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Abstract
In this thesis the electronic properties in various confinement geometries are
analyzed for the study of systems such as quantum wells, quantum wires, and
quantum dots based on materials such as GaAs, AlGaAs, InTe, among others.
In the study carried out, the response of these systems to the action of external
fields such as electric, magnetic and intense non-resonant laser fields is investi-
gated. In addition to the study of the electronic properties in these systems, in
the particular work related to 3D confinement, the hole states and with these,
the excitonic contribution, and the modification of the properties by means of
the inclusion of an impurity along the axis of symmetry of the system were stu-
died. In the 2D confinement system, the electronic properties in quantum wires
with various cross-sectional shapes were analyzed by means of a self-consistent
Schrödinger-Poisson coupling, the emergence of Friedel-like oscillations in the
electron density profile at low temperatures should be highlighted. Regarding
one-dimensional systems, the electronic and optical response of a Razavy-like
quantum well was analyzed with the inclusion of a doped delta layer, as well
as the application of external magnetic and electric fields. Similarly, a finite
semiconductor superlattice connected to two metal contacts was analyzed for
the study of electron tunneling current, as well as the application of an ex-
ternal laser field for various geometric shapes. Finally, the electronic transport
properties were studied again by means of the self-consistent method in double-
barrier tunneling systems with doping in the outer layers, these properties were
calculated by means of the Landauer-Büttiker formalism and compared with
experimental results of a resonant tunneling diode based on InGaAs/AlAs.

The first part of the thesis corresponds to the theory and obtaining the equa-
tions used in this research, starting with the Landauer-Büttiker theory of elec-
tronic transport, continuing with a brief development of linear susceptibility, a
section dedicated to the development of the self-consistent method, then we get
the Hamiltonian for systems subjected to external electric and magnetic fields,
as well as the action of an intense non-resonant laser field, and finally a brief
description of the finite element method. In all the calculations, the effective
mass approximation has been used and the differential equations involved ha-
ve been calculated using the finite element method. The main details of each
chapter are:
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Chapter 3: Using the effective mass approximation in a parabolic two-band
model, the effects of the geometrical parameters, on the electron and hole states,
in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a
shallow donor impurity and under an applied magnetic field and (ii) CdSe–CdTe
core–shell type-II quantum dot is studied. The interaction of the electron and
hole states is calculated in a first-order perturbative approximation. This study
shows that the magnetic field and donor impurities are relevant factors in the
optoelectronic properties of conical quantum dots.

Chapter 4: In this chapter, the problem of determining the electron states in
semiconductor quantum wires in a self-consistent way is revisited. For that pur-
pose, it is numerically solved the 2D system of coupled Schrödinger and Poisson
equations within the envelope function and effective mass approximations. The
calculation method uses the finite-element approach. Circle, square, triangle
and pentagon geometries are considered for the wire cross-sectional shape. The
features of self-consistent band profiles and confined electron state spectra are
discussed. Particular attention is paid to elucidate the origin of Friedel-like
oscillations in the density of carriers at low temperatures.

Chapter 5: In this chapter, we review an out-of-equilibrium double-barrier re-
sonant tunneling diode system (DBRTD), including the effect of donor density
and external potentials in a self-consistent way. The calculation method uses the
finite-element approach, as well as the Landauer formalism. Quasi-stationary
states, transmission probability, current density, and conductance are discussed
considering variations in the donor density and the width of the central well.
Finally, a comparison of the simulation with an experimental double barrier
system based on InGaAs with AlAs barriers reported in the literature has been
obtained.

Chapter 6: In this chapter, the energy states of confined electrons in doped
quantum structures with Razavy-like confining potentials are studied. The theo-
retical investigation is performed within the effective mass and parabolic band
approximations, including the influence of externally applied electric and mag-
netic fields. We analyze the case of a Razavy quantum well and determine its
conduction subband spectrum, focusing on the lowest energy levels and their
probability densities. These properties have been numerically determined by
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self-consistently solving the coupled system of Schrödinger, Poisson, and charge
neutrality equations. Doping is introduced via an on-center δ-like layer. In order
to evaluate the associated total (linear plus nonlinear) optical absorption coef-
ficient, we have calculated the corresponding diagonal and off-diagonal electric
dipole matrix elements, the main energy separation, and the occupancy ratio
which are the main factors governing the variation of this optical response. As
an extension of the self-consistent method to a two-dimensional problem, the
energy states of a quantum wire system of circular cross section, with internal
doping and Razavy potential have been calculated. The response of eigenvalues,
self-consistent potentials and electron densities is studied with the variation of
δ-doping layer width and of the donor density. Finally, the origin of Friedel-like
oscillations, that arise in the density profile, generated by the occupation of
internal and surface electronic states has been explained.

Chapter 7: In this chapter, a finite periodic superlattice is studied, analyzing the
probability of electronic transmission for two types of semiconductor materials,
GaAs/AlGaAs and InSe/InP. The changes in the maxima of the quasistationary
states for both materials are discussed, making variations in the number of
periods of the superlattice and its shape by means of geometric parameters.
The effect of a nonresonant intense laser field has been included to analyze the
changes in the electronic transport properties.
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1. Introduction

In the last fifty years, experimental developments have evolved significantly,
mainly in techniques for the growth of semiconductor heterostructures [1–4],
which has allowed the possibility of creating devices based on low-dimensional
systems such as quantum wells, quantum wires or quantum dots [5–7]. Nowdays,
it is possible to generate and characterize structures, more complex forms, of
various materials that make it possible to implement them in devices for fields
such as microelectronics, medicine, engineering, telecommunications, etc [8–11].

In the same way, the theoretical models increasingly take into account more
variables in the problems to get closer to the experimental results in a mo-
re meaningful way, which leads to much more complex differential equations
that in many cases can be addressed through the implementation of numerical
methods such as the finite element method (FEM) through softwares such as
COMSOL Multiphysics [12–15] that are increasingly popular in different fields
of applied physics. Through this and other numerical techniques, impurity pro-
blems in low-dimensional heterostructures have been addressed and in more
recent works the response of these systems to the action of an intense non-
resonant laser field has been analyzed, finding interesting results regarding the
modification of electronic and optical properties [16, 17].

In the field of electronic transport, due to the need of having devices that can
work at frequencies of the order of Tera Hertz, we work from a theoretical point
of view in the characterization of the properties through the Landauer forma-
lism combined with Green’s function methods and the Schrödinger equation to
reproduce current-voltage curves that are measured experimentally [18, 19]. As
examples of these are resonant tunneling devices such as diodes that, depending
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on certain geometric characteristics or materials, can present regions of negati-
ve differential resistance that are useful in applications to electronics [20, 21].

Three-dimensional confinement systems like quantum dots can be formed by
joining two or more materials of different gap, this leads to discrete energy
levels. The importance of this type of systems is the strong dependence of the-
se energy levels on the shape, size, composition or the application of external
fields. A consequence of this is the direct modification of the semiconductor
properties such as optical, mechanical, electrical, among others. In the last
thirty years, quantum wires of various geometric shapes have been extensively
studied [22–25], in particular cylindrical systems [26] since under certain con-
ditions they can modify the electronic confinement regime, for this reason they
are sometimes referred to as quantum-well wires. In recent years, experimental
techniques have allowed the synthesis of conical-shaped structures [27], it has
been shown that these structures have interesting physical properties that can
be attractive for modern technological applications and can be considered as
potential candidates for the development of devices to nanometric scale [28, 29],
one of these properties is the quality of the system to behave like a quantum
wire, a quantum well or a quantum dot depending on geometric characteris-
tics [30]. For approximately fifteen years, works related to the characterization
of conical and cylindrical quantum wires from the point of view of light ab-
sorption or response to magnetic fields have emerged [31, 32]. An incentive to
study QDs mainly based on materials such as CdSe and CdTe are their possibi-
lities for potential applications in spintronic devices and memory systems [33].

In this way, the electron, shallow-donor impurity, and heavy-hole exciton states
for two kinds of conical QDs are studied: i), shallow-donor impurity states in
truncated conical shaped GaAs-(Ga,Al)As QDs, which can be modeled through
a Coulomb interaction, in the simple model of a hydrogenic atom and conside-
ring the effects of an externally applied magnetic field. ii) CdSe-CdTe core/shell
QDs without magnetic field and impurity effects. Once the wavefunctions and
energies for electron and hole are available, in the presence or absence of im-
purity, the correlation between both carriers is calculated using the Coulomb
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integral together with a first-order perturbative model. The calculations for dif-
ferent donor impurity positions along the symmetry-axis, considering the effects
of the magnetic field and the side of the structure (i) are carried out. Finally,
the overlap integral is reported, information that is key to understanding the
behavior of the binding energies for each configuration (i and ii).

Another type of low-dimensional structures are the quantum wires (QWs),
which are systems with strong two-dimensional localization of charge carriers,
leaving a single spatial direction for their displacement. This feature leads to
the quantization of the energy levels for the motion along the cross-section of
the structure. The beginnings of research on this type of structures date back
to the 1980s [37–42], currently there is a considerable number of experimental
and theoretical reports in the literature [43–46].

