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ABSTRACT: Comparison of the taxonomic, phylogenetic, and trait
dimensions of beta diversity may uncover the mechanisms that gen-
erate and maintain biodiversity, such as geographic isolation, envi-
ronmental filtering, and convergent adaptation. We developed an
approach to predict the relationship between environmental and geo-
graphic distance and the dimensions of beta diversity. We tested these
predictions using hummingbird assemblages in the northern Andes.
We expected taxonomic beta diversity to result from recent geo-
graphic barriers limiting dispersal, and we found that cost distance,
which includes barriers, was a better predictor than Euclidean dis-
tance. We expected phylogenetic beta diversity to result from his-
torical connectivity and found that differences in elevation were the
best predictors of phylogenetic beta diversity. We expected high trait
beta diversity to result from local adaptation to differing environ-
ments and found that differences in elevation were correlated with
trait beta diversity. When combining beta diversity dimensions, we
observe that high beta diversity in all dimensions results from adap-
tion to different environments between isolated assemblages. Com-
parisons with high taxonomic, low phylogenetic, and low trait beta
diversity occurred among lowland assemblages separated by the An-
des, suggesting that geographic barriers have recently isolated lineages
in similar environments. We provide insight into mechanisms gov-
erning hummingbird biodiversity patterns and provide a framework
that is broadly applicable to other taxonomic groups.
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Introduction

Beta diversity, the change in species identities across sam-
pled locations (sensu Anderson et al. 2011), has been used
to identify the spatial, temporal, and environmental pat-
terns that result from different ecological, evolutionary,
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and biogeographic processes. Historically, beta diversity
research has focused on taxonomic beta diversity (species
composition turnover; Whittaker 1960; Condit et al. 2002),
but taxonomic beta diversity does not account for shared
evolutionary history or similarity in functional morphol-
ogy among species (Faith 1992; Graham and Fine 2008).
Recent efforts to identify and interpret differences among
spatial patterns of these three beta diversity dimensions
(taxonomig, trait, and phylogenetic) have yielded new in-
sights into the origin and maintenance of biodiversity
(Bryant et al. 2008; Graham and Fine 2008; Devictor et
al. 2010; Fine and Kembel 2011; Morlon et al. 2011; Swen-
son 2011a; Huang et al. 2012; Lansing et al. 2012). How-
ever, a general a priori approach as to why and when beta
diversity dimensions differ has yet to emerge. The lack of
a predictive approach represents a gap in our knowledge
and impedes connections between idiosyncratic studies in
different systems. We propose an approach to evaluate
geographic and environmental mechanisms influencing
regional patterns of taxonomic, phylogenetic, and trait
beta diversity. We test hypotheses for mechanisms gen-
erating the causes of occurrence of each combination of
beta diversity dimensions using the ecologically diverse
Neotropical hummingbird clades.

There are eight possible combinations of high versus
low taxonomic, phylogenetic, and trait beta diversity be-
tween assemblages (fig. 1) Due to phylogenetic constraints
on niche and trait evolution, we anticipate that, in most
cases, taxonomic, phylogenetic and trait dimensions of
beta diversity across a region will be similar (e.g., all low
or all high; Cadotte et al. 2009; Safi et al. 2011; Swenson
2011b; Fritz and Rahbek 2012). However, beta diversity
dimensions may be decoupled, where decoupling is iden-
tified by greater differences in one dimension than ex-
pected by chance based on differences in other dimensions.
We expect greater differences in taxonomic beta diversity
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than expected by chance if recent geographic barriers are
limiting dispersal (Condit et al. 2002; Fine and Kembel
2011; Kraft et al. 2011; Myers et al. 2013), whereas we
expect decoupling associated with phylogenetic beta di-
versity to be most influenced by historical factors such as
historical connectivity or environmental stability (Bryant
et al. 2008; Morlon et al. 2011; Jetz and Fine 2012), and
decoupling associated with trait beta diversity resulting
from local adaptation (Cornwell et al. 2006; Kraft et al.
2007; Rosenblum et al. 2010; Lansing et al. 2012). Spe-
cifically, given two assemblages that occur in similar en-
vironments, we hypothesize that (1) adaptation to similar
environments with no dispersal limitation will lead to low
taxonomic, low phylogenetic, and low trait beta diversity;
and (2) recent speciation due to geographic isolation, but
with historical connectivity, will lead to assemblages with
high taxonomic, low phylogenetic, and low trait beta di-
versity because sister (or closely related) taxa will replace
each other on either side of recent geographic barriers
(Graham et al. 2009). If assemblages in similar environ-
ments are currently and historically isolated, there may be
long branch lengths among species in these assemblages,
leading to (3) high taxonomic and high phylogenetic beta
diversity but low trait beta diversity due to similar eco-
logical roles of species in a given environment and con-
vergent adaptation (i.e., traits are labile and driven by
adaptation to environmental factors). Finally, convergent
adaptation between recently connected, but historically
isolated assemblages should result in (4) low taxonomic,
high phylogenetic, and low trait beta diversity.

