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Abstract

The increment of data traffic demand by end users will require to increase the capacity of next generation
optical networks, both, long−haul and optical access networks (OANs). The use of high-level modulation
formats, wavelength division multiplexing (WDM) and digital coherent receivers, will enable the increase
of the OANs capacity. On the other hand, for long-haul networks, the paradigm called Elastic Optical
Networks (EONs) will be essential to increase the capacity, thanks to the dynamic use of networks resources.
For instance, a dynamic use of the optical spectrum will enable the gridless networks which jointly with
Nyquist pulses that present rectangular spectral shapes, will improve the Spectral Efficiency (SE) and thus,
the capacity of the networks.

Nevertheless, nonlinear phase noise, Kerr effects and inter-channel interference (ICI), are some of the
challenges that future OANs and gridless networks would face. The nonlinear effects are present when
high launch power (needed for high order modulation formats) is induced into the optical fiber. These
effects distort the transmitted symbols generating errors after demodulation and, thus, increasing bit error
rate (BER). On the other hand, the ICI effects increase the BER due to the interaction of the optical channels
when the spectral spacing is reduced up to the baud rate.

Machine Learning (ML)−based techniques have shown improvement of traditional monitoring and miti-
gation of different effects in optical communications. ML is regarded as one of the most promising method-
ological approaches to perform network-data analysis and has shown relevant early contributions in optical
communications, allowing channel estimation, mitigation of nonlinear effects and foresees to be a powerful
tool into the optical performance monitoring (OPM) field.

Thus, the goal of this work is to develop techniques using ML algorithms for i) estimation of spectral
spacing in gridless Nyquist-WDM systems and ii) mitigation of nonlinear and ICI effects. For the former,
two spectral overlapping estimation tools are proposed, both use information obtained from fuzzy clustering
algorithms applied to 10k received symbols frames. The first one uses the membership degrees of the
partition matrix resulted by an unsupervised learning algorithm to construct different features which are
called "counting vectors". The second uses clustering validation indexes after the unsupervised learning
algorithms are applied. It is tested two unsupervised learning algorithms that use fuzzy clustering: Fuzzy c-
Means (FCM) and Gustafson-Kessel Means (GKM). On the other hand, in order to reduce nonlinear and ICI
effects, three supervised learning algorithms: Support Vector Machine (SVM), Artificial Neural Networks
(ANN) and k-Nearest Neighbors (KNN) are proposed to carry out nonsymmetrical demodulation and thus,
minimize the BER.

Experimental results show that it is possible to determinate if any constellation diagram is affected by
spectral overlapping using any of the proposed methods. Accuracies up to 91% are achieved in binary classi-
fication knowing a priori the OSNR value in the case of 32 GBd with fiber transmission. Moreover, when the
OSNR is not known by the classifier, accuracies up to ~80% are obtained using the 16 GBd data. Besides,
classification of different scenarios as high or low spectral overlapping jointly with detection of close chan-
nels or single channel is obtained also. Whereby, results show that it is possible to mitigate nonlinear effects
as well as ICI effects achieving gains in terms of the OSNR. Additionally, the BER reduction is obtained
at low training lengths for all the three proposed methods. Simulation results show the effectiveness of the
methods by presenting gains up to ~0.5 dB in terms of the OSNR at a FEC limit of log10(BER) = −2.4. Be-
sides, at high launch power, traditional demodulation method reaches BER values of log10(BER) = −2 while
the proposed methods obtain ~log10(BER) = −2.6. Moreover, the experimental results show mitigation of
ICI effects achieving gains up to ~4 dB in terms of OSNR at spectral overlapping of 18%.

Consequently, it is demonstrated that the use of ML algorithms will be useful in future OANs and gridless
networks by allowing mitigation of signal impairments and could be helpful to control lasers frequencies by
estimating the spectral overlapping among channels.
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1 Introduction

1.1 Context
The increasing internet content given by the new generation end users devices and the need of high-quality
data transmissions in telemedicine, internet of things and smart-cities, demands a parallel increment in the
capacity of the optical fiber networks [1]. The next generation networks based on 5G standards, will require
100 times the capacity of current deployed networks, representing data rates in the order of several Gbps for
access networks and Tbps for long haul links [1, 2].

For instance, nowadays optical access networks (OAN) reach up to 2.5 Gbps using passive optical net-
works (PON) standards with limitations in the intensity modulation [3]. On the other hand, long haul net-
works based on digital coherent detection and Wavelength Division Multiplexing (WDM), achieve data
rates up to 100 Gbps per channel [4]. Thence, for OANs capacity increment, it has been proposed: i) the
introduction of digital coherent detection into the PONs, using phase modulations as quadrature amplitude
(QAM) formats [5, 6], ii) the use of WDM which increase capacity due to the possibility of transmitting
several information channels into the same fiber (WDM-PON) [3, 6]. Moreover, for capacity increment in
long haul links, the paradigm of Elastic Optical Networks (EONs) has been foreseen, where the networks
resource management and use of the optical spectrum would be dynamic, improving the spectral efficiency
(SE) with the use of gridless networks [7]. For instance, traditional WDM standard, recommended by the
International Telecommunications Union (ITU), allows optical channels separated from each other by 50
GHz [8]. Also, in order to increase the SE, flexi-grid arrangements with spectral spacing of n × 6.25 GHz
have been proposed and standardized [9]. However, due to the dynamic use of resources that the EONs
promise, the bit rate of each channel would change at any moment according to the network traffic needs.
These traffic changes could lead to blank frequencies slots in the optical spectrum. Thence, the paradigm of
gridless networks would fill the frequency slots reassigning carrier frequencies of the adjacent channels or
adding new channels. Figure 1 shows spectral comparison among traditional WDM, flexi-grid and gridless.

Figure 1.1: Comparison in the use of spectrum for a) ITU 50 GHz grid, b) flex-grid and c) gridless.
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1.2 Challenges & Problem Statement
The new capacity increment strategies must face several challenges, mainly, nonlinear effects as i) phase
noise due to the lack of monochromatic sources, ii) Kerr effects due to the high input power needed to main-
tain high optical signal-to-noise ratio (OSNR) in m-QAM formats and iii) Inter-channel Interference (ICI)
due to the optical carriers closeness that results in spectral overlapping in gridless optical networks [10].
The nonlinear effects distort the transmitted symbols values generating demodulation errors and, therefore,
increasing bit error rate (BER). For instance, Fig. 2a shows a 16-QAM constellation diagram where the
symbols have been affected by Gaussian linear noise, meanwhile Fig. 2b shows the distortion given by
nonlinear phase noise. Moreover, Fig. 2c shows traditional demodulation which uses hard-decision rule ac-
cording to ideal symbol positions. Therefore, several approaches in receivers with Digital Signal Processing
(DSP) modules have been proposed using nonlinear digital equalizers for channel estimation and nonlinear
effects mitigation. Nonetheless, these efforts would not be enough for data rates of Terabits order because
the required computational cost to perform digital back-propagation becomes unfeasible [11, 12].

Figure 1.2: a)16-QAM constellation affected with Gaussian Noise. b) 16-QAM constellation affected with
Nonlinear Noise. c) Traditional demodulation.

On the other hand, the ICI effects increment the BER due to the interaction of the adjacent channels which
alters the symbols position causing changes in the in-phase and quadrature components as well. Additionally,
mitigation and monitoring of ICI effects are challenging because its effects seen in a constellation diagram,
are similar to the well-known Gaussian noise. For example, Fig. 1.3a shows a constellation diagram of a
single-channel scenario affected by linear Gaussian noise given by OSNR of 19.3 dB, meanwhile, Fig. 1.3b
shows a constellation diagram of a highly overlapped channels with OSNR of 36.3 dB. Both constellations
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differ from 17 dB of OSNR, and it can be seen similar circular-like distortion. Consequently, ICI effects have
been modeled as Gaussian-like distortions [13,14], nevertheless, it can produce slight temporal asymmetrical
movements of the symbol’s centroid seen in short time windows, thus, traditional demodulation techniques,
does not effectively mitigate ICI effects [15].

Figure 1.3: 16-QAM constellation diagram with a) OSNR of 19.3 dB and b) OSNR of 36.3 dB and spectral
overlapping of 18%.

Multiple-Inputs Multiple-Outputs (MIMO) equalizers have been proposed to mitigate ICI effects using
information of the adjacent channels [16–19]. However, the flexibility granted by the future gridless net-
works with reconfigurable optical add/drop multiplexers (ROADMs) at different nodes, will not guarantee
that a channel affected by ICI could be equalized using information of its adjacent channels. Figure 1.4 show
an schematic of a gridless network where in each node, a ROADM adds and/or removes optical carriers. The
ROADMs are based on wavelength selective switches that assigns different lighpaths to incoming channels.
Note that the gray information channel at the node A is firstly affected by the red and purple channels. Then,
at the destination node (B), these channels are not available for ICI mitigation using MIMO equalizers. On
the other hand, ICI effects have been mitigated using bit overheads for channel encoding [20] and by optical
means using wave mixing approaches [21, 22]. Though, in order to increment channel capacity in terms
of transmitted goodput, the robust encoding overheads must be avoided. Furthermore, the use of optical
devices for optical mixing tends to be expensive.

The need for mitigation of complex signal impairments and monitoring the optical networks, has led to a
new application of Machine Learning (ML) that has shown up into scene as a branch of Artificial Intelligence
(AI) that have motivated the concept of machines that learn to solve specific problems, in some cases, at low
computational cost. ML is regarded as one of the most promising methodological approaches to perform
network-data analysis and has shown relevant early contributions in optical communications, reaching for
some scenarios and conditions, channel estimation [23], mitigation of nonlinear effects [24,25] and foresees
to be a powerful tool into the optical performance monitoring (OPM) field [26, 27].

Thus, the goal of this work is to propose two methods based on ML: i) to estimate the spectral overlapping
of received signals in m-QAM gridless Nyquist-WDM systems and ii) to reduce nonlinear impairments of
received signal in AONs scenarios using WDM systems and to minimize ICI effects in order to decrease
the BER in gridless Nyquist-WDM systems. The proposed methods will be validated using simulated and
experimental data.
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Figure 1.4: Inter-channel Interference in future gridless WDM scenarios due to the adding-dropping process
when channel spacing is reduced.

1.3 State of the Art
In the found literature, both technological paradigms: optical communications and ML had crucial moments
in 2006 when the first study of digital coherent detection was published [28] and the reinventing of the 1980’s
Artificial Neural Network (ANN) with the introduction of Deep Neural Networks (DNN) had place at the
same year [29]. It was just a matter of time when both fields started to work together, first, as monitoring
tools that were first published in 2007 with the application of ANN [30] and demodulation approaches that
were published in 2010 with a k-Means adaptation in Radio-over-Fiber (RoF) link [31].

