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Abstract

The bivariate generalization of the Gauss hypergeometric distri-
bution is defined by the probability density function proportional to
p—lyee=l(] g — y)’Bf1 1+&r+&y) Y, 2>0,y>0,z+y <1,
where a; > 0,7 =1,2, 8 >0, —co <y <ooand & > —1,7=1,2
are constants. In this article, we study several of its properties such as
marginal and conditional distributions, joint moments and the coefhi-
cient of correlation. We compute the exact forms of Rényi and Shannon
entropies for this distribution. We also derive the distributions of X +Y,
X/(X+Y),V =X/Y and XY where X and Y follow a bivariate Gauss
hypergeometric distribution.
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1 Introduction

The random variable X is said to have a Gauss hypergeometric distribution
with parameters a > 0, § > 0, —o00o < 7 < oo and £ > —1, denoted by
X ~ GH(a, 8,7, &), if its probability density function (p.d.f.) is given by

71 — )Pt

fen(w; . B,7,€) = Cla, B,7,§) T

0<z <1,

where
O(CY, 67 Y, f) = [B(OQ /B) 2F1(’77 a; o + /37 _g)]—l)
b = L)
(a+6)

and oF) is the Gauss hypergeometric function (Luke [9]). This distribution
was suggested by Armero and Bayarri [1] in connection with the prior distri-
bution of the parameter p, 0 < p < 1, which represents the traffic intensity in
a M/M/1 queueing system. A brief introduction of this distribution is given
in the encyclopedic work of Johnson, Kotz and Balakrishnan [8, p. 253]. In the
context of Bayesian analysis of unreported Poisson count data, while deriving
the marginal posterior distribution of the reporting probablity p, Fader and
Hardie [5] have shown that ¢ = 1 —p has a Gauss hypergeometric distribution.
The Gauss hypergeometric distribution has also been used by Dauxois [4] to
introduce conjugate priors in the Bayesian inference for linear growth birth
and death processes. When either v or £ equals to zero, the Gauss hypergeo-
metric density reduces to a beta type 1 density given by (Johnson, Kotz and
Balakrishnan [8]),

71 — x)Pt
B(a, B)
Further, for v = a + § and £ = 1 the Gauss hypergeometric distribution

simplifies to a beta type 3 distribution given by the density (Cardeno, Nagar
and Sanchez [3], Sanchez and Nagar [15]),

20271 (1 — x)f~t

B(a, 8)(1 4 x)otp’
where o > 0 and f > 0. The matrix variate generalizations of beta type 1
and beta type 3 distributions have been defined and studied extensively. For
example, see Gupta and Nagar [6,7]. For v = a+f and £ = —(1— \), the GH
distribution slides to a a three parameter generalized beta distribution (Libby

and Novic [10], Nadarajah [11], Nagar and Rada-Mora [13]) defined by the
density

fei(z; 0, 8) =

, O<z<1.

st(Cl?;Oéaﬁ) =

0<z <],

N1 — )Pt
B(a, B)[1 — (1 — A)z]oth’

fapi(w;a, 85 \) = 0<z<l,
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where v > 0 and 8 > 0.

In this article, we present a bivariate generalization of the Gauss hyperge-
ometric distribution and study some of its properties including marginal and
conditional distributions, joint moments and the coefficient of correlation. Fur-
ther, for different values of parameters, we give graphically a variety of forms
of the bivariate generalization of the Gauss hypergeometric density. In addi-
tion to these results, we also derive densities of several basic transformations
suchas X +Y, X/(X +Y), X/Y, and XY of two variables X and Y jointly
distributed as bivariate Gauss hypergeometric. These results are expressed in
terms of first hypergeometric function of Appell and Gauss hypergeometric
function.

It may also be noted here that bivariate generalization of the Gauss hy-
pergeometric distribution considered here is more general than the Dirichlet
distribution (a bivariate beta distribution). In Bayesian analysis, the Dirich-
let distribution is used as a conjugate prior distribution for the parameters of
a multinomial distribution. However, the Dirichlet family is not sufficiently
rich in scope to represent many important distributional assumptions, because
the Dirichlet distribution has few number of parameters. We, in this article,
provide a generalization of the Dirichlet distribution with added number of
parameters.

The bivariate distribution defined in this article can also be used in place
of bivariate beta distributions applied in several areas; for example, in the
modeling of the proportions of substances in a mixture, brand shares, i.e. the
proportions of brands of some consumer product that are bought by customers,
proportions of the electorate voting for the candidate in a two-candidate elec-
tion and the dependence between two soil strength parameters.

2 The Density Function

A bivariate generalization of the Gauss hypergeometric distribution can be
defined in the following way.