When considering an internal donor density of QWs, it is convenient to solve the
problem by means of a self-consistent method (SC). This method is very useful
to determine the spectrum of electron in low-dimensional semiconductor nanos-
tructures when many-body contributions on the energy band profile are taken
into account. In this way, it is possible to mention initial works by Laux and co-
workers [47, 48]. In the Laux work, the electron states in narrow gate-induced
channels in a one-dimensional Si conduction channel are self-consistently de-
termined solutions. In the second one, the electron states were calculated by
solving the Schrödinger-Poisson (SP) system of equations in a split-gate quasi-
one-dimensional GaAs/AlGaAs heterostructure.

At this same time, that is, in the decade of the 80s, M. Razavy used double
potential wells in the quantum theory of molecules to describe the motion of
a particle in the presence of two force fields [49]. These types of potentials are
known today as Razavy potentials [50, 51], and are used as a model to describe
the coupling of two molecules or quantum dots [52–55]. Effects of intense laser
field and position dependent effective mass in Razavy-like quantum wells were
investigated in Ref. [56].
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In the year 2000 Trellakis et al. [57] discusses the computational issues in the SC
simulation of the electronic features of QWs. The authors discuss the numerical
solution for the coupled SP equation system and developed an iteration proce-
dure based on the predictor-corrector method for convergence of the iteration.
The coupled SP equations, have been solved by Proetto for a GaAs quantum
wire with cylindrical symmetry within the Hartree approximation [58]. In this
work, the potential profile and electronic structure dependence on the wire ra-
dius and surface states concentration were discussed. In 2019 Popescu et al. [59]
used the finite element method to calculate the energies and probability densi-
ties for an electron confined in a two-dimensional quantum dots, the shape of
this system was a regular polygon where the number of sides has varied from
three (triangle) to infinity (circle). They found that for very large systems, the
shape may not be as important as the size is.

In this work, the effect of the QW cross-section shape by considering the circle,
square, triangle, and pentagon geometries are studied. By using the effective
mass approximation, we study an electron confined in an infinite GaAs QW
and infinite confinement potential added to an electrostatic potential at the
boundary caused by the fact of having the system with exposed borders. The
energy levels in each of the structures with different cross-sections as a function
of the transversal area, the doping donor density, and the temperature are
reported. The oscillations that appear in electron density at low temperatures
and the contribution percentage made by each of the confined electron states
to such oscillations are discussed.

On the other hand, motivated by Razavy’s work of 1980, we investigate the
effects of the concentration of an on-center thin doping layer and of externally
applied electric and magnetic fields on the total optical absorption coefficient
in Razavy-like GaAs quantum structures. In a first development we develop the
one-dimensional problem of a GaAs δ-doped quantum well having a Razavy-
type confinement potential. For this system, the confined electronic states are
calculated, as well as the self-consistent potentials, with a special care taken on
determining the Fermi level position, affected by the both temperature and ioni-
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zed impurity distribution. The second problem dealt with is a two-dimensional
system corresponding to a GaAs quantum wire with circular cross section and
exposed borders, with an additional δ-type doping and an inner Razavy-like
potential. The problem for the electron energy states in this case is also solved
in a self-consistent way, taking into account a fundamental difference: In this
case the Fermi level is no longer modified by the density of donors because the
system has exposed borders. So, a “Fermi Level Pinning” is presented which
keeps it fixed.

Regarding one-dimensional confinement systems, Resonant Tunneling Diodes
(RTDs) should be highlighted, these are semiconductor devices that consist of
a system of two or more potential barriers that allow the transport of electrons
only for certain states known as resonant states. The operating mechanism
is fundamentally based on the tunneling effect of quantum mechanics. This
type of system is characterized by developing one or more negative differential
resistance (NDR) zones that are the central particularity of RTDs that permit
a various application.

From the experimental point of view, these devices are developed in very thin
layers, enabling them for applications even in the terahertz range [60–62]. The
first investigations in this field were carried out around the 1950s from the
theoretical point of view, later, after the development of experimental epita-
xial growth techniques, between 1970 and 1980, there was an increase in the
production of experimental work [63–68]. Of course, since that time the expe-
rimental techniques have been becoming more sophisticated, to mention some
of the current work in this area, the following references are included [69–73].
The resonant tunneling effect is not only possible in double barrier systems,
this feature is also present in multi-barrier systems or superlattices (SLs), in
2020 Mehmet Bati studied the effects of an intense laser field on the properties
of resonant tunneling in a double-well structure parabolic reverse triple barrier
system implementing the method of finite differences combined with the Green
function formalism to calculate the transmission functions, obtaining as a con-
clusion that the increment of the well width causes the incident electron waves
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to be localized. Consequently, the transmittance decreases, and the resonant
peak becomes small or disappear [74].

At present, the SLs of semiconductor materials continue to be studied either to
understand excitations in the system or to analyze the response under external
fields. In works such as that from Komatsu et al. [75], the authors analyzed the
intensity of exciton photoluminescence in the presence of an external magnetic
field in a GaAs SL. In this type of material, the study of structural properties
is of great importance since it is possible to tune electronic properties that
lead to the optical response of the system. In 2004, Jeong et al. [76] studied
these properties in a GaAs/AlGaAs SL layer on InAs quantum dots by means
of photoluminescence, photoreflectance spectroscopy, and transmission electron
microscopy. Their results showed that the wavelength of the quantum dots was
effectively tailored by the high potential barriers. The effect of the interface
on the modulation-doped of the SL-type heterostructures can considerably mo-
dify the electronic properties in n-doped and p-doped systems. This effect was
studied by Bezerra et al. [77], finding that the presence of graded interfaces
modifies the carrier confinement inside of the GaAs quantum well. When the
semiconductor system is subjected to the action of external magnetic fields, it
is possible to modify the properties of electronic transport, in particular, the
current-voltage curves, or to generate the appearance of Magnetoresistance os-
cillations [78, 79].

In this work, we analyze the effect of charge redistribution and electron density
in the system out of equilibrium to obtain in this way the profile at the bot-
tom of the self-consistent conduction band, first, for a double barrier system.
This profile act as an input parameter for the potential term in the Schrödin-
ger equation considering open boundary conditions, this equation as well as the
Poisson equation are solved to obtain a set of quasi-stationary states and proba-
bilities of electronic transmission in the system, finally with these transmission
functions the Landauer formalism is implemented for the calculation of the den-
sity current and conductance. In this first study we report the self-consistent
potentials, quasi-stationary electronic states, tunneling currents, and conduc-
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tances for different widths of the central well and different donor densities, then
a comparison is made between theoretical results of this procedure with recently
reported experimental results. In a second work, the transport properties of a
finite periodic lattice are studied. We are particularly interested in studying
the tunneling current considering geometric variations of the heterostructure
for two different combinations of the semiconductor materials, GaAs/AlGaAs
and InSe/InP. The current due to the tunneling of electrons from the emitter
to the collector, generated by a potential difference between the terminals of
the device, is calculated. The power due to the diffusion of charge carriers and
the effects of a nonresonant intense laser field (ILF) on the conduction band
profile and, therefore, on the conduction current are also studied.

In most of the studied systems, obtaining an analytical solution for the Schrö-
dinger equation is practically impossible, and in fact the possibility of obtaining
analytical solutions in systems of interest is very limited. This fact makes it ne-
cessary to implement of numerical methods for the solution of differential equa-
tions involved in the description of the properties of semiconductor systems.
Some of these methods can be variational, perturbative, finite differences, finite
elements, diagonalization, among others. Particularly, the results presented in
this work are obtained through the implementation of the finite element method
(FEM) that has proven to be very effective in obtaining the solution to the diffe-
rential equations that arise in the analysis of electronic properties in structural
problems, deformations, impurities, transport, among others [80–82]. In all the
problems, the effective mass approximation for electrons has been used [83, 84],
considering for the wave function, the boundary conditions imposed according
to the Bendaniel duke theory [85].

The thesis order is as follows: the next chapter is devoted to the theoretical
framework. Chapter 3 contains an study of the shallow-donor impurity states
with excitonic contribution in GaAs/AlGaAs and CdTe/CdSe truncated coni-
cal quantum dots under applied magnetic field. Chapter 4 is an study of the
electronic properties of GaAs Quantum Well-Wires using the self-consistent
Schrödinger-Poisson method. Chapter 5 contains the study of electronic and
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transport properties in double barrier resonant tunneling systems. Chapter
6 shows results for the electro-transport properties in GaAs/AlGaAs and In-
Se/InP finite superlattices under the effect of nonresonant intense laser field.
Finally, general conclusions are included.

1.1. General objective

Calculate and analyze the electronic, optical and transport properties in low
dimensional systems under the action of external fields.

1.1.1. Specific objectives

To studying the effects of the geometrical parameters on the electron
and hole states in two truncated conical core-shell quantum dots based
on GaAs-(Ga,Al)As and CdSe-CdTe, in the presence of a shallow-donor
impurity and under an applied magnetic field.

Analyze the problem of the electron states, electron density in semicon-
ductor quantum wires of different cross section (circle, triangle, square
and pentagon) in a self-consistent way.

Calculate the Quasi-stationary states, transmission probability, current
density, and conductance in a Double Barrier Resonant Tunneling System
considering geometric and donor density variations.

Analyze a Razavy quantum well and determine its conduction subband
spectrum and the optical absorption coefficient, including the effect of a
doped delta layer and under the application of an external electric and
magnetic field.