This state of the art is divided in two sections: the works focused on optical performance estimation and
the ones in signal impairments mitigation. In this sense, Table 1.1 shows the recent works in which optical
network or signal performance is estimated using ML algorithms. On the other hand, Table 1.2 shows works
related to mitigation of signal impairments using ML approaches. In both tables it is specified different
characteristics as type of ML algorithm, modulation format, fiber length or data rate used.

1.3.1 Optical Performance Estimation

The performance of a telecommunication system could be measured by the product of data rate and trans-
mission distance, although higher distances, leads to strong attenuation issues which are faced by using
several amplifiers in different fiber spans. However, the optical amplifiers add noise to the signal resulting in
reduction of the OSNR values which increases the BER. Therefore, in order to retain the OSNR, the launch
power is increased which can be unfavorable due to the stimulation of fiber nonlinearities. Consequently,
an accurate OSNR measurement is required in order to present an optimal trade-off between power con-
sumption and signal quality. On the other hand, high-level modulation formats increase the capacity of the
networks without using a broad bandwidth due to the fact that the information is included into the phase of
the signal carrier. Thus, in order to increase the capacity of the channel high level modulation formats will
be mostly used and, according to EONs flexibility, an optimal identification of modulation formats will be
necessary.

According to the above and in order to present a wider view of the tendencies of the ML role into the
optical performance estimation, Table 1.1 shows the works related to the optical performance estimation us-
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ing ML-based techniques in which it is specified what network or signal parameter is estimated, modulation
format used, information of the ML algorithm, fiber length and data rate.

Table 1.1: Review of Optical Performance Estimation using Machine Learning.
Monitored Type of Learning

and used Algorithm
Simulated / Experi-
mental

Modulation For-
mat(s)

Fiber
Length

Data Rate Year Reference

OSNR, Chromatic
Dispersion, Polariza-
tion Mode Dispersion

Supervised / ANN Simulated QPSK - - 2010 [32]

OSNR, Chromatic
Dispersion, Modula-
tion Format

Supervised / PCA Experimental OOK NRZ-
DPSK RZ-DPSK

- 5 GBd 2015 [33]

OSNR Supervised / DNN Experimental QPSK B2B 16 GBd 2016 [34]
OSNR, Modulation
Format

Supervised / DNN Experimental QPSK, 16-QAM,
64-QAM

80 km 60 GBd,
40 GBd, 30
GBd

2017 [35]

OSNR Nonlinear
Noise

Supervised / ANN Simulated 16-QAM 3200 km 56 GBd 2017 [36]

OSNR, Modulation
Format

Supervised / Convolu-
tional ANN

Simulated and Exper-
imental

QPSK, 8-PSK,
16-QAM, 32-
QAM, 64-QAM

B2B 25 GBd 2017 [37]

OSNR, Nonlinear
Noise

Supervised / ANN Simulated 16-QAM 1500 km - 2018 [38]

OSNR, Data rate,
Modulation Format

Supervised / Convolu-
tional ANN

Experimental QPSK, 16-QAM,
64-QAM

- 14 GBd, 16
GBd

2018 [39]

OSNR, Nonlinear
Noise

Supervised / ANN Simulated QPSK, 16-QAM,
64-QAM

1000 km 26 GBd 2018 [40]

OSNR Supervised / Convolu-
tional ANN

Simulated and Exper-
imental

QPSK, 16-QAM,
64-QAM

B2B 14 GBd, 16
GBd

2019 [41]

Resource Assignment Unsupervised / Fuzzy
c-Means

Simulated BPSK, QPSK - - 2019 [42]

Spectral Overlapping Unsupervised / DB-
SCAN

Experimental 16-QAM B2B 16 GBd 2019 [43]

Nonlinear Noise Supervised / Support
Vector Regression

Simulated 16-QAM 3200 km 60 GBd 2019 [44]

OSNR, Chromatic
Dispersion

Supervised / ANN Experimental 16-QAM, 64-
QAM

120 km 10 GBd 2019 [45]

OSNR Supervised / DNN Simulated and Exper-
imental

QPSK 80 km 28 GBd 2019 [46]

OSNR, Center Wave-
length, Data Rate

Supervised / Support
Vector Machine

Simulated QPSK - - 2019 [47]

OSNR, Nonlinear
Noise

Supervised / ANN Experimental 16-QAM 1000 km - 2019 [48]

OSNR Supervised / PCA and
Support Vector Ma-
chine

Simulated QPSK 1000 km 100 GBd 2020 [49]

OSNR, Modulation
Format

Supervised / CNN Simulated and Exper-
imental

QPSK, 8-QAM,
16-QAM, 64-
QAM

270 km 32 GBd 2020 [50]

Quality of Transmis-
sion

Supervised / Decision
Tree and ANN

Experimental QPSK, 8-QAM,
16-QAM, 64-
QAM

- 200 GBd 2021 [51]

OSNR Supervised / ANN Simulated 64-QAM 1600 km 70 GBd 2021 [52]
Marked in red: works where OSNR is monitored.
Marked in gray: works using Artificial Neural Networks.
Marked in blue: works using 16-QAM modulation format.

It is clear that the concern of an accurate OSNR measurement have been attended by the authors (see
marked in red in Table 1.1). Traditional methods of OSNR estimation are based on optical spectrum an-
alyzers (OSAs), where linear interpolations between signal spectrum power and noise floor is performed,
this measurement tends to be inaccurate when multiple signals with narrow spectral spacing are transmitted,
for instance in gridless or dense-WDM networks [49]. Thus, the versatility of the ML-based techniques
allowed deeper constellation diagram analysis in which the OSNR could be measured. These advantages are
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exploited by several authors [32–34, 36, 39, 41, 45, 46, 50], in which improvements in OSNR estimation are
reported with low bias values up to 0.2 dB [36] without using spectrum analysis but constellation diagrams.
Moreover, improvement on spectrum analysis has been reached also [40,49]. On the other hand, only in [43],
differentiation between OSNR and ICI effects is carried out in a gridless network. Here, the spectral spacing
is varied obtaining up to 30% of spectral overlapping in a Nyquist-WDM system of three channels at 16
GBd data rate. Then, using analysis of diagram constellation affected by ICI, unsupervised algorithm which
finds different densities in the symbols groups is applied. Thereby, the algorithm classifies different symbols
as noise (do not belong to any of the found clusters) and considering those noise symbols, an overlapping
index is calculated. Furthermore, detection of ICI effects at low OSNR values is achieved in scenarios with
more than 12.5% spectral overlapping. However, transmission was not considered and spectral spacing es-
timation with fiber distortions are challenging. The state of the art review shows that OSNR estimation has
been attended by the author, thereby, approaches of ICI estimation are still needed where assumption of an
accurate OSNR could be forseen.

Additionally, marked in grey in Table 1.1, are the works where the main used algorithm relies on neural
networks, this is because they are the most promising and convincing approaches not only for optical com-
munications, but technological advances in the data analysis field. Moreover, in blue, are the works that used
16-QAM modulation formats, pointing the next generation networks will use quadrature-based modulations.

1.3.2 Nonlinear Effects Mitigation

The demodulation process is focused on a precise symbol detection according to minimum distances to
ideal symbol positions. Thence, in linear noise scenarios in which distorted symbols surrounds ideal posi-
tions following Gaussian-like distortions, traditional demodulation techniques are suitable in order to obtain
lower BER values. Even then, the presence of nonlinear noises produces distortions that do not necessarily
surround ideal positions or circular shapes, thus, mitigation of nonlinear effects is a concern that have been
attended, mostly, in long-haul links, this can be seen marked in red on Table 1.2. Nonetheless, for OANs, it is
required more research considering the relative low distances and high OSNR that OANs would require for
m-QAM constellations. Consequently, low-complexity strategies to reduce nonlinear effects in OANs will
be needed in order to increase its capacity for new generation technologies, for example, RoF and internet
of things (IoT). Furthermore, minimization of ICI effects using ML in gridless Nyquist-WDM systems has
been carried out only in [15, 53] using data rates of 16 GBd and 32 GBd, respectively.

In [53], supervised algorithm is applied to minimize ICI effects where gains up to ~1.3 dB (in terms of
OSNR) is achieved in the scenario of 24% spectral overlapping, however, no fiber transmission is analyzed.
Moreover, in [15] an unsupervised algorithm is applied for ICI effects minimization using fiber transmission
of 270 km and gains up to 0.6 dB are achieved for spectral spacing of less than 32 GHz in terms of OSNR.

The review presents a lack of research in ICI effects mitigation, the currently reported approaches [54]
will still need a wider exploration and constellation diagram characterization must be studied for a better
spectral overlapping estimation. Besides, more research at different data rates, transmission distance, mod-
ulation formats are needed due to the dynamic use of resources that EONs would require.
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Table 1.2: Review of optical signal impairments mitigation using Machine Learning.
Mitigation Type of Learning

and used Algorithm
Simulated / Experi-
mental

Modulation For-
mat(s)

Fiber
Length

Data Rate Year Reference

Nonlinear Effects Supervised / ANN Simulated 16-QAM 1000 km 5 GBd 2015 [55]
Nonlinear Phase
Noise

Supervised / Support
Vector Machine

Simulated BPSK 480 km 40 GBd 2016 [56]

ICI Effects Unsupervised / k-
Means

Experimental 16-QAM 270 km 32 GBd 2017 [15]

Nonlinear Effects Supervised / Support
Vector Machine

Experimental 16-QAM 2000 km 40 GBd 2017 [57]

Nonlinear Effects Supervised and Un-
supervised / Hierar-
chical Clustering and
ANN

Experimental QPSK 3200 km 20 GBd 2017 [58]

Nonlinear Effects Supervised / ANN Experimental 4-QAM 3200 km 20 GBd 2017 [59]
Nonlinear Effects Supervised / DNN Simulated 16-QAM 3200 km 20 GBd 2018 [25]
Nonlinear Effects Supervised and Un-

supervised / k-Means,
FCM, Hierarchical
clustering, ANN,
SVM

Simulated and Exper-
imental

BPSK 2000 km 5 GBd 2018 [23]

Nonlinear Effects Supervised / Convolu-
tional ANN

Experimental 4PAM 40 km 56 GBd 2018 [60]

Nonlinear Effects Supervised / ANN Simulated 16-QAM 800 km 40 GBd 2018 [61]
Nonlinear Effects Supervised / DNN Simulated and Exper-

imental
QPSK B2B 10 GBd 2019 [62]

ICI Effects Supervised / KNN Experimental 16-QAM B2B 16 GBd 2019 [53]
Nonlinear Phase
Noise

Supervised and Unsu-
pervised / KNN, k-
Means and Fuzzy c-
Means

Simulated 16-QAM 50 km 32 GBd 2019 [63]

Nonlinear Phase
Noise

Unsupervised/ GK-
means

Experimental 4+12 PSK 80 km 1 GBd 2019 [64]

Nonlinear Effects Unsupervised / Affin-
ity Propagation

Experimental QPSK 3200 km 2.5 GBd 2019 [65]

Nonlinear Effects Supervised / ANN Simulated 4-PAM - 100 GBd 2019 [66]
Nonlinear Effects Supervised / Parzen

Window
Simulated 16-QAM, 64-

QAM
1600 km 56 GBd 2019 [67]

Nonlinear Effects Supervised / CNN Simulated 16-QAM 3200 km 100 GBd 2021 [68]
Nonlinear Effects Supervised / ANN Simulated and Exper-

imental
16-QAM 480 km 32 GBd 2021 [69]

Marked in gray: works using Artificial Neural Networks.
Marked in blue: works using 16-QAM modulation format.
Marked in red: works using long-haul links.