In contrast to similar environments, assemblages in dif-
fering environments should have higher-than-expected
trait beta diversity resulting from local adaptation to dif-
fering selection pressures. We expect that trait beta diver-
sity will change independent of phylogenetic similarity
when there is a strong environmental filter or recent adap-
tive radiation (Losos 2008). Therefore, we hypothesized
that (5) current geographic and potential historical barriers
will result in a pattern of high phylogenetic, high taxo-
nomic, and high trait beta diversity, and (6) beta diversity
among assemblages that were recently connected but his-
torically isolated and in different environments should
have low taxonomic beta diversity, high phylogenetic beta
diversity, and high trait beta diversity. These assemblages
should occur along environmental gradients in the absence
of large current geographic barriers. Finally, (7) low tax-
onomic, low phylogenetic, but high trait beta diversity
should occur between assemblages with no dispersal lim-
itation and high trait lability; and (8) high taxonomic, low
phylogenetic, and high trait beta diversity should result
from recent geographic isolation of historically connected
assemblages coupled with labile traits responding to en-
vironmental change. While our framework outlines all
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possible combinations of beta diversity dimensions, we do
not necessarily expect all combinations to be important,
or possible, in our system. The rate of diversification, the
pattern of trait evolution, and the geographic configura-
tion of barriers will vary between systems, and thereby
effect which combinations of beta diversity dimensions are
most prominent.

Hummingbirds of the northern Andes are an ideal
group to evaluate these hypotheses. There are nine clades
in the region, each with a distinct biogeographic history,
distribution, and set of traits (Stiles 2008; Parra et al. 2011;
Graham et al. 2012). The basal clades of hermits, mangoes,
and emeralds are predominately lowland and largely di-
versified within Amazonia (Bleiweiss 1998; McGuire et al.
2007). The origin and diversification of the coquettes and
brilliants coincided with the uplift of the Andes. The
mountain gem and bee clades diversified in Central and
North America, and representatives of these clades have
moved into the Andes and associated lowlands. The com-
bination of diversification within environments and col-
onization from outside the region create different patterns
of taxonomic, phylogenetic, and trait beta diversity among
assemblages. Previous work has shown that taxonomic
beta diversity in the northern Andes and associated low-
lands is generally greater than phylogenetic beta diversity
on either side of the Andes, given a null model of taxo-
nomic turnover, highlighting the potential role of isolation
in generating patterns of beta diversity across different
dimensions (Graham et al. 2009). Here we compare the
three dimensions of beta diversity (taxonomic, trait, and
phylogenetic) at a broad geographic scale and evaluate our
predictive framework with hummingbirds. We expect our
approach can be employed across an array of taxonomic
groups and geographic and environmental contexts.

