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SYNOPTIC ABSTRACT

In this article, we define a bivariate extended confluent hypergeometric function
density in terms of extended confluent hypergeometric function. We also derive
several of its properties and results in terms of extended beta, extended confluent
hypergeometric, and modified Bessel functions.
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1. Introduction

A random variable X is said to have an extended confluent
hypergeometric function kind 1 distribution with parameters
(ν, α, β, σ), denoted by X ∼ ECH(ν, α, β, σ, kind 1), if its prob-
ability density function (PDF) is given by (Nagar, Morán-Vásquez,
& Gupta, 2012),

B(α, β − α)
�(ν)B(α − ν, β − α; σ)

xν−1�σ (α; β; −x), x > 0, (1)

where ν > 0, β > α > 0 if σ > 0, and β > ν > 0, α > ν > 0 if σ =
0. Further, B(a, b) is the beta function defined by

B(a, b) = �(a)�(b)
�(a + b)

, Re(a) > 0, Re(b) > 0,
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and �σ is the extended confluent hypergeometric function
(Chaudhry, Qadir, Srivastava, & Paris, 2004) defined as

�σ (b ; c ; z) = 1
B(b , c − b)

∫ 1

0
t b−1(1 − t)c−b−1

× exp
[

zt − σ

t(1 − t)

]
dt, (2)

where Re(c) > Re(b) > 0 and σ ≥ 0. By taking σ = 0 in (2), one
obtains �0(b ; c ; z) = �(b ; c ; z), which means that the classical con-
fluent hypergeometric function (Gradshteyn & Ryzhik, 2007, Sec.
9.21) is a special case of the extended confluent hypergeometric
function. Further, the extended beta function B(b , c ; σ) used in
(1) is defined as (Chaudhry, Qadir, Rafique, & Zubair, 1997),

B(b , c ; σ) =
∫ 1

0
t b−1(1 − t)c−1 exp

[
− σ

t(1 − t)

]
dt, (3)

where σ > 0, and if σ = 0, then we must have Re(b) > 0 and
Re(c) > 0.

The extended confluent hypergeometric function kind 1 dis-
tribution occurs as the distribution of the ratio of independent
gamma and extended beta variables (Nagar et al., 2012). For
σ = 0, the extended confluent hypergeometric function kind 1
distribution slides to a confluent hypergeometric function kind
1 distribution (Gupta & Nagar, 2000). For σ = 0 and α = β, the
density (1) reduces to a standard gamma density with shape pa-
rameter ν given by

{�(ν)}−1xν−1 exp(−x), x > 0,

and in this case we will write X ∼ Ga(ν). The gamma distribution
has been used to model amounts of daily rainfall (Aksoy, 2000).
In neuroscience, the gamma distribution is often used to describe
the distribution of interspike intervals (Robson & Troy, 1987). The
gamma distribution is widely used as a conjugate prior in Bayesian
statistics. It is the conjugate prior for the precision (i.e., inverse
of the variance) of a normal distribution. It is also the conjugate
prior for the exponential distribution. It is, therefore, reasonable
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to say that the extended confluent hypergeometric function kind
1 distribution, which is a generalization of the gamma distribu-
tion, can be used as an alternative to gamma quite effectively in
analyzing many lifetime data. In the same vein, we can say that
the bivariate generalization of the extended confluent hyperge-
ometric function kind 1 distribution proposed in this article can
also serve as an alternative to many bivariate gamma distributions.
The bivariate gamma distributions have applications in several ar-
eas; for example, in the modeling of rainfall using two nearby rain
gauges, data obtained from rainmaking experiments, the depen-
dence between annual streamflow and areal precipitation, wind-
gust data, and the dependence between rainfall and runoff. These
distributions have also been applied in reliability theory, renewal
processes, and stochastic routing problems. A comprehensive ac-
count of some applications and other aspects of these distribu-
tions can be found in Balakrishnan and Lai (2009), Nadarajah
(2005), Nadarajah and Kotz (2006), and Nadarajah and Gupta
(2006).