1.4 Objectives
Due to the dynamism of gridless networks that would cause spectral overlapping, the computational cost that
nonlinear equalizers would require to mitigate nonlinear effects and the unavailability of adjacent channels
at the end nodes for ICI mitigation, the following objectives using ML approaches are proposed:

General: To propose and simulate two methods based on Machine Learning to reduce and estimate Inter-
Channel Interference and nonlinear effects in Nyquist-WDM systems.

Specific:

• To simulate a m-QAM Nyquist-WDM system including nonlinear impairments and Inter-channel In-
terference effects.
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• To propose a method based on machine learning to minimize ICI and nonlinear effects in terms of
BER in Nyquist-WDM systems.

• To propose a method based on machine learning to estimate the percentage of spectral overlapping in
Nyquist-WDM systems.

• To validate the proposed methods using the simulated data and experimental data (acquired by the
advisor in previous works) in terms of BER and accuracy as functions of different system parameters
such as: optical channel spacing, OSNR, launch power and transmission distance.

1.5 Contributions
In this research, there were proposed and tested i) two methods for estimation of spectral spacing and ii) three
methods to reduce nonlinear and ICI effects. The former pursues the improvement of a gridless network
performance in which the optical spectrum will be used dynamically. Besides, the latter aims to minimize
the BER in order to increment transmissions capacity of the OANs and gridless networks. Moreover, the
spectral overlapping estimation and ICI effects minimization will be applied into the gridless networks (Fig.
1.5a), on the other hand, the nonlinear effects mitigation, will be held into the OANs (Fig. 1.5b).

Figure 1.5: Contribution allocation of the proposed methods in the case of a) gridless optical networks and
b) optical access networks.

(i) Contribution of the methods for spectral overlapping estimation:
Two different methods are proposed to estimate the spectral overlapping using constellation diagram
analysis. Both methods use information of unsupervised learning algorithms that are applied to re-
ceived symbols affected or not by ICI effects. After the algorithms perform the classification, several
features are extracted using the information of the classification and then, estimation of the spectral
spacing is carried out using supervised learning. Specifically, the first method use the membership de-
grees resulting of the classification by unsupervised learning algorithms. On the other hand, the second
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method uses validation indexes considering a clustering evaluation. Both methods are tested using ex-
perimental data from two different gridless setups a) 3×16 GBd Nyquist-WDM system (CPqD) and
b) 3×32 GBd Nyquist-WDM (GeorgiaTech) which are described in Section 3, in both, spectral spac-
ing among the three channels were varied obtaining different spectral overlapping distortions. The
performance of the methods is evaluated by means of accuracy metric vs different configurations of
spectral spacing scenarios, for example, binary case in which the classifier detects if a received frame
is affected or not by spectral overlapping.

(ii) Contribution of the methods for minimization of nonlinear and ICI effects:
Three different supervised learning algorithms are proposed to perform nonsymmetric demodulation
in order to reduce nonlinear and ICI effects. The methods are tested using simulated data generated
in VPIDesignSuite v11.2 specialized software and using experimental gridless networks data. The
methods performance is evaluated employing BER vs OSNR results and gains in terms of OSNR are
analyzed. Additionally, a training strategy is detailed for future algorithms implementations.

Publications:
This research work resulted in the following publications:

Journals

• Alejandro Escobar Perez, D. Zabala-Blanco, C. A. Azurdia Meza, N. Guerrero González, and J. J.
Granada Torres, “Training strategies to minimize interchannel interference effects using supervised
learning in gridless Nyquist-WDM systems,” Appl. Opt., vol. 60, no. 28, p. 8939, 2021, doi:
10.1364/ao.428856.

• Alejandro Escobar Perez, N. G. González, and J. J. G. Torres, “Spectral overlapping estimation based
on machine learning for gridless Nyquist-wavelength division multiplexing systems,” Opt. Eng., vol.
59, no. 07, p. 1, 2020, doi: 10.1117/1.oe.59.7.076116.

• Alejandro Escobar Perez, Karen A. Giraldo, Jhon. A. L. Cortés, and Jhon. J. Granada. T., “Mit-
igation of Nonlinear Effects using Machine Learning in Coherent Optical Access Networks,” INGE
CUC, vol. 17, no. 2, 2021.

Conferences

• Alejandro Escobar Perez, A. Estrada Moscoso, N. G. Gonzalez, and J. J. G. Torres, “Training Ap-
proaches in Supervised Learning for ICI Mitigation in Gridless Nyquist-WDM,” 2020 IEEE Photonics
Conf. IPC 2020 - Proc., no. 53, pp. 2020–2021, 2020, doi: 10.1109/IPC47351.2020.9252366.

• Marquez-Viloria, D., Castano-Londono, L., Alejandro Escobar Perez, Granada-Torres, J. J., &
Guerrero-Gonzalez, "Scalable Multi-Core FPGA Design for Maximum Concurrency: The Case of
KNN for ICI Mitigation." Signal Processing in Photonic Communications. Optical Society of Amer-
ica, 2020.

• Alejandro Escobar Perez, N. G. González, and J. J. Granada Torres, “Inter-Channel Interference
Estimation based on IQHistograms including Machine Learning,” no. 53, p. SpTh2I.6, 2020, doi:
10.1364/sppcom.2020.spth2i.6.

• Alejandro Escobar Perez, N. G. González, Stephen E. Ralph and J. J. Granada Torres, “Spectral
Spacing Estimation using Fuzzy Logic and KNN algorithms in Gridless Nyquist-WDM Systems,” no.
, p. SpTh1D.7, 2021, (Presented on July 29, published on OSA proceedings).
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• Alejandro Escobar Perez, Omar D. Vargas, Stephen E. Ralph, and J. J. Granada Torres, “Spectral
Spacing Estimation in Gridless Nyquist-WDM Systems using Local Binary Patterns,” 2021 IEEE
Photonics Conf. IPC 2021 - Proc., no. , pp. 2020–2021, 2021, (Presented on October 20, published
on IEEE proceedings).

1.6 Document Organization
The remainder of this work comprises six chapters. In the first, the motivation jointly with the problem
statement and objectives are presented. Besides, a brief introduction to the gridless networks and ICI effects
are mentioned. In Chapter 2, an introductory and theoretical description about main optical communications
technologies and networks, signal impairments and Machine Learning (ML) is given. In Chapter 3, the three
different setups in which the objectives are developed are detailed. Here, the first one follows a simulated
WDM system of three channels where launch power, laser linewidth and noise levels are varied in order to
stimulate nonlinear distortions. The second and third ones compose experimental gridless WDM-systems
(16 GBd and 32 GBd, respectively) in which spectral overlapping is induced concerning ICI and fiber ef-
fects. In Chapter 4, the proposed methods are exposed including two techniques for estimation of spectral
overlapping and three for mitigation of nonlinear and ICI effects. Additionally, different hyperparameter
selection and training strategies for possible future implementations are presented. In Chapter 5, results and
discussions are given. There, the performance of the methods for spectral overlapping estimation is evalu-
ated in terms of accuracy, on the other hand, the mitigation of nonlinear and ICI effects is analyzed in terms
of OSNR. Finally, conclusions, main outlines and future works are discussed in Chapter 6.
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2 Theoretical Framework
In this section a brief theoretical basis of the main topics exposed in this work will be explained in order to
contextualize the proposed methods.

2.1 Optical Communications
The optical communications are based on modulation of optical signals which are transmitted through an
optical fiber. The use of optical fiber gives a lot of advantages, for instance, its prime matter, the silicon (Si),
is the second most abundant element on the planet, behind the oxygen. Besides, the optical fiber presents
electromagnetic immunity and astounding low attenuation (typically 0.2 dB/km). Operating at the optical
regime (C band, 1530 to 1565 nm), allows the possibility to exploit exceptional data rates due to the avail-
ability of high bandwidth. Figure 2.1a shows a basic optical communication system which modulates the
light intensity with direct detection (IM-DD). With the use of photodetectors, the received optical signal is
transferred to the electrical field, then, the bit decision is made according to electrical signal amplitude using
assigned thresholds. Since the information is carried on the signal amplitude, this type of transmission is
very vulnerable to high dispersion owing to pulses’ broadening and attenuation, making difficult an error-free
transmissions. On the other hand, IM-DD systems have allowed bit rates over 10 Gbps at ~40 km in a single
channel configuration [70]. However, higher data rates technologies use the quadrature modulations which

Figure 2.1: a) Intensity Modulation – Direct Detection scheme. b) Coherent Detection scheme c) Constella-
tion Diagram of 4-QAM.

combines phase and amplitude modulations known as Quadrature and Amplitude Modulation (QAM). The
use of QAM increased the capacity of the networks because it allows higher SE and greater noise tolerance
compared to amplitude modulation. This modulation formats requires coherent detection techniques (see
Fig. 2.1b) which need at the reception, an optical source with comparable operating frequencies of the trans-
mitter source (local oscillator). Then, the detection of the phase changes is made correlating the received
signal with the local oscillator where a recovering of the real and complex components are carried out.
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The transmitted symbol information can be mapped in constellation diagram which is a two-dimensional
plane where X and Y axes components are called In-phase (I) and Quadrature (Q), respectively (see Fig.
2.1c). Besides, after the symbols IQ information is recovered, the DSP modules are used for compensation
of several channel distortions as well as for clock recovery and frequency offset correction with the use of
a digital equalizers with which it is possible to estimate the optical channel and thus, minimize channel
impairments [71].