Definition 2.1. The random variables X and Y are said to have a bivariate
Gauss hypergeometric distribution with parameters (aq, ag, B,7,&1,&2), a; > 0,
i=1,2, >0, —oco<vy<ooand& > —1,i=1,2, denoted by (X,Y) ~
BGH(ay, g, 5,7, &1, &), if their joint p.d.f. is given by

feau(, y; a1, a9, B,7,61,62)
xalfl az—1 1— 1 — B—1
- C<a1)a2767’77§17§2) Y ( y)

(14 &+ &y)
x>0, y>0, z+y<lI, (1)

)

where C'(aq, ag, B,7,&1,&2) is the normalizing constant.
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Integrating the joint p.d.f. of X and Y over the space {(z,y):x > 0,y > 0,
x+y < 1} and using the integral representation of the Appell’s first hypergeo-
metric function F given in (A.4), the normalizing constant C(ay, o, 5,7, &1, &2)
is evaluated as

[y +as + 8)

F(Oél)F(OéQ)F(B)
X [Fi(7, 00, a0500 + o + 8; =61, &) (2)

Clan, as, B,7,61,&) =

Note that the Appell’s first hypergeometric function Fj in (2) can be expanded
in series form if —1 < §; < 1,7 =1,2. However, if £ > 1, then we use suitably
(A.6) to rewrite F; to have absolute value of both the arguments less than one.
That is, for the purpose of series expansion, we write

Fi(vy, a1, 0501 + ag + B5 =61, —63)

=(1+&)"h (%57042;041 + s + f3;
G >21, —1<&<],

=(1+&)H <%0417ﬁ;041 + az + 5;

-1<& <1, &2>1,
= (&) (14 &)

& Ez)
XFiloag+ay+ 0 —7v,a1,00;00 + g + 3; ——, ,
1<1 2+ B =7, a1, 02,0 251+§11+£2

&1 51—52)
1+&71+& )7

§2 — & 52)
1+&'1+& )7

61217 5221

In particular, when v = 0 or & = & = 0, the distribution defined by the
density (1) takes the form of a Dirichlet distribution with parameters ay, as
and [ defined by the p.d.f.

F(Oél -+ (6] —+ 5) l’alil as—1
['(a1)T(a2)T'(B)

which is a well known bivariate generalization of the beta distribution. In
Bayesian probability theory, if the posterior distribution is in the same family
as the prior probability distribution; the prior and posterior are then called
conjugate distributions, and the prior is called a conjugate prior. In case of
multinomial distribution, the usual conjugate prior is the Dirichlet distribution.
If

(1—z—9)1 >0, y>0, z+y<l,

23 x2(1 — xy — x9)F
SlasQaf ! 2( ! 2)

P(31’327f|x1’x2) _ <Sl+$2+f) S1 ..82
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and
a1—1 _as—1 —1
s a1 — 3y — 1,)P

(1 + 511‘1 + 525(}2)7

p(r1,12) = Clay, as, 8,7,£1,62)

where x1 > 0, o > 0, and 1 + 9 < 1, then

p(x1, 12|51, 52, f) = Clay + 51,00 + 82, B+ f,7,61,&2)
A i VI T o
(1 + &y + &)
Thus, the bivariate family of distributions considered in this article is the
conjugate prior for the multinomial distribution.

In continuation, in Figure 1, we present a few graphs of the density function
defined by the expression (1) for different values of parameters. Here one
can appreciate the wide range of forms that result from the bivariate Gauss
hypergeometric distribution.

Next, we derive marginal densities of X and Y.

Theorem 2.1. Let (X,Y) ~ BGH(ay, o, 8,7,&1,&). Then, the marginal
density of X is given by
moal—l(]_ o x)oag—i—ﬁ—l
(1 + &)

I

X

(1 — )
1+€1I

2F1<77052;Oé2+63_ )7 0<$<17

where
(o) (2 + B)
P(ar +az +5)
Similarly, the marginal density of Y s given by
yor (1 — )t

(1+ &y)

Kt =

Fi(y, 00, a0; a1 + ag + B; —&1, —&2).

&Si(1—y)
F; : o — O<y<l1
2 1(7,061,()41+B, 1+§2y ’ Yy 9

where
['(ag)l' (o + B)
[(ar + ag + B)
Proof. Integrating the density (1) with respect to y, the marginal density of
X is derived as

“(l-z -yt

11—z
C ) ) ) ) Y alil / y
(a1, 2, 8,7, &1,62) @ . 1+ &a + Eay)
a;—1 1— as+B—-1 pl as—1 1 — B—1
e S
(14 &) o [1+(1—2)62/(1+ &)
where we have used the substitution z = y/(1 — x). Finally, using the integral

representation of the Gauss hypergeometric function given in (A.1), the desired
result is obtained. Similarly, the marginal density of Y can be derived. O

M=

Fi(v, a1, as; a1 + as + 5; —&1, —&a).

dy

= O(al,a276;77§17§2>
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Figure 1: Graphs of the bivariate Gauss hypergeometric density
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Corollary 2.1.1. Suppose (X,Y) ~ BGH(ay, a9, 3,7,&1,&). If & = 0,
then X ~ GH(ay, s + 5,7,&1).