Methods
Overview of Approach

Our approach for exploring the dimensions of beta di-
versity consists of five steps. First, we used commonly
employed beta diversity metrics to calculate taxonomic,
phylogenetic, and trait dissimilarity between all pairwise
combinations of assemblages (fig. 1A). We then delineate
high and low beta diversity in this system by taking the
30% highest and lowest quantiles. To test whether these
assemblage comparisons were different from random, we
compared observed taxonomic beta diversity to a null
model controlling for richness (fig. 1B). Third, we com-
pared the observed phylogenetic and trait beta diversity
to a null model which maintains both richness and tax-
onomic beta diversity (fig. 1C). Based on these null mod-
els, we delineated different combinations of beta diversity
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Table 1: Patterns of environment and distance for each dimension of beta diversity

Beta diversity

dimension High Low

Taxonomic  Assemblages in different environments separated Assemblages in similar environments and sepa-
by large distances rated by small distances

Phylogenetic ~ Strong historic isolation between assemblages or Weak historical isolation or recent connectivity
weak trait labiality limiting adaptation to the between assemblages or strong trait lability
new environments permitting adaptation to new environments

Trait Assemblages in different environments Assemblages in similar environments

(e.g., high taxonomic, high phylogenetic, high trait).
Fourth, we quantified the environmental dissimilarity and
geographic distance between assemblages (fig. 1D). Finally,
we used these results to test hypotheses of predicted mech-
anisms for each combination of beta diversity (fig. 1E,
table 1).

Hummingbird Data

Our taxonomy followed the current version of the South
American Classification Committee (Remsen et al. 2010).
Our data set included 219 hummingbird assemblages con-
taining 126 species across Ecuador and Colombia (fig. Al;
figs. A1, B1-B5 available online; McGuire et al. 2007, 2009;
Graham et al. 2009; Altshuler et al. 2010; Parra et al. 2010).
Lists from eco-lodges with a high density of hummingbird
feeders were excluded, as the presence of these artificial
resources may cause range extensions. Each species was
projected on to a map and occurrence in an assemblage
was corroborated by comparing localities to known dis-
tributions based on field guides. For data-poor areas, spe-
cies were also compared to expert range maps and citizen
science data to support data cleaning (Sullivan et al. 2009).
We used a densely sampled regional phylogeny that in-
cludes each of the 126 hummingbird species evaluated in
this study and has been used extensively to analyze phy-
logenetic community structure in this system (McGuire et
al. 2007; Parra et al. 2010; Graham et al. 2012).

We compiled measurements of three traits in adult
males: body mass, wing chord (i.e., closed-wing length),
and length of exposed culmen (Graham et al. 2012). The
three traits represent important morphological interfaces
for hummingbird flight, physiology, feeding, and behavior.
Body mass is related to thermoregulatory adaptations to
high elevation habitats, as well as aggressive interactions
among territorial species (Altshuler and Dudley 2002;
Gonzalez-Gémez et al. 20114, 2011b). Wing chord is a
component of hovering flight, which becomes more dif-
ficult at high elevations due to lower air density (Altshuler
et al. 2004; Stiles et al. 2005). Bill length is associated with
resource use, foraging efficiency, and the matching be-
tween bill lengths and corolla lengths in hummingbird

pollinated plants (Feinsinger et al. 1979; Smith et al. 1996;
Temeles et al. 2002). These three traits show a predicted
trait environment-relationship when all species in an as-
semblage are considered: body mass increases with ele-
vation, wing chord increases with elevation and bill length
decreases with elevation (high-elevation flowers have short
corollas; Stiles 2008). All three traits can be well described
by a Brownian motion model of trait evolution, indicating
phylogenetic signal (Blomberg’s K ~ 1 for all traits; Gra-
ham et al. 2012). Within-species trait variation was lower
than among-species variation, indicating that intraspecific
variation should not distort our beta diversity analysis.
Morphological data are deposited in the Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.1qgl3
(Weinstein 2014).