Calculate the energy states of quantum wire system of circular cross sec-
tion, with internal doping and Razavy potential and explain the origin of
the oscillations in the electron density profile at low temperatures.
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To study the changes in the electronic transmission probability and the
current-voltage characteristics in a finite superlattice of GaAs/AlGaAs
and InSe/InP, considering geometric changes and the application of a
nonresonant intense laser field.
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2. General theoretical
framework

2.1. Electronic transport in semiconductor
systems

This section briefly demonstrates the equation for the tunneling current, bet-
ter known as the Landauer formula [1, 2]. This equation is not only valid for
semiconductor systems, it is also widely used for the calculation of transport
properties through molecular systems [3, 4].
The starting point is the eigenvalue Schrödinger equation,

Ĥ |Ψ〉 = E |Ψ〉 , (2-1)

where Ĥ is the complete Hamiltonian of the system that accounts for the con-
tacts through an operator ĤL for the left contact and ĤR for the right contact,
the dispersion region or central region is characterized by the term ĤC , see Fig.
2-1, E is the system energy and |Ψ〉 the wave function that has |Ψi〉 compo-
nents with i = [L,R,C] for each of the regions. With these considerations, the
Eq. (2-1) can be written as,

 ĤL V̂LC 0

V̂ †LC ĤC V̂ †CR
0 V̂CR ĤR


 |ΨL〉
|ΨC〉
|ΨR〉

 = E

 |ΨL〉
|ΨC〉
|ΨR〉

, (2-2)

where the terms V̂LC and V̂CR represent the interaction between the left and
right contract with the central region respectively. The Green’s function of the
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Figure 2-1.: System scheme characterized by the dispersion zone (ĤC) con-
nected with each of the contacts on the left and right (ĤL and
ĤR).

system is defined as the function (operator) Ĝ which,

(
E − Ĥ

)
Ĝ ≡ Î , (2-3)

where Î is the identity matrix. From Eqs. (2-2) and (2-3), we can write the
complete Hamiltonian of the system in terms of the Green’s matrix:

 E − ĤL −V̂LC 0

−V̂ †LC E − ĤC −V̂ †CR
0 −V̂CR E − ĤR

 Ĝ = Î ,

 E − ĤL −V̂LC 0

−V̂ †LC E − ĤC −V̂ †CR
0 −V̂CR E − ĤR


 ĜL ĜLC ĜLR

ĜCL ĜC ĜCR

ĜRL ĜRC ĜR

 =

 I 0 0

0 I 0

0 0 I

,
(2-4)

doing the multiplication of the two matrices on the left, subsequently, extracting
only the equations corresponding to the product with the second column of
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matrix Ĝ:

(
E − ĤL

)
ĜLC − V̂LCĜC = 0,

− V̂ †LCĜLC +
(
E − ĤC

)
ĜC − V̂ †CRĜRC = I,

− V̂CRĜC +
(
E − ĤR

)
ĜRC = 0,

(2-5)

from the first equation in (2-5):

(
E − ĤL

)
ĜLC = V̂LCĜC ,

ĜLC =
(
E − ĤL

)−1

V̂LCĜC ,

ĜLC = ĜLV̂LCĜC ,

(2-6)

where the Green function associated with each contact had already been defined
as:

ĜL(R) =
(
E − ĤL(R)

)−1

, (2-7)

Similarly, from the last of the equations in (2-5),

(
E − ĤR

)
ĜRC = V̂CRĜC ,

ĜRC = ĜRV̂CRĜC .
(2-8)

Replacing (2-6) and (2-8) in the equation of the middle of (2-5),

− V̂ †LCĜLV̂LCĜC +
(
E − ĤC

)
ĜC − V̂ †CRĜRV̂CRĜC = I,(

−V̂ †LCĜLV̂LC +
(
E − ĤC

)
− V̂ †CRĜRV̂CR

)
ĜC = I,

(2-9)

the terms V̂ †LCĜLV̂LC ≡ Σ̂L and V̂ †CRĜRV̂CR ≡ Σ̂R are known as the self-energies
of the system,

(
Σ̂L +

(
E − ĤC

)
− Σ̂R

)
ĜC = I, (2-10)
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where we obtain the Green’s function associated with the central region

ĜC =
(
E − ĤC − Σ̂L − Σ̂R

)−1

. (2-11)

This equation indicates that the effect of the contacts on the device is to add
the self-energies to the device Hamiltonian since when we calculate the Green’s
function on the device we just calculate the Green’s function for the effective
Hamiltonian Ĥeffective = ĤC + Σ̂L + Σ̂R.

Non-equilibrium system

When the system is non-equilibrium, electrons can pass through the central
region due to the difference between the Fermi functions in both contacts, these
inputs will enter as plane waves (incident waves). Therefore, we want to find
the solutions corresponding to these incoming waves.

Consider contact L isolated from the other contacts and the device. At a certain
energy we have a wavefunction corresponding to an incoming wave that is
totally reflected at the end of the contact. We will denote this wavefunction
with |ψL,n〉, where L is the contact name and n is a quantum number associated
to several modes in the contacts.

For connecting the contacts to the device we can calculate the total wavefun-
ction caused by the incoming wave in contact L (the incident electron acts as
a disturbance in the central region). We note that a wavefunction has the form
|ψL,n〉+

∣∣ψR〉 where |ψL,n〉 is the totally reflected wave and
∣∣ψR〉 is the retarded
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response of the system. With them, the Schrödinger equation gives,

Ĥ
(
|ψL,n〉+

∣∣ψR〉) = E
(
|ψL,n〉+

∣∣ψR〉) ,(
ĤL + ĤR + ĤC + V̂LC + V̂ †LC + V̂ †CR + V̂CR

) (
|ψL,n〉+

∣∣ψR〉) =

E
(
|ψL,n〉+

∣∣ψR〉) ,(
ĤL |ψL,n〉+ ĤR |ψL,n〉+ ĤC |ψL,n〉+ V̂LC |ψL,n〉+ V̂ †LC |ψL,n〉+

V̂ †CR |ψL,n〉+ V̂CR |ψL,n〉
)

+Ĥ
∣∣ψR〉 = E

(
|ψL,n〉+

∣∣ψR〉) ,(
E |ψL,n〉+ V̂ †LC |ψL,n〉

)
+ Ĥ

∣∣ψR〉 = E |ψL,n〉+ E
∣∣ψR〉 ,

E |ψL,n〉+ V̂ †LC |ψL,n〉+ Ĥ
∣∣ψR〉− E |ψL,n〉 = E

∣∣ψR〉 ,
Ĥ
∣∣ψR〉 = E

∣∣ψR〉− V̂ †LC |ψL,n〉 ,

(2-12)

We see that
∣∣ψR〉 is the response of the system to a perturbation of V̂ †LC |ψL,n〉.

On the other hand, the last equation can be written in the form,

(
E − Ĥ

) ∣∣ψR〉 = V̂ †LC |ψL,n〉 , (2-13)

from (2-3) we to see that,

(
E − Ĥ

)
= Ĝ−1, (2-14)

replacing Eq. 2-14 in 2-13,

Ĝ−1
∣∣ψR〉 = V̂ †LC |ψL,n〉 , (2-15)

from this equation it is finally obtained,

∣∣ψR〉 = ĜV̂ †LC |ψL,n〉 . (2-16)
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The Eq. (2-16) is a scattering state generated by the incident electron, using
all possible incoming waves from each contact |ψL,n〉.

Secondly, the device wavefunction |ψC〉 in given by

|ψC〉 = ĜCV̂
†
LC |ψL,n〉 , (2-17)

It is not difficult to show that the wavefunction in the R contact is given by,

|φR〉 = ĜR(z)V̂CR |φC〉 = ĜR(z)V̂CRĜCV̂
†
LC |ψL,n〉 ,

|φR〉 = ĜR(z)V̂CRĜCV̂
†
LC |ψL,n〉 .

(2-18)

Similarly, the wavefunction in the L contact is given by,

|φL〉 = |ψL,n〉+ ĜL(z)V̂LCĜCV̂
†
LC |ψL,n〉 ,

|φL〉 =
(

1 + ĜL(z)V̂LCĜCV̂
†
LC

)
|ψL,n〉 .

(2-19)

Through the wave functions (2-17 - 2-19), in terms of the incident perturbation
|ψL,n〉, it is possible to calculate the complete set solutions for the Schrödinger
equation both in the contact regions L and R as well as in the central scattering
region and analyze how the electrons that enter with a given energy can modify
the properties of the system.

