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Abstract 

 

 
Audio analysis is a topic of study that has gained momentum in the last decade, the 

growing information as well as the improvement in computational power has allowed 

more and more academic and industrial sectors to perform studies of audio signals 

which previously went unnoticed. With this type of analysis certain drawbacks arise, 

one of them is that in many cases the recording conditions will not be optimal to 

obtain a sample with "clean" information, because external factors affect or introduce 

noise to the sample. As a solution to this problem, multiple algorithms have been 

developed for audio cleaning, some of them require manual work that can be 

exhausting depending on the size and quantity of audios, and on the other hand there 

are techniques that use predictive models created with Machine or Deep Learning to 

perform the cleaning process in an automated way. Although these last techniques 

have solved the problem of doing this work manually, many of them are not user-

friendly and require the user to have knowledge of the model created in order to make 

changes and experiment at ease, thus reducing the number of people who can make 

use of this technology. 

 

In this work a web application was created which allows to make use of a Deep 

Learning model called ORCA-CLEAN [23], created to perform audio cleaning for 

whales. and couple it in such a way that the user can perform audio cleaning without 

having knowledge of the model and just making use of his mouse and keyboard. The 

user can select multiple regions in the audio spectrogram in order to apply different 

types of parameters and make comparisons, as well as listen to the resulting audio(s) 

after applying the cleaning process. Finally, the user can download a zip folder 

containing images of the spectrograms of the regions before and after cleaning, as 

well as the cleaned audio(s).   
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Introduction 

 
The animal world hides many secrets, and we, as human beings, are constantly 

advancing to decipher them, understand animals is one of these enigmas. For the past 

years, researchers have been focusing their attention on the way that animals use 

sounds to communicate between them. The majority of the animals use sounds that 

are incomprehensible to the human ear but for them, these sounds can be used as a 

method to detect or warn for a predator or prey, to alert others to stay away from 

their territory, to mate [1], among others. Advancements in machine learning [2],[3] 

and audio analysis [4],[5] applied in animal sounds facilitate the study of long hours of 

passive acoustic recordings of animals in the wild. Within the advantages of passive 

recordings are sounds and animal behavior unaffected by the human's presence; 

nevertheless, this leads to recordings with a high amount of environmental and animal 

sounds combined due to the absence of control. 

 

This noise variety requires the use of different denoising techniques. In the past, 

methods based on low-pass [6] and high-pass [7] filters have been successfully applied 

in several studies of bird classification. Due to the high performance of deep learning 

techniques, recent studies use deep autoencoders [8], Deep Neural Networks (DNNs) 

[9][10], a combination of both [11] and Recurrent Neural Networks (RNNs) [12] to 

clean and enhance audio signals. However, the main concerns with these models are 

the low transferability and the need for clean/denoised ground-truth samples for the 

training stage, which in most of the cases is unavailable. ORCA-CLEAN is the first deep 

denoising approach that does not require clean ground-truth samples [13]. Adding 

that to the robustness and generalizability of the model makes it an excellent choice 

to be used for denoising sounds from different animal species. This study aims to 

create a web application. It will be allocated on a cloud instance in AWS. The ORCA-

CLEAN model and the web application will allow other researchers to select frequency 

ranges and denoise multiple audios. Additionally, the web application will let the user 

segment the recordings to apply different types of denoising and adapt other features, 

giving a more feasible way of denoising their recordings with less programming 

knowledge. 

 

The creation of a web application would provide people, researchers, and companies 

interested in the study of the animal kingdom with a tool that brings together 

concepts and strategies for audio segmentation, which is a process that can 
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sometimes be long and tedious. On the other hand, engineering and technological 

developments must be focused on facilitating and creating bridges between different 

disciplines. With this web application, we seek to apply knowledge in audio analysis, 

machine learning, and software development to build an application that allows audio 

segmentation of different species of animals for future research. 

 

1. Objectives 

 

1.1.  General Objective 

To develop a web application that includes the ORCA-CLEAN model for audio-

denoising by using Django, React, and Apache tools to allow users without any 

programming background to clean multiple audios. In addition, the development must 

grant other research areas like biology an easy-to-use tool to create and interact with 

different scenarios. 

 

1.2.  Specific Objective 

 

• To parameterize the ORCA-CLEAN model to allow users to tweak the different 

parameters before performing the audio-denoising, creating different 

scenarios and responses depending on the selected values. 

