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Instituto de Matemáticas, Universidad de Antioquia
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Abstract

A VDB topological index is defined as

T = T (G) =
∑

1≤i≤j≤n−1
mijϕi,j ,

where G is a graph with n vertices and mij is the number of ij-edges. We
study T over the set of catacondensed polyomino systems. Specifically,
we introduce two unbranching operations and show that under certain
conditions on {ϕij}, T is monotone with respect to these operations.
We apply these results to find extremal values of T over the set of
catacondensed polyomino systems.
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1 Introduction

A great variety of vertex-degree-based topological indices (VDB indices for
short) have been considered in the mathematico-chemical literature [8]. Given
nonnegative real numbers {ϕij} for every 1 ≤ i ≤ j ≤ n − 1, they are of the
form

T = T (G) =
∑

1≤i≤j≤n−1

mijϕi,j (1)
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where G is a graph with n vertices and mij is the number of edges of G
connecting a vertex of degree i with a vertex of degree j. Several important
VDB topological indices are induced by the different choices of the numbers
{ϕij}. For example, the Randić index is obtained from ϕij = 1√

ij
[13], the sum-

connectivity index from ϕij = 1√
i+j

[21], the harmonic index from ϕij = 2
i+j

[20], the geometric-arithmetic from ϕij = 2
√
ij

i+j
[14], the first Zagreb index from

ϕij = i + j [10], the second Zagreb index from ϕij = ij [10], the atom-bond-

connectivity index from ϕij =
√

i+j−2
ij

[6] and the augmented Zagreb index

from ϕij =
(

ij
i+j−2

)3
[7].

In this paper we study T as in (1) over the set of catacondensed polyomino
systems. Recall that a polyomino system [9] is a finite 2-connected plane graph
such that each interior face (also called cell) is surrounded by a regular square
of length one. The inner dual graph of a polyomino P is defined as a plane
graph in which the vertex set is the set of all cells of P and two vertices are
adjacent if the corresponding two cells have an edge in common.

A catacondensed polyomino system is a polyomino system whose inner dual
graph is a tree (see Figure 1). Note that the maximal degree of the inner dual
tree is 4. A branching square of a catacondensed polyomino system is any
square whose corresponding vertex in the inner dual tree has degree 3 or 4
(shadow squares in Figure 1).

Figure 1: Catacondensed polyomino system.

A polyomino chain is a polyomino system whose inner dual graph is a path.
It means that a polyomino chain is a catacondensed polyomino system with
no branching squares. A kink of a polyomino chain is any angularly connected
square. A segment of a polyomino chain is a maximal linear chain including
the kinks and/or terminal squares at its end. The number of squares in a
segment its called the length of the segment. In particular, the linear chain Ln

is a polyomino chain with exactly one segment (of length n) and the zig-zag
chain Zn is a polyomino chain in which every segment has length 2 (see Figure
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2).

Figure 2: Linear chain Ln and Zig-zag chain Zn.

The problem of finding extremal polyomino chains with respect to vertex-
degree-based topological indices has recently attracted much attention in the
literature. For instance, Yang et al. ([17],[18]) and Yarahmadi et al. [16] find
formulas for the Randić index, the sum-connectivity index and the Zagreb
indices of polyomino chains and deduce the extremal values; more recently,
An and Xiong [2] generalized some of the previous results to general Randić
indices and Deng et al. [5] found formulas for the harmonic indices and deduced
the extremal values. Other results can be found in ([15],[19]).

In ([11], [12]) Rada introduced several transformations of polyomino chains
and gave conditions on the numbers {ϕij} that assure that the linear chain or
the zig-zag chain are extremal values of the induced VDB topological index T .
In [4] the so called linear and angular transformations were completed and a
new extremal polyomino chain with respect to VDB indices was introduced.
Namely, the zig-zag chain of segments of length 3, denoted by Z3

n, has minimal
atom-bond-connectivity index among all polyomino chains with n squares.

In [1] Ali et al. established a general expression for calculating the VDB
indices of polyomino chains, recovered the previous results about extremal
values of different VDB indices and found the extremal polyomino chains with
respect to augmented Zagreb index.

On the other hand, the problem of finding extremal catacondensed poly-
omino systems with respect to VDB topological indices has received less at-
tention. In [3] Chen at el. prove that the polyomino chain Zn has the maximal
value with respect to the atom-bond-connectivity index.

