PROPIEDADES ESTRUCTURALES Y MAGNÉTICAS DE HEMATITAS PURAS SOMETIDAS A ALEAMIENTO MECÁNICO EN AIRE

L. C. Sánchez¹, F. Perez², J. D. Arboleda¹, C. Saragovi³, C. Barrero¹ ¹Instituto de Física, Universidad de Antioquia, Medellín-Colombia. ²Universidad Pontificia Bolivariana, Medellín-Colombia. ³Comisión Nacional de Energía Atómica, Buenos Aires-Argentina (Recibido 29 de Sep.2005; Aceptado 20 de Mar. 2006; Publicado 16 de Jun. 2006)

RESUMEN

Se llevó a cabo tratamiento mecanicoquimico de polvo de α -Fe₂O₃ (hematita) en aire y en un líquido dispersante (etanol), utilizando un molino planetario de bolas. Se investigó la influencia de la atmósfera y la duración del tiempo de molienda en la transformación de α -Fe₂O₃. Medidas de difracción de rayos X (DRX) y espectroscopia Mössbauer revelan transformación parcial de α -Fe₂O₃ a γ -Fe₂O₃ (Maghemita) para tiempos prolongados de molienda en aire, mientras que solo fase de α -Fe₂O₃ fue obtenida para la molienda en etanol. Parámetros de red y tamaños de granos han sido calculados de los patrones DRX para los diferentes tiempos y condiciones de molienda.

Palabras clave: Oxido de Hierros, Hematinas, Aleamiento Mecánico.

ABSTRACT

The mechanochemical treatment of the α -Fe₂O₃ (hematite) powder in air and a dispersing liquid (ethanol), using a planetary ball mill was performed. The influence of the atmosphere and the milling time in α -Fe₂O₃ transformation was investigated. X ray diffraction (XRD) and Mössbauer measurements showed partial transformation from α -Fe₂O₃ to γ -Fe₂O₃ (maghemite) for prolonged milling time in air, while only one α -Fe₂O₃ phase was obtained for the milling using ethanol. Lattice parameters and particles size has been calculated from the XRD patterns for the different times and milling conditions.

Keywords: Iron Oxides, Hematites, Mechanical alloying.

1. Introducción

Durante los últimos años la investigación de materiales magnéticos preparados artificialmente se ha incrementado en forma dramática. Este progreso se debe al avance de las técnicas de elaboración y caracterización de los materiales. La hematita, α -Fe2O3, es un óxido de hierro fascinante, el cual ha sido tema de intensa investigación durante mucho tiempo [1,2]. El aleamiento mecánico de óxidos de hierro para la obtención de estos en forma nanoparticulada ha tomado gran importancia en las últimas décadas debido a que ofrece nuevas alternativas de aplicaciones en sistemas de almacenamiento magnético. Recientemente, propiedades estructurales y magnéticas de óxidos de hierro nanoparticulados han sido investigadas mediante técnicas de difracción de rayos X y espectroscopia Mossbauer [3-6]. En este trabajo la atención ha sido puesta en las condiciones de producción de nanoparticulas de α -Fe2O3 y las circunstancias bajo las cuales son inducidas transformaciones en los procesos de molienda. Además de un análisis y discusión de los aspectos cristalográficos de los productos obtenidos de la molienda.

2. Procedimiento Experimental

Como material precursor se utilizó polvo de α -Fe₂O₃ (Merck) con un tamaño promedio aproximado de 4 µm y 99.9% de pureza. El tratamiento mecanicoquimico fue llevado a cabo en un molino planetario de bolas, Fritsch Pulverisette 5. Se utilizaron 2 jarros de acero inoxidable de 250 cm³, con 10 bolas de acero inoxidable de 12mm de diámetro. En todos los experimentos, la relación de masa bolas-polvo fue de 20:1, con masa del polvo de 3.5 g. La velocidad de rotación del disco de soporte se fijó a 390 rpm. Diferentes tiempos de molienda se consideraron (0.5, 1, 3, 6, 12, 18 y 24 horas), el polvo fue molido en aire (molienda en seco) y en aire con liquido dispersante (10 mL de etanol, Merck) a presión atmosférica bajo condiciones cerradas, los jarros para la molienda en seco fueron abiertos durante 2 minutos después de cada hora de molienda. La estructura cristalográfica de los productos fue investigada por difracción de rayos X (XRD) usando un tubo de CoK $\alpha(\lambda=1.78897 \text{ Å})$. Se llevo a cabo análisis Rietveld de los datos utilizando el programa MAUD^[7].