• To design and implement the user interface and all the modules responsible 

for the different functionalities of the web application such as visualization, 

audio segmentation, parametrization, audio-denoising, among others, based 

on the scenarios and responses previously defined and using Django, React, 

and Apache tools.  

• To validate the web application by performing unit tests on the different 

modules and presenting the web application to experts from the Pattern 

Recognition Lab in the Friedrich-Alexander-Universität Erlangen-Nürnberg to 

obtain feedback from them and fix possible problems. 
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2. Theorical Background 

 

2.1. Backend 

 

For every web application, there is a backend that focuses on everything “behind the 

scene”, the backend is the part of the application in charge of the continuous 

communication between the server and the application database. Its main focus is the 

logical part of the application, which contains all the features and basic functionalities 

that the application needs for its use, without the backend the applications will be an 

empty case where you cannot interact with anything. The flow of data that comes 

from the frontend is analyzed by the backend, which is capable of understanding the 

request, who sent it, what is needed to fulfill the request, where can be found the files 

and how to send the data back to the frontend so the user can see it. There are 

multiple options for a backend, each one of them with its benefits and disadvantages, 

for this work the framework Django will be used as a backend, Django [20] uses Python 

which will help us with a better and faster connection of the machine learning models. 

 

2.2. HTTP 

The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the 

lightness and speed necessary for distributed, collaborative, hypermedia information 

systems and it has been on the World-Wide Web since 1990 [26]. HTTP not only 

defines the structure of the message to allow the communication between two points 

but also give the user methods to perform basic petitions, the most used ones are: 

 

• GET: This method is used to retrieve data and nothing else, if the request is 

pointing to a data-producing process the response has to be the produced 

data. 

• POST: This method is used as a request to process the data that is sent in the 

POST request, this data most of the time comes in form of files, JSON, or form 

data. 

• PUT: This method requests the server to store the information in the Uniform 

Resource Identifier (URI) that it’s sending in the request. 
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These methods are applied to a resource that is indicated through a URI. Each request 

contains headers, this consists of a name that is followed by a colon (“:”), and then the 

value [26], these headers bring information such as the type of message, the length of 

the message, authorization credentials, among others. 

 

After the request is processed the entity must respond with the status of the request 

to maintain communication, this response comes with a status code that identifies the 

type of response, these codes can be classified by the first number: Information 1xx, 

Successful 2xx, Redirection 3xx, Client Error 4xxx, Server Error 5xx. 

 

2.3. API 

The Application Programming Interface (API) is a set of rules that state how two 

devices must communicate, APIs primarily were used for the exchange of information 

between two or more programs [27], later on, this idea was used on the Internet to 

access data using the HTTP protocol and now provides the user ways to efficiently use 

programming queries to send and retrieve information.  

 

The same way as HTTP, API uses URI as the identifiers, Figure 1 shows how a URI is 

structured and what are the main components: 

 

 
Figure 1. URI Structure 

 

APIs provide great flexibility due to the fact that the data is not tied to the request 

methods, APIs also allow us a new layer of security by being the intermediary between 

the client and the server 
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2.4. Frontend 

The frontend is the part of the web application in charge of displaying the information 

delivered by the backend to the user, it also fulfills the function of collecting 

information such as words, clicks, files, etc. The frontend is the visual part of an 

application and although it is an application more focused on the functional part than 

the visual part, it is important to have a frontend not only to facilitate the use of the 

application but to allow users to navigate through it correctly.  

 

To create a good user experience, it is important to choose an appropriate a good 

architecture, this will not only facilitate future scalability but also will be faster and 

more stable, different frameworks and libraries are used in the front end, for this work 

we will be using React Js, which are JavaScript libraries for building user interfaces, 

JavaScript will allow us a better interaction with the user by creating a real-time 

communication. React Js it’s a very popular and well-known library for the creation of 

front-end among developers, the ongoing growth in the number of framework and 

web applications that uses React Js for the front-end shows the stability and versatility 

of the libraries. 

 

2.5. Time-Frequency representation 

 

Since the purpose of this work is to make modifications to audios, it must be taken 

into account that these have a representation in both time and frequency. The 

collective use of both representations allows multiple types of analysis and 

modifications to the audio, for this reason, it is necessary to have a way to perform 

audio analysis in both the time domain and frequency domain. The Discrete Fourier 

Transform (DFT), as its name indicates, allows us to perform time series transforms of 

a signal the same way as a Fourier integral transform or a Fourier series transform. It 

is a mapping operation that allows the representation of a time signal in the frequency 

domain.  