When calculating the electronic current through the system, it is necessary to
know the charge density in each reservoir. For the system out of equilibrium,
this quantity is different in each one. The starting point is to write the density
matrix of the system,

ρ =
∑
k

f(Ek, EF ) |ψk〉 〈ψk| , (2-20)

The electronic occupation of the reservoirs can be measured by means of the
Fermi-Dirac function in terms of the Fermi EF,L(R) level in each reservoir at a
fixed temperature T ,

f(Ek, EF,L) =
1

1 + e(Ek−EF,L)/kBT
, (2-21)
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The sum in (2-20) runs over all occupied states given by (2-21).
The wavefunction on the device (Eq. (2-17)) generated by an incoming wave in
contact L in a k mode is

|ψC,k〉 = ĜCV̂
†
LC |ψL,k〉 , (2-22)

Adding over all states of contact L:

ρC,L =

∫ ∞
−∞

∑
k

f(E,EF,L) |ψd,k〉 〈ψd,k| δ(E − Ek)dE, (2-23)

by using (2-22) in 2-23,

ρC,L =

∫ ∞
−∞

∑
k

f (E,EF,L) ĜCV̂
†
LC |ψL,k〉 〈ψL,k| V̂LCĜ

†
Cδ (E − Ek) dE,

ρC,L =

∫ ∞
−∞

f (E,EF,L) ĜCV̂
†
LC

(∑
k

δ (E − Ek) |ψL,k〉 〈ψL,k|

)
V̂LCĜ

†
CdE,

(2-24)

the term in parentheses is known as the spectral function and by definition, it
is given by

D̂(E) ≡ i(Ĝ+ − Ĝ−)/2π =
∑
k

δ (E − Ek) |ψL,k〉 〈ψL,k| , (2-25)

where Ĝ+ and Ĝ− are the leading and lagging Green’s functions respectively.
Taking into account the above, we get

ρC,L =

∫ ∞
−∞

f(E,EF,L)ĜCV̂
†
LCD̂(E)V̂LCĜ

†
CdE, (2-26)
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it is possible to rewrite the integrand considering:

V̂ †LCD̂(E)V̂LC = V̂ †LC

(
i
Ĝ+ − Ĝ−

2π

)
V̂LC =

=
i

2π

(
V̂ †LCĜ

+V̂LC − V̂ †LCĜ
−V̂LC

)
=

i

2π

(
Σ̂+
L − Σ̂−L

)
≡ 1

2π
Γ̂L

(2-27)

The term Γ̂L that appears in the last equality is a definition in terms of the
selfenergies and corresponds to the coupling potential between the dispersion
region with the contact of the region L. Replacing this result in (2-26),

ρC,L =
1

2π

∫ ∞
−∞

f(E,EF,L)ĜCΓ̂LĜ
†
CdE. (2-28)

Similarly, an expression is obtained for the charge density associated with the
R contact,

ρC,R =
1

2π

∫ ∞
−∞

f(E,EF,R)ĜCΓ̂RĜ
†
CdE. (2-29)

The total charge density is a sum over the two contacts L and R, adding a
factor of 2 by spin degeneration,

ρ = 2 (ρC,L + ρC,R),

ρ =
2

2π

[∫ ∞
−∞

f (E,EF,L) ĜCΓ̂LĜ
†
CdE +

∫ ∞
−∞

f (E,EF,R) ĜCΓ̂RĜ
†
CdE

]
,

ρ =
1

π

∫ ∞
−∞

[
f (E,EF,L) ĜCΓ̂LĜ

†
C + f (E,EF,R) ĜCΓ̂RĜ

†
C

]
dE.

(2-30)

Probability Current
Already at this point, it is possible to calculate the tunneling current that is
generated by the electron population difference in both reservoirs, to derive
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an expression of the current, let’s use the temporal conservation of the total
probability density in the complete system,

0 =
∂
∑

j |ψj|
2

∂t
=
∑
j

∂ 〈ψ|j〉 〈j|ψ〉
∂t

=
∑
j

(
∂ 〈ψ|j〉
∂t

〈j|ψ〉+ 〈ψ|j〉 ∂ 〈j|ψ〉
∂t

)
,

(2-31)

by using the Schrödinger equation:

i~
∂|ψ〉
∂t

= Ĥ|ψ〉,

〈j|i~∂|ψ〉
∂t

= 〈j|Ĥ|ψ〉,

i~
∂〈j | ψ〉
∂t

= 〈j|Ĥ|ψ〉,

∂〈j | ψ〉
∂t

= − i
~
〈j|Ĥ|ψ〉,

(2-32)

and

− i~∂〈ψ|
∂t

= 〈ψ|Ĥ,

− i~∂〈ψ|
∂t
|j〉 = 〈ψ|Ĥ|j〉,

− i~∂〈ψ | j〉
∂t

= 〈ψ|Ĥ|j〉,

∂〈ψ | j〉
∂t

=
i

~
〈ψ|Ĥ|j〉,

(2-33)
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replacing Eqs. (2-32) and (2-33) in (2-31), we get,

0 =
∑
j

(
i

~
〈ψ|Ĥ|j〉〈j | ψ〉 − 〈ψ | j〉 i

~
〈j|Ĥ|ψ〉

)
,

0 =
i

~
∑
j

(〈ψ|Ĥ|j〉〈j | ψ〉 − 〈ψ | j〉〈j|Ĥ|ψ〉),

0 =
i

~

(
〈ψ|Ĥ

[∑
j

|j〉〈j | ψ〉

]
−

[∑
j

〈ψ | j〉〈j|

]
Ĥ|ψ〉

)
,

(2-34)

on the other hand, we see that:

|ψC〉 =

(∑
j

|j〉 〈j|

)
|ψC〉 =

∑
j

|j〉 〈j|ψC〉 =
∑
j

|j〉ψj =
∑
j

|j〉 〈j|ψ〉 ,

(2-35)

〈ψC | = 〈ψC |

(∑
j

|j〉 〈j|

)
=
∑
j

〈ψC |j〉 |j〉 =
∑
j

ψ∗j |j〉 =
∑
j

〈ψ|j〉 |j〉 .

(2-36)

Using these results in Eq. (2-34),

0 =
i

~

(
〈ψ|Ĥ|ψC〉 − 〈ψC |Ĥ|ψ〉

)
, (2-37)

expanding Ĥ,

0 =
i

~

(
〈ψ|
(
ĤC + V̂LC + V̂CR

)
|ψC〉 − 〈ψC |

(
ĤC + V̂ †LC + V̂ †CR

)
|ψ〉
)
, (2-38)
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0 =
i

~

(
〈ψ|ĤC |ψC〉+ 〈ψ|V̂LC |ψC〉+ 〈ψ|V̂CR|ψC〉 − 〈ψC |ĤC |ψ〉 − 〈ψC |V̂ †LC |ψ〉−

〈ψC |V̂ †CR|ψ〉
)
,

0 =
i

~

(
EC 〈ψ|ψC〉+ 〈ψ|V̂LC |ψC〉+ 〈ψ|V̂CR|ψC〉 − EC 〈ψC |ψ〉 − 〈ψC |V̂ †LC |ψ〉−

〈ψC |V̂ †CR|ψ〉
)
,

0 =
i

~

(
〈ψ|V̂LC |ψC〉+ 〈ψ|V̂CR|ψC〉 − 〈ψC |V̂ †LC |ψ〉 − 〈ψC |V̂

†
CR|ψ〉

)
,

0 =
i

~

{
〈ψL|V̂LC |ψC〉 − 〈ψC |V̂ †LC |ψL〉

}
+
i

~

{
〈ψR|V̂CR|ψC〉 − 〈ψC |V̂ †CR|ψR〉

}
.

(2-39)

The term in the first bracket correspond to the incoming probability current
into the device from contact L and the second bracket from contact R.
For an arbitrary contact k, the electric current is given by the product between
the electron charge −e and the probability current:

ik = −i e
~

{
〈ψk|V̂Ck|ψC〉 − 〈ψC |V̂ †Ck|ψk〉

}
. (2-40)

ik is positive for a current from the contacts into the device.
To calculate the total tunneling current through the device we need to put all
the contributions together in the wavefunction of the device and the contacts
(|ψL〉 , |ψC〉 , |ψR〉) given by Eqs. (2-17 - 2-19)

iL→R −
i e

~

{
〈ψR|V̂CR|ψC〉 − 〈ψC |V̂ †CR|ψR〉

}
,

iL→R = −i e
~

{
〈ψR|V̂CRĜCV̂

†
LC |ψL,n〉 − 〈ψL,n|V̂LCĜ

†
CV̂
†
CR|ψR〉

}
,

iL→R = −i e
~
〈ψL,n|V̂LCĜ†CV̂

†
CR

{
Ĝ†R − ĜR

}
V̂CRĜCV̂

†
LC |ψL,n〉 ,

(2-41)
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On the other hand, from Eq. (2-27),

Γ̂R = i
[
Σ̂+
R − Σ̂−R

]
,

Γ̂R = i
[
V̂ †CRĜ

†
RV̂CR − V̂

†
CRĜ

−
RV̂CR

]
,

Γ̂R = iV̂ †CR

[
Ĝ†R − Ĝ−R

]
V̂CR,

− iΓ̂R = V̂ †CR

[
Ĝ†R − Ĝ−R

]
V̂CR,

− iΓ̂R = V̂ †CR

[
Ĝ†R −

[
Ĝ†R

]†]
V̂CR,

− iΓ̂R = V̂ †CR

[
ĜR −

[
ĜR

]†]
V̂CR,

iΓ̂R = V̂ †CR

[
Ĝ†R − ĜR

]
V̂CR,

(2-42)

Replacing these result in the expression for iL→R, we get,

iL→R = −i e
~
〈ψL,n|V̂LCĜ†C

{
iΓ̂R

}
ĜCV̂

†
LC |ψL,n〉 ,

iL→R =
e

~
〈ψL,n|V̂LCĜ†CΓ̂RĜCV̂

†
LC |ψL,n〉 .