Environmental Data

Based on previous analyses of the relationship between
phylogenetic structure of hummingbird assemblages and
the environment (Graham et al. 2009, 2012; Parra et al.
2010, 2011), we chose three variables to describe environ-
mental gradients: annual precipitation, elevation, and veg-
etation structure. Elevation and climate were extracted
from the Shuttle Radar Topography Mission data (30-m
resolution) and the Worldclim database (accessed Septem-
ber 11, 2013; Hijmans et al. 2005), respectively. Since el-
evation is highly correlated with temperature (Pearson’s
r = 0.98), we used elevation because of its higher spatial
resolution. Vegetation structure was quantified using the
annual horizontal mean of Quick scatterometer data (30-
m resolution), which is a measure of surface roughness
and provides inference on biomass density and forest
height and spacing and has been shown to be an infor-
mative variable for modeling species distributions in the
region (Buermann et al. 2008; Parra et al. 2011).

Geographic Distance

We measured geographic isolation by calculating Euclidean
distance and cost distance among all localities. Euclidean
distances were computed for all combinations of localities
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in R (R Development Core Team 2012) using the package
maptools (Bivand 2012). Cost distance represents the en-
vironmentally weighted friction of moving between two
points in a landscape and has been shown to be a strong
predictor of dispersal limitation and population genetic
structure (McRae and Beier 2007; Wang et al. 2009). Cal-
culating cost distances among locations requires (1) con-
struction of environmentally weighted cost surface and (2)
calculation of a least-cost path between two locations. We
used elevation to build our cost surface because it is a
proxy for environmental turnover, and large changes in
elevation can be barriers to dispersal in hummingbirds
(Chaves and Smith 2011). We built a unique cost surface
for each assemblage based on the difference in elevation
from a given assemblage to each of the cells in our study
region. We then calculated the least-cost path between all
pairwise localities using the R package gDistance (Etten
2011).

Beta Diversity Metrics

For taxonomic beta diversity, we calculated Sorenson’s in-
dex for each pairwise comparison of assemblages (Whit-
taker 1960). For phylogenetic beta diversity, we used 1-
PhyloSor, which computes the proportion of unshared
branch lengths between species in each assemblage com-
parison (Bryant et al. 2008). Trait beta diversity was cal-
culated by standardizing the trait matrix, performing a
principal components analysis and then measuring the
nearest taxon distance for each species between an assem-
blage (mean nearest taxon distance [MNTD]; Webb et al.
2008; Swenson et al. 2012b). We chose this approach be-
cause it is a simple representation of the trait spacing
between species and is computationally tractable. Since
there is a wide variety of beta diversity metrics, we com-
pared our results to several alternate methods, including
the phylogenetic community dissimilarity (PCD) metric,
a recent integrative metric of taxonomic and tree-based
dissimilarity (Ives and Helmus 2010). We also compared
MNTD to tree-based methods (Petchey and Gaston 2007)
and convex hulls for our observed 219 assemblages (Vil-
léger et al. 2013). The results using PCD, tree-based meth-
ods, and convex hulls are qualitatively similar to those
obtained using our approach (app. B; apps. A and B avail-
able online).

We performed randomization tests to test the signifi-
cance of the correlations between environmental and dis-
tance dissimilarity with the beta diversity dimensions. We
used the nonparametric test proposed by Ives and Helmus
(2010) instead of Mantel tests, because Mantel tests can
suffer from inflated Type I errors (Raufaste and Rousset
2001). We first estimated Spearman’s correlation between
each environmental and distance variable and the beta
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diversity values. We then randomized the labels of the
assemblages for the environmental or distance variables
10,000 times, each time correlating the permuted data to
the actual beta diversity values. The highest correlation in
each of 10,000 permutations was recorded and used as a
null distribution for the highest observed correlation. To
generate the null distribution for the second-highest ob-
served correlation, we removed one variable at random
for each of the 10,000 permutations and recorded the new
highest correlation. We repeated this method for all 18
combinations of taxonomic, phylogenetic, and trait beta
diversity values and the six distance and environmental
variables. We then compared the true correlation value to
the null distribution of correlation values. Significant cor-
relations were delineated as outside the lower fifth or upper
ninety-fifth quantile of the null distribution.