The discrete Fourier transform uses discrete signals, which are characterized by 

belonging to a domain n of integers. Discrete signals typically come from the 

discretization of an analog signal. The signal is transformed into a sequence of 

numbers once discretized, allowing its mathematical manipulation [30]. This is 



 

 

 

10 

 

important to mention because to perform a computational time-frequency analysis 

the process signals require to be a discrete signal.  

When sampling the analog signal, to ensure a correct representation of the signal, the 

samples must be selected with a frequency at last two times of the maximum 

frequency of the waveform, also known as Sampling Theorem [17] [18], this is 

important to ensure enough points of the signals in order to do a correct reverse 

transformation without losing to much information. 

𝑋𝑘  = ∑ 𝑥(𝑚) 𝑊𝑚𝑘

𝑁−1

𝑚=0

 , 𝑘 = 0,… ,𝑁 − 1,  

𝑊 = 𝑒−𝑖2𝜋/𝑁, 𝑖 =  √−1 

Equation 1. Discrete Fourier Transform. [19] 

The analysis of a signal in the frequency domain eases the convolutional operation, 

which is reduced to a multiplication of the signals in the frequency domain. This makes 

the Discrete Fourier Transform useful in spectrum analysis, digital signal filters, data 

compression, among other uses.  

The DFT has a computational complexity of O (N 2), meaning that for long signals the 

number of CPU’s operations increase rapidly, to reduce these computational times the 

Fast Fourier Transform (FFT) algorithm is used to calculate the DFT in a more efficient 

way. This algorithm reduces the computational complexity of the operation from O (N  

2) to O (N log N) [28].  

The FFT reduce the operation time by reusing values calculated previously in some 

parts of the operation, to have a better understanding on how the FFT reuse previous 

values first we have to express the Equation 1 as matrixes as shown in Equation 2. 

[𝑋(𝑘)] = [𝑊𝑛𝑘][𝑥0(𝑛)] 

[

𝑋(0)
𝑋(1)

𝑋(2)
𝑋(3)

 ]  = [

𝑊0 𝑊0 𝑊0 𝑊0

𝑊0 𝑊1 𝑊2 𝑊3

𝑊0 𝑊2 𝑊4 𝑊6

𝑊0 𝑊3 𝑊6 𝑊9

] [

𝑥0(0)
𝑥0(1)

𝑥0(2)
𝑥0(3)

] 

Equation 2. Matrix representation 

After replacing 𝑊0 = 1, and factoring the W matrix: 



 

 

 

11 

 

[

𝑋(0)
𝑋(1)

𝑋(2)
𝑋(3)

 ]  = [

1 𝑊0 0 0
1 𝑊2 0 0
0 0 1 𝑊1

0 0 1 𝑊3

] [

1 0 𝑊0 0
0 1 0 𝑊2

1 0 𝑊2 0
0 1 0 𝑊2

] [

𝑥0(0)
𝑥0(1)

𝑥0(2)
𝑥0(3)

] 

Equation 3. Matrix factoring 

With this new matrix  

[

𝑋(0)

𝑋(1)

𝑋(2)

𝑋(3)

 ] =

[
 
 
 
𝑥2(0)

𝑥2(1)

𝑥2(2)

𝑥2(3)]
 
 
 

 = [

1 𝑊0 0 0
1 𝑊2 0 0
0 0 1 𝑊1

0 0 1 𝑊3

]

[
 
 
 
𝑥1(0)

𝑥1(1)

𝑥1(2)

𝑥1(3)]
 
 
 

   

𝑤𝑖𝑡ℎ  [

𝑥1(0)
𝑥1(1)

𝑥1(2)
𝑥1(3)

] = [

1 0 𝑊0 0
0 1 0 𝑊2

1 0 𝑊2 0
0 1 0 𝑊2

] [

𝑥0(0)
𝑥0(1)

𝑥0(2)
𝑥0(3)

] 

Equation 4. Matrix separation 

This factoring method to calculate the FFT is called the Cooley-Turkey FFT [29] 

algorithm, this algorithm can factor 𝑁 𝑥 𝑁 matrix in a way that the new factored 

matrix has the property of minimizing the number of operations, in the past equations 

this reduction is accomplished by the introduction of the multiple zero terms in the 

operation. This algorithm can also be seen graphically in Figure 2. 