The bivariate generalization of the extended confluent hy-
pergeometric function kind 1 distribution, denoted by (X1, X2) ∼
ECH(ν1, ν2, α, β, σ , kind 1), is defined by the density

B(α, β − α)
�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

× xν1−1
1 xν2−1

2 �σ (α; β; −x1 − x2), (4)

where x1 > 0, x2 > 0; ν1 > 0, ν2 > 0, and β > α > 0 if σ > 0; ν1 >

0, ν2 > 0, β > ν1 + ν2, α > ν1 + ν2 if σ = 0. By using Kummer’s
first formula for the extended confluent hypergeometric function
(Chaudhry et al., 2004, Equation (6.3)), the density (4) can also
be written as

B(α, β − α)
�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

xν1−1
1 xν2−1

2 exp[−(x1 + x2)]

× �σ (β − α; β; x1 + x2),

where x1 > 0 and x2 > 0. For σ = 0, (4) reduces to a bivariate
confluent hypergeometric function kind 1 distribution given by
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the density

�(α)�(β − ν1 − ν2)
�(ν1)�(ν2)�(β)�(α − ν1 − ν2)

xν1−1
1 xν2−1

2 �(α; β; −x1 − x2),

x1 > 0, x2 > 0,

where ν1 > 0, ν2 > 0, α > ν1 + ν2, and β > ν1 + ν2. For σ = 0 and
α = β, the random variables X1 and X2 are independent, X1 ∼
Ga(ν1) and X2 ∼ Ga(ν2).

In this article, we study several properties such as marginal
distributions, cumulative distribution function, and measure of
the component reliability of the bivariate distribution defined by
(4). We also derive distributions of sum, product, and quotients
of the components X1 and X2.

2. Properties

In this section, we study several properties of the bivariate ex-
tended confluent hypergeometric function kind 1 distribution
defined in Section 1. First, we define beta type 1, beta type 2,
and extended beta type 1 distributions. These definitions can be
found in Johnson, Kotz, and Balakrishnan (1995), Chaudhry et al.
(1997), and Nagar et al. (2012).

Definition 2.1 A random variable X is said to have a beta type 1
distribution with parameters (a, b), a > 0, b > 0, denoted as X ∼
B1(a, b), if its PDF is given by

{B(a, b)}−1xa−1(1 − x)b−1, 0 < x < 1.

Definition 2.2 A random variable X is said to have a beta type
2 distribution with parameters (a, b), denoted as X ∼ B2(a, b),
a > 0, b > 0, if its PDF is given by

{B(a, b)}−1xa−1(1 + x)−(a+b), x > 0.

Definition 2.3 A random variable X is said to have an extended
beta type 1 distribution, denoted by X ∼ EB1(a, b ; λ), if its PDF is
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given by

{B(a, b ; λ)}−1xa−1(1 − x)b−1 exp
[
− λ

x(1 − x)

]
, 0 < x < 1,

where B(a, b ; λ) is the extended beta function defined by (3), λ >

0 and −∞ < a, b < ∞.

For λ = 0 and a > 0 b > 0, the extended beta type 1 density
defined in Definition 2.3 reduces to a beta type 1 density.

Now, we derive marginal distributions.

Theorem 2.1 Let (X1, X2) ∼ ECH(ν1, ν2, α, β, σ, kind 1). Then,
X1 ∼ ECH(ν1, α − ν2, β − ν2, σ, kind 1) and X2 ∼ ECH(ν2, α −
ν1, β − ν1, σ, kind 1).

Proof. Replacing �σ (α; β; −x1 − x2) by its equivalent integral
representation in (4) and integrating x2 in the resulting expres-
sion by applying (2), the marginal density of X1 is derived. �

The cumulative distribution function (CDF) of (X1, X2) is de-
rived as

FX1,X2(x1, x2) = B(α, β − α)
�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

×
∫ x1

0

∫ x2

0
uν1−1

1 uν2−1
2 �σ (α; β; −u1 − u2) du1 du2.