Evaluating Hypotheses Associated with Combinations
of Diversity Dimensions

We divided the dissimilarity values into all three-way com-
binations of beta diversity (e.g., high taxonomic, high phy-
logenetic, high trait; table 1), and used these assemblage
comparisons to evaluate our environment and distance
measures predictions for the combinations of beta diversity
dimensions. We compared observed taxonomic beta di-
versity to a null distribution of comparisons between ran-
domly generated assemblages with the same richness as
the observed data (fig. 1A). We then compared our ob-
served Sorenson value with the null distribution and con-
sidered it high if it was greater than the ninety-fifth quan-
tile and low if less than the fifth quantile (fig. 1B). Values
between the fifth and ninety-fifth quantiles were consid-
ered not different from randomly sized assemblages of
similar richness. A null model of phylogenetic and trait
beta diversity was generated by maintaining both richness
and the number of shared species in observed assemblages
but randomizing species identity (fig. 1C). We compared
the observed taxonomic and phylogenetic beta diversity
of a comparison to 500 generated null assemblages and
designated higher-than-expected beta diversity between as-
semblages when observed values were greater than the
ninety-fifth quantile of null values and lower-than-
expected beta diversity when observed values were less
than the fifth quantile of the null values.

We evaluated how well environmental dissimilarity and
geographic distance variables predicted each combination
of beta diversity by comparing the observed median value
for each predictor with the median of 1,000 random draws,
where the number of comparisons in each draw was equal
to the number of comparisons in each hypothesis (fig.
1D). We chose the median rather than the mean because
the environmental and distance variables, especially cost
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distance, have very long positive tails, and the mean is not
an accurate summary of the distribution. We used the
medians of the randomly sampled data to form a null
distribution to compare to our observed medians. If the
observed median was outside the fifth or ninety-fifth quan-
tile of the null distribution, we considered the median
value significantly different than the overall data set. Fi-
nally, we mapped the assemblage comparisons to compare
patterns of spatial beta diversity within this system. We
stress that this analysis focuses on the emergent patterns
of the dimensions of beta diversity rather than on any
individual assemblage comparisons.

Results

We analyzed the taxonomic, phylogenetic, and trait beta
diversity among 219 hummingbird assemblages in north-
ern South America. Beta diversity was correlated between
the taxonomic and phylogenetic dimensions (r = 0.89)
and taxonomic and trait dimensions (r = 0.64). Phylo-
genetic and trait beta diversity dimensions were also cor-
related (r = 0.58); however, after accounting for taxo-
nomic beta diversity, the partial correlation between
phylogenetic and trait beta diversity was 0.29 (Spearman’s
r, n = 23,871, P < .01). For taxonomic beta diversity,
23.8% of the randomized compared assemblages were
more similar than expected given a null model of richness,
and 45.9% were less similar than expected (app. A). For
phylogenetic beta diversity, 3.2% of the compared assem-
blages were less similar than expected, and 29.1% were
more similar than expected given a null model of taxo-
nomic beta diversity. For trait beta diversity, 6.0% of the
compared assemblages were less than expected, and 6.1%
were more similar than expected given a null model of
taxonomic beta diversity.

Using all pairwise combinations, environmental param-
eters were stronger predictors of beta diversity than dis-
tance metrics across all dimensions (table 2). In particular,
all dimensions of beta diversity were correlated with
changes in elevation, while precipitation and canopy struc-
ture explained a smaller, but significant, amount of vari-
ation in each of the three dimensions. Cost distance was
a stronger predictor of taxonomic beta diversity than either
Fuclidean or cumulative elevation distance, the latter of
which was not significant. Neither Euclidean nor cumu-
lative elevation distance metrics strongly explained phy-
logenetic nor trait beta diversity (table 2). To test predicted
patterns of environmental dissimilarity with combinations
of the beta diversity dimensions, we chose the two best
predictors for environmental (elevation, annual precipi-
tation) and distance metrics (Euclidean, cost distance).