 

 

 

 

 

 

 

Figure 2. Graphical representation of matrix factoring. a 

a Taken from Brigham, E. O., & Morrow, R. E. (1967). The fast Fourier transform. IEEE Spectrum, 4(12), 63–70. 

doi:10.1109/mspec.1967.5217220 
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2.6. Noise Reduction 

 

Noise reduction is a technique used in order to reduce and control de amount of noise 

in a signal. Noise is considered a sound that does not contain any useful information 

but alters the important signal [21]. The definition of noise varies in every research 

field, in this work we will be focusing on Additive Noise, which is the noise that comes 

from different sources, either natural or artificial. Noise can introduce changes to the 

signals, that is why it is important to study it and find techniques to reduce it, these 

changes can affect the listener’s perception or a machine’s processing of the signal. 

  

The randomness of a noise signal makes it hard to tackle as a problem, this is why even 

today it is still not clear how to describe this problem with a unique mathematical 

model, so rather than doing that, researchers had come with different approaches 

depending on the context, for audio enhancement, new analysis has been made in the 

past few years but for this work, we will be using an approach that was originally 

developed for image known as Noise2Noise [22] (N2N), which is transferred to the 

field of audio signals and extended by using an automatic machine-generated binary 

mask as extra, this approach was used in previous works [23], where the model was 

trained with various distributions of synthetic noises in order to create a noisy signal, 

additionally, real-world noise such as boat sounds, water noise, among others is used 

to intensify and stimulate other sounds. For this work, we will be integrating this 

model into the web application to perform sound enhancement in the audios 

requested by the user. 

 

2.7. Segmentation 

 

Segmentation is a process that aims to divide a digital audio signal into different 

segments, each of them contains information of the audio, this process helps to 

improve the analysis and the preprocess of the data, removing useless parts of the 

signal [15]. Most of the time, audio signals contain background noise that can 

deteriorate the quality of the audio and the information contained in it, in addition to 

this, there are segments of silence in the audio which do not provide any information. 

After the segmentation, we will have parts of the audio that are silent, that contains 
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information and other parts that could have information but are too noisy, for the last 

one noise reduction techniques are applied in order to clean this audio signals. 

 

 

Figure 3. Segmentation process 

 

Segmentation is performed cutting the signal into overlapping frames of the audio as 

shown in Figure 3, a window function of N frames is applied to tapper audio signal and 

to ensure its continuity, the window function has a time-shift between 10% and 20% 

of the window length [16], this implies an overlapping of the windows, this will avoid 

irregularities in the borders. In this work, the web application will allow the user a 

variety of options to perform segmentations of the audio in order to experiment and 

generate different audio signals for their posterior analysis. 

 

2.8. Convolutional Neural Network 

 

Convolutional neural networks are a type of network which has been growing in 

popularity in recent years as a very good network to perform image analysis or 

computer vision since it obtained such good results in the ImageNet Large Scale Visual 

Recognition Competition (ILSVRC) in 2012. CNNs have shown great potential for all 

kinds of fields whenever image analysis is employed due to their structure [31]. 

Convolutional networks are composed of multiple blocks which maintain a similar 

structure to each other, these blocks have a convolutional layer, a pooling layer and 

can even have a fully connected layer. 

 

2.8.1.  Convolutional layer 

The convolution is a linear operation which is used to perform the product of two 

signals or functions. In the case of a CNN, the product of the input signal with a kernel 

which is constantly being recalculated in each iteration is performed. The convolution 
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performs the element-wise multiplication generating a tensor at the output called 

feature map. Due to the nature of the element-to-element product, the output of a 

convolution is a feature map with dimensions smaller than the input dimensions. In 

many occasions it is desired to keep the same dimensions, for this a process called 

zero padding is performed. The zero padding consists of adding 0 to the input, so that 

the network can calculate the convolution and keep the input dimensions as shown in 

Figure 4. 