(2-43)

This equation correspond to the current into the device from an electron in-
cident (|ψL,n〉) of one energy (E) and one mode n in contact L through the
coupling defined by V̂CR. Adding over the n modes and considering that the
electrons enter through the reservoir L,

iL→R(E) =
2e

~
f(E,EF,L)

∑
n

δ(E − En) 〈ψL,n|V̂LCĜ†CΓ̂RĜCV̂
†
LC |ψL,n〉 ,
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(2 is for spin), adding up all the possible energies of the incident wave E,

IL→R =
2e

~

∫ ∞
−∞

f (E,EF,L)
∑
n

δ (E − En) 〈ψL,n|V̂LCĜ†CΓ̂RĜCV̂
†
LC |ψL,n〉 dE,

=
2e

~

∫ ∞
−∞

f (E,EF,L)
∑
n

δ (E − En) 〈ψL,n|V̂LC ÎĜ†CΓ̂RĜCV̂
†
LC |ψL,n〉 dE,

=
2e

~

∫ ∞
−∞

f (E,EF,L)
∑
n

δ (E − En)

〈ψL,n|V̂LC

(∑
m

|m〉〈m|

)
Ĝ†CΓ̂RĜCV̂

†
LC |ψL,n〉 dE,

=
2e

~

∫ ∞
−∞

f (E,EF,L)
∑
n,m

δ (E − En) 〈ψL,n|V̂LC |m〉〈m| Ĝ†CΓ̂RĜCV̂
†
LC |ψL,n〉 dE,

=
2e

~

∫ ∞
−∞

f (E,EF,L)
∑
n,m

δ (E − En) 〈m|Ĝ†CΓ̂RĜCV̂
†
LC |ψL,n〉 〈ψL,n|V̂LC |m〉 dE,

=
2e

~

∫ ∞
−∞

f (E,EF,L)
∑
n,m

〈m|Ĝ†CΓ̂RĜCV̂
†
LCδ (E − En)|ψL,n〉 〈ψL,n|V̂LC |m〉 dE,

=
2e

~

∫ ∞
−∞

f (E,EF,L)∑
n,m

〈m|Ĝ†CΓ̂RĜCV̂
†
LC {δ (E − En) |ψL,n〉 〈ψL,n|} V̂LC |m〉 dE,

=
2e

~

∫ ∞
−∞

f (E,EF,L)

∑
m

〈m|Ĝ†CΓ̂RĜCV̂
†
LC

{∑
n

δ (E − En) |ψL,n〉 〈ψL,n|

}
V̂LC |m〉 dE,

(2-44)
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by using Eq. (2-25),

IL→R =
2e

~

∫ ∞
−∞

f (E,EF,L)
∑
m

〈m|Ĝ†CΓ̂RĜC

(
1

2π
Γ̂L

)
|m〉 dE,

IL→R =
2e

~
1

2π

∫ ∞
−∞

f (E,EF,L)
∑
m

〈m|Ĝ†CΓ̂RĜCΓ̂L|m〉 dE,

IL→R =
e

π~

∫ ∞
−∞

f (E,EF,L)
∑
m

〈m|Ĝ†CΓ̂RĜCΓ̂L|m〉 dE,

IL→R =
e

π~

∫ ∞
−∞

f (E,EF,L) Tr
(
Ĝ†CΓ̂RĜCΓ̂L

)
dE,

(2-45)

to get the total current through the device the current is given by,

I = IL→R − IR→L, (2-46)

I =
e

π~

∫ ∞
−∞
{f (E,EF,L)− f (E,EF,R)}Tr

(
Ĝ†CΓ̂RĜCΓ̂L

)
dE. (2-47)

The transmission in the system can be calculated by means of the Green’s
functions according to the relation known as the Fischer-Lee relationship [5],

T (E) = Tr
(
Ĝ†CΓ̂RĜCΓ̂L

)
. (2-48)

From the above, an expression for the electronic tunneling current is finally
obtained in terms of the difference in electronic population in both reservoirs
and the probability transmission through the system,

I =
e

π~

∫ ∞
−∞
{f (E,EF,L)− f (E,EF,R)} T (E)dE. (2-49)

The Eq. (2-49) is known as the Landauer formula for tunneling current and is
necessary to calculate transport properties through semiconductor structures
or molecular systems.



2.2 Optical absorption theory 33

2.2. Optical absorption theory

Consider a two-level system with |a〉 and |b〉 corresponding to the low and
high level, respectively in a monochromatic electromagnetic radiation presence
of frequency ω (classic field), which is a coupling field with these states. The
most common approach to tackle the problem of interaction of radiation with
matter is that of the density matrix, whose time evolution is governed by the
Liouville-Von Neumann equation [6] (including dissipation terms):

∂ρ

∂t
=

1

i~
[H0 −ME(t), ρ]− 1

2

[
γ(ρ− ρ(0)) + (ρ− ρ(0))γ

]
, (2-50)

where ρ is the density matrix,H0 is unperturbed Hamiltonian of the system, i.e.
without the resonant electromagnetic radiation, M is a dipole operator, E(t)

the electric field with frequency ω, ρ(0) is the density matrix for the unperturbed
system, and γ is the phenomenological term that accounts for the dissipations
in the system presented by the presence of impurities or electron-phonon and
electron-electron interactions. γ can be considered as a diagonal matrix and its
elements γmm correspond to the inverse of relaxation time for the |m〉 state.
The Hamiltonian H0 has the eigenvalues Ea and Eb corresponding to the levels
|a〉 and |b〉, respectively.
The electric field can be expressed as:

E(t) = Re
(
E0 e

−iωt) =
1

2
E0 e

−iωt +
1

2
E0 e

iωt = Ẽ e−iωt + Ẽ eiωt, (2-51)

where E0 denotes the amplitude of the field. The only nonzero matrix elements
for the γ operator are:

〈b|γ|b〉 =
1

τb
and 〈a|γ|a〉 =

1

τa
, (2-52)

where τa and τb are the relaxation times for the states |a〉 and |b〉, respectively.
One way to calculate the density matrix is by means of a perturbative method,
expanding it in a power serie as:

ρ =
∑
n

ρ(n), (2-53)
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the density matrix for zero order ρ(0) has only diagonal elements because the
electronic population is located in each of the states and there are no inter-
action effects between them. The notations used for the n-order density ma-
trix elements are: ρ(n)

aa = 〈a|ρ(n)|a〉, ρ(n)
ab = 〈a| ρ(n) |b〉, ρ(n)

ba = 〈b| ρ(n) |a〉, and
ρ

(n)
bb = 〈b|ρ(n)|b〉. Thus, ρ has the symmetric property ρab(t) = ρ∗ba(t).

By expanding the commutator from Eq. (2-50):

∂ρ

∂t
=

1

i~
[(H0 −ME(t))ρ− ρ(H0 −ME(t))]

− 1

2

[
γ(ρ− ρ(0)) + (ρ− ρ(0))γ

]
,

(2-54)

by substituting (2-53) into Eq. (2-54):

∑
n

∂ρ(n)

∂t
=

1

i~

[
(H0 −ME(t))

∑
n

ρ(n) −
∑
n

ρ(n)(H0 −ME(t))

]

− 1

2

[
γ

(∑
n

ρ(n) − ρ(0)

)
+

(∑
n

ρ(n) − ρ(0)

)
γ

]
,

(2-55)

and taking into account that

∑
n

ρ(n)−ρ(0) =
(
ρ(0) + ρ(1) + ρ(2) + ...

)
−ρ(0) = ρ(1)+ρ(2)+ρ(3)+... =

∑
n

ρ(n+1),

(2-56)

this expression is substituted into Eq. (2-55)

∑
n

∂ρ(n)

∂t
=

1

i~

[
(H0 −ME(t))

∑
n

ρ(n) −
∑
n

ρ(n)(H0 −ME(t))

]

− 1

2

[
γ
∑
n

ρ(n+1) +
∑
n

ρ(n+1)γ

]
.

(2-57)

For the calculation of the first order absorption, it is sufficient to calculate the
matrix element ρba. Applying the states 〈b| and |a〉 on the left and right in the



2.2 Optical absorption theory 35

last equation, we obtain

〈
b

∣∣∣∣∣∑
n

∂ρ(n)

∂t

∣∣∣∣∣a
〉

=
1

i~

〈
b

∣∣∣∣∣∑
n

(
(H0 −ME(t)) ρ(n) − ρ(n)(H0 −ME(t))

)∣∣∣∣∣a
〉

− 1

2

〈
b

∣∣∣∣∣γ∑
n

ρ(n+1) +
∑
n

ρ(n+1)γ

∣∣∣∣∣a
〉
,

(2-58)

by using the distributing property:

∑
n

∂

∂t

〈
b
∣∣∣ρ(n)

∣∣∣a〉 =
1

i~
∑
n

((〈
b
∣∣∣H0ρ

(n)
∣∣∣a〉− 〈b∣∣∣ME(t)ρ(n)

∣∣∣a〉)−(〈b∣∣∣ρ(n)H0

∣∣∣a〉
−
〈
b
∣∣∣ρ(n)ME(t)

∣∣∣a〉))
− 1

2

(∑
n

〈
b
∣∣∣γρ(n+1)

∣∣∣a〉+
∑
n

〈
b
∣∣∣ρ(n+1)γ

∣∣∣a〉),
(2-59)

by using the completeness relation |a〉 〈a| + |b〉 〈b| = 1̂ and substituting the
corresponding energy values

∑
n

∂

∂t

〈
b
∣∣∣ρ(n)

∣∣∣a〉 =
1

i~
∑
n

((
Ebρ

(n)
ba −

〈
b
∣∣∣M(|a〉 〈a|+ |b〉 〈b|)ρ(n)

∣∣∣a〉E(t)
)

−
(
ρ

(n)
ba Ea −

〈
b
∣∣∣ρ(n)(|a〉 〈a|+ |b〉 〈b|)M

∣∣∣a〉E(t)
))