2.1.1 Wavelength Division Multiplexing

WDM technology allows the transmission of multiple carrier signals in one single fiber (see Fig. 2.2). The
main principle is to merge the multiple carriers spaced one from each other by several GHz. The merging
is based on the prism effect using arrayed waveguide gratings, then, the reception is carried out making the
inverse. Furthermore, traditional optical WDM systems follow ITU recommendations where each carrier
frequency is spaced from another by 50 GHz, this concept is called a 50 GHz-grid where a total of 80
channels are allowed transmitting at ~10 Gbps [8]. However, an extension of this standard is to use smaller
channel spacing (25 or 12.5 GHz) to increase the amount of transmitted carriers, these systems are called
dense-WDM (DWDM).

Figure 2.2: Wavelength Division Multiplexing system.

2.1.2 Nyquist-WDM Systems

Usually, traditional WDM systems use fixed modulation formats and data rates for every multiplexed chan-
nel, thus, the available spectrum could not be fully used as seen in Fig. 1.1a. Hence, in order to increase the
SE, an advanced scenario of WDM systems, called “Flex-grid” has been proposed, where carriers will not
be equally spaced, but considering multiples of 6.25 GHz, improving, even more, the SE as it is shown in Fig
1.1b [8]. The new techniques based on dense frequency allocations, enabled the concept of ‘super-channel’
schemes allowing the transmission of multiple identical channels (with same bandwidth) retaining a max-
imum of spectral orthogonality for a single user [72, 73]. Nonetheless, having channels at a low spectral
spacing (up to the baud-rate spacing), leads to undesirable ICI, thus, the best candidate to obtain an ICI-free
operation for the super-channel, is the use of temporal-Nyquist pulses which brings a rectangular spectral
shape, as Fig. 2.3a shows [73, 74], plus this waveform allows reduction of the inter-symbol interference
(ISI). The base-band pulses are filtered using Root Raised Cosine (RRC) transfer function. However, due
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to the limitations of finite digital filter taps, the resultant spectrum does not fall instantly, instead, a roll-off
factor induces a window broadening from the ideal data-rate bandwidth as Fig. 2.3b shows. The resultant
bandwidth can be calculated using Eq. 1 where Rs is the base-band baud rate in Hz and γ is the roll-off
which is a dimensionless value between 0 and 1. The roll-off factor could reduce SE in super-channels due
to the spectral spacing being close to the baud-rate.

BW = Rs(γ + 1) (1)

Figure 2.3: a) Nyquist pulse in time and spectral domain. b) Spectrum of Nyquist pulses at different roll-off
values. c) Temporal Nyquist pulses at different roll-off values.

Moreover, according to the promising EONs paradigm, in which the assignment of systems resources
would follow the dynamic traffic demands, for instance, the adjacent channels will not be identical as in
the superchannels, therefore, the frequencies assignments and channel allocation would be carried out with-
out frequency grids using ROADMs (see Fig. 1.4) which consist in arrangements of wavelength selective
switches, constant optical spectrum monitoring and optical amplifiers [75].

2.2 Nonlinear and ICI effects in Optical Communications
Two main nonlinear effects can be seen in a constellation diagram: i) the phase noise due to the lack of
monochromatic lasers and ii) the Kerr effect given by high launch power applied to avoid attenuation by the
fiber. The former results since it is particularly difficult and expensive to generate narrow carrier frequencies,
thus, the resultant laser spectrum, has a linewidth associated to the total emitted frequencies. Therefore,
considering fiber dispersion effects, the different frequency components have different transmission speeds
which generate signal phase mismatches at the receiver [76]. Hence, nonlinear phase noise gives signal
distortion which unlike Gaussian noise (see Fig. 1.2a), that creates circular shapes around the ideal symbol
position, distorts symbols positions following non-circular shapes (see Fig. 1.2b). On the other hand, the
Kerr effect is caused by changes in the refractive index of the fiber core when high launch power is applied.
The high launch power is required in order to keep high OSNR in transmissions with complex modulation
formats such as m-ary QAM [77]. The Kerr effect leads to signal nonlinearities as i) self-phase modulation
(SPM) which alters the phase of the temporal pulse due to its own intensity causing broadening due to
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the signal chirp, thus SPM is strongly related to inter-symbol interference (ISI), ii) cross-phase modulation
(XPM) that is significant when the pulses of two spectrally close channels get a temporal synchronization,
and iii) four-wave mixing (FWM) which is caused when three information channels get spectrally close,
generating a fourth wave which alters the phase of the middle signal [77,78]. The nonlinear effects seen in a
constellation diagram cause irregular symbols group shape and centroid jittering. Moreover, the ICI effects
are seen when two or more information channels get spectrally overlapped as Fig. 2.4 shows where the gray
and black dots are arbitrary received symbols affected by ICI, this, it is one of the most significant issues
that future gridless optical networks must resolve. The randomness of the bit sequences and variation in the
channel’s power, induce distortions in the symbols IQ values that leads to errors in demodulation [79].

Figure 2.4: Inter-Channel Interference effects on received symbols.

2.3 Digital Signal Processing
Digital signal processing of the down-converted (optical to electrical) received signal presents several advan-
tages in the optical communication systems [71]. It could include clock recovery, IQ imbalance correction,
digital equalization and carrier recovery [71]. Specifically, the digital equalization refers to the channel esti-
mation in order to compensate linear and nonlinear impairments. For instance, linear equalization compre-
hends symbol timing offset correction, ISI mitigation or compensation of chromatic and polarization mode
dispersion (PMD) which are linear and time-invariant effects [80]. On the other hand, nonlinear equaliza-
tion includes the signal impairments mentioned in 2.2. In the last decade, channel estimation using digital
back-propagation (DBP) have been proposed for linear and nonlinear signal impairment mitigation. DBP
is based on the principle of solving the inverse nonlinear Schrödinger equation (NLSE) which is strongly
related to the signal propagation through the fiber [81,82]. Nonetheless, main drawbacks of DBP relies on its
excessive computational cost and the difficulty of applying it in presence of linear PMD [82]. Additionally,
the digital equalization could be data-aided, this means that several pilot symbols known by the receiver,
are used to adjust the digital filter coefficients based on error calculation between ideal symbols values and
affected ones. Furthermore, the non-data-aided equalization uses gradient descent-based methods and is also
known as blind-equalization.

2.4 Machine Learning in Optical Communications
ML algorithms allow to create a model of a specific system using historical data of a previous character-
ization. These models could give predictions of system states and find relation among the data that could
be hardly found by traditional methods. Moreover, the increasing number of network monitoring tools has
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improved the possibility to obtain historical data of the optical networks [27, 83]. Hence, ML will be a
new segment of the DSP module of an optical communication system [83–85] (Fig. 2.5), where the mea-
surements represent different network properties as traffic demand, noise levels, routing, modulation format,
carrier frequencies, etc. These measurements feed the historical data block in which the possible network
and signal states are labeled in order to supply the training of the ML algorithms. Furthermore, the livestream
data will be classified presenting signal and network monitoring as prediction of traffic demands, recognition
of modulation format, system fault detection or demodulation based on constellation diagrams analysis [86].
Two main categories are found in the ML-related literature: supervised and unsupervised algorithms.

Figure 2.5: Machine Learning-based receiver module in an optical communication system.

2.4.1 Supervised Learning

The goal of these techniques is to classify a certain group of data labeling them from some finite number
of possible classes. Its advantages are highlighted by the statistical and mathematical models that separate
training data in such a way that prediction or labeling of input data is the most accurate as possible. Accord-
ing to different scenarios, these algorithms can improve performances in decision making of network states
(resource assignment or network monitoring) or creating nonlinear boundaries in a constellation diagram for
demodulation at the receiver (mitigation of signal impairments). Although, extra memory would be needed
at receivers side for storing training data or decision boundaries values according to the training method used,
the algorithm could be used as channel estimator similar to other digital equalization techniques. Besides,
in most cases, when more data is supplied in the training stage, the accuracy is usually better, nonetheless,
there are some scenarios where a minimum amount of data gives a constant accuracy, this behavior can be
seen in the use of K-Nearest Neighbor (KNN) algorithm in demodulation [53]. Figure 2.6 shows a typical
supervised algorithm functionality. The training data is given to the algorithm where 3 classes are labeled,
after training process is finished, the calculated threshold will classify the input data.

2.4.2 Unsupervised Learning

Unlike supervised training, the labels or tags are not given in the unsupervised learning, the algorithms
group the data in different clusters based on the similarity of its features and could give labels after a training
process. Although the strength of these algorithms is seen in the capacity of finding new classes, some
of them can be forced to work with a finite number of classes, for example, in demodulation, where the
number of clusters is given by the modulation format, every received symbol is classified into one single
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Figure 2.6: Typical supervised Machine Learning algorithm functionality.

class (modulation index) [15]. Figure 2.7 shows an unsupervised algorithm functionality where at first
stance, unlabeled data is given, then, the algorithm identifies 3 different groups or classes. One of the most
known unsupervised algorithms is the k-Means, which after incoming data enters for classification, measures
distance to every existing cluster centroid and closest is labeled, then, the centroid position is updated by
the mean of total data belonging to that cluster, besides, different algorithms using this type of classification
logic differ in the distance calculation. Moreover, unsupervised learning counts with a different subcategory
called fuzzy clustering algorithms , which gives to every analyzed data, a membership degree to every
existing cluster, using the same distance-centroid logic.

Figure 2.7: Typical unsupervised Machine Learning algorithm functionality.
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3 Experimental and Simulation Setup

3.1 Simulation
Using the specialized software VPIDesignSuite v11.2, the numerical setup (Fig. 3.1) simulates a WDM
OAN system composed of three channels modulated at 16 GBd. For every WDM carrier, the transmitted
data bits are generated by encoding equiprobable random bit sequences of 218 length. The generated bits
are mapped in a Gray-coded 16-QAM symbols. Then, the signals are upsampled to 16 samples/symbol
and pulse shaped with a root-raised cosine (RRC) filter with a roll-off factor of 0.1. The transmitting lasers
count with linewidth of 100, 500 and 1000 kHz and the launch power is controlled by an ideal amplifier
ensuring 0, 3, 6, 9 and 12 dBm that excites nonlinearities in a 40 km span of single-mode fiber which has an
attenuation parameter of 0.2 dB/km [87]. Additionally, the fiber nonlinear index and dispersion are chosen
as 2.6 W-1km-1, and 16 ps/nm/km, respectively. Additive white gaussian noise (AWGN) generator is yield
to vary the OSNR with values from 5 to 31 dB. At the receiver, the center channel is chosen for evaluation
using local oscillators with identical transmitter configuration where the analog-digital converter (ADC) uses
bipolar function based on eight bits to digitalize the signal. The DSP modules based on MATLAB® executes
IQ imbalance correction, chromatic dispersion compensation, clock timing recovery, digital multi-modulus
algorithms (MMA) equalization of 25 taps, finishing with carrier phase and frequency recovering.