Using the marginal density of Y given in the Theorem 2.1, we obtain the
conditional density function of the variable X given Y =y, 0 <y < 1, as

Tlar+8)  (1+&y) e (1 -z —y) ' (1L+ &+ &y) 7
I'(a)T(B) (1 —y) 8L 5By (v, 00,00 + B, =& (1 —y) /(1 + &)’

where 0 <z <1 —y.

By using the integral representation of the first hypergeometric function of
Appell given in (A.4), the (r, s)-the joint moment of the variables X and Y
having bivariate Gauss hypergeometric distribution, can be expressed as

(o + )T (o + s)T(ag + az + 5)

I'(oq)T(a)(oq + ag + B+ 17+ 5)

XF1(%041+7“,042+S;Oé1+042+5+7“+3§—§1,—§2)
Fi(7y, a1, az;a1 +ag + B, —&1, —&2)

B(XTY*) =

NG

where r and s are for non-negative integers.
Substituting appropriately for r and s in (3), we obtain

o Fi(y,o0 + 100501 + a0 + B+ 1; =&, —&o)

E(X) = ,
(X) o +ag+ Fi(v, a1, a1 + as + 5; —&1, —&2)
B(Y) = (o) Fi(yv,ar,00+ a1 +as + 6+ 1; =&, —&)
a+oas+ Fi(y,0n, a0 a1 + ag + B3 —&1, —&2) ’
E(XZ) _ aj(og + 1)
(g +as+ B)lag +az+8+1)
XFl(%oq—|—2,a2;a1+a2+ﬁ+2;—§1,—§2)
Fi(7y, 00, a0; 01 + ag + B; —&1, —&2) 7
E(Yg) _ as(ag + 1)
(g + s+ B)(ag +as + B+ 1)
XF1(%041,042+2;041+Oé2+5+2;—§1;—§2)
Fi(v, 01, a0 a1 + ag + B; —&1, —&2) ’
E(XY)= aiaz

(g +az+ B)ag +as+ B+ 1)
XFl(%Oél + 1o+ 100+ + B+ 2; =&, &)
Fi(y, 00, a0; a1 + ag + B; —&1, —&2)
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Now, using the respective definitions, we compute Var(X), Var(Y") and Cov (X,
Y) as

aq O[l—f—l
Var(X) =
ar( ) a1+0z2+ﬁ{a1+0z2+5+1
" Fi(yv,a1 +2,a0;01 + ag + 4 2; =&, —&)
Fi(y, 01, a0 a1 + ag + B3 —&1, —&2)
Qi [Fl<%041+1,042;a1+a2+5+15—51,—52)]2}

Cartas+f Fi(y, 00, a0;a1 + ag + 3 —&1, —&2)
and
Qi as +1
Var(Y) =
( ) a1+a2+5{a1+a2+5+1
« Fi(v,on,00 + 25010 + a0 + 4 2; =&, —&a)
Fi(v, 00, a0; 01 + ag + 5 —&1, —&2)
B (o) {F1(%0417042+1;Oé1+@2+5+1§—§17—52)r
a+og+ Fi(7y, 00, a0; 01 + ag + B; —&1, —&2) ’
F 1 1: 2 =&, —
Cov(X,Y) = Qe { (v, +Las+ Lo +as+ 5+ 2, =&, —&)
ar+ay+ 6 (a1 +as+ B+ 1)Fi(y, a1, a0y oq + g+ 35 =&, —&a)

Fi(y,ar + 1, 00501 + ag + B+ 15 =&, —&9)
ap+as+ 6
" Fi(y,oq,00 + ;a1 +ap + B+ 15 =6y, —52)}
[F1(7, a1, o5 01 + ap + 5 =61, —52)]2
Utilizing the above expressions for variances and covariance, the correlation
coefficient between X and Y can be calculated using the formula

Cov(X,Y)
[Var(X)Var(Y)]"/*

Table 1 contains numerical values of the correlation between X and Y for
different values of parameters. As expected, all the values in the table are
negative because of the condition X +Y < 1. Further, by selecting properly
values of parameters, it is possible to find values of the correlation close to 0
or Note that for different values of parameters we obtain diverse correlations
between X and Y. For example, when oy or as is big or f is small, the value
of pxy is close to —1 which suggests a considerable linear dependence between
these two variables. In Figure 2 several graphs illustrate the behavior of the
correlation as a function of one of the parameters. The tendency of a fixed
value when values of parameters are considerably big can be observed.