= xν1
1 xν2

2

�(ν1 + 1)�(ν2 + 1)B(α − ν1 − ν2, β − α; σ)

×
∫ 1

0
tα−1(1 − t)β−α−1

× exp
[
− σ

t(1 − t)

]
�(ν1; ν1 + 1; −x1t)

× �(ν2; ν2 + 1; −x2t) dt,

where the last line has been obtained by replacing �σ (α; β;
−u1 − u2) by its integral representation and integrating out u1

and u2. Now, expanding �(ν1; ν1 + 1; −x1t)�(ν2; ν2 + 1; −x2t) in
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the series form using Gradshteyn and Ryzhik (2007, Equation
(9.210.1)) and integrating t, we arrive at

FX1,X2(x1, x2) = xν1
1 xν2

2

�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

×
∞∑

j1, j2=0

x j1
1 x j2

2 (−1) j1+ j2

(ν1 + j1)(ν2 + j2) j1! j2!

× B(α + j1 + j2, β − α; σ).

Further, using (4), the joint (r, s)-th moment is obtained as

E(X r
1 X s

2 ) = �(ν1 + r )�(ν2 + s)
�(ν1)�(ν2)

B(α − ν1 − ν2 − r − s, β − α; σ)
B(α − ν1 − ν2, β − α; σ)

,

where ν1 + r > 0, ν2 + s > 0 if σ > 0 and ν1 + r > 0, ν2 + s > 0,
β > ν1 + ν2 + r + s > 0, and α > ν1 + ν2 + r + s > 0 if σ = 0.

If (X1, X2) has a bivariate extended confluent hypergeomet-
ric function kind 1 distribution, then from Theorem 3.1, we
have X1/X2 ∼ B2(ν1, ν2) and X1/(X1 + X2) ∼ B1(ν1, ν2). Further,
by observing that the measure of the component reliability R =
Pr (X1 < X2) can be written as R = Pr (X1/(X1 + X2) < 1/2) and
using the beta type 1 density with parameters ν1 and ν2, one ob-
tains R = B1/2(ν1, ν2)/B(ν1, ν2), where Bz(a, b) is the incomplete
beta function defined in terms of the Gauss hypergeometric func-
tion F as Bz(a, b) = zaF (a, 1 − b ; a + 1; z)/a.

In Theorem 2.2, we derive the bivariate extended confluent
hypergeometric function kind 1 distribution using independent
extended beta type 1 and gamma variables.

Theorem 2.2 Let X1, X2, and X3 be independent, Xi ∼ Ga(κi ),
i = 1, 2, and X3 ∼ EB1(a, b ; σ). Then, (X1/X3, X2/X3) ∼
ECH(κ1, κ2, a + κ1 + κ2, a + b + κ1 + κ2, σ, kind 1).

Proof. Using independence, the joint density of X1, X2, and X3 is
given as

xκ1−1
1 xκ2−1

2 xa−1
3 (1 − x3)b−1 exp [−(x1 + x2) − σ/x3(1 − x3)]

�(κ1)�(κ2)B(a, b ; σ)
, (5)
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where x1 > 0, x2 > 0, and 0 < x3 < 1. Now, transforming Z1 =
X1/X3, Z2 = X2/X3 with the Jacobian J (x1, x2 → z1, z2) = x2

3 in
(5), the joint density of Z1, Z2, and X3 is obtained as

zκ1−1
1 zκ2−1

2 xκ1+κ2+a−1
3 (1 − x3)b−1 exp[−(z1 + z2)x3 − σ/x3(1 − x3)]

�(κ1)�(κ2)B(a, b ; σ)
,

where z1 > 0, z2 > 0, and 0 < x3 < 1. Now, the result follows by
integrating x3 by applying (2). �

3. Distributions of Sum, Product, and Quotients

In statistical distribution theory it is well known that if X1 and X2

are independent, X1 ∼ Ga(ν1), and X2 ∼ Ga(ν2), then

• X1/X2 ∼ B2(ν1, ν2),
• X1/(X1 + X2) ∼ B1(ν1, ν2),
• X1 + X2 ∼ Ga(ν1 + ν2), and
• 2

√
X1X2 ∼ Ga(2ν1) if ν2 = ν1 + 1/2.