Figure 3.1: Simulation setup of an optical access link.

3.2 Experimental
3.2.1 16 GBd

Figure 3.2 shows the experimental setup from the CPqD labs that is based on three tunable lasers arrangement
with 100 kHz linewidth that are used to generate 3×16 Gbaud 16-QAM Nyquist WDM system. The digital-
analog converter (DAC) operates at 64 GSa/s with an electrical bandwidth of 14 GHz. The center and
side frequency channels are generated using different DACs to produce uncorrelated signals. the four DAC
outputs are amplified by four RF drivers with 32 GHz bandwidth before being sent to the IQ modulator. Two
133152 random symbols sequences, mapped in 16-QAM, were generated in Matlab® for X-Y polarizations.
Root raised cosine filter with roll-off factor of 0.1 is used to implement Nyquist pulse shaping, resulting in
spectral widths of 17.6 GHz for each channel. The channel spacing is varied shifting the laser frequency,
from 15 GHz to 18 GHz to obtain different percentage of spectral overlapping: 18 GHz (close channels), 17.6
GHz (0% overlap), 17 GHz (6.8% overlap), 16.5 GHz (12.5% overlap), 16 GHz (18% overlap), 15.5 GHz
(24% overlap) and 15 GHz (30% overlap), including the single channel case. In a back-to-back scenario,
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ASE (amplified spontaneous emission) noise is added to yield the OSNR ranging from 14.3 to 36.3 dB. At
the receiver side, a wideband coherent receiver of electrical bandwidth with 40 GHz is used to detect the
optical carriers. The central carrier is the channel of interest. The received signal is digitized by an 80 GSa/s
real-time oscilloscope, where the 4 inputs, namely the I and Q in X and Y polarizations, have a bandwidth
of 35 GHz each. This is followed by offline DSP in MATLAB®.

Figure 3.2: Experimental setup of the 3×16 GBd gridless Nyquist-WDM system.

3.2.2 32 GBd

Figure 3.3 shows the experimental setup from the GeorgiaTech labs which is based on three tunable lasers
arrangement with 25 kHz linewidth that are used to generate 3×16 Gbaud 16-QAM Nyquist WDM system.
The digital-analog converter (DAC) operates at 88 Gsamp/s with an electrical bandwidth of 32 GHz. The
center and side frequency channels are generated using different DACs to produce uncorrelated signals. The
four DAC outputs are amplified by four RF drivers with 32 GHz bandwidth before being sent to the IQ
modulator. Root raised cosine filter with roll-off factor of 0.1 is used to implement Nyquist pulse shaping,
resulting in spectral widths of 35.2 GHz for each channel. The channel spacing is varied shifting the laser
frequency, from 30 GHz to 37.5 GHz to obtain different percentage of spectral overlapping, including the
single channel case (50 GHz). Transmission over 250 km of standard single-mode fiber [87] is carried on
including B2B and ASE noise is added to yield the OSNR ranging from 15 to 32 dB. At the receiver side,
a wideband coherent receiver of electrical bandwidth with 40 GHz is used to detect the optical carriers.
The central carrier is the channel of interest. The received signal is digitized by an 80 GSa/s real-time
oscilloscope, where the 4 inputs, namely the I and Q in X and Y polarizations, have a bandwidth of 35 GHz
each. This is followed by offline digital signal processing in MATLAB®.
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Figure 3.3: Experimental setup of the 3×32 GBd gridless Nyquist-WDM system.
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4 Proposed Methods
The proposed methods aim to improve the gridless networks performance by i) estimation of the spectral
overlapping by evaluating the received symbol frames and ii) minimizing the ICI effects by applying non-
symmetrical demodulation techniques using ML algorithms. Figure 4.1 shows where the proposed methods
would be operating in the digital signal processing (DSP) module at the scenario of a gridless optical net-
work. The methods use the received IQ symbols affected by ICI and then, determinate the spectral spacing
of the adjacent channels or to mitigate its ICI or nonlinear effects.

Figure 4.1: Allocation of the proposed methods in a digital coherent receiver with digital signal processing
module.

4.1 Spectral Spacing Estimation
Two methods for spectral estimation are proposed. Both of them consist in two stages: i) feature extraction
from constellation diagrams using an unsupervised (fuzzy clustering algorithm) learning algorithms and ii)
spectral spacing estimation carried out by a supervised learning algorithms as Fig. 4.2 shows.

4.1.1 Counting Vectors

Unlike the boolean classification which assigns the data a "1" (belonging) or "0" (not belonging) to cer-
tain class, the fuzzy clustering algorithms give the data a membership degree to every existing class. For

Figure 4.2: Spectral spacing estimation of a diagram constellation.
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instance, Fig. 4.3a shows the assignation of membership degrees to a received symbol in a 16-QAM con-
stellation diagram. Note that the closest modulation index (9) has the higher membership degree (0.6221),
on the other hand, the farthest (2) has the lower membership degree (0.0047) according to the Euclidean
distance. Whereby, the fuzzy clustering algorithms differ in the kind of distance used to classify the data.
The Euclidean distance assumes that the data is isotropically distributed, i.e. it will treat each feature equally
resulting on an analysis of circular-shaped clusters (see Equation (2)) where x j = xI + xQ is the jth analyzed
data point respect to the cluster ci and B is the identity matrix, moreover, in the Mahalanobis distance (see
Equation (3)), Bi (Equation (4)) is the covariance matrix of the classified where µi j is the membership degree
of data point j to the cluster i, in other words, the algorithm measures the correlation among the data and
relaxes the assumption of a Gaussian distribution, this allows the identification of different clusters shapes.
Figure 4.3b shows an illustrative comparison between the Euclidean and Mahalanobis distances. Thus, both
algorithms are tested by its data partition to carry out the demodulation.∥∥∥x j − ci

∥∥∥2
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Figure 4.3: a) Fuzzy clustering algorithm applied to a received symbol in a constellation diagram. b) Illus-
trative differences between Euclidean and Mahalanobis distances.

Fig. 4.4 shows the feature extraction using an hypothetically constellation diagram of 4 symbols. Each
black dot represents the ideal symbol position and the initial centroid to every cluster. When a received
symbol is analyzed, the algorithm will calculate the respective distances to every centroid. Then, according
to the membership degree, we can relate how far or close the received symbol is to its correct modulation
index. We carried out a counting of the symbols which its correct modulation index is the closest, second
closest, third closest and the rest resulting in "counting vectors" of 16 features (for 16-QAM) for frames of
10k symbols. The counting vectors can characterize how ICI effects distorts the symbols position. We tested
two fuzzy clustering algorithms: Fuzzy c-Means (FCM) which uses Euclidean distance and Gustafson-
Kessel Means (GKM) that uses Mahalanobis distance. Both algorithms’ centroids were fixed to be 16 and
its initial values are the ideal 16-QAM constellation. Additionally, the fuzzifier parameter which relates the
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impact of the distances to the membership degree calculation, is set to standard value of 2. Finally, resultant
counting vectors are taken as inputs to the k-Nearest Neighbors (KNN) or Support Vector Machine (SVM)
algorithm to estimate the spectral spacing. We used these algorithms due to their simplicity and versatility
in nonlinear classifications. The resultant data data was divided into 70% training and 30% testing.

Figure 4.4: Feature extraction of a constellation diagram of 4 symbols when a) the correct modulation index
is the 3rd closest to the received symbol and b) when the correct modulation index is the closest.

4.1.2 Cluster Validation

The cluster validation refers to the evaluation of each found clusters in certain data set. Thus, the cluster
validation is usually used to find the best number of clusters. However, in the case of a constellation diagram,
the number of clusters is set according to the number of symbols (16 for 16-QAM). In this sense, it checks
the quality of the results of the fuzzy clustering algorithms on how well grouped are the data according to
the membership degrees values, thus, information of the actual structure of the data could be given [88]. For
instance, in a constellation diagram, it can be noted well-defined clusters at high OSNR values (low noise
levels), this could be related to BER estimation or quality of the signal. On the contrary, diffuse clusters
are seen at low OSNR values or when the signal is affected by high nonlinear effects. Here, the validation
aims to evaluate different partitions of the data (FCM and GKM) and not the number of clusters. Thus, three
validation indexes were considered: i) ratio between compactness and separation of clusters (Fig. 4.5a), ii)
fuzzyness of each cluster (Fig. 4.5b) and iii) overlapping among the clusters (Fig. 4.5c), which are described
by the following equations:
Being µi j the membership degree of data point j to the cluster i.

• Compactness and Separation: Partition Index
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• Fuzzyness: Classification Entropy
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• Overlapping: Partition Coefficient

PC(c) =
1
N

C∑
i=1

N∑
j=1

µ2
i j (7)

A signal quality mapped in an diagram constellation could be characterized using the three indexes together.
However, there is an evident correlation between the partition coefficient and the classification entropy,
thus, in order to avoid information redundancy, principal component analysis (PCA) is applied to the three
features 4.5d. The PCA involves a mathematical procedure that performs dimension reduction by replacing
the variables for principal components which are orthogonal to each other and organized by descending
variance [89]. Therefore, it could be achieved two features with all the information of the three mentioned
indexes which are inputs to the classification algorithm. The explained covariance which show how much
information the PCA components have, is shown in Fig. 4.5e.

Figure 4.5: a) Compact cluster. b) Fuzzy cluster. c) Overlapped clusters. d) Dimension reduction using
principal component analysis.

4.2 ICI and Nonlinear Effects Minimization
The minimization of ICI and nonlinear effects is carried out using supervised learning algorithms to demod-
ulate 16-QAM constellations. The main interest of using these algorithms is due to i) its adaptability and
availability of nonsymmetrical classification of distorted symbols in a constellation diagram and by ii) the
late interest that the supervised learning have gained in the last years for nonlinear classification [27].



4 Proposed Methods 31

4.2.1 Algorithms Adaptation

(a) Support Vector Machine
SVM is a supervised learning algorithm that adopts hyperplanes as thresholds in order to separate
the data classes [90]. These planes are constructed by using support vectors subject to a nonlinear
function. These support vectors are training points usually located in the data-space limits among the
classes (see Fig. 4.6a). On the other hand, the nonlinear function is based on kernels which for an
m-QAM constellation, the best choice of kernel comes to be the Gaussian-radial-basis function due to
it can bring semi circular-shaped thresholds. Nonetheless, the number of support vector considered to
calculate the thresholds can be varied by the Gamma parameter with which a higher or lower curvature
adjustment is controlled avoiding overfitting issues [90]. For example, Fig. 4.6b shows the thresholds
calculation for a single symbol in a constellation diagram affected by nonlinear effects with a high
Gamma value, whereas Fig. 4.6c shows the same classification with a low Gamma value.