PXy =
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3
(03] (65 B Y 51 -0.7 -0.3 0.5 0.9

0.1 03 0.1 1 -0.7 | -0.80 -0.77 -0.71 -0.68
01 1 05 05 -03]-037 -0.35 -0.34 -0.33

05 5 1 1 0 |-054 -0.53 -0.52 -0.52
1.5 10 3 -1 0.5 | -0.51 -0.51 -0.52 -0.52
3 15 5 -05 1.5 |-053 -0.54 -0.54 -0.54
) 15 10 1 5 | -043 -043 -043 -0.42

Table 1: Correlation coefficient between X and Y with joint density (1) for
different values of parameters

3 Entropies

In this section, exact forms of Rényi and Shannon entropies are obtained for
the bivariate generalization of the Gauss hypergeometric distribution defined
in Section 2.

Let (X,B,P) be a probability space. Consider a p.d.f. f associated with
P, dominated by o—finite measure p on X. Denote by Hgy(f) the well-known
Shannon entropy introduced in Shannon [16]. It is define by

Heu() =~ [ @) hn (o) dn @)
X

One of the main extensions of the Shannon entropy was defined by Rényi [14].
This generalized entropy measure is given by

In G(n)
I—mn

Hr(n, f) = (for n >0 and n # 1), (5)

where
mm:Lﬁw.

The additional parameter 7 is used to describe complex behavior in probability
models and the associated process under study. Rényi entropy is monotonically
decreasing in 7, while Shannon entropy (4) is obtained from (5) for n 1 1.
For details see Nadarajah and Zografos [12], Zografos [18], and Zografos and
Nadarajah [19].

First, we give the following lemma useful in deriving these entropies.

Lemma 3.1. Let g(ay, ag, 5,7, &1, &) = lim, 1 h(n), where

h(n) = dinFl(n% n(ar —1)+1,n(ae — 1) +1;n(a + g + B —3) +3; =1, —&2).
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Figure 2: Graphs of the correlation coefficient pxy (a1, s, 8,7,&1,&2) = pxy

for different values of oy, s, 5,7,&; and &
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Then, for —1 <& <1, =1 <& < 1,
9(0417 2, 5 s 51, 52)
2)k(7)j+k

- Z et (=60 (=)o = Dfen + )

k=1 B)j+ril k!
+ (a2 = D)d(az + k) +99(y + 7 + k) + (1 + oz + = 3)p(ar +az + )
= (1 = 1)ih(an) = (a2 = Dtp(az) —19(7)

— (a1 +ax+ B =3)Y(ar + g+ B+ 7+ k), (6)
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for& >1, -1 <& < 1,

9(0417062757%51752)
_ R (8);(c2)k () 4k g YV (& -6\
S8 X it B (rte) ()

X [=yIn(1+ &)+ (B = DY(B+ ) + (ae = 1)Y(az + k)

+y(y+ 5+ k) + (a1 +az + B = 3)(ar + g + B)

— (B = 1)(B) — (a2 — D)(az) —72(7)

— (a1 +ag+ B =3)Y(ar + g + B+ j+ k)], (7)

for =1 <& <1, &6 >1,

9(0417042,57%51752)

_ o ()i Bk (-G [ &\
_<1+£2) j—&-Xk:l (041+062+6)j+kj”€! (1+§2> (1+§2)
X [=yIn(1 + &) + (a1 — V(s +4) + (B8 — 1)Y(B + k)

+y0(y+ji+Ek)+ (a1 +az+ 5 —3)Y(ag + ag + B)
— (a1 = D) — (8 = D) (B) — v (7)
¥

<051+042+ﬁ 3 (Oél+062+ﬁ+j+k)] (8)

and for & > 1, & > 1,

g(a17a27/6777§17§2>

=(1+&)™MA+&)™ Y (al)j((zzl)i(zi;z);ki!;!v)ﬂk

j+k=1

X (1 f&) <1 ‘%52) [—(a1 = 1) In(1 + &) — (a2 — 1) In(1 + &)
(1 — Dp(ar + j) + (g — 1)p(ag + k)

(1 +aa+B—7=3)Y(ar+as+B—y+j+k)

(a1 +ax+ B =3)(ar + g+ ) — (a1 — D)Y(ayr) — (a2 — 1)Y(az)
(

— (

+
+
_.|_
—(t+ax+ B =)l +ax+B-7)

ap+ag+ B =3)(ar +aa + B+ 5+ k), (9)

where ¥(z) =T1"(2)/T(z) is the digamma function.
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Proof. Using the series expansion of Fj, we write

h) = & 37 A L)

dn 5= jIkI
N [4 (&) (—&)
-2 [ oetn| S (10)
where
A, () = D03+ BTl = 1)+ 10 = 1) +1+ 1

I'n(oq + ay + 5 —3) + 3]
L(ny)Tn(ar = 1) + 1T [n(ae — 1) + 1]