We found mixed support for our hypothesized rela-
tionship between environmental and distance variables

Table 2: Environmental and distance correlates of beta
diversity

Taxonomic  Phylogenetic  Trait
Elevation .61 .70 .39
Precipitation .32 .29 .18
Canopy structure 11 .10 .10
Euclid 11 .09 .10
Cost distance .30 .25 .16

Note: Spearman’s coefficients for environment dissimilarity and
distance metrics for the dimensions of beta diversity. Randomization
tests with 1,000 permutations showed that all correlations were
significant. We chose the top two variables for environment and
distance to compare to our combination of beta diversity
dimensions.

and each measure of beta diversity. Our results supported
the prediction that assemblages separated by large dis-
tances would have high taxonomic beta diversity (table 1).
Assemblage comparisons that had high taxonomic beta
diversity also had higher median Euclidean and cost dis-
tance than the median of the entire data set. Assemblage
comparisons that had low taxonomic beta diversity had
lower median distance than the median of the entire data
set (fig. 2). In contrast, there was no consistent relationship
between phylogenetic beta diversity and either measure of
distance. Assemblage comparisons with high phylogenetic
beta diversity also had high dissimilarity in elevation and
precipitation, and assemblages with low phylogenetic beta
diversity had low dissimilarity in elevation and precipi-
tation. Assemblage comparisons with high trait beta di-
versity had greater dissimilarity in elevation and annual
precipitation, while assemblage comparisons with low trait
beta diversity were more similar in elevation and annual
precipitation. Low trait beta diversity in precipitation was
not different from random.

When we combined taxonomic, phylogenetic, and trait
dimensions of beta diversity into the eight three-way com-
binations of beta diversity dimensions (i.e., high taxo-
nomic, high phylogenetic, and high trait), 1,145 of the
23,871 (4.8%) comparisons were significantly high or low
for all three beta diversity dimensions (fig. 2). These com-
parisons were used to address hypotheses of the combi-
nations of beta diversity dimensions (fig. 3). Seven of the
eight possible combinations of taxonomic, phylogenetic,
and trait beta diversity were observed (fig. 4). High tax-
onomic, low phylogenetic, high trait beta diversity did not
occur among any assemblage comparisons. Three of the
eight combinations were consistent with our predictions
for both environmental dissimilarity and distance. Three
of the eight combinations were consistent with our pre-
dictions for either environmental dissimilarity or distance.
Two combinations were observed in less than 10 assem-
blage comparisons.
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Low beta diversity in all dimensions resulted where there
was less-than-expected change in elevation and precipi-
tation, whereas high beta diversity resulted where there
was greater-than-expected change in elevation and pre-
cipitation. Where phylogenetic beta diversity was high,
combinations with low trait beta diversity still showed a
pattern of low environmental change. Assemblages with
high taxonomic, low phylogenetic, and low trait beta di-
versity were located among lowland comparisons on either
side of the Andes. These assemblages had large distances,
but little environmental change. Combinations of beta di-
versity dimensions between assemblages in differing en-
vironments were predicted to be associated with high trait
beta diversity. This was supported only for assemblages
with high beta diversity in all dimensions, which showed
the largest distances and changes in environments (fig. 4).
Spatially, these patterns occurred most often between low-
elevation assemblages and high-elevation assemblages on
the Andean western slope (fig. 4). The additional three
combinations of beta diversity that included high trait beta
diversity did not show large changes in environment.

Discussion

The relative importance of environmental and geographic
factors varied across the three dimensions of diversity. En-
vironmental distance was correlated with beta diversity
across all three dimensions, while geographic distance was
only correlated with taxonomic beta diversity. The vari-
ation in relative importance of these predictors indicates
that different processes likely influence the dimensions of
diversity. Taxonomic beta diversity was related to both cost
distance and environmental dissimilarity, suggesting that
dispersal limitation, potentially combined with allopatric
speciation and environmental filtering, influences patterns
of assemblage turnover (Cavender-Bares et al. 2004; Em-
erson and Gillespie 2008; Pavoine and Bonsall 2011; Lan-
sing et al. 2012; Myers et al. 2013). Previous work within
biomes, such as tropical rain forests, found that Euclidean
distance has a strong influence on beta diversity (Condit
et al. 2002; Tuomisto et al. 2003; Pellissier et al. 2010; Fine
and Kembel 2011). In addition, the stronger predictive
power of environmentally weighted distance compared to
Euclidean distance is not a surprising result since the An-
des are a known biogeographic barrier to current dispersal
(Haffer 1969; Bleiweiss 1998; Chaves et al. 2007; Chaves
and Smith 2011) and suggests that measures that incor-
porate landscape connectivity may be particularly impor-
tant in understanding patterns of biodiversity.