− 1

2

(∑
n

〈
b
∣∣∣γ(|a〉 〈a|+ |b〉 〈b|)ρ(n+1)

∣∣∣a〉
+
∑
n

〈
b
∣∣∣ρ(n+1)(|a〉 〈a|+ |b〉 〈b|)γ

∣∣∣a〉),
(2-60)
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by distributing terms

∑
n

∂ρ
(n)
ba

∂t
=

1

i~
∑
n

(
Ebρ

(n)
ba −

[
〈b|M |a〉

〈
a
∣∣∣ρ(n)

∣∣∣a〉+ 〈b|M |b〉
〈
b
∣∣∣ρ(n)

∣∣∣a〉]E(t)

−
(
ρ

(n)
ba Ea −

[〈
b
∣∣∣ρ(n)

∣∣∣a〉 〈a|M |a〉+
〈
b
∣∣∣ρ(n)

∣∣∣b〉 〈b|M |a〉]E(t)
))

− 1

2

(∑
n

[
〈b|γ|a〉

〈
a
∣∣∣ρ(n+1)

∣∣∣a〉+ 〈b|γ|b〉
〈
b
∣∣∣ρ(n+1)

∣∣∣a〉]
+
∑
n

[〈
b
∣∣∣ρ(n+1)

∣∣∣a〉 〈a|γ|a〉+
〈
b
∣∣∣ρ(n+1)

∣∣∣b〉 〈b|γ|a〉]),
(2-61)

and taking into account that the matrix γ has only diagonal elements and by
defining the matrix element of M as Mnm ≡ 〈n|M |m〉

∑
n

∂ρ
(n)
ba

∂t
=

1

i~
∑
n

(
Ebρ

(n)
ba −

[
Mbaρ

(n)
aa +Mbbρ

(n)
ba

]
E(t)

−
(
ρ

(n)
ba Ea −

[
ρ

(n)
ba Maa + ρ

(n)
bb Mba

]
E(t)

))
− 1

2

(∑
n

γbbρ
(n+1)
ba +

∑
n

ρ
(n+1)
ba γaa

)
,

(2-62)

rewriting terms Eba = Eb − Ea, Γab = Γba = 1
2

(
1
τa

+ 1
τb

)
, and reordering

∑
n

∂ρ
(n)
ba

∂t
=

1

i~
∑
n

(
Ebaρ

(n)
ba −

(
ρ(n)
aa − ρ

(n)
bb

)
MbaE(t)

− (Mbb −Maa) ρ
(n)
ba E(t)

)
−
∑
n

Γabρ
(n+1)
ba ,

(2-63)

since the unperturbed density matrix only has diagonal elements, i.e. ρ(0)
ba =

ρ
(0)
ab = 0 which implies

∑
n ρ

(n)
ba =

∑
n ρ

(n+1)
ba , using this result in the last equa-
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tion,

∑
n

∂ρ
(n+1)
ba

∂t
=

1

i~
∑
n

(
Ebaρ

(n+1)
ba −

(
ρ(n)
aa − ρ

(n)
bb

)
MbaE(t)

− (Mbb −Maa) ρ
(n)
ba E(t)

)
−
∑
n

Γabρ
(n+1)
ba ,

(2-64)

extracting the nth term from this equation, it is possible to write a recurrence
relation:

∂ρ
(n+1)
ba

∂t
=

(
1

i~
Eba − Γab

)
ρ

(n+1)
ba − 1

i~

(
ρ(n)
aa − ρ

(n)
bb

)
MbaE(t)

− 1

i~
(Mbb −Maa)E(t)ρ

(n)
ba ,

(2-65)

Expanding the density matrix elements as proportional terms of e±iωt, it is
possible to obtain the solutions for this equation by equaling both sides. Taking
into account that there will be two equalities, one of them for the exponent sign
(+) and the another one for (−). Under steady state conditions, the n-order
perturbative term is:

ρ(n)(t) = ρ̃(n)(ω) e−iωt + ρ̃(n)(−ω) eiωt, (2-66)

which is valid for n odd.
Taking n = 0 in Eq. (2-65)

∂ρ
(1)
ba

∂t
=

(
1

i~
Eba − Γab

)
ρ

(1)
ba −

1

i~

(
ρ(0)
aa − ρ

(0)
bb

)
MbaE(t). (2-67)

Let n = 1 in Eq. (2-66) for the coupling b− a and by substituting it in conjun-
ction with Eq. (2-51) into Eq. (2-67)

∂

∂t

(
ρ̃

(1)
ba (ω) e−iωt + ρ̃

(1)
ba (−ω) eiωt

)
=

(
1

i~
Eba − Γab

)(
ρ̃

(1)
ba (ω) e−iωt + ρ̃

(1)
ba (−ω) eiωt

)
− 1

i~

(
ρ(n)
aa − ρ

(n)
bb

)
Mba

(
Ẽ e−iωt + Ẽ eiωt

)
,

(2-68)
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evaluating the derivative and grouping the terms with negative and positive
power,

−iωρ̃(1)
ba (ω) e−iωt + iωρ̃

(1)
ba (−ω) eiωt

=

[(
1

i~
Eba − Γab

)
ρ̃

(1)
ba (ω)− 1

i~

(
ρ(0)
aa − ρ

(0)
bb

)
MbaẼ

]
e−iωt

+

[(
1

i~
Eba − Γab

)
ρ̃

(1)
ba (−ω)− 1

i~

(
ρ(0)
aa − ρ

(0)
bb

)
MbaẼ

]
eiωt,

(2-69)

equaling terms for the negative power and solving for ρ(1)
ba (ω)

ρ̃
(1)
ba (ω) =

(
ρ

(0)
aa − ρ(0)

bb

)
MbaẼ

Eba − ~ω − i~Γab
, (2-70)

where ρ0 are the state occupations in equilibrium, and depend on the Fermi
level of the system by means of the Fermi-Dirac distribution function,

ρ(0)
aa =

1

1 + eβ (Ea−Ef )
and ρ

(0)
bb =

1

1 + eβ (Eb−Ef )
, (2-71)

where Ef is the Fermi level of the system and β = 1/kBT is the Boltzmann
factor, with T the temperature, and kB the Boltzmann constant.
Remembering the relationship between the electronic polarization P (t) and the
susceptibility χ [7]:

P (t) = ε0χ(ω)Ẽ e−iωt + ε0χ(−ω)Ẽ eiωt =
1

V
Tr(ρM), (2-72)

where V is the volume, ε0 is the vacuum permittivity. The absorption coefficient
α(ω) is related to χ by

α(ω) = ω

√
µ

εR
Im (ε0χ(ω)) , (2-73)

where µ is the permeability of the system, εR is the real part of the permittivity
and χ(ω) is the Fourier component of χ(t). The electronic polarization can be
expressed as

P (t) =
1

V
[〈a|ρM |a〉+ 〈b|ρM |b〉] , (2-74)
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where we can include the completeness relation:

P (t) =
1

V
[〈a|ρ (|a〉 〈a|+ |b〉 〈b|)M |a〉+ 〈b|ρ (|b〉 〈a|+ |b〉 〈b|)M |b〉] , (2-75)

by using distribute property

P (t) =
1

V

[
〈a|ρ|a〉 〈a|M |a〉+ 〈a|ρ|b〉 〈b|M |a〉

+ 〈b|ρ|a〉 〈a|M |b〉+ 〈b|ρ|b〉 〈b|M |b〉
]
,

(2-76)

we can write this electronic polarization by using matrix notation and the
definitions of ρ given by Eqs. (2-53) and (2-66)

P (t) =
1

V

∑[
ρ̃(n)
aa (ω)Maa + ρ̃

(n)
ab (ω)Mba + ρ̃

(n)
ba (ω)Mab + ρ̃

(n)
bb (ω)Mbb

]
e−iωt,

(2-77)

neglecting the terms outside of resonant transition a−b and by using Eq. (2-72):

ε0χ
(1)(ω)Ẽ =

1

V

(
ρ̃

(1)
ba (ω)Mab

)
, (2-78)

by substituting Eq. (2-70) into Eq. (2-78). It follows that

ε0χ
(1)(ω)Ẽ =

1

V

(
ρ

(0)
aa − ρ(0)

bb

)
MbaẼ

Eba − ~ω − i~Γab
Mab, (2-79)

deleting Ẽ and multiplying numerator and denominator by Eba − ~ω + i~Γab
in order to eliminate the imaginary number in denominator

ε0χ
(1)(ω) =

1

V

(
ρ

(0)
aa − ρ(0)

bb

)
|Mab|2

(Eba − ~ω − i~Γab)

(Eba − ~ω + i~Γab)

(Eba − ~ω + i~Γab)
, (2-80)

this equation takes the form,

ε0χ
(1)(ω)

=
1

V

(
ρ(0)
aa − ρ

(0)
bb

)
|Mab|2

(
Eba − ~ω

(Eba − ~ω)2 + (~Γab)
2 + i

~Γab

(Eba − ~ω)2 + (~Γab)
2

)
.
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(2-81)

Hence, by substituting the imaginary part of this expression into Eq. (2-73),
the absorption coefficient is finally obtained in linear order [6, 8]:

α(1)(ω) = ω

√
µ

εR

|Mab|2
(
ρ

(0)
aa − ρ(0)

bb

)
~Γab

V ((Eba − ~ω)2 + (~Γab)2)
· (2-82)