Now, differentiating the logarithm of A;(n) w.r.t. , we arrive at

X

S A0) = Byl — V(s — 1)+ 1-+)
+ (g = Dv(n(ag — 1) + 1+ k) +v(ny + 5 + k)
+ (a1 +az + B =3)Y(nlar + az + 8 —3) +3) — (1Y)
— (1 = DYp(n(ar — 1) +1) — (ag — D)tp(n(ag — 1) + 1)
— (a1 + a4+ 8 -=3)(nlar+as+ 8 —3)+3+ 7+ k). (11)

Finally, substituting (11) in (10) and taking n — 1, we obtain (6). To obtain
(7), (8) and (9), we use (A.6) to write

Fi(ny,n(ar — 1) + L,n(ae — 1) + in(ar + ag + 8 = 3) + 3; =81, —&2)
=(1+&)™™

H (7’7’"(5_1)“’”(0‘2—1>+1%ﬁ<a1+a2+6—3>+3; 1?&’%3)
=(1+&)™"
. =& &
H (m’n(%_1>+1’7’<ﬁ_1>+1’”<O‘1+0‘2+5_3>+3’ 146’ 1+§2)

= (L4 &) 77D (14 )i

><Fl(n(a1+a2+6—v—3)+3m(a1—1)+17n(az—1)+1;

& &
wontaat5-3) 430 2 )

and proceed similarly. O
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Theorem 3.1. For the bivariate Gauss hypergeometric distribution defined
by the p.d.f. (1), the Rényi and the Shannon entropies are given by

Hg(n, fecn)
1 _ n[nlnc(alaa%ﬁ » Vs 61 52) + 1nr[n(al - 1) + 1]

+Inln(as —1) +1]+InTn(f—1)+ 1] —InTn(cn + e + 5 — 3) + 3]
+In Fy(ny,nen = 1) + 1L n(ag = 1)+ 1in(ar + oz + 8 —3) +3; =&, =&))

and

Hsp(fan)
—InC(oy, s, 8,7, &, &) — [(ar = D)(an) + (a2 — 1)ib(az) + (8 — 1)y (B)
gla1, az, 8,7, &1, &)
Fi(y, a1, a0;00 + a4+ 0; =&, —&)

— (a1 +ag+ B —3)(ar +az + B)] —

Tespectively, where g(a17a276777§17§2) is given by (6) Zf -1 < §17§2 < 17 by
& > 1, and (z) =1"(2)/T'(z) is the digamma function.

Proof. For n > 0 and 7 # 1, using the density of (X,Y’) given by (1), we have

1 1—x
:/ / [feeu(z,y; a1, a0, 8,7, &1,62)]" dy dw

=z pmlar—1)ymlee—1) (1 —  — 4, )7(B—1)
z z
1, &2, 1,62 dy dz
= [Clar, a2, 8,7,61, &) // y ( v) Y

(1+ &+ Sy)m
[C(alaa%ﬁa’y”fbéé)]
Clnlar = 1)+ Ln(az = 1)+ L,n(B — 1) + 117, &, &)
I —1 I —1)+1" —1 1
= [C(@ly 052757’77517 62)]7] [n(al %?;](1C]¥1 [—7_(32 —+ B) j 3]) _Ené]ﬁ ) * ]
x Fi(ny,n(en —1) +1,n(ae — 1) + 1;n(cn +ag+ B —3) +3; =&1, —&2),

where the last line has been obtained by using (2). Now, taking logarithm of
G(n) and using (5) we get expression for Hg(n, fgen). The Shannon entropy
is obtained from the Rényi entropy by taking n 1T 1 and using L’Hopital’s
rule. O

4 Some Transformations
In this section we obtain expressions for densities of sum, quotient and product

of two random variables whose joint p.d.f. is given by (1). First, we give
definitions of beta type 1 and beta type 2 distributions.
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Definition 4.1. A random variable X is said to have a beta type 1 distri-
bution with parameters o > 0 and > 0, denoted by X ~ Bl(a, 3), if its p.d.f.
18 given by
T (I

B(a, B)
Definition 4.2. A random variable Y is said to have a beta type 2 distri-

bution with parameters a > 0 and B > 0, denoted by Y ~ B2(«, ), if its p.d.f.
18 given by

fei(z;0,8) =

, O<z<l.

yafl(l _{_y)f(aJrﬁ)
B(a, B) ’

Now, we turn our attention to the problem of obtaining distributions of
sum, quotient and product.

O<x<l1.

fe2(y; 0, B) =

Theorem 4.1. Let (X,Y) ~ BGH(ay, as, 8,7, &1, &) and define S = X+Y,
and U = X/(X +Y). Then, the p.d.f. of S is given by

Soq-l—az—l(l _ S)ﬂ—l

(1+&as)?

& — &
L+ &os

K, 2 I (%al;al + au; 5) , 0<s<1, (12)

where
Kfl = B(og + az, B)Fi (v, a1, ag; oq + as + B =&, —&2).
Further, the density of U s given by
K Ual_l(l - U)a2_1 o F1 (v, 1 + gy o + g + 55 (& — &)u — &), (13)
where 0 < u < 1 and
Ky' = Blog, a) Fi(7y, a1, 00500 4 as + 85 =&, —&).