𝑠(𝑡)  = (𝑥 ∗ 𝑤) (𝑡) =  ∑ 𝑥(𝑎) w(t − a)

∞

𝑚=−∞

  

Equation 5. 1D convolution 

In Equation 5 we can observe the mathematical equation of the convolution for a 

discrete system in the case of a 1D data array. The first argument is the input signal 

while the second argument is the kernel that will produce the feature map. In the 2D 

case a 2D kernel must be used and the equation would be Equation 6, where 𝐼 is the 

(𝑚, 𝑛)-dimensional image and 𝐾 is the new 2D kernel. [32] 

 

𝑆(𝑖, 𝑗) = ∑∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 

Equation 6. 2D Image convolution with a kernel 

It is important to emphasize that CNN does not require the use of manually extracted 

features but it is a network that needs to be trained with a large number of samples 

in order to estimate the best parameters. 

 

2.8.2. Pooling layer 

The pooling layer is a layer that allows a reduction of the dimensions of the resulting 

feature map after a convolutional layer, this layer is used in order to introduce 

distortion and reduction in the number of parameters to be learned by the network. 

This layer can be considered as a layer that subsamples the input, since a loss of 

information is generated with the reduction of the dimensions. [32] 

 

The most popular operation in the pooling layer is max pooling, which consists of 

choosing a filter of size N x N (N will depend on the size chosen for the pooling layer) 

and choosing the maximum value within this filter, thus reducing the dimension of the 

feature map by a factor of N. 
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Another widely used pooling operation is global average pooling, this operation is 

usually performed before a fully connected layer and consists of taking the feature 

map or parts of the feature map, and reducing it to a 1x1 vector by averaging the 

values. This operation when performed before the fully connected layer allows to 

reduce the number of parameters to be learned by the network and also allows to 

make use of input images of different sizes. [31] 

 

2.9. ORCA-CLEAN  

 

ORCA-CLEAN is the first work presented as a fully-automated deep denoising 

approach for bioacoustics that doesn’t require any clean ground-truth [23]. Due to the 

lack of clean bioacoustics datasets, ORCA-CLEAN implements a new approach that was 

originally intended to be used as image restoration known as Noise2Noise [22]. ORCA-

CLEAN transfer the idea of Noise2Noise to the bioacoustics by introducing noise to the 

spectrogram image. The network can be trained to restore the image to the original 

one even if the original one is a nosy image. As an addition, the model also enhances 

the sounds of the orcas using a machine-generated binary mask, this binary mask 

Figure 4. Convolutional neural network with zero padding. b 

b Taken from Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an 
overview and application in radiology. Insights into imaging, 9(4), 611-629. 
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works as a filter that allows the network to increase or highlight those segments where 

the sound belongs to a killer whale and reduce any other type of sound. 

 

Before feeding the data into the model it must be preprocessed, ORCA-CLEAN 

contains multiple layers of preprocessing, the first stage of preprocessing consists of 

converting the audio to mono audio and resampling it to a frequency rate of 44.1kHZ. 

Subsequently, the spectrograms are generated, which will be used by the network 

both for training and for its prediction process, the creation of these spectrograms is 

performed using a Short Time Fourier Transform (STFT). Among the parameters that 

are needed are the size of the FFT which is set by default at 100ms, and the hop-value 

for the window which is set by default at 10ms, the type of window to be used is a 

parameter which will be selected by the user when the audio parameterization 

process is being performed.  

 

Lastly, an intensity within the range of -6dB to +3dB and a pitch within the range of 

0.5 to 1.5 is randomly set. Once the audio is processed, other preprocessing 

operations are performed such as histogram equalizations, maximum/median 

filtering, morphological operations, among others. 

 

ORCA-CLEAN during the process of noise addition to the spectrograms created uses 

real-world underwater noise as noise signals such as boat noise, water noise, among 

others. Subsequently each spectrogram is compressed in the frequency domain, this 

compressor has default values, but parameterizations were made so that the user can 

choose the type of compression, the maximum frequency and the minimum 

frequency. All the different noise additions that are added to the spectrogram can be 

seen in Figure 5 [23]. 

 
Figure 5. Noise types introduced to the spectrograms (N04 is the original signal) 

At last, these spectrograms are fed through a network which is based on the U-Net 

architecture [32] (see Figure 6), the previously modified spectrogram are introduced 

to the network and it is expected to have the original file at the output, in this way 

there is a ground-true value to compare the performance of the network and make 

modifications in order to improve its prediction capacity.  
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Figure 6 ORCA-CLEAN - Deep denoising network architecture c 

c Taken from Bergler, C., Schmitt, M., Maier, A., Smeele, S., Barth, V., & Nöth, E. (2020). ORCA-CLEAN: A Deep 
Denoising Toolkit for Killer Whale Communication. Proc. Interspeech 2020, 1136-1140. 