2.3. Self-Consistent method

Currently there are several self-consistent methods to solve the Schrödinger
equation coupled with the Poisson equation to model charge diffusion problems
due to donor and acceptor effects included in semiconductor structures. This
section briefly describes one of these methods for solving a quantum well [9]
and includes the corresponding Fortran code in appendix B. The Fig. 2-2 shows
the conduction band corresponding to a well of width 2L and depth ∆Ec, the
shaded regions correspond to doped regions of n-type with density Nd. The
entire system contains a small unintentional acceptor doping Na. The term
∆Ed corresponds to the donor levels, in the low temperature limit T = 0 K, the
Fermi level EF is the highest populated level, clearly this level is characterized
by the donor density Nd, in this case it is defined as ED = EF . From the above
it is clear that the distance between the bottom of the conduction band and the
Fermi level is given by ∆Ed. The Fig. 2-3 shows the self-consistent potential
corresponding to the bottom of the conduction band in black, electron density
is shown in red. Note how the profile of the bottom of the conduction band
no longer has a square profile, this is modified by the effect of the diffusion of
the charge carriers towards the interior of the well, as seen in the figure, the
electron density n(x) presents an accumulation region in the interior region of
the well and decreases in the barrier regions. The charge density is given by

ρ(x) =



−e n(x), x ≤ −(Dd +Ds + L)

e (Nd −Na − n(x)), −(Dd +Ds + L) < x ≤ −(Ds + L)

−e (Na + n(x)), −(Ds + L) < x ≤ (Ds + L)

e (Nd −Na − n(x)), (Ds + L) < x ≤ (Dd +Ds + L)

−e n(x), x > (Dd +Ds + L)

(2-83)
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Figure 2-2.: Conduction band corresponding to a well of width 2L and depth
∆Ec, the shaded regions correspond to doped regions of n-type
with density Nd. The entire system contains a small unintentional
acceptor doping Na.
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Figure 2-3.: Self-consistent potential corresponding to the bottom of the con-
duction band in black, electron density is shown in red.
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in this equation e correspond to the electron charge. The Hartree potential is
obtained from the Poisson equation,

ε0ε
d2 φ(x)

dx2
= ρ(x), (2-84)

where, ε0 and ε, are the vacuum and the relative dielectric constants, respec-
tively. From this last equation we obtain the Coulomb electronic potential as
Uc(x) = e φ. At this point it is possible to introduce an exchange correlation
term,

Uxc(x) = −α (n(x))1/3, (2-85)

where, α = 0.0783 e2/ε0ε for an GaAs well with Al0.3Ga0.7As barriers [10].
In equation 2-85, the image charge effect has been ignored, considering two
materials whose dielectric constant does not differ greatly. If we define Ubo(x) as
the band offset potential due to the energy difference between the well material
and the barrier material in the conduction band band, then, it is possible to
write an expression for the total potential:

U(x) = Ubo(x) + Uc(x) + Uxc(x), (2-86)

this potential energy term must enter the Schrödinger equation to calculate the
eigenvalues and eigenfunctions inside the well,

− ~2

2m∗
d2 ψi(x)

dx2
+ U(x)ψi(x) = Ei ψi(x), (2-87)

where Ei is the electron energy associated with the i-th state ψi(x). Note that
in Eq. 2-87 the effective mass approximation has been used as m∗. It should
be noted that in the research results presented in the following chapters for
materials such as GaAs/AlGaAs, CdTe/CdSe, etc. this approximation for the
effective mass is not applied and instead of Eq. 2-87, a more general expres-
sion must be used to consider position-dependent effective masses. In this sec-
tion, this approach is sufficient since the objective is to guide the operation of
the self-consistent method. This last equation must be solved strictly applying
BenDaniel-Duke boundary conditions, however, if the wave function penetra-
tion in barrier regions is small, it is possible to assume a single effective mass
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through the system as the mass of the well material. Shifting the highest po-
pulated level to zero energy EF = 0 and considering the low temperature limit
T = 0 K, the electron density takes the form,

n(x) = −
∑
i

βEi |ψi(x)|2, (2-88)

where β = m∗/π~2. The sum in Eq. 2-88 must go over occupied states, that is,
up to the Fermi level of the system. Taking into account that the Fermi level
must coincide with the level of donors EF = ED ≡ 0, then, in the bulk of the
system it must be fulfilled that,

U(x→ ±∞) = ∆Ed, (2-89)

This condition is a consequence of the fact that the electron density in these
bulk regions tends asymptotically to zero. The Eqs. 2-83 - 2-89 must be solved
in a self-consistent way according to the following algorithm:
(1) First, solve the Eq. 2-87 considering an initial potential that could contain
only the band offset term Uold(x) ≡ Ubo(x), in this first step we obtain a first
set of eigenvalues and eigenfunctions {Ei, ψi(x)}.
(2) Calculate an expression for the electron density from Eq. 2-88 using the set
of eigenvalues and eigenfunctions found in step (1).
(3) Calculate the exchange correlation potential Uxc(x) by using the electron
density obtained from the previous step by means of Eq. 2-85.
(4) The charge conservation equation implies that,

Dd =
Ns + 2Na(L+Ds)

2(Nd −Na)
, (2-90)

with,

Ns =

∫ +∞

−∞
n(x) dx. (2-91)

(5) With the calculation of Dd from Eq. 2-90, it is now possible to calculate
the charge density ρ(x) by means of 2-83.
(6) Next, the electron density found in the previous step is replaced in Eq.
2-84 to obtain the Hartree potential φ(x) at first approximation, considering
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the boundary conditions φ(x → ±∞) = 0 and dφ(x)/dx|(x → ±∞) → 0

(similarly, it must be fulfilled that Uxc(x→ ±∞) = 0).
(7) According to Eq. 2-86, we can write an expression for the new potential
Unew(x) = 95 %Ubo(x) + 5 %U old(x) (It is important to introduce the old
potential in small proportion to improve the numerical convergence of the self-
consistent problem, in this case a 5% has been used).
(8) If it is true that: |Uold(x)−Unew(x)| < ε for ε << 1, stops the program and
self-consistency has been obtained. If this condition is not met, the potential
Unew(x) must be replaced again in equation 2-87, to start the cycle again until
reaching self-consistency. Appendix B includes a Fortran code that reproduces
this self-consistent scheme for a GaAs well with Al0.3Ga0.7As barriers.

2.4. External magnetic and electric fields

Consider a one-dimensional system (like a quantum well, for example) grown
along the z axis, subjected to the action of a static magnetic field directed along
y and an electric field directed at z. The magnetic field is clearly perpendicular
to the growth direction of the structure. Let us consider explicitly

−→
B = B ĵ,

in this way, the magnetic vector potential has the form
−→
A = B z î (within the

Landau gauge), where B is the intensity of the magnetic field. On the other
hand, the potential associated with the electric field is given by −eFz, where
F is the intensity of the electric field and e is the charge of the electron. Taking
the above into account, the Schrödinger equation takes the form [11]:

[
1

2m∗

(−̂→p + e
−→
A
)2

− eFz + V (z)

]
ψ(z) = E ψ(z), (2-92)

where V (z) is the geometrical confinement potential,m∗ is the electron effective
mass, and E is the electron energy along the growth direction. To get a more
common expression, firstly, the quadratic term in Eq. (2-92) is expanded:

1

2m∗

(−̂→p + e
−→
A
)
·
[(−̂→p + e

−→
A
)
ψ(z)

]
=

1

2m∗

[
p̂ 2 + e −̂→p ·

−→
A + e

−→
A · −̂→p + e2A2

]
ψ(z),

(2-93)
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by using −̂→p = −i~∇ and substituting (2-93) into Eq. (2-92)

1

2m∗

[
−~2∇2−ie~∇·

−→
A−ie~

−→
A ·∇+e2A2−eFz+V (z)

]
ψ(z) = E ψ(z). (2-94)

Let’s see that the cross terms are canceled

∇ ·
(−→
Aψ(z)

)
=

(
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)
·
[
Bz î ψ(z)

]
= Bz

∂ψ(z)

∂x
= 0

= Bz î · ∂ψ(z)

∂x
î

= Bz î ·
(
∂ψ(z)

∂x
î+

∂ψ(z)

∂y
ĵ +

∂ψ(z)

∂z
k̂

)
= Bz î ·

(
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)
ψ(z)

=
−→
A · ∇ψ(z),

(2-95)

by using this result in Eq. (2-94)[ 1

2m∗
(
−~2∇2 + e2A2

)
− eFz + V (z)

]
ψ(z) = E ψ(z). (2-96)

replacing
−→
A in terms of the magnitude of the magnetic field,[ 1

2m∗
(
−~2∇2 + e2B2z2

)
− eFz + V (z)

]
ψ(z) = E ψ(z). (2-97)

finally writing the gradient explicitly in the direction of growth of the structure,

[
− ~2

2m∗
∂2

∂z2
+
e2B2

2m∗
z2 − eFz + V (z)

]
ψ(z) = E ψ(z). (2-98)

This equation is used to solve one-dimensional structures subjected to the ac-
tion of static electric and magnetic fields in the directions indicated in the
Landau gauge [12].
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States with Momentum in x, y, z and Position-Dependent Mass
Starting from the three-dimensional Schrödinger equation,

Ĥψ(~r) = E ψ(~r), (2-99)

the dependence of the effective mass with the position, modifies only the kinetic
term,

~∇ ·
(
−~2

2m∗(r̄)
~∇
)