Figure 4.6: Thresholds calculation for a single symbol in a constellation diagram affected by nonlinear
effects where the Gamma parameter is a) high and b) low.

Moreover, in a multiclass classification, the SVM proceeds as ‘one vs rest’, by doing a two-class
thresholds calculation as can be seen in the example of the Fig. 4.7, where the 16-QAM format
is susceptible to 6.8% spectral overlapping and 36.3 dB-OSNR. Hence, the demodulation is made
according to the position of the received symbol in the partitioned constellation diagram.

Figure 4.7: ‘One vs rest’ thresholds calculation for different 16-QAM symbols.

(b) Artificial Neural Networks
Figure 4.8 shows the adopted single-hidden layer ANN [91]. We explored a single-hidden layer net-
work for aiming lower computational complexity. On the contrary, we avoided deep neural networks
that need high-performance computing techniques [91]. The input layer X corresponds to the in-phase
(xI) and quadrature (xQ) components of each received symbol, whilst the output layer Y = (y1, .., y16)
brings the modulation index (1-16 for the 16-QAM format) by following a softmax classification. The
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hidden layer contains n neurons subject to the rectified linear Unit (ReLU) activation function. Al-
though ReLU presents equal performance than the benchmarking hyperbolic tangent function, ReLU
functions has a lower computation complexity [92]; hence, the activation function relates the product
between inputs and weights ω(k, j) (k indicates input or hidden layer and j goes from 1 to n) and then,
sums the result with bias value b(1, j). The training process is carried out by introducing received
symbols frames X associated with its respective modulation index Y . Then, the weights and biases
are adjusted based on the backpropagation (BP) algorithm [91]. The BP algorithm connects all the
neurons carrying on a prediction with the initial weights and biases values in a forward way, namely
by starting from the inputs X to the hidden layer and then, from the hidden layer to the outputs Y . The
difference between outputs and predictions are computed by following a backward process (weights
and biases values are updated). The adjusting of these parameters is iteratively made according to an

Figure 4.8: Artificial Neural Network used to demodulate 16-QAM symbols.

epoch parameter, which means how many rounds the BP algorithm is executed. Besides, the updating
rate of weights and biases follows optimizer function adam, which in comparison to classical stochas-
tic gradient descent, does not maintain a single learning rate for all weights and biases [93]. Therefore,
at the receiver side of the optical communication system, the ANN model (calculated weights, biases,
and trained topology of the network) will be stored to predict modulation indexes of the incoming
received symbols.

(c) k-Nearest Neighbors:
KNN is one of the simplest supervised algorithms [90]. Figure 4.9 shows the demodulation using
KNN in a 16-QAM constellation, where the colored points are the training symbols affected by ICI
effects. Considering a received symbol (Fig. 4.9a) and using the Euclidean distance, the algorithm
identifies the k closest training symbols; then, it compares the modulation index of every considered
training symbol to assign the most common one to the received symbol (Fig. 4.9b). Thereby, in the
receiver side, all the training symbols will be stored in a memory in order to calculate the respective
distances from the received symbol.
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Figure 4.9: KNN classification using k=5 for a received 16-QAM symbol. a) Comparative of classes before
classification. b) Classification.

4.2.2 Training Strategy

We propose a training strategy that will be useful for future gridless networks implementations in order
to mitigate ICI effects. It uses training symbol sequences added to the transmitted signal when changes
in spectral spacing are detected. Consequently, this method would require a diagnostic tool for detection
and estimation of spectral spacing as mentioned previously in Section 4.1. We called this strategy the
updating strategy because every time when a change in carrier frequencies is detected, the training symbols
affected by the new distortions will be updated. Fig. 4.10 illustrates this strategy, when changes in spectral
spacing occurs, the receiver should send an ‘alert’ to the transmitter and the training sequence will be again
transmitted. The training symbols affected by the new spectral spacing will be used to update the support
vectors that create the demodulation thresholds for SVM, to update the neurons weights and biases of the
ANN algorithm, and for KNN, the symbols will be stored to perform the digital demodulation.

Figure 4.10: Training approach by employing updating training sequences.

In order to reduce computational costs of all strategies, we calculated the lowest training data without
penalizing the BER metric. Thus, based on the average of ten iterations where the frames of 100k symbols
are randomized, we estimated the BER for various scenarios. For the training strategy, Fig. 4.11 shows
the BER vs. training length by considering three representative scenarios that have BER values close to a
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common hard-decision forward error correction (FEC) limit of log10(BER) = −2.4. The FEC techniques
uses data redundancy for error correction based on codification with which it is possible to obtain BER
values of log10(BER) = −9 [94]. In order to take into account ICI and/or additive noise effects, the chosen
scenarios correspond to a) a single channel with OSNR = 19.3 dB, b) 12% spectral overlapping with OSNR
= 21.3 dB, and c) 18% spectral overlapping with OSNR = 36.3 dB. It can be seen that the BER is lower
whilst training length increases. Besides, ANN and SVM are more dependent on training data than KNN
to minimize the system performance. Moreover, the three ML algorithms allow lower BER than traditional
demodulation, which uses symmetrical decision thresholds in the constellation diagram. Additionally, all
above observations occur in the three scenarios., by allowing the generalization of the method. Finally, it is
noticed that for the three ML algorithms, <7000 symbols are required in order to get the best BERs.

Figure 4.11: BER versus training length for characterization method in (a) single channel at 19.3 dB, (b)
12% spectral overlapping at 21.3 dB, and (c) 18% spectral overlapping at 36.3 dB

4.2.3 Hyperparameter Selection

In this section we briefly discuss and show how the main hyperparameters of SVM, ANN and KNN al-
gorithms were chosen for a minimum BER value in order to reduce system complexity. Although all the
hyperparameters were chosen using gridsearch, we present here the BER impact changing the main hyperpa-
rameters. Thus, for the ANN algorithm, Fig. 4.12a shows the BER as a function of the hidden layer neurons
(n) for the mentioned scenarios i) single channel at high noise levels, ii) 12.5% spectral overlapping at high
noise level and iii) 18% spectral overlapping at low noise. Once again, theses cases were selected in order
to obtain a BER value around the FEC limit of log10(BER) = 2.4. It can be seen that from 13 neurons, no
differences in BER are evidenced. On the other hand, the analysis of the SVM’s hyperparameters is carried
out based on the type of kernel we used which is Gaussian−radial−basis suitable for diagrams constellations.
The Gamma hyperparameter (Fig. 4.12b) relates how high or low the curvature of the Gaussian threshold
will be therefore, the best Gamma value is 0.1. Finally, the best k (amount of neighbors) value for KNN
is 9 (Fig. 4.12c). Moreover, the choosing of the hyperparameters is carried out looking for best BER per-
formance and for minimum computational cost. For example a higher number of neurons leads to a higher
number of weight and biases calculation and a higher k value, means more class comparison among training
points.
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Figure 4.12: BER vs a) Neurons for ANN, b) Gamma for SVM and c) Neighbors (k) for KNN algorithms.
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5 Results and Discussions

5.1 Spectral Spacing Estimation
Figure 5.1a shows the spectral overlapping between channels that are spectrally spaced less than the baud
rate. The spectral overlapping percentage is calculated using Eq. (8) where R is the baud rate and Csp is the
channel spacing. These overlapping values could be negative which means the channels are not overlapped.
Furthermore, Figs. 5.1b and 5.1c shows the resultant overlapping cases using (8) applied to the 16 GBd
and 32 GBd data in which the spectral spacing were varied in steps of 0.5 GHz. Besides, the overlapping
percentages were grouped in order to carry out different estimations, for instance, in the 32 GBd setup
(Fig. 5.1c), it is made five different configurations: i) for 2 classes, the classifier detects if any constellation
diagram was affected by ICI or not, ii) 3 classes means two overlapping levels are considered, iii) in the
case of 4 classes, three overlapping levels are considered, iv) for 5 classes, the single channel scenario (50
GHz of spectral spacing) is contemplated as a separated case, finally, v) all separated overlapping cases are
also classified. On the other hand, for the 16 GBd setup, it is also considered a binary classification, two
overlapping levels and the case of all possible overlapping cases.

Ov = 2 ×
R −Csp

R
(8)

Figure 5.1: a) Spectral overlapping according to the channel spacing. Grouping of different spectral over-
lapping scenario for b) 32 GBd setup and c) 16 GBd setup.

After the counting vectors or validation indexes are calculated using any of the unsupervised algorithms
(FCM or GKM) described in Section 4.1, we tested two classifiers: KNN and SVM. Thus, the results are
presented comparing performances in terms of accuracy percentages. Figures 5.2a, 5.2b and 5.2c shows the
accuracy performance using counting vectors features vs each grouping case for the scenarios 16 GBd B2B,
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32 GBd B2B and 32 GBd with fiber transmission, respectively. Moreover, the OSNR is given as a feature or
not.

Figure 5.2: Accuracy vs classes using counting vectors in a) 16 GBd setup, b) 32 GBd setup in B2B scenario,
c) 32 GBd setup with fiber transmission scenario.

The experimental results show that it is possible to determinate if any constellation diagram is affected
by ICI effects using classification after the counting vectors are extracted. For the 16 GBd setup (Figs. 5.2a),
accuracies up to ~84% were achieved using any of the proposed method with SVM or KNN classification
when only 2 classes are considered and knowing a priori the OSNR value. The importance of an OSNR
knowledge is enlightened as ~80% of accuracy is achieved for 4 classes. Besides, the classification perfor-
mance by KNN is slightly better than the SVMs even if the OSNR is not included as a feature. On the other
hand, when the OSNR is not known by the classifier, accuracies up to ~77% were achieved. Furthermore,
the classification performance using the 32 GBd B2B data (Fig. 5.2b) was similar to the 16 GBd (Fig. 5.2a)
results, for instance, KNN preented better accuracy than SVM. Whereas, in a transmission over 250 km of
fiber (Fig. 5.2c) the classification was better by obtaining ~92% of accuracy in a binary classification, know-
ing the OSNR. In this case, the KNN and SVM obtained same accuracy of ~85% in the case of 5 classes.
Finally, the classification using the features extracted by FCM was better than the features extracted using
GKM in the case of B2B scenarios, this is because the distortions tend to follow circular shapes than the
distortions in fiber transmission which are nonsymmetric due to the fiber nonlinearities.