In this section, we derive similar results when the joint density of
X1 and X2 is given by (4).

Theorem 3.1 Let (X1, X2) ∼ ECH(ν1, ν2, α, β, σ, kind 1). Then,
X1/(X1+X2), and X1+X2 are independent, X1/(X1+X2) ∼ B1(ν1, ν2),
and X1 + X2 ∼ ECH(ν1 + ν2, α, β, σ, kind 1). Further, X1/X2 ∼
B2(ν1, ν2) and is independent of X1 + X2.

Proof. Substituting Z = X1/(X1 + X2) and S = X1 + X2 with the
Jacobian J (x1, x2 → z, s) = s in (4), we obtain the joint PDF of Z
and S as

B(α, β − α)
�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

× zν1−1(1 − z)ν2−1s ν1+ν2−1�σ (α; β; −s),

where 0 < z < 1 and s > 0. Now, from the above factorization it
is clear that Z and S are independent, Z ∼ B1(ν1, ν2), and S ∼
ECH(ν1 + ν2, α, β, σ, kind 1). �
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Theorem 3.2 Let (X1, X2) ∼ ECH(ν1, ν2, α, β, σ, kind 1). Then, the
PDF of Y = 2

√
X1X2 is given by

2 (y/2)ν1+ν2−1

�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

×
∫ 1

0
tα−1(1 − t)β−α−1 exp

[
− σ

t(1 − t)

]
Kν1−ν2(y t) dt, (6)

where y > 0 and Kν is the modified Bessel function of the second kind.
Further, if ν1 = ν and ν2 = ν+n+1/2, where n is a nonnegative integer,
then the pdf of Y simplifies to

√
π�(β − α) (y/2)2ν+n−1

�(ν)�(ν + n + 1/2)B(α − 2ν − n − 1/2, β − α; σ)

×
n∑

m=0

(2y)−m �(n + m + 1)�(α − m − 1/2)
�(n − m + 1)�(β − m − 1/2) m!

× �σ

(
α − m − 1

2
; β − m − 1

2
; −y

)
, y > 0.

Furthermore, if n = 0, then 2
√

X1X2 ∼ ECH(2ν, α − 1/2, β −
1/2, σ, kind 1).

Proof. Transforming Y = 2
√

X1X2 and X1 = X1 with the Jacobian
J (x1, x2 → x1, y) = y/2x1 in (4) and integrating x1, we obtain the
marginal PDF of Y as

B(α, β − α)y 2ν2−1

22ν2−1�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

×
∫ ∞

0
xν1−ν2−1

1 �σ

(
α; β; −x1 − y 2

4x1

)
dx1.

Replacing �σ

(
α; β; −x1 − y 2/4x1

)
by its equivalent integral rep-

resentation and changing the order of integration, the previous
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density is rewritten as

(y/2)2ν2−1

�(ν1)�(ν2)B(α − ν1 − ν2, β − α; σ)

×
∫ 1

0
tα−1(1 − t)β−α−1 exp

[
− σ

t(1 − t)

]

×
∫ ∞

0
xν1−ν2−1

1 exp
[
−

(
x1 + y 2

4x1

)
t
]

dx1 dt.

Now, using the integral (Gradshteyn and Ryzhik (2007, Equation
(3.471.9))

∫ ∞

0
exp

(
−at − b

t

)
tν−1 dt = 2

(
b
a

)ν/2

Kν(2
√

ab),

Re(a) > 0, Re(b) > 0,

where Kν ≡ K−ν is the modified Bessel function of the second
kind, we obtain (6). To prove the second part we put ν1 = ν and
ν2 = ν + n+ 1/2 in (6), write Kn+1/2(t y) in a finite series using the
result

Kn+1/2(z) =
√

π

2z
exp(−z)

n∑
m=0

(2z)−m �(n + m + 1)
�(n − m + 1) m!

given in Gradshteyn and Ryzhik (2007, Equation 8.468) and inte-
grate t using (2). �
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