We found support for most of our a priori expectations
about the relationship between the three dimensions of
beta diversity and environmental and distance dissimilar-
ity. Comparisons with high taxonomic, phylogenetic, and

trait beta diversity had the highest environmental differ-
ences and geographic isolation as predicted. We infer that
local adaptation to contrasting environments between iso-
lated assemblages is an important mechanism generating
spatial patterns of hummingbird beta diversity (Bleiweiss
1998; McGuire et al. 2007; Parra et al. 2010). High beta
diversity exists between assemblages in all dimensions on
both sides of the Andes, highlighting the role of the uplift
of the Andes in the diversification of hummingbirds. The
role of the uplift of mountain ranges in generating beta
diversity is well established in avian evolutionary history
and indicates the importance of allopatry and subsequent
adaptation to differing environments in driving patterns
of diversification (Fjeldsd et al. 2012).

Consistent with the finding that environmental differ-
ences and isolation lead to high beta diversity across di-
mensions, we found low beta diversity across all dimen-
sions are low when both environmental and geographic
distances between assemblages was low. Beta diversity is
low across all dimensions in the Andes, with only a few
instances of this combination in lowland comparisons. The
low phylogenetic beta diversity in the Andes highlights the
recent nature of the Andean diversification; few lineages
have colonized high-elevation environments resulting in
low phylogenetic beta diversity because related species oc-
cur in all assemblages (Stiles 2004; Parra et al. 2010). In
contrast, species from many clades occur in Amazonia;
therefore, there is a greater chance that the species from
different clades turnover between assemblages, resulting
in relatively high phylogenetic beta diversity in this region
as compared to the Andes.

Decoupling of one or more beta diversity dimensions
provides potential insights into mechanisms influencing
spatial patterns of diversity. Assemblage combinations
where trait diversity is low relative to taxonomic and/or
phylogenetic beta diversity indicates that morphologically
similar species, potentially from different clades, inhabit
different assemblages. Convergence in morphological
characters may be responsible for these patterns. For ex-
ample, comparisons with high taxonomic, high phyloge-
netic, and low trait beta diversity mainly occur between
geographically distant lowland and Andean assemblages.
In these cases, environmental distance was not lower than
expected by chance. Convergence of behavioral and for-
aging roles could lead to this pattern, as most humming-
bird assemblages include species with distinctive roles (e.g.,
trap-liner, territorial; Feinsinger and Colwell 1978; Stiles
1995; Altshuler 2006) and, generally, distinctive mor-
phologies. These role-specific morphologies, however, vary
by elevation because air density presents a significant con-
straint to high-elevation flight (Altshuler et al. 2004). Two
exemplary species are Discosura popelairii and Myrmia mi-
crura, which are distantly related but are small-bodied and