Figures 5.3a to 5.3c depict the classification accuracy using the validation indexes features vs the number
of classes according to the grouping in Fig. 5.1. The results show that it is possible to determinate if any
constellation diagram is affected or not by spectral overlapping effects. It can be seen that the use of SVM
classifier obtained better performance than KNN in the 32 GBd scenario with fiber transmission or not (Fig.
5.3b and 5.3c, respectively), for example, in the case of five classes for the 32 GBd with fiber data, the
SVM classifier obtained ~87% accuracy, whilst the KNN achieved ~81%. Though, in the case of 16 GBd
data, SVM and KNN showed same performance, besides, accuracy up to 85% was obtained in the case of 4
classes.
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Figure 5.3: Accuracy vs classes using validation indexes in a) 16 GBd setup, b) 32 GBd setup in B2B
scenario, c) 32 GBd setup with fiber scenario.

Additionally, the use of FCM or GKM partitions for feature extraction did not show variation in terms of
accuracy. Figures 5.4 and 5.5 show the confusion matrix when 3 and 4 classes are considered, respectively.
Specifically, the confusion matrices shows the classification using KNN. Also, Fig. 5.4a and Fig. 5.4c show
the cases when the features were extracted using FCM with and without OSNR, respectively. On the other
hand, Fig. 5.4b and Fig. 5.4d show the cases when the features were extracted using GKM with and without
OSNR, respectively. Moreover, the class 1 represents that there is not spectral overlapping, whilst the class
2 and class 3 represent low and high spectral overlapping, respectively. Specifically, the classification of the
class 3 (high overlapping) is mistakenly classified as class 1 (no overlapping) using FCM features (see Fig.
5.4a). Whereas, using GKM features (Fig. 5.4b), this misclassification is equally seen as class 1 and class 2.
This is due to the circular assumption of cluster that FCM gives. Besides, when the OSNR is known by the
classifier (5.4c and 5.4d) it can be seen that the easiest class to classify is the one of high spectral overlapping
cases, this is because the ICI effects increase the clusters fuzzyness more than low OSNR effects; and those
distortions are most evidenced in the first and second class.

Figure 5.4: Confusion matrix by using validation indexes as features and classifying with KNN for the case
of three classes using 16 GBd data, where: a) FCM without OSNR. b) GKM without OSNR. c) FCM with
OSNR and d) GKM with OSNR.

Furthermore, Fig. 5.5 shows the confusion matrices when 4 classes are considered. It can be seen the
contrast of an OSNR knowledge by the classifier comparing for instance Fig. 5.5a (OSNR not known by
the classifier) and Fig. 5.5c (OSNR known by the classifier), it is shown that single channel scenario and
highly spectral overlapping cases are almost perfectly classified, hence, the confusion is found between close
channels scenarios and low level of spectral overlapping.

In this sense, Figs. 5.6a and 5.6b shows the mapping of the data points where PCA is applied when the
OSNR is not known and when it is known by the classifier, respectively. It can be seen that the data of high
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Figure 5.5: Confusion matrix by using validation indexes as features and classifying with KNN for the case
of four classes using 16 GBd data, where: a) FCM without OSNR. b) GKM without OSNR. c) FCM with
OSNR and d) GKM with OSNR.

spectral overlapping is more likely separable than the cases of low spectral overlapping and close channels
cases, this when the OSNR is known (Fig. 5.6b), however, when it is not known, the data could achieve
similar positions even if the channels are overlapped, for example, blue dots (single channel) are seen close
to red dots (high spectral overlapping), this is due the similarity of gaussian noise and ICI effects.

Figure 5.6: Mapping of data after PCA is applied to features extracted using the validation indexes when: a)
OSNR is not known and b) OSNR is known by the classifier.

Table 5.1 shows accuracy comparison between the two proposed methods when the OSNR is known by
the classifier. It can be seen that in B2B scenarios, the use of the validation indexes presented better perfor-
mance than the counting vectors by about ~0.7%, moreover, this difference is higher with the increment of
classes. On the other hand, when fiber transmission is considered, the counting vectors showed slightly a
higher accuracy by about ~1.5%. Furthermore, in order to achieve these accuracies, the receiver will need a
precise OSNR measurement, and, considering the ML approaches in OSNR monitoring seen in Section 1.3,
this technique becomes feasible.

In contrast, Table 5.2 shows accuracy comparison when the OSNR is not known by the classifier. In this
case, the use of the counting vectors preented better accuracy even when fiber transmission is considered,
thus, it would be the best option when a precise OSNR measurement is not available, due to the remarkable
accuracy of 78.5% only using the receiver symbols.

The use of any of the proposed methods would be helpful to control carrier frequencies in future gridless
networks. Whilst the use of the counting vectors would require training sequences where the receiver needs
to know the correct modulation index of each receiver symbol, the method using the validation index will
only need a clustering analysis based on how compact, fuzzy and separated are the group of symbols in the
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Table 5.1: Comparison of best accuracy results between Counting Vectors and Validation Indexes methods
when the OSNR is known by the classifier.

Case Number of Classes Counting Vectors Accuracy Validation Indexes Accuracy

16 GBd
2 84.0% 84.3%
3 81.7% 84.6%
4 77.7% 84.4%

32 GBd B2B
2 86.2% 87.3%
3 84.4% 86.1%
5 78.2% 82.3%

32 GBd Fiber
2 91.8% 90.5%
3 90.1% 89.2%
5 84.0% 86.4%

constellation diagram.

Table 5.2: Comparison of best accuracy results between Counting Vectors and Validation Indexes methods
when the OSNR is not known by the classifier.

Case Number of Classes Counting Vectors Accuracy Validation Indexes Accuracy

16 GBd
2 78.5% 74.4%
3 72.7% 68.0%
4 64.4% 63.2%

32 GBd B2B
2 74.4% 70.8%
3 66.0% 59.2%
5 49.0% 46.8%

32 GBd Fiber
2 72.4% 69.2%
3 66.8% 60.8%
5 48.0% 40.5%
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5.2 ICI and Nonlinear Effects Mitigation
The ICI and nonlinear effects mitigation were carried out in the simulation and experimental data. We used
as reference the FEC limit of log10(BER) = −2.4 and evaluation of the methods was carried out as a function
of OSNR.

5.2.1 Simulation Results

The proposed methods were applied in order to mitigate nonlinear Kerr effects in an simulated OAN link.
Figures from 5.7a to 5.7d show BER vs OSNR results for four different launch power values: 0, 3, 6 and
9 dBm, respectively. As mentioned in Section 2.2, high launch power stimulates nonlinear effects which
results in nonsymmetrical distortions. Thereby, when no nonlinear effects are present, for instance, 0 dBm
of launch power (Fig. 5.7a), the distortions are symmetric and the methods do not present a relevant gain
in terms of OSNR. The gains obtained by the methods are measured as it is shown in the Fig. 5.7c in terms
of OSNR. Whereby, the use of the three proposed methods improves the BER when the nonlinear effects
increase. For example, at a launch power of 3 dBm (Fig. 5.7b), a gain of ~0.1 dB is achieved by the proposed
methods, on the other hand, when the launch power is 6 dBm (Fig. 5.7c), gains up to 0.5 dB are achieved
respect to the traditional demodulation. Besides, in the case of 9 dBm of launch power (Fig. 5.7d), the FEC
limit of log10(BER) = −2.4 could not be obtained by traditional demodulation, however, it could be achieved
using any of the three methods at an OSNR of ~22 dB.

Figure 5.7: BER vs OSNR for launch power of: a) 0, b) 3, c) 6 and d) 9 dBm.

Furthermore, the nonlinear phase noise mitigation is also evaluated. Figures 5.8a to 5.8c shows BER
vs OSNR for laser linewidth of 100, 500 and 1000 kHz, respectively. It can be observed that mitigation of
nonlinear phase noise due to low-monochromatic sources can be achieved by any of the proposed methods.
Besides, higher OSNR gains are achieved when the laser linewidth is greater. For instance, when the laser
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linewidth is 100 kHz (Fig. 5.8a), gains of ~0.2 dB are achieved, on the other hand, for a linewidth value of
1000 kHz (Fig. 5.8c), gains up to ~0.5 dB were obtained. Moreover, it is noted that at high OSNR values,
the method based on ANN algorithm, does not reach same BER values as using KNN or SVM. For example,
Fig. 5.8d shows the constellation diagram at an OSNR of 23 dB in the case of 100 kHz linewidth. Marked in
yellow are the transmitted symbols of an arbitrary index. Hence, Figs. 5.8e to 5.8g shows the demodulation
of the received symbols using KNN, SVM and ANN, respectively. In Fig. 5.8g it can be seen that the ANN
algorithm does not perform a properly nonsymmetric demodulation at high OSNR values. However, at low
OSNR values, its performance is similar to KNN or SVM.

Thus, we demonstrated that it is possible to increase the network capacity only adding ML modules in
the coherent receiver.

Figure 5.8: BER vs OSNR for laser linewidth of: a) 100, b) 500 and c) 1000 kHz. d) Constellation diagram
at 23 dB of OSNR. Demodulation of a single symbol using e) KNN, f) SVM and g) ANN.

5.2.2 16 GBd Results

Figures from 5.9a to 5.9g depict the BER versus OSNR after the proposed methods are applied in demodula-
tion. The BER impact in different spectral overlapping, including the single-channel scenario, is discussed.
As a reference curve, the results with traditional demodulation (hard-decision) are also exposed. As men-
tioned in Section 3, these and previous BER curves correspond to B2B links, namely, the optical fiber effects
are discarded in these tests. It is noticed that the use of the methods improves BER performance in compar-
ison to the traditional demodulation. As expected, higher performance gains are achieved by the methods
when the spectral spacing is reduced. For example, in the single-channel scenario (Fig. 5.9a), the use of
ML methods allowed gains up to 0.3 dB in terms of OSNR at the FEC limit. Meanwhile, for a spectral
overlapping of 0% (baud rate spacing in Hz), 6.8%, and 12.5%, the gains resulted from the adoption of the
KNN algorithm are 0.4, 0.5, and 0.6 dB, respectively. Moreover, the use of KNN and ANN showed superior



5 Results and Discussions 43

performances to SVM, since SVM would need more training data per scenario in order to update the thresh-
olds. In particular, for the scenario of 24% spectral overlapping (Fig. 5.9g), the FEC limit is not achieved
due to the high spectral overlapping distortions regardless of high OSNR values. However, gains up to 2.5
dB were achieved by the three methods at a log10(BER) value of -1.7.