3. Resultados y discusiones

La Fig. 1 muestra los patrones de difracción de las muestras molidas en aire y etanol/aire durante 0, 0.5, 3, y 24 H. El mejor ajuste se obtuvo introduciendo dos fases para la hematita, una micrométrica que proviene del precursor y otra nanométrica que corresponde al polvo efectivamente molido. Como primera observación el color de las muestras fue cambiando a café oscuro con el incremento del tiempo de molienda en aire, mientras que en la molienda etanol/aire el color permaneció independiente del tiempo de molienda. Los patrones de difracción del material precursor molido, evidenciaron solo la presencia de hematita hasta 1 H para la muestra molida en aire, Fig 1(a). Sin embargo, nuevos picos de difracción en las posiciones 35.092° (220) y 50.674° (400) de la fase γ -Fe₂O₃ fueron observados, coexistiendo con la fase α -Fe₂O₃ para los tiempos de molienda desde 3 H hasta 24 H.

Figura No.1. Patrones XRD y ajustes Rietveld de polvo de α -Fe₂O₃ molido en (a) aire y (b) etanol/aire para varios tiempos; (O) α -Fe₂O₃; (\blacklozenge) γ -Fe₂O₃.

Adicionalmente para la molienda de 3 H hasta 24 H se detectó α -Fe con un área relativa no mayor al 2% proveniente de los jarros y bolas. Para el caso de la molienda en etanol/aire solo fueron detectadas líneas característica de fase α -Fe₂O₃, contrario a lo obtenido en trabajos anteriores ^[6-8], Fig 1 (b). Un ensanchamiento de las líneas puede ser apreciado con respecto a la muestra precursora, indicando la presencia de tamaños de granos nanométricos ^[3]. En la Fig 2(a) se observa que el tamaño promedio de grano para la fase α -Fe₂O₃, de la molienda en aire, fue decreciendo gradualmente desde 21 nm hasta 10 nm para tiempos de molienda entre 0.5 H y 24 H, mientras que para la molienda en etanol/aire, decrece desde 41 nm hasta 19 nm.

(a)

Figura No.2. (a) Tamaño promedio de grano de la fase de α -Fe2O3 para varios tiempos de molienda en (O) aire y en (Δ) Etanol/aire; (b) y (c) Áreas de las fases: (∇) nanométrica de α -Fe2O3, (*) micrométrica de α -Fe2O3 y de (\Box) γ -Fe2O3.

En la Fig. 2 (b) v 2 (c) se observan las áreas de las fases de α -Fe₂O₃ v γ -Fe₂O₃ en ambas moliendas, se nota un aumento gradual de la fase nanométrica de α -Fe₂O₃ mientras que la fase micrométrica decrece ^[4], para el caso de la molienda en aire se nota el aumento de la fase de γ-Fe₂O₃. Los resultados anteriores de las moliendas en aire y etanol/aire indican preservación de la formula molecular, solo presencia de iones Fe^{3+} (iones presentes en la α -Fe₂O₃ y en la γ - Fe_2O_3) lo cual descartaría la reducción a Fe^{2+} (iones presentes en la Magnetita, Fe_3O_4)^[5].; luego la transformación de α -Fe₂O₃ a γ -Fe₂O₃ para la molienda en aire se explica debido a la mayor energía entregada al polvo por el molino, contrario a la molienda en etanol/aire donde el etanol evita el contacto directo entre el polvo y los elementos del molino. La Fig. 3 muestra los espectros Mössbauer de la muestra precursora y la muestra molida durante 3 H en aire y etanol/aire. El mejor ajuste se obtuvo introduciendo para todas las muestras una distribución de campos hiperfinos que da cuenta de los ensanchamientos de las líneas y una componente cristalina bien definida proveniente de la muestra precursora. Los parámetros dejados fijos de la componente cristalina son: campo hiperfino de 51.5 T, desdoblamiento cuadrupolar de -0.20 mm/s y desvio isomerico de 0.38 mm/s relativos al α -Fe, los cuales claramente corresponden a la hematita precursora. Para la muestra molida durante 3 H en aire se introdujeron adicionalmente dos sextetos y un doblete, un sexteto debido a la presencia de una pequeña cantidad de γ -Fe₂O₃ con campo hiperfino alrededor de 49 T, desdoblamiento cuadrupolar de 0.0 mm/s y desvio isomeri-