Proof. Making the transformation S = X +Y and U = X/(X + V'), whose
Jacobian is J(z,y — s,u) = s in (1), the joint density of S and U is given by
Sa1+a2—1(1 o S),B—luozl—l(l o u)ag—l

1+ (& — &)su+ &as]” ’

Clou, a2, 8,7,61,6) (14)

where 0 < s < 1 and 0 < u < 1. To compute the marginal density of S we
need to integrate the above expression with respect to u to obtain

Sa1+a271(1 . S)ﬁ*1 1 ualfl(l . u)agfl
(1 + &s) /o [1+ (& — &)su/(1+ &s)] s

Clar, az, 8,7, &1, 62)
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where 0 < s < 1. Now, evaluating the above integral using (A.1) and simpli-
fying, we get the desired result. On the other hand, to obtain the marginal
density of U, we integrate the joint density (14) with respect to s, to obtain

Sa1+a271 (1 o 8)5*1

T {6 —&ut &yap

where 0 < u < 1. Now, evaluation of the above integral by using (A.1) yields
the desired result. O

Corollary 4.1.1. If (X,Y) ~ BGH(ay, ag, 8,7,&1,&), then the p.d.f. of
V = X/Y is given by

1
Clar, oo, 8,7,61,62) uarl(l B U)QQI/ [
0

Ualfl

Ko ———
2 (1+1))0‘1+0‘2

§1U+52), >0. (15)

F . .
2 1(7,041+Oé2,a1+042+5a 1+

Proof. We can write
X X))y
X+Y X/Y+1
which, in terms of U = X/(X +Y) and V = X/Y can be written as U =
V/(1 + V). Therefore, making the transformation U = V/(1 4+ V) with the
Jacobian J(u — v) = (1 4+ v)~? in the density of U given in (13), we get the
density of V. O

Corollary 4.1.2. If (X,Y) ~ BGH(a, as, 5,7,&,€), then X+Y ~ GH(ay+
a2’ﬁ777£) and X/<X +Y> ~ Bl(Oél,OCQ).

Proof. Substituting §& = & = ¢ in (12) and (13) and simplifying the re-
sulting expressions using o F7 (7, a1; a1 + a2;0) = 1 and Fy (v, a1, as; a1 + as +
B; =&, =€) = oF1(7y, a1 + ag; g + g+ 8; —&), the desired result is obtained. [

Corollary 4.1.3. If (X,Y) ~ BGH(a, a9, 3,7,&,§), then V = X/Y ~
B2(aq, ag).

Proof. Substituting & = & = £ in (15) and simplifying the resulting expres-
sions by using Fi (7, o, ag; artas+f8; =€, =€) = oF1(7, antas; artas+3; —§),
we obtain the desired result. O]

The distribution of XY has been studied by several authors especially when
X and Y are independent random variables and come from the same family.
However, there is relatively little work of this kind when X and Y are correlated
random variables. For a bivariate random vector (X,Y’), the distribution of
the product XY is of interest in problems in biological and physical sciences,
econometrics, and classification. The following theorem gives partial result on
the distribution of the product of two random variables distributed jointly as
bivariate Gauss hypergeometric.
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Theorem 4.2. If (X,Y) ~ BGH(ay, a9, 3,7, &1,62), & # 0 and §§ < 1,
then the p.d.f. of the random variable Z = XY, is given by

BB, Ao (p — )1t L (h g\
> ()

Clar, az, 8,7, 61,62)

(b—p)(b—q) —~\ 0
(B + 5 — a1 — ), b—a b
X @A) (5+T77,2B+T,b p’b—q)’ z < 1/4,
where
o l-VIE 14V
- 2 T2
_—1—\/1—451522 q_—1+v1—4€1€22
28, ’ B 28, '

Proof. Consider the transformation X = X and Z = XY. Given that x4y < 1
and y = z/x, we have 22 — z + 2 < 0, and by taking a = (1 — /1 —42)/2
and b = (1 + /1 —4z2)/2, these conditions can be expressed as a < z < b and
z < 1/4. Further, the Jacobian of this transformation is J(z,y — z,2) = 1/x.
Thus, substituting appropriately in (1), the joint p.d.f. of X and Z is given by
x041+’7_042—6z042_1(_x2 +ox— 2)5—1
(&12? + x + &2)
Now, integrating with respect to x, we get the marginal density of Z as
a1+7—az—ﬁ(_x2 - Z)B—l
(&12% + 2 + §22)7

C<a17a2aﬁ77a§1a§2) s a<$<b, Z<1/4,

b
T
0(0417042,57%&,52)20‘2_1/ de, z2<1/4

which can be rewritten as
2 (o — o) (o — b))

b
C(Oél, Qg, Ba e 517 £2>Za2_1 /
a [(ZL‘ - p)(l‘ - q)]7
where we have assumed that £& < 1 and & # 0, with