 

The network initially has multiple convolutional layers followed by polling layers which 

perform a reduction of the input size, then feeding through a bottleneck layer and at 

last, use of a set of layers for the expansion of the dimensions until having the same 

dimensions of the input as shown in Figure 6. 

 
3. Methodology 

This work is divided into three main parts which in the end are merged to form the 

final application. For this application, we built the FrontEnd in JavaScript more 

specifically using the React Js framework, on the other hand, the BackEnd of the 

application was developed with Python more specifically using the Django framework, 

finally the ORCA-CLEAN model that will be used to perform the cleaning of audios was 

developed in the Python language, the choice of backend language was made to be 

able to use in a better way the model with the backend.  

 

Each of these parts performs relevant tasks during the whole process and their 

separation grants the possibility to identify and isolate errors in a more efficient way, 

at the same time separating the FrontEnd development from the BackEnd 

development allows to perform unit tests in a simpler way. 

 

3.1. FrontEnd 

The FrontEnd was created using components which are small pieces of code 

independent of each other that allow performing different functions, some of them 

are already in the React main package because they are widely used but React Js 

allows the creation of your components, this way of structuring the page allows: 
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isolate problems or bugs in the application and identify more effectively errors in the 

application because each component is independent of each other. On the other 

hand, some pages group multiple components and display them in order for the user 

to make use of them. 

 

The pages used for the application as well as its components are listed below: 

 

3.1.1. Home 

The Home page or the start page is the first thing that the user observes when opening 

the web application, this page contains a component in the navigation bar that allows 

the user to access multiple points of the application, contains another component for 

the description of the functionality of the application and how its use facilitates the 

cleaning and segmentation of  audio, also shows examples of spectrogram which allow 

a visual comparison of how an audio segment looks before and after the cleaning 

process. The images shown are brought from the BackEnd through a GET request. 

 

3.1.2. Denoise 

The denoise page contains a component that allows the user to upload the audio file 

that it’s going to be analyzed, the component allows to choose an audio file (.wav) 

that is on the user's computer and upload it for further analysis by clicking on the 

Upload button, in case a file is not found a warning message will appear on the screen, 

if the file is valid the Next button is activated and allows the user to continue with the 

process. In this component, the user is also given a random unique identification 

number that allows keeping an identification of the user even when closing the page, 

in this way no repeated information is stored in the server. 

 

3.1.3. Parameters 

The parameters page is a simple page that allows the user to interact with the audio 

that has just been uploaded to the server, the main idea of this page is to create a 

simple interface making use of multiple components that allow the user: 

 

• Playing the audio: The user has a Play/Pause button which allows the user 

to play and pause the audio and interact with it at any time. 
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• Segment the audio: By clicking and dragging the user can create multiple regions 

in the same audio, these regions or segments will allow the user to make 

modifications in a selective and different way for each of the regions, the user can 

create as many regions as desired, the only condition is to create regions with a 

size greater than 25ms, this in order to be able to create windows. 

 

• Audio parameterization: Each audio segment contains a start and end value and 

the user can choose the minimum and maximum frequency of operation as well 

as the frequency filtering technique and the type of window to be used during the 

denoising process. 

The user can create and delete as many regions as desired, at least one region needs 

to be created to do the analyze, the data chosen by the user are stored in the 

localStorage and then sent to the server for audio processing. 

 

3.1.4. Process 

The process page is considered the final page of the process, at the top of this page, 

there is a loading component that gives the user a visual indication that the BackEnd 

is working on processing the audio(s). Therefore, to avoid losing communication with 

the FrontEnd, no more requests are allowed until the BackEnd finishes processing the 

audio. Once the audios are processed, the BackEnd completes the request made by 

the frontend and allows the frontend to make the next request which consists of 

bringing the modified audios as well as the images of the spectrograms for each one 

of them before and after the cleaning process. 

Finally, the user has the option to download all the modifications as well as the audios 

in a compressed file for later use. After downloading the file, the user can perform the 

same process again for another audio.  

All the previous pages make calls to the backend to request or store information in a 

constant way, for it they make use of the HTTP Requests which allow making GET, 

POST, and other requests to an address. 