In our study we introduce two unbranching operations over catacondensed
polyomino systems and show that under certain conditions on the numbers
{ϕij}, the topological index T defined as in (1) is monotone with respect to
these operations. Then we apply these results to find extremal values of T
over the set of catacondensed polyomino systems.
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2 Unbranching operations on catacondensed

polyomino systems.

CPn will denote the set of all catacondensed polyomino systems with n squares.
If P is a catacondensed polyomino system, then we denote by |P | the number
of squares P has. Let b4(P ) be the number of branching squares of degree 4
and b3(P ) the number of branching squares of degree 3 P has. Then b(P ) =
b4(P ) + b3(P ) is the total number of branching squares in P .

Pn will denote the set of all polyomino chains with n squares. Note that
Pn is properly contained in CPn, since a polyomino chain is a catacondensed
polyomino system with no branching squares.

In our first result we prove that under certain conditions, from any catacon-
densed polyomino system P with b4(P ) > 0 one can construct a catacondensed
polyomino system Q with b4(Q) = b4(P )− 1 and such that T (P ) ≤ T (Q).

For a vertex u of the catacondensed polyomino system, we denote by du the
degree of this vertex. Note that du ∈ {2, 3, 4}. In the proof of the next lemma
we will distinguish vertices u, v, w, x, y, z of the catacondensed polyomino sys-
tem with degrees that satisfy the following conditions:

C1: (du, dv) ∈ {(2, 2); (3, 3); (3, 4); (4, 3); (4, 4)}.

C2: If du = 4 then dw ∈ {2; 3}, otherwise dw ∈ {2; 3; 4}.

C3: If dv = 4 then dx ∈ {2; 3}, otherwise dx ∈ {2; 3; 4}.

C4: (dy, dz) ∈ {(3, 3); (3, 4); (4, 3); (4, 4)}.

Next we define two functions of the degrees of the vertices u, v, w, x, y, z.
Let D1 be the set of the 3-tuplas (du, dv, dw) that satisfy conditions C1 and C2
and D2 be the set of the 6-tuplas (du, dv, dw, dx, dy, dz) that satisfy conditions
C1, C2, C3 and C4. Over D1 and D2 we define the functions F1 and F2

respectively as follows:

F1 (du, dv, dw) = (ϕ4du − ϕ3du) + (ϕ4dv − ϕ3dv) + (ϕ4dw − ϕ3dw)

F2 (du, dv, dw, dx, dy, dz) = F1 (du, dv, dw) +

+ (ϕ4dx − ϕ3dx) +
(
ϕ2dy − ϕ3dy

)
+ (ϕ2dz − ϕ3dz)
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The following numbers will be used in the sequel

α1 = ϕ22 + 2ϕ24 − 3ϕ33 − 3ϕ34 + 3ϕ44 + max
D1

F1 (du, dv, dw) (2)

β1 = ϕ22 + 2ϕ24 − 3ϕ33 − 3ϕ34 + 3ϕ44 + min
D1

F1 (du, dv, dw) (3)

α2 = ϕ22 + 2ϕ23 − 5ϕ33 − ϕ34 + 3ϕ44 + max
D1

F1 (du, dv, dw) (4)

β2 = ϕ22 + 2ϕ23 − 5ϕ33 − ϕ34 + 3ϕ44 + min
D1

F1 (du, dv, dw) (5)

α3 = ϕ22 − 2ϕ33 − 2ϕ34 + 3ϕ44 + max
D2

F2 (du, dv, dw, dx, dy, dz) (6)

β3 = ϕ22 − 2ϕ33 − 2ϕ34 + 3ϕ44 + min
D2

F2 (du, dv, dw, dx, dy, dz) (7)

Lemma 1 Let P ∈ CPn with b4(P ) > 0 and T be a VDB topological index
defined as in (1) .

1. If αi ≤ 0 for i = 1, . . . , 3 then there exists a catacondensed polyomino
system Q with b4(Q) = b4(P )− 1 such that T (P ) ≤ T (Q).

2. If βi ≥ 0 for i = 1, . . . , 3 then there exists a catacondensed polyomino
system Q with b4(Q) = b4(P )− 1 such that T (P ) ≥ T (Q).

Proof. Let P ∈ CPn such that b4(P ) > 0. The form of P is depicted in Figure
3 where A,B,C and D are catacondensed polyomino subsystems. We have to
consider three cases:

Figure 3: Catacondensed polyomino system with b4 > 0.