small-billed trap-liners. These species inhabit different en-
vironments; D. popelairii occurs in humid foothill mon-
tane forests and M. micrura in the dry southwestern low-
land. Species converging on similar traits and behaviors
could explain the occurrence of high taxonomic, high phy-
logenetic, and low trait beta diversity comparisons.
Comparisons with high taxonomic, low phylogenetic,
and low trait beta diversity also occur between distant
assemblages on either side of the Andes but in similar
environments. In this case, related species with similar
ecological roles replace each other in similar environments,
consistent with the findings of (Graham et al. 2009). For
example, Glaucis, Threnetes, and Phaethornis hermits all
have morphologically similar sister species present in the
western Choco lowlands and the eastern Amazonian low-
lands. High taxonomic beta diversity relative to trait beta
diversity is predicted in the tropics due to small range
sizes, increased rates of speciation, and niche conservatism
(Safi et al. 2011). These mechanisms would result in tight
packing of related species over relatively short geographic
distances but with biogeographic barriers between them
(Haffer 1969). We find evidence for this proposed mech-
anism consistent with Safi et al.’s (2011) predictions.
Low taxonomic, high phylogenetic, and high trait beta
diversity occurs along the Andean elevation gradient,
which has rapid clade replacement over short distances.
We show that clades that turn over across the gradient are
also morphologically distinct, suggesting that different
clades may have evolved specific adaptations for different
conditions along the elevation gradient. The presence of
a few very morphologically distinct species, most notably
Patagona gigas, may explain the occurrence of these com-
binations with one assemblage along the inner Andean
slopes. We expected that high environmental dissimilarity
would be associated with low taxonomic, high phyloge-
netic, and high trait beta diversity, but this was not ob-
served. The lack of association is likely because of the rapid
turnover of species across a relatively continuous and steep
gradient; such environmental changes are relatively small
in comparison with our null model, which included as-
semblages in very different environments. Rapid turnover
in vegetation communities along the gradient, not cap-
tured with our environmental measures, may also cause
rapid replacement of species with different bill morphol-
ogies. For example, in hummingbird food plants, low-
elevation nectar resources are dominated by Heliconia and
Rubiaceae and replaced by Gesnericeae at midelevations
and Ericaceae at high elevations. This shift also corre-
sponds to decreasing floral corolla length, which could
promote rapid taxonomic turnover across short geo-
graphic distances (personal communication, G. Stiles). In
addition, low taxonomic diversity but high phylogenetic
diversity could occur either where (1) assemblages were
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originally isolated for long periods of time, allowing local
clade diversification, but then recently connected due to
relaxed dispersal limitation; or (2) there was a recent local
extinction of a phylogenetically distinct lineage. Further-
more, the relative nature of analysis does not distinguish
between absolutely high phylogenetic diversity and more
phylogenetic diversity than expected given taxonomic di-
versity. While we believe this is the most intuitive approach
to combine beta diversity dimensions, it cannot distinguish
between the absolute causes of phylogenetic beta diversity,
which depend greatly on the evolutionary history and bio-
geography of the system.

While distance was informative in delineating combi-
nations of beta diversity dimensions, neither of our dis-
tance measures incorporated past connectivity, which has
been shown to be a better predictor of beta diversity than
current connectivity (Graham et al. 2006; Baselga et al.
2012). The majority of hummingbirds evolved within the
past 10 million years, concurrent with major uplifts in the
Andes (McGuire et al. 2007). Thus, a historical cost sur-
face, or a dynamic cost surface over time, may provide
more robust insight into the phylogenetic beta diversity
of this system. In particular, historical information may
allow us to better understand how connectivity through
time might influence decoupling between dimensions of
beta diversity, where taxonomic beta diversity may be in-
fluenced by recent speciation event or colonization and
phylogenetic beta diversity may be influenced by historical
connectivity. A fruitful avenue for future research would
be to integrate shifting climate, geology, and species dis-
tributions over time to quantify the influence of isolation
and environment on current patterns of species richness
and composition (Antonelli et al. 2009; Hoorn et al. 2010).
Combining the predictive approach proposed here with
time-calibrated phylogenies and geological data would fur-
ther mechanistic explanations of community structure and
biodiversity.

We found support for the majority of our hypothesized
environmental and distance dissimilarities for each com-
bination of taxonomic, phylogenetic, and trait beta diver-
sity, indicating that our approach provides insight into
mechanisms leading to biodiversity in this highly diverse
and complex system. Where data are available, we expect
our approach is applicable across taxonomic groups, and
testing our hypotheses in other groups would be a pro-
ductive step toward understanding how diversity is gen-
erated and maintained across systems.
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