced by several stimuli, including IFN-γ, TNF-α and LPS, and is 
expressed by immune cells such as macrophages, neutrophils, dendritic 
cells and NK cells [78]. In a previous study using a macrophage-free 
system and a NO generator (3-morpholinosydnonimine [SIN-
1]), C. posadasii arthroconidia were observed to be more sensitive 
to low concentrations of SIN-1 than either initials or segmented/
endosporulating spherules, indicating that the later forms of C. 
posadasii could have mechanisms capable of detoxifying NO [3]. More 
recently, it was demonstrated that initials spherule of Coccidioides spp. 
have the ability to suppress both NO production and iNOS expression 
by murine primary macrophages previously activated with IFN-γ+LPS, 
through the secretion of an unknown soluble factor [30]. However, 
peritoneal macrophages from iNOS-/- mice were able to phagocytize the 
fungal cells and showed similar fungicidal activity against Coccidioides 
initial spherules to macrophages from WT mice [30]. In additional in 
vivo studies, it was observed that both iNOS-/- and WT mice infected 
i.n. with C. posadasii arthroconidia showed similar survival rates and 
fungal burden in lungs [21]. Nevertheless, iNOS-deficient mice showed 
a significantly higher fungal burden in the spleen than that observed in 
WT mice. In summary, the above studies suggest that although both 
NOX2 and iNOS activity are not essential for killing of Coccidioides 
they may play a pivotal role in regulation of the innate inflammatory 
response against this fungal pathogen, and that some other undefined 
mechanism of host protection against coccidioidomycosis is involved. 
On the other hand, a microarray approach allowed an upregulation 
of arginase I expression to be identified in mice infected i.n. with 
Coccidioides arthroconidia [65]. Arginase I competes with iNOS for 
the common substrate L-arginine [80]. The former is able to hydrolyze 
L-arginine to L-ornithine, providing a substrate for the enzyme 
ornithine decarboxylase (ODC). ODC has been cloned, sequenced and 
expressed in E. coli where it was observed that this enzyme was only 
present during the growth phase [81]; this enzyme is a key component 
of the polyamine biosynthetic pathway and apparently accounts for 
growth and proliferation of this fungal pathogen [65]. In concurrence 
with the above results, low iNOS gene expression has been reported 
in the lungs of mice infected with Coccidioides [3]. Thus, upregulation 
of arginase I may decrease levels of NO production allowing survival 
of the fungal pathogen. A physiological inhibitor of arginase [N 
ω-hydrohy-nor-L-arginine (nor-LOHA)] was employed to determine 
the contribution of NO to this coccidioidomycosis model. The i.p. 
treatment with nor-LOHA significantly increased survival of infected 
mice compared with that of untreated animals [3]. These data indicate 
that arginase I induction plays a pivotal role in coccidioidal infection.

Concluding Remarks
During the process of compiling this review, it was observed rapid 

progress in the understanding of the mechanisms involved in innate 
immunity for several fungal models, particularly those of Candida, 
Aspergillus and Cryptoccocus. The studies cited have provided pivotal 
insights into the interactions between TLRs and other PRRs with fungal 
pathogens. In the case of Coccidioides, data about innate immune 
response remain scarce. Few research groups currently work with this 

Hydrolysis of urea by coccidioidal urease [69] yields carbonic 
acid and ammonia, a process that accounts for microenvironment 
alkalinization [70]. Urease has been identified as an important virulence 
factor in Cryptoccocus [71]. In a series of elegant experiments, Mirbod-
Donovan et al. [72], deleted the URE gene in C. posadassi, resulting in 
a significant reduction in virulence when this mutant strain was used 
to infect mice. These results allow it to suggest that urease produced 
by spherules during the parasitic cycle of Coccidioides could account 
for: (i) tissue damage observed during infection, (ii) alkalinization of 
the microenvironment including that within phagosomes containing 
endospores, and (iii) induction of high expression levels of arginase I 
[65]. The latter process is described below. 

Reactive oxygen species (ROS) and reactive oxygen intermediates 
(ROI) are produced by mammalian cells (particularly phagocytes), 
against several microbial pathogens [73-75]. These molecules are 
generated by activation of the enzymatic complex nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase (NOX2) and include 
superoxide anion (O2-), hydrogen peroxide (H2O2), hydroxyl radical 

OH), peroxynitrite (ONOO-), and hypochlorous acid (-OCl) among 
others [73-75]. In vitro studies have shown that exogenous hydrogen 
peroxide (H2O2) affects the arthoconidia but not spherule viability in the 
same way as PMN [76]; more recently, Margolis et al. [77] also showed 
that C. immitis arthroconidia and spherules were significantly more 
resistant to H2O2 treatment than Aspergillus fumigatus spores. These 
results clearly indicate that fungal morphotype is at least one of the 
characteristics that allow Coccidioides to evade natural antimicrobial 
mechanisms exerted by PMN. Furthermore, IFN-γ- and LPS-activated 
and non-activated macrophages isolated from either NOX2 knockout 
(NOX2-/-) or wild type (WT) mice showed comparable ROS production 
and killing efficiency when infected with Coccidioides spherule initial 
morphotype [22]. Interestingly, in vivo studies showed that NOX2-/-

mice infected i.n. with C. posadasii arthroconidia showed an equivalent 
fungal burden to WT mice; nevertheless, infected NOX-/- mice died 
earlier and showed an exuberant inflammatory response compared 
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pathogen, whose classification as a class III bioterrorist agent further 
restricts investigations into its model of infection; this could explain the 
few data found. We observed that some TLR and other PRR are involved 
in recognition of this dimorphic fungal pathogen, and some virulence 
factors that have already been identified contribute to pathogenesis of 
infection. Several points remain to be elucidated however, including: 
(a) the involvement of TLRs other than TLR2 and TLR4, as well as that 
of other PRRs such as Dectin-2, DC-SIGN, galectin-3 and MBL; (b) 
the participation of other adaptor molecules and transcription factors; 
and (c) identification of the specific fungal components that interact 
with these host receptors. Coccidioidomycosis could thus provide an 
exciting model for investigation of the innate immune system’s role 
in host defence against infection. Understanding the nature of the 
interactions between this fungal pathogen and innate immune system 
is crucial to the development of vaccines and other immunomodulatory 
strategies against coccidioidal infection.
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