Case 1: |B| = 0. Let Q ∈ CPn obtained from P as depicted in Figure 4. Note
that D1 is the set of the possible values of the degrees of the vertices u, v, w.

If we denote by MP (resp. MQ) the set of edges in bold of P (resp. Q) then
there exists a one-to-one correspondence between the set of edges E (P ) \MP
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Figure 4: Catacondensed polyomino system used in the proof of the Case 1 of
Lemma 1 .

and E (Q) \MQ, in such a way that the degrees of the end vertices of every edge
in E (P ) \MP are equal to those of the corresponding edge in E (Q) \MQ. Since
MP consists of one 22-edge, two 24-edges, three 44-edges, one 4du-edge, one
4dv-edge and one 4dw-edge, and MQ consists of three 33-edges, three 34-edges,
one 3du-edge, one 3dv-edge and one 3dw-edge, then

T (P )− T (Q) = (ϕ22 + 2ϕ24 + 3ϕ44 + ϕ4du + ϕ4dv + ϕ4dw)−
− (3ϕ33 + 3ϕ34 + ϕ3du + ϕ3dv + ϕ3dw)

= ϕ22 + 2ϕ24 − 3ϕ33 − 3ϕ34 + 3ϕ44 + F1 (du, dv, dw)

From equations (2) and (3) we obtain that

β1 ≤ T (P )− T (Q) ≤ α1. (8)

Case 2: |B| = 1. Let Q ∈ CPn obtained from P as depicted in Figure 5. Note
that D1 is the set of the possible values of the degrees of the vertices u, v, w.

As in the previous case, let MP (resp. MQ) be the set of edges in bold of
P (resp. Q). Since MP consists of one 22-edge, two 23-edges, one 34-edge,
three 44-edges, one 4du-edge, one 4dv-edge and one 4dw-edge, and MQ consists
of five 33-edges, two 34-edges, one 3du-edge, one 3dv-edge and one 3dw-edge,
then

T (P )− T (Q) = (ϕ22 + 2ϕ23 + ϕ34 + 3ϕ44 + ϕ4du + ϕ4dv + ϕ4dw)−
− (5ϕ33 + 2ϕ34 + ϕ3du + ϕ3dv + ϕ3dw)

= ϕ22 + 2ϕ23 − 5ϕ33 − ϕ34 + 3ϕ44 + F1 (du, dv, dw)

From equations (4) and (5) we obtain that

β2 ≤ T (P )− T (Q) ≤ α2. (9)
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Figure 5: Catacondensed polyomino system used in the proof of the Case 2 of
Lemma 1 .

Case 3: |B| > 1. Let Q ∈ CPn obtained from P as depicted in Figure 6.
Note that D2 is the set of the possible values of the degrees of the vertices
u, v, w, x, y, z.

Figure 6: Catacondensed polyomino system used in the proof of the Case 3 of
Lemma 1 .

If MP (resp. MQ) is the set of edges in bold of P (resp. Q) then MP consists
of one 22-edge, three 44-edges, one 4du-edge, one 4dv-edge, one 4dw-edge, one
4dx-edge, one 2dy-edge and one 2dz-edge, and MQ consists of two 33-edges,
two 34-edges, one 3du-edge, one 3dv-edge, one 3dw-edge, one 3dx-edge, one
3dy-edge and one 3dz-edge. Then

T (P )− T (Q) =
(
ϕ22 + 3ϕ44 + ϕ4du + ϕ4dv + ϕ4dw + ϕ4dx + ϕ2dy + ϕ2dz

)
−

−
(
2ϕ33 + 2ϕ34 + ϕ3du + ϕ3dv + ϕ3dw + ϕ3dx + ϕ3dy + ϕ3dz

)
= ϕ22 − 2ϕ33 − 2ϕ34 + 3ϕ44 + F2 (du, dv, dw, dx, dx, dz)
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From equations (6) and (7) we obtain that

β3 ≤ T (P )− T (Q) ≤ α3. (10)

In each one of the three cases, the polyomino system Q is such that b4(Q) =
b4(P )− 1. The proof of both parts of the lemma is obtained from inequalities
(8), (9) and (10).