3.2. Backend 

The BackEnd was developed in Django and was created in such a way that it works as 

an API which performs an action and returns a value or a group of values depending 

on the request made, the multiple endpoints that were created in the API are: 
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• /upload: Endpoint that allows through a GET to diagnose the server and its 

responsiveness, on the other hand it also allows to perform a POST in order 

to create a model in the database depending on the values that come from 

the request (this model stores the audio in a specific path). 

 

• /parameters: Endpoint that is called when the front end encounters the 

"parameters" page, this endpoint receives GET requests and allows to 

return an audio that is stored on the server in the user's folder, this 

returned audio is the one that is mounted on the component that allows 

audio playback. 

 

• process: Endpoint that allows both GET and POST requests, each of them 

performing different tasks. This endpoint is used in the process page to 

obtain the information (GET request) of the JSON created which contains 

the information of the segmentation made by the user, in the same way if 

you make use of the POST request this endpoint will perform the creation 

of the folders and the JSON file if they are not already on the server, in case 

they are already there it stores the user's information in its respective 

JSON. 

 

• /processPDF: This last endpoint allows to make requests using the token 

or each user to obtain the PDFs and the processed audios, this endpoint 

returns the information which will be later shown to the user in the final 

part. 

 

3.3. ORCA-CLEAN Model 

A parameterization of the ORCA-CLEAN model was made in order to be coupled with 

the backend and thus allow predictions, this parameterization allows Django to use 

the model as a function and thus create threads to run the function without 

interrupting the ability to handle calls from different users, so the application can 

continue to receive requests from multiple users. 
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The parameterization also allows using the model with parameters different from the 

default parameters, allowing the user to choose different types of values. The 

parameters selected for the model are: 

 

• start: Start point in seconds (s) for the region or the audio that is going to be 

processed. 

 

• stop: Stop point in seconds (s) for the region or the audio that is going to be 

processed. 

 

• sequence_len: Contains the length of the sequence or region to be analyzed, 

this value is calculated depending on the values of the "start "and "stop" 

parameters chosen by the user. 

 

• min_frequency: Allows the user to select the value for the minimal frequency 

that is going to be analyzed, this later on restrict the audio frequency bands 

and the minimal value in the Y-axis for the spectrogram. By default, this value 

is set to 200Hz. 

 

• max_frequency: The same way as the “min_frequency” parameter, the 

max_frequency allows the user to select the maximum frequency to analyze, 

this value restrict the maximum value in the Y-axis for the spectrogram. By 

default, this value is set to 18000Hz 

 

• freq_compression: Allows the user to choose between Linear, MEL or MFCC 

method to compress the frequency of the audio. By default, the value is set to 

Linear 

 

• window_type: Allows the user to choose between Hamm, Blackman, 

Hamming and Kaiser windows. By default, the value is set to Hamm 

Other parameters such as sample rate and number of frequency bins are present in 

the model but are set by default to avoid issues in the audio processing section. 
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4. Results 

As a result of this work a web application was built, this web application is hosted in 

AWS with the following link: http://audiodenoisingfront.s3-website-us-east-

1.amazonaws.com/ and the application allows the user to upload audios, segment 

them and later on perform denoising without having any previous knowledge. 

 

Figure 7. Home page and navbar 

Figure 8. Spectrogram comparison 

http://audiodenoisingfront.s3-website-us-east-1.amazonaws.com/
http://audiodenoisingfront.s3-website-us-east-1.amazonaws.com/
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Figure 7 show the “Home” page for the web application, a small text that describes 

the main purpose of the application and the cite to the Deep Learning model can be 

found below the title, on the top we can found the name of the research group and 

the main buttons to navigate the application. 

 

The Home button takes the user back to the main page, the contact button opens an 

email window that can be used to send emails towards me in case of having doubts 

with the application and the denoise button can be a click when the user is ready to 

start the denoising process. 

 

Bellow the main text we can find a graphical example of denoising as shown in Figure 

8, and how different the spectrograms are when we clean noisy audio. These same 

images can be downloaded at the end when the user finishes the process. 

 

We can notice that in the first three images, there are green colors all over the image, 

this is noise due to the constant intensity through the frequency spectrum, on the 

other hand, we can notice that after the denoising process the audio-only has the 

relevant information, we can notice this because most of the image now is dark blue, 

this is the color for the lowest intensity (close to 0). 