—1—1—4&&2 14+ /T —-4662

26 17 %
Since a < x < b, we have 0 < (x—b)/(a—b) < 1. Further, if u = (z—b)/(a—b),
then x = (a — b)u + b and dz = (a — b)du. Furthermore, (z —b) = (a — b)u
and x —a = (b — a)(1 — u), and the above integral is expressed as

perty—az— B 26 1/ )ﬂ—l[l _ (b—a)u/b]aﬁ”_“?_ﬂ »
(b—p)(b—gq {1— b—a)U/(b Pl = (b—a)u/(b—q)}

w,mbalﬂ b= ) SN (B)faa+ B—ay =), (b—a)’

(b—p)(b—aqr Z (26),7! ( b )

b—a b—
B+r7,7:28+T; e
b—p b—gq

dz,

p:
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where the last line has been obtained by expanding [1 — (b—a)u/b]~(@2+f—c1=7)
in power series and applying (A.5). Finally, substituting appropriately, we get
the desired result. O

Corollary 4.2.1. .[f (X, Y) ~ BGH(Oél,OéQ,ﬂ,’}/,ghé-Q) with 51 = 52 = ]_,
then the p.d.f. of the random variable Z = XY is given by

B(B, B)(1 — 4z)#-1/2 5021
C(OéhaQaB?’Ya]-vl) (_5 ?)( ) —
Qan+y—asz 5( + 41— 42)a2+ﬂ 1
XZ 0524‘5_051 7) ( V1-—4z )T
(26),r! 14++1—4z
V1—4z
— V1 —-4z]), < 1/4.
1++v1—-14z : © /

x Fy (5+T7%7;2/B+r;

Appendix

The integral representation of the Gauss hypergeometric function is given as

~ T /0 N1 — ) (1 — 2t) P dt,
Re(c) > Re(a) > 0, |arg(l — z)| < 7. (A.1)

2F1(a, b; c; Z)

Note that, by expanding (1 — 2t)7°, |2t| < 1, in (A.1) and integrating t the
series expansion for 5 F; can be obtained as

o Fi(a,b;¢;2) = ;0%%’ lz| <1, (A.2)

where the Pochhammer symbol (a),, is defined by (a), = a(a+1)---(a+n —
1) =(a)p—1(a+n—1)forn=1,2,..., and (a)y = 1. From (A.2), it can easily
be observed that

oFi(a,b;¢;2) = 2F1(b, as ¢; 2).

For properties and further results the reader is referred to Luke [9].
The first hypergeometric function of Appell is defined in a series form as

m+n m'n' ’

Fi(a, by, ba;¢; 21, 22) g E + Um(be)n 2123 (A.3)
=0 n=

where |2z < 1 and |25| < 1.
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The first hypergeometric function of Appell can be expressed as a double

integral,
uh b1 (1 — g — p)ebibe!
/ / ) dudv
(1 —uz —vz9)®

u,v>0
u+v<1

i F(bl)F(bg)F(c — b1 — bg)
N ['(c)

Fl (CL, b17 b2a C; 21, ZQ) <A4)

for Re(b;) > 0, Re(b2) > 0, and Re(c — by — by) > 0.
It can also be shown that

= (@)y, (b1)r, 2
Fi(a,bi, by c; 21, 22) = Z % 1,2F1(@ + 11, by e+ 115 20)
r1=0 1
= r b T 5>
= —(a) 2 (b2)rs 2 —oF1(a+ 1y, b1; ¢+ 195 21),
(©)r, 12!
ro=0 T2
and further, using the results
(CL)TH-TQ _ F(C) /1 UG+T1+7"2*1(1 _ v)cfafl dv
(©ri4r, T(@)l(c—a) Jo ’

where Re(c) > Re(a) > 0, and

vz < 1,i=1,2,

= (b)), (vz;)" L
Zr—z' = (L —vz)™,
;=0

n (A.3), it is possible to obtain

NG G V) Gt
Fi(a, by, by; c; =
1(a, br, ba; 5 21, 22) F(a)F(c—a)/o (1 —wvzp)br(1 —vzg)t’
2] < 1, |2] < 1, (A-5)

where Re(c) > Re(a) > 0.
The function F} reduces to a o F} in the following cases:

Fi(a,0,by;¢; 21, 22) = Fi(a, by, bo; ¢; 0, 20) = 2 F1(a, be; ¢; 22),
Fi(a,b1,0;¢ 21, 22) = Fi(a, by, ba; ¢; 21,0) = o F1(a, by; ¢; 21).