In our next result we prove that under certain conditions, from any catacon-
densed polyomino system P with b3(P ) > 0 one can construct a catacondensed
polyomino system Q with b3(Q) = b3(P )− 1 and such that T (P ) ≤ T (Q). In
addition to the vertices u, v, w, x, y, z with degrees that satisfy conditions C1,
C2, C3 and C4, we will distinguish two more vertices s, t of the catacondensed
polyomino system with degrees that satisfy the following conditions:

C5: ds ∈ {3, 4}.

C6: dt ∈ {3, 4}.

Next we define two more functions of the degrees of the vertices u, v, w, x, y, z, s, t.
Let D3 be the set of the 4-tuplas (du, dv, dw, ds) that satisfy conditions C1, C2
and C5 and D4 be the set of the 8-tuplas (du, dv, dw, dx, dy, dz, ds, dt) that sat-
isfy conditions C1, C2, C3, C4, C5 and C6. Over D3 and D4 we define the
functions F3 and F4 respectively as follows:

F3 (du, dv, dw, ds) = F1 (du, dv, dw) + (ϕ4ds − ϕ3ds)

F4 (du, dv, dw, dx, dy, dz, ds, dt) = F2 (du, dv, dw, dx, dy, dz) + (ϕ4ds − ϕ3ds) +

+ (ϕ4dt − ϕ3ds)

The following numbers will be used in the sequel

α4 = ϕ22 + ϕ23 + ϕ24 − 5ϕ33 + ϕ34 + ϕ44 + max
D3

F3 (du, dv, dw, ds) (11)

β4 = ϕ22 + ϕ23 + ϕ24 − 5ϕ33 − ϕ34 + ϕ44 + min
D3

F3 (du, dv, dw, ds) (12)

α5 = ϕ22 + 2ϕ23 − 6ϕ33 + 2ϕ34 + ϕ44 + max
D3

F3 (du, dv, dw, ds) (13)

β5 = ϕ22 + 2ϕ23 − 6ϕ33 + 2ϕ34 + ϕ44 + min
D3

F3 (du, dv, dw, ds) (14)

α6 = ϕ22 + 2ϕ24 − 3ϕ33 − 2ϕ34 + 2ϕ44 + max
D3

F3 (du, dv, dw, ds) (15)

β6 = ϕ22 + 2ϕ24 − 3ϕ33 − 2ϕ34 + 2ϕ44 + min
D3

F3 (du, dv, dw, ds) (16)

α7 = ϕ22 − 2ϕ33 + ϕ44 + max
D4

F4 (du, dv, dw, dx, dy, dz, ds, dt) (17)

β7 = ϕ22 − 2ϕ33 + ϕ44 + min
D4

F4 (du, dv, dw, dx, dy, dz, ds, dt) (18)
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Lemma 2 Let P ∈ CPn with b3(P ) > 0 and T be a VDB topological index
defined as in (1) .

1. If αi ≤ 0 for i = 4, . . . , 7 then there exists a catacondensed polyomino
system Q with b3(Q) = b3(P )− 1 such that T (P ) ≤ T (Q).

2. If βi ≥ 0 for i = 4, . . . , 7 then there exists a catacondensed polyomino
system Q with b3(Q) = b3(P )− 1 such that T (P ) ≥ T (Q).

Proof. Let P be a catacondensed polyomino system with n squares such that
b3(P ) > 0. The form of P is depicted in Figure 7 where A,B and C are
catacondensed polyomino subsystems. We have to consider four cases:

Figure 7: Catacondensed polyomino system with b3 > 0.

Case 1: |B| = 0. Let Q ∈ CPn obtained from P as depicted in Figure 8. Note
that D3 is the set of the possible values of the degrees of the vertices u, v, w, s.

Figure 8: Catacondensed polyomino system used in the proof of the Case 1 of
Lemma 2 .