Transmission over 250 km of optical fiber (a typical WDM distance link) without OSNR variations was
carried out in order to focus on the contribution of fiber impairments in the gridless scenario. Spectral spac-
ing was varied from 12.6% to 0% of overlapping by including the single channel as a reference. Figure
5.9i shows the BER versus spectral overlapping and it can be seen a minimization of ICI effects by using
the three methods. Moreover, it was possible to achieve similar BER values in a non-overlapped scenario
without using any of the methods that in overlapped scenarios by using the proposed methods. For instance,
with traditional demodulation at the case of 0% spectral overlapping a log10(BER) value of -2.8 is achieved.
Instead, using any of the methods, this BER value can be obtained with spectral overlapping up to 12.6%.
Besides, superior performances are achieved by the method based on KNN. This is because fiber nonlinear-
ities can be mitigated by KNN due to the consideration of neighbors at the borders of symbols groups.

Figure 5.9: BER versus OSNR for different spectral overlapping (a) single channel, (b) close channels (18
GHz spacing), (c) 0%, (d) 6.8%, (e) 12.5%, (f ) 18%, and (g) 24%. (i) BER versus spectral overlapping for
the fiber transmission scenario.
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5.2.3 32 GBd Results

(a) Back-to-back
Figures from 5.10a to 5.10j shows BER vs OSNR for different spectral overlapping scenarios including
single channel. It can be evidenced that the use of the proposed methods allows mitigation of ICI
effects. For instance, when the channels are spectrally overlapped by 1% (Fig. 5.10d) gains up to ~0.3
dB are achieved at the FEC limit of log10(BER) = −2.4, on the other hand, at a spectral overlapping of
15% (Fig. 5.11i), gains up to ~0.8 dB in terms of OSNR. Moreover, the use of the proposed methods
presented a minimum performance equal to the traditional demodulation. Besides, in the case of a
high spectral overlapping of 18%, the FEC limit could not be reached for the OSNR applied. This is
because the overlapped spectrum given the high baud rate is high and the distortions tend to be difficult
to mitigate. Nevertheless, in this case, a gain up to ~1 dB is achieved at a log10(BER) value of −1.9.

Figure 5.10: BER versus OSNR for different spectral overlapping for (a) single channel, (b) -4.5, (c) -1%,
(d) 1%, (e) 4%, (f) 7%, (g) 9.5%, (h) 12.5%, (i) 15%, (j) 18%, applied to the 32 GBd setup at B2B.



5 Results and Discussions 45

(b) Fiber Transmission

Figures from 5.11a to 5.11i shows BER vs OSNR for different spectral overlapping scenarios including
single channel. It is also seen that the use of the proposed methods allow mitigation of ICI effects.
For example, when the channels are spectrally overlapped by 1% (Fig. 5.10d) gains up to ~0.2 dB are
achieved at the FEC limit of log10(BER) = −2.4, whilst at a spectral overlapping of 15% (Fig. 5.11i),
gains up to ~0.5 dB in terms of OSNR. Moreover, the use of the methods allowed mitigation of fiber
nonlinear effects which is seen when gains up to ~0.6 dB are achieved for example at Fig. 5.11b where
there is not spectral overlapping.

Figure 5.11: BER versus OSNR for different spectral overlapping for (a) single channel, (b) -4.5, (c) -1%,
(d) 1%, (e) 4%, (f) 7%, (g) 9.5%, (h) 12.5%, (i) 15%, applied to the 32 GBd setup at 270 km of fiber
transmission.

5.2.4 Proportional Execution Time

The computational time taken by the algorithms to train and demodulate is briefly evaluated in order to ana-
lyze future implementations. We calculated the overall processing time taken by the algorithms to train and
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demodulation of 7k and 93k symbols, respectively. For comparison purposes, we normalized the highest
processing time (given by ANN), and the results presented by the KNN and SVM algorithms are propor-
tional. The results were obtained used the same computer. Table 5.2.4 shows the respective results by each
ML algorithm. It is seen a high elapsed time by ANN, due to the BP process in the training stage that
tends to be computationally complex. Besides, KNN requires 28% of the ANN time to classify the symbols
because it does not count with a training stage. However, it uses the training symbols to demodulate each
received symbol. Thus, the computational time is mostly expended in the sorting process of all the distances
calculated from the training symbols. Furthermore, SVM presented a low computational time carrying the
threshold calculations in the training stage, which is lower than sorting 7000 distances. Additionally, analy-
sis of computational complexity by means of computational operations, for instance, Big-O notation, is one
of the main future works.

Table 5.3: Proportional Time Taken by Each Supervised Algorithm to Train and Demodulate Symbols.
Algorithm Proportional Time

ANN 100%
SVM 6.2%
KNN 28%
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6 Conclusions and Future Work

6.1 Conclusions
In this research work, methods for estimation of spectral overlapping jointly with reduction of nonlinear and
ICI effects were exposed. The methods use ML algorithms which have presented excellent results either in
the performance estimation and in mitigation of signal impairments into the optical communications systems
such as OANs and gridless networks.

Nonlinear effects will be relevant issues in high−capacity OANs because they increase the BER due
to the nonsymmetrical distortions that are difficult to mitigate using traditional m−QAM demodulation,
besides, nonlinear equalizers tends to be unfeasible due to its high computational cost. On the other hand,
the ICI effects will be one of the most relevant issues in future gridless optical networks because in these
networks, the channels will be spectrally close or even overlapped. Besides, ICI effects present similar
distortions as the linear Gaussian noise resulting in BER increments and making difficult its detection.

The proposed methods were tested using simulated and experimental data. The simulated data performed
an WDM OAN link at 16 GBd of 40 km fiber transmission with variation of laser linewidth and launch power.
On the other hand, the experimental data was focused on 16-QAM Nyquist-WDM systems at 16 GBd and
32 GBd where the spectral spacing among three channels was varied reaching ICI effects.

Firstly, it was introduced two methods for estimation of spectral overlapping. The methods use received
symbols frames affected by ICI effects and then, a feature extraction using information of unsupervised
learning algorithms is carried out. Finally, these features are inputs to supervised learning algorithms which
classifies if the received frame was affected by spectral overlapping. Two unsupervised learning algorithms
which uses fuzzy clustering algorithms were used for feature extraction: FCM and GKM. On the other hand,
two supervised algorithms for classification were evaluated also: SVM and KNN.

Experimental results showed that it is possible to determinate if any constellation diagram is affected
by spectral overlapping using any of the proposed methods. Accuracies up to 91% were achieved in binary
classification knowing a priori the OSNR value in the case of 32 GBd with fiber transmission. Moreover,
when the OSNR is not known by the classifier, accuracies up to ~80% were obtained using the 16 GBd data.
Besides, classification of different scenarios as high or low spectral overlapping jointly with detection of
close channels or single channel was obtained also with accuracies up to ~90% or ~85% using the 32 GBd
and 16 GBd data respectively. Besides, when the OSNR is not known by the classifier, ~78% of accuracy
was obtained in a binary classification.

The use of FCM or GKM for feature extraction presented no relevant differences, this is due GKM
could identify different clusters shapes and the ICI effects tend to form circular distortions. Additionally, in
relation to the classification algorithms and using the counting vectors, the KNN algorithm presented better
classification than SVM in the B2B scenarios. On the other hand, when fiber transmission was considered,
the best classification was obtained by the SVM algorithm. In contrast, using the validation indexes as
features, the SVM obtained better performance than KNN. Furthermore, the use of the counting vectors
requires the use of training sequences whilst the use of the validation indexes needs only frames of received
symbols. Besides, the feature extraction from the constellation diagrams will only require the initializing the
clusters centroids in the ideal constellation format position using standard algorithms hyperparameters.

Furthermore, it was proposed three supervised ML algorithms to carry out nonsymmetrical demodulation
in order to minimize: i) nonlinear distortions and ii) ICI effects and thus, reduce the BER. For the former,
the methods were applied into the simulated OAN link, for the latter, ICI effects were mitigated using the
experimental data.

Results showed that the ML algorithms could mitigate nonlinear effects as well as ICI effects allowing
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gains in terms of the OSNR. Additionally, the BER reduction was obtained at low training lengths. Hence,
a training strategy was also proposed in which a estimation tool will detect spectral overlapping level and
the training sequences will be send carrying on updating of the algorithms. Simulation results preented
the effectiveness of the methods by presenting gains up to ~0.5 dB in terms of OSNR at a FEC limit of
log10(BER) = −2.4. Besides, at high launch power of 9 dBm and OSNR of 25 dB, traditional demodulation
method reached BER values of −2 while the proposed methods obtained ~−2.6. In those cases the three
proposed methods showed same BER performance.

Besides, with the use of the KNN algorithm, it was possible to achieve the best BER improvement. For
the B2B scenario, the ANN and KNN algorithms outperformed the SVM results in all spectral spacing cases.
Furthermore, the KNN algorithms required less training symbols than ANN and SVM to achieve their best
performance in terms of BER. Additionally, at a spectral overlapping of 18%, the SVM, KNN and ANN
algorithms allowed gains up to ~4 dB in terms of OSNR. On the other hand, for the transmission scenario
of 250 km of optical fiber, the use of KNN allowed the best BER improvement because the adaptability
of KNN to classify nonsymmetrical symbols groups given by nonlinear fiber effects. Furthermore, it was
aimed to reduce ICI effects at a minimal training length; thus, we presented the proportional time taken by
the three algorithms to train and demodulate with a 100 k symbols frame, where the SVM algorithm showed
the lowest computation time (equivalent to 6.2% of the ANN computational time).

Lastly, the methods aim to improve the capacity of future gridless optical networks and to enhance OANs.
Additionally, the proposed methods for estimation and mitigation can be implemented for any constellation
diagram-based modulation formats as m-QPSK and m-QAM. The use of these ML-based techniques will be
useful to improve the performance of future OANs and gridless networks.

6.2 Future Works
In order to achieve higher estimation accuracy, different contributions using variants of characterization of
diagram constellations could be explored. In [95], we explored the use of digital image processing where
several features were extracted using heat maps and gray scaling including a texture analysis. We explored
alternatives to the trend of neural networks with convolutional layers where feature extraction in carried
out automatically. However, only preliminar results were obtained and the path for deep explorations was
opened. Additionally, another ML algorithms related to deep learning will be explored using image process-
ing. Besides, the inclusion of regression models for spectral spacing estimation will be investigated due to
the fact that in a gridless network, the spectrum granularity will be close to be continuous.

On the other hand, future work may put forward the inclusion of higher data-rate scenarios with advanced
modulation formats as well as the exploration of low-computational-complexity solutions in order to obtain
advanced gains in terms of OSNR. Besides, hardware implementations of any ML approach into the optical
communications would still need more research as we partially explored in [96]. Additionally, analysis of
computational complexity by means of computational operations, for instance, Big-O notation, is one of the
main future works.
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