Further,
Fl(a,bbe;C; z,z) = oF1(a, by + by; c; Z)
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Some transformations of the function Fj that eventually facilitate calcula-
tions for different values of the parameters and variables are

Fi(a,by,be;c; 21, 22)

(1 - Zl)fbl(l - 22)7b2F1 <C — a, by, by; ¢ o ) & >

_1—21 _1—22

(1 — 21)_‘1F1 (a,c — bl — b27b2;c; 21 7_,2’1 — z2>

_1—21 1—21

(1—2)"Fy (a, bi,c—b —bQ;C;—Z2 - zl,— & )
1—22

1—22

(1= 2)" " (1~ 2) ) (C —a,c—by — by, be;c; 2, 211 — 22)
— 2

22 — 21

(1—2)™(1 = z9)7 2y (c —a,by,c— by — by c; ,zg) . (A.6)

1—21

For several other properties and results on Fj the reader is referred to Srivas-
tava and Karlsson [17] and Bailey [2].

Acknowledgement

The research work of DKN was supported by the Comité para el Desarrollo de
la Investigacién, Universidad de Antioquia research grant no. IN560CE.

References

1]

2]

3]

C. Armero and M. Bayarri, Prior assessments for predic-
tions in queues, The Statistician, 43 (1994), no. 1, 139-153.
http://dx.doi.org/10.2307/2348939

W. N. Bailey, Generalized Hypergeometric Series, Stechert-Hafner Ser-
vice Agency, New York, 1964.

Liliam Cardeno, Daya K. Nagar and Luz Estela Sanchez, Beta type 3
distribution and its multivariate generalization, Tamsu: Ozford Journal
of Mathematical Sciences, 21(2005), no. 2, 225-241.

J.-Y. Dauxois, Bayesian inference for linear growth birth and death pro-
cesses, Journal of Statistical Planning and Inference, 121(2004), no. 1,
1-19. http://dx.doi.org/10.1016/s0378-3758(02)00520-7

Peter S. Fader and Bruce G. S. Hardie, A note on modelling underre-
ported Poisson counts, Journal of Applied Statistics, 27(2000), no. 8,
953-964. http://dx.doi.org/10.1080/02664760050173283



2550

(6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Daya K. Nagar, Danilo Bedoya-Valencia and Arjun K. Gupta

A. K. Gupta and D. K. Nagar, Matriz Variate Distributions, Chapman
& Hall/CRC, Boca Raton, 2000.

A. K. Gupta and D. K. Nagar, Properties of matrix variate
beta type 3 distribution, International Journal of Mathematics
and Mathematical Sciences, 2009(2009), Art. ID 308518, 18 pp.
http://dx.doi.org/10.1155/2009/308518

N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate
Distributions-2, Second Edition, John Wiley & Sons, New York, 1994.

Y. L. Luke, The Special Functions and their Approximations, Vol. 1,
Academic Press, New York, 1969.

D. L. Libby and M. R. Novic, Multivariate generalized beta distributions
with applications to utility assessment, Journal of Educational Statistics,
7 (1982), no. 4, 271-294. http://dx.doi.org/10.2307/1164635

S. Nadarajah, Sums, products and ratios of generalized
beta variables, Statistical Papers, 47(2006), mno. 1, 69-90.
http://dx.doi.org/10.1007 /s00362-005-0273-8

S. Nadarajah and K. Zografos, Expressions for Rényi and Shannon en-
tropies for bivariate distributions, Information Sciences, 170(2005), no.
2-4, 173-189. http://dx.doi.org/10.1016/j.ins.2004.02.020

Daya K. Nagar and Erika Alejandra Rada-Mora, Properties of multi-
variate beta distributions, Far Fast Journal of Theoretical Statistics,
24(2008), no. 1, 73-94.

A. Rényi, On measures of entropy and information, Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Contributions to the Theory of Statistics, University of Cali-
fornia Press, Berkeley, California, pp. 547-561 (1961).

Luz Estela Sanchez and Daya K. Nagar, Distribution of the product and
the quotient of independent beta type 3 variables, Far Fast Journal of
Theoretical Statistics, 17(2005), no. 2, 239-251.

C. E. Shannon, A mathematical theory of communica-
tion,  Bell System  Technical Journal,  27(1948),  379-423,
623-656. http://dx.doi.org/10.1002/j.1538-7305.1948.th01338.x,

http: //dx.doi.org/10.1002/1.1538-7305.1948.tb00917.x

H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric
Series, John Wiley & Sons, New York, 1985.



Bivariate generalization of the Gauss hypergeometric distribution 2551

[18] K. Zografos, On maximum entropy characterization of Pearson’s type
IT and VII multivariate distributions, Journal of Multivariate Analysis,
71(1999), no. 1, 67-75. http://dx.doi.org/10.1006/jmva.1999.1824

[19] K. Zografos and S. Nadarajah, Expressions for Rényi and Shannon en-
tropies for multivariate distributions, Statistics & Probability Letters,
71(2005), no. 1, 71-84. http://dx.doi.org/10.1016/j.spl.2004.10.023

Received: February 19, 2015; Published: March 27, 2015