REVISTA COLOMBIANA DE FÍSICA, VOL. 38, No. 2. 2006

co de 0.32 mm/s relativos al α -Fe y el otro sexteto asociado al hierro proveniente de las bolas y jarros. El doblete es debido a la presencia de hematita superparamagnética^[4], la cual posee partículas de tamaños de grano del orden de 8 nm, asociados con los resultados del refinamiento Rietveld, los cuales evidencian una distribución de tamaños de grano centrada en 10 nm aproximadamente.

Figura No.3. Espectros Mössbauer para la muestra precursora y tiempo de molienda de 3 H en (a) aire y (b) etanol/aire. Se muestran sus componentes.

4. Conclusiones

Cambios estructurales significativos ocurren durante el tratamiento mecánico de polvo de α -Fe₂O₃ ya sea en aire o en etanol/aire. En aire se obtuvo transformación parcial (aprox. 12%) del material precursor a γ -Fe₂O₃ de acuerdo a refinamiento Rietveld, esto puede ser explicado como un cambio cristalográfico relativo a la energía mecánica ejercida sobre la muestra para reducir el tamaño de partícula. Para etanol/aire solo nanoparticulas de α -Fe₂O₃ fueron obtenidas, constituyendo este un método eficaz para la síntesis de nanoparticulas de la α -Fe₂O₃. Los campos magnéticos hiperfinos de las partículas magnéticas pequeñas dependen de los tamaños de partículas y los ensanchamientos de las líneas pueden ser explicadas mediante distribución de tamaños de partículas.

Los autores agradecen al CODI- Universidad de Antioquia (proyecto Sostenibilidad Grupo de Estado Sólido 2005-2006), a COLCIENCIAS (a través de los proyectos CIAM-2005 y Centro de Excelencia en Nuevos Materiales, contrato RC-043 de 2005).

Referencias

[1] C.A. Barrero, J. Arpe, E. Sileo, L.C. Sánchez, R. Zysler, and C. Saragovi, Physica B 354 (2004) 27.

- [2] C. Saragovi, J. Arpe, E. Sileo, R. Zysler, L.C. Sanchez and C.A. Barrero, Physics and Chemistry of Minerals 31 (2004) 625.
- [3] S. J. Stewart, R.A. Borzi, E.D. Cabanillas, G. Punte and R. Mercader, J. Magn. Magn. Materials 260 (2003) 447.
- [4] R.A. Borzi, S.J. Stewart, G. Punte, R. Mercader, M. Vasquez-Mansilla, R.D. Zysler, and E.D. Cabanillas, J. Magn. Magn. Materials 205 (1999) 234.
- [5] N. Randrianantoandro, A. M. Mercier, M. Hervieu, J. M. Greneche, Mater. Lett 47 (2001) 150.
- [6] S. Bid, A. Banerjee, S. Kumar, S. K. Pradhan, Udayan De, and D. Banerjee, J. Alloys Comp. 326 (2001) 292.
- [7] The MAUD program, http://www.ing.unitn.it/~maud/
- [8] M. Zdujic, C. Jovalekic, Lj. Karanovic, M. Mitric, D Poleti and D. Skala, Mater. Sci. Eng. A245, (1998) 109.