If MP (resp. MQ) is the set of edges in bold of P (resp. Q), since MP

consists of one 22-edge, one 23-edge, one 24-edge, one 34-edge, one 44-edge,
one 4du-edge, one 4dv-edge, one 4dw-edge and one 4ds-edge, and MQ consists
of five 33-edges, one 3du-edge, one 3dv-edge, one 3dw-edge and one 3ds-edge,
then
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T (P )− T (Q) = (ϕ22 + ϕ23 + ϕ24 + ϕ34 + ϕ44 + ϕ4du + ϕ4dv + ϕ4dw + ϕ4ds)−
− (5ϕ33 + ϕ3du + ϕ3dv + ϕ3dw + ϕ3ds)

= ϕ22 + ϕ23 + ϕ24 − 5ϕ33 + ϕ34 + ϕ44 + F3 (du, dv, dw, ds)

From equations (11) and (12) we obtain that

β4 ≤ T (P )− T (Q) ≤ α4. (19)

Case 2: |B| = 1 and P is of the form illustrated in Figure 9. Let Q ∈ CPn

obtained from P as depicted in Figure 9. Note that D3 is the set of the possible
values of the degrees of the vertices u, v, w, s.

Figure 9: Catacondensed polyomino system used in the proof of the Case 2 of
Lemma 2 .

If MP (resp. MQ) is the set of edges in bold of P (resp. Q), since MP

consists of one 22-edge, two 23-edges, two 34-edges, one 44-edge, one 4du-
edge, one 4dv-edge, one 4dw-edge and one 4ds-edge, and MQ consists of six
33-edges, one 3du-edge, one 3dv-edge, one 3dw-edge and one 3ds-edge, then

T (P )− T (Q) = (ϕ22 + 2ϕ23 + 2ϕ34 + ϕ44 + ϕ4du + ϕ4dv + ϕ4dw + ϕ4ds)−
− (6ϕ33 + ϕ3du + ϕ3dv + ϕ3dw + ϕ3ds)

= ϕ22 + 2ϕ23 − 6ϕ33 + 2ϕ34 + ϕ44 + F3 (du, dv, dw, ds)

From equations (13) and (14) we obtain that

β5 ≤ T (P )− T (Q) ≤ α5. (20)

Case 3: |B| = 1 and P is of the form illustrated in Figure 10. Let Q ∈ CPn

obtained from P as depicted in Figure 10. Note that D3 is the set of the
possible values of the degrees of the vertices u, v, w, s.

If MP (resp. MQ) is the set of edges in bold of P (resp. Q), since MP

consists of one 22-edge, one 23-edge, two 24-edges, two 44-edges, one 4du-edge,
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Figure 10: Catacondensed polyomino system used in the proof of the Case 3
of Lemma 2 .

one 4dv-edge, one 4dw-edge and one 4ds-edge, and MQ consists of one 23-edge,
three 33-edges, two 34-edges, one 3du-edge, one 3dv-edge, one 3dw-edge and
one 3ds-edge, then

T (P )− T (Q) = (ϕ22 + ϕ23 + 2ϕ24 + 2ϕ44 + ϕ4du + ϕ4dv + ϕ4dw + ϕ4ds)−
− (ϕ23 + 3ϕ33 + 2ϕ34 + ϕ3du + ϕ3dv + ϕ3dw + ϕ3ds)

= ϕ22 + 2ϕ24 − 3ϕ33 − 2ϕ34 + 2ϕ44 + F3 (du, dv, dw, ds)

From equations (15) and (16) we obtain that

β6 ≤ T (P )− T (Q) ≤ α6. (21)

Case 4: |B| > 1. Let Q ∈ CPn obtained from P as depicted in Figure 11.
Note that D4 is the set of the possible values of the degrees of the vertices
u, v, w, x, y, z, s, t.

Figure 11: Catacondensed polyomino system used in the proof of the Case 4
of Lemma 2 .

If MP (resp. MQ) is the set of edges in bold of P (resp. Q), since MP

consists of one 22-edge, one 44-edge, one 4du-edge, one 4dv-edge, one 4dw-edge,
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one 4dx-edge, one 2dy-edge, one 2dz-edge, one 4ds-edge and one 4dt-edge, and
MQ consists of two 33-edges, one 3du-edge, one 3dv-edge, one 3dw-edge , one
3dx-edge, one 3dy-edge, one 3dz-edge, one 3ds-edge and one 3dt-edge, then

T (P )− T (Q) =
(
ϕ22 + ϕ44 + ϕ4du + ϕ4dv + ϕ4dw + ϕ4dx + ϕ2dy + ϕ2dz + ϕ4ds + ϕ4dt

)
−

−
(
2ϕ33 + ϕ3du + ϕ3dv + ϕ3dw + ϕ3dx + ϕ3dy + ϕ3dz + ϕ3ds + ϕ3dt

)
= ϕ22 − 2ϕ33 + ϕ44 + F4 (du, dv, dw, dx, dy, dt, ds, dt)

From equations (17) and (18) we obtain that

β7 ≤ T (P )− T (Q) ≤ α7. (22)

In each one of the four cases, the polyomino system Q is such that b3(Q) =
b3(P )− 1. The proof of both parts of the Lemma is obtained from inequalities
(19), (20), (21) and (22).