 

When the user clicks the denoise button on the navbar we go to the next page shown 

in Figure 9. 

 

 

Figure 9. Component to upload audio 

On this page the user can found the component to upload the audio, this component 

allows only audio files to avoid and check that there is a valid file before uploading, if 

the user selects a file and uploads the component activates the “Next” button and 

grant the user permission to go forward in the process as shown in Figure 10. 
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Figure 10. Component after file uploaded 

 
After the user clicks the “Next” button, the web application goes to the “Parameters” 

page, in this page the user will have a preview of the recently uploaded audio, the user 

can play and pause the audio, and the most important part, the user will be able to 

segment or create regions by selecting parts of the audio as shown in Figure 11. 

 

 

Figure 11. Audio segmentation 

 
If the user clicks next the audio will be denoise only in that region selected and the 

parameters will be the default one, in case that the user will like to change 

parameters, the user can click the region and a form will appear where the user can 

change one or all parameters if wanted as shown in Figure 12.  

Figure 12. Form to tweak denoising parameters 
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As we can see, minimum frequency, maximum frequency, frequency compression, 

and window type are different from the default values, once the values are set the 

user can click the button “add/update region” to store these new values in the region 

if the user is not satisfied or the user wants to remove the region the user can click 

the button “delete region”. 

 

In case everything is set the button Next in Figure 10 will send the regions and the 

form data through a POST request to the API, the API will preprocess the audio and 

then will run the prediction algorithm that uses the model to create the cleaned audios 

and the PDFs with the spectrogram. 

 

The FrontEnd will wait until the audios are denoised to maintain the same request and 

ensure that all the processes are finished correctly, while the BackEnd is cleaning the 

Figure 13. Results visualization 
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audios the FrontEnd will display a loading icon so the user can have a visual 

confirmation that the audios are being processed. 

 

When the audios are finished the web application will show the button to download 

the files (audio and PDFs) as a ZIP file, will also give a visualization card of the original 

and the cleaned region, and will give the user the possibility to listen to the cleaned 

audio before processing new audio as shown in Figure 13. 

 

The user can have as many regions as the user needs, the only main constrain is that 

the region must have a length higher than 25 𝑚𝑠 to be processed. 

 

The application not only focus on the denoising of the audio but it’s also important to 

take into account the performance of the app, as we can notice in Figure 14 the 

application requires a total of 0.07 𝑠 without cache to load the web page, this is due 

to the possibility of reacting to load components at its information at different 

moments, the application first load the static parts and when the data is received from 

the BackEnd this is store in the components and the page is re-render. 

 

Figure 14. Performance of app without cache 
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5. Conclusion 

In this work we present the whole process of creating a web application that can be 

used for audio cleaning and segmentation, to solve the problem we use ORCA-CLEAN, 

which is a deep denoising network designed for denoising of killer whale (Orcinus 

Orca) underwater recordings, not requiring any clean ground-truth samples, to 

improve the interpretation and analysis of bioacoustics signals by biologists and 

various machine learning algorithms, even though the model was trained to denoise 

killer whale, other experiments show the transferability, robustness, and 

generalization of the model, allowing the use for human speech. 

 

Thanks to Django as a BackEnd language, the creation of the structure for the web 

application was more efficient, reducing the difficulty to merge the model with the 

BackEnd since both of them are written in Python, Django also allows the BackEnd to 

receive and handle multiple petitions from different users without the need to create 

a subprocess, reducing the difficult and the possibility of mistakes by working with 

multi-threads programs. Django also allows the possibility to create REST APIs with 

this we can separate the preprocess and handle of the audio from the sending and 

receiving information part of the application. 

 

For the user interface the use of React Js allows the creation of a component base 

structure, reducing loading times (0.07 s without cache) and allowing the possibility of 

scalability in the future, in case of the response from the back when the audios are 

being denoised we don’t have an estimate because depends on multiple factors such 

as the number on concurrent petitions, size of the audio, number of regions, size of 

regions, among others.  

 

As future work is necessary to keep increasing the application usability, new models 

can be added to the web application to perform the comparison between then, 

metrics and ranking can be included and thanks to the use of components adding or 

removing parts of the applications can be done more easily and safely without 

damaging the structure of the web application. Adding more parameters to the model 

can be added but this requires a deeper knowledge of the model created to increase 

the parameters. 
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