3 Extremal values of VDB topological indices

over catacondensed polyomino systems.

Our main result is the following

Theorem 3 Let T be a VDB topological index defined as in (1) .

1. If αi ≤ 0 for i = 1, . . . , 7 then the maximal catacondensed polyomino
system with n squares with respect to VDB index T is a polyomino chain.

2. If βi ≥ 0 for i = 1, . . . , 7 then the minimal catacondensed polyomino
system with n squares with respect to VDB index T is a polyomino chain.

Proof. Part 1. Let P be a catacondensed polyomino system with n squares
and b4(P ) > 0, applying repeatedly Lemma 1 we obtain a catacondensed
polyomino system P ′ such that b4(P

′) = 0 and T (P ) ≤ T (P ′). Now if b3(P
′) =

0 then P ′ has no branching squares. It means that P ′ is a polyomino chain
and we are done. If b3(P

′) > 0 then applying repeatedly Lemma 2 we obtain
a catacondensed polyomino system Q such that b(Q) = b4(Q) + b3(Q) = 0 and
T (P ) ≤ T (Q). Since Q is a polyomino chain we are done.
The part 2 of the Theorem is proved similarly.

Applying Theorem 3 to the the Randić index, the sum-connectivity index,
the geometric-arithmetic index, the harmonic index, the first Zagreb index and
the second Zagreb index and since we know the extremal polyomino chains over
Pn with respect to these indices we obtain the following result:
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Corollary 4 Among all catacondensed polyomino systems with n squares, the
Randić index, the sum-connectivity index, the geometric-arithmetic index and
the harmonic index attain the maximal value in the linear polyomino chain Ln.
The first Zagreb index and the second Zagreb index attain the minimal value
in the linear polyomino chain Ln.

Proof. The values of αi and βi for i = 1, . . . , 7 are shown in Table 1. As we can
see, the Randić index, the sum-connectivity index, the geometric-arithmetic
index and the harmonic index satisfy conditions in part 1 of the Theorem 3.
It means that the maximal value of these indices over CPn is attained in a
polyomino chain. By Corollary 2.7 in [11], among all polyomino chains with n
squares these indices attain their maximal value in Ln.
On the other hand, the first Zagreb index and the second Zagreb index satisfy
conditions in part 2 of Theorem 3. The minimal value of these indices over
CPn is attained in a polyomino chain. By Corollary 2.7 in [11], among all
polyomino chains with n squares these indices attain their minimal value in
Ln.

α1 α2 α3 α4 α5 α6 α7

Randić -0.03 -0.01 -0.01 -0.03 -0.02 -0.03 -0.01
Sum-connectivity -0.06 -0.04 -0.04 -0.06 -0.05 -0.06 -0.04

Harmonic -0.06 -0.02 -0.02 -0.05 -0.03 -0.06 -0.02
Geometric-arithmetic -0.07 -0.02 -0.02 -0.07 -0.04 -0.07 -0.02

β1 β2 β3 β4 β5 β6 β7
First Zagreb 40.0 40.0 40.0 40.0 40.0 40.0 40.0

Second Zagreb 110.0 130.0 100.0 100.0 110.0 100.0 80.0

Table 1: VDB topological indices with Ln as extremal catacondensed poly-
omino system.

The Theorem 3 cannot be applied on atom-bond-connectivity index and
augmented Zagreb index as can be seen from the values showed in the Table
2.

α1 α2 α3 α4 α5 α6 α7

Atom-bond-connectivity 0.02 -0.02 0.04 0.02 0.003 0.03 0.07
Augmented Zagreb 179.6 228.2 228.2 176.8 201.2 179.6 228.2

β1 β2 β3 β4 β5 β6 β7
Atom-bond-connectivity -0.07 -0.11 -0.11 -0.07 -0.10 -0.07 -0.11

Augmented Zagreb 52.4 101.1 28.1 22.7 47.0 25.4 -26.0

Table 2: Values of αi and βi for atom-bond connectivity and augmented Zagreb
indices.
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