= −i~~∇ ·

(
−i~~∇
2m∗(~r)

)
= ~̂p ·

(
~̂p

2m∗(~r)

)
, (2-100)

in this last equation the definition of the three-dimensional momentum opera-
tor has been used again. By including the magnetic field, a correction to the
momentum term proportional to the magnetic vector potential is generated, in
this way the Eq. (2-100) takes the form,

(~̂p+ e ~A) ·

(
~̂p+ e ~A

2m∗(~r)

)
, (2-101)

considering a magnetic field of the form ~B = B̂, then the magnetic vector
potential is given by ~A = Bzı̂ (considering again the Landau Gauge). Taking
this in mind, let us expand the operator given by Eq.(2-101) operating on the
wave function,

(~̂p+ e ~A) ·

(
~̂p+ e ~A

2m∗(~r)

)
ψ(~r) =[

~̂p ·
(

~p

2m∗(~r)

)
+ e~̂p ·

(
~A

2m∗(~r)

)
+ e ~A · ~̂p

2m∗(~r)
+

e2A2

2m∗(~r)

]
ψ(~r) =[

−i~~∇ ·

(
−i~~∇
2m∗(~r)

)
− ie~~∇ ·

(
~A

2m∗ (~r)

)
+ e ~A · (−i~

~∇)

2m∗ (~r)
+

e2A2

2m∗(~r)

]
ψ(~r) =[

−~2~∇ ·

(
~∇

2m∗(~r)

)
− ie~~∇

2
·

(
~A

m∗(~r)

)
− ie~

2

~A · ~∇
m∗(~r)

+
e2A2

2m∗ (~r)

]
ψ(~r).

(2-102)
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Let’s consider the second term in Eq. (2-102):

ie~
2
~∇·

(
~Aψ(~r)

m∗ (~r)

)
=
ie~
2
~∇ ·
(
Bz ψ(~r)̂ı

m∗ (~r)

)
=
ie~
2

∂

∂x

(
Bz ψ (~r)

m∗ (~r)

)
=
ie~Bz

2

∂

∂x

(
ψ(~r)

m∗ (~r)

)
=

ie~Bz
2m∗(~r)

∂ψ(~r)

∂x
− ie~Bz ψ(~r)

2m∗2 (~r)

∂m∗(~r)

∂x
.

(2-103)

On the other hand, the third term in Eq.(2-102) takes the form:

ie~
2

~A

m∗(~r)
· ~∇ψ(~r) =

ie~
2

Bzı̂

m∗(~r)
· ~∇ψ(~r) =

ie~Bz
2m∗(~r)

∂ψ(~r)

∂x

=
ie~
2
~∇ ·

(
~Aψ(~r)

m∗ (~r)

)
+
ie~Bz ψ(~r)

2m∗2 (~r)

∂m∗(~r)

∂x
,

(2-104)

from this last relation is found,

ie~
2
~∇ ·

(
~Aψ(~r)

m∗ (~r)

)
+
ie~
2

~A

m∗(~r)
· ~∇ψ(~r)

=
ie~Bz
m∗(~r)

∂ψ(~r)

∂x
− ie~Bz ψ(~r)

2m∗2 (~r)

∂m∗(~r)

∂x
.

(2-105)

From Eq. (2-104) it can be seen that the equality of the crossed terms in Eq.
(2-102) is presented only in the case in which the effective mass takes a constant
value. Replacing the Eq.(2-105) in the Eq.(2-102) and rewriting the magnetic
vector potential,:[
−~2~∇ ·

(
~∇

2m∗(~r)

)
− ie~Bz
m∗(~r)

∂

∂x
+

ie~Bz
2m∗2 (~r)

∂m∗(~r)

∂x
+
e2B2z2

2m∗ (~r)

]
ψ(~r).

(2-106)

Remembering that this expression corresponds to the kinetic term of an electron
in a uniform magnetic field, we can write the complete Schrödinger equation
introducing the simultaneous action of an electric field in the form ~F = F k̂,
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with which we obtain,[
−~2~∇ ·

(
~∇

2m∗(~r)

)
−ie~Bz
m∗(~r)

∂

∂x
+

ie~Bz
2m∗2 (~r)

∂m∗(~r)

∂x

+
e2B2z2

2m∗ (~r)
− eFz + V (~r)

]
ψ(~r) = E ψ(~r).

(2-107)

This equation includes the effect of states with momentum in x, y, z in addi-
tion to considering the position-dependent effective mass for an electron in a
simultaneous electric and magnetic field confined in a V (~r) potential.

2.5. Non-resonant laser effect

In this section we will find an explicit form for the interaction potential of an
intense non-resonant laser field with a heterostructure. let’s start by analyze
the interaction between a confined electron and a laser beam considered as an
ideal monochromatic, plane wave described by the magnetic vector potential
−→
A (−→r , t) =

−→
A0 exp

[
i(
−→
k · −→r − ωt)

]
. The laser field can be taken from a semi-

classical point of view, and for development the Coulomb gauge will be used.
The above means that ∇ ·

−→
A (−→r , t) = 0 and φ = 0, where

−→
A and φ are the

vector and scalar potentials respectively. With these considerations, the time
dependent Schrödinger equation is given by:

i~
∂

∂t
ΨL(−→r , t) =

1

2m∗

(
p̂− e

−→
A (−→r , t)

)2

ΨL(−→r , t) + V (−→r )ΨL(−→r , t), (2-108)

the subscript in ΨL indicates that the equation is in the laboratory frame.
By expanding the first term on the right side of the Hamiltonian,

i~
∂

∂t
ΨL(−→r , t) =

[
1

2m∗

[
p̂ 2 − e p̂ ·

−→
A (−→r , t)− e

−→
A (−→r , t) · p̂+ e2−→A 2(−→r , t)

]
+ V (−→r )

]
ΨL(−→r , t)

=

[
1

2m∗
p̂ 2 − e

2m∗

[
p̂ ·
−→
A (−→r , t) +

−→
A (−→r , t) · p̂

]
+

e2

2m∗
−→
A 2(−→r , t)

+ V (−→r )

]
ΨL(−→r , t).
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(2-109)

The product p̂·
−→
A (−→r , t) commutes due to the Coulomb gauge. At this point it is

possible to apply the dipole approximation for the magnetic vector potential, to
neglect its dependence on the −→r coordinate. The above implies that

−→
A (−→r , t) ≈

−→
A (t). Secondly using the momentum operator representation in coordinates,
p̂ = −i~∇, the Schrödinger equation takes the form,

i~
∂

∂t
ΨL(−→r , t) =

[
− ~2

2m∗
∇2 +

i~e
m∗
−→
A (t) · ∇+

e2

2m∗
−→
A 2(t) + V (−→r )

]
ΨL(−→r , t),

(2-110)

This equation can be simplified according to the work of Kramers-Henneberger
[13, 14] who proposed a transformation to the previous expression for transfer
the time dependence from the kinetic to potential term [15], that is why this
transformation is largely known as the laser-dressing of the potential. This
transformation can be subdivided into two transformations U1 and U2 [16], by
the first one the

−→
A 2(t) term being reduced and by the second one, the

−→
A (t)

term being eliminated.
The transformations U1 and U2 are defined as

U1 = e−
ie2

2m∗~
∫ t−→

A 2(t
′
)dt
′

, (2-111)

and

U2 = e−
i
~
−→α (t)·p̂ with −→α (t) = − e

m∗

∫ t−→
A (t

′
)dt

′
. (2-112)

applying the transformation U1 to the wave function in the laboratory frame,
a new wave function in the velocity frame is obtained,

Ψv(
−→r , t) = U †1ΨL(−→r , t). (2-113)

By applying the U †1 transformation in Eq. (2-110), one will obtain

i~U †1
∂

∂t
[U1Ψv(

−→r , t)] =

U †1

[
− ~2

2m∗
∇2 +

i~e
m∗
−→
A (t) · ∇+

e2

2m∗
−→
A 2(t) + V (−→r )

]
U1Ψv(

−→r , t).
(2-114)
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On the right side, the U1 operator only acts on the terms
−→
A 2 and

−→
A since they

are the only terms that depend on t like U1. Expanding the derivative on the
left side of the equation we have

U †1
e2

2m∗
−→
A 2(t)U1Ψv(

−→r , t) + i~
∂

∂t
Ψv(
−→r , t) =

U †1

[
− ~2

2m∗
∇2 +

i~e
m∗
−→
A (t) · ∇+

e2

2m∗
−→
A 2(t) + V (−→r )

]
U1Ψv(

−→r , t).
(2-115)

Simplifying, an independent equation of the quadratic term
−→
A 2 is obtained. In

this way, the Schrödinger equation takes the form,

i~
∂

∂t
Ψv(
−→r , t) =

[
− ~2

2m∗
∇2 +

i~e
m∗
−→
A (t) · ∇+ V (−→r )

]
Ψv(
−→r , t). (2-116)

The objective now is to eliminate the term
−→
A · ∇ by means of the second

transformation U2 that this can be rewritten as U2 = e
e
m∗
∫ t−→

A (t
′
)dt
′ ·∇. The wave

function can be modified by this operator as, ΨN(−→r , t) = U †2Ψv(
−→r , t). Through

a similar procedure to the previous one, by applying this transformation to
Eq. (2-116) it is possible to eliminate the term i~e

m∗
−→
A · ∇, to obtain after a

simplification

i~
∂

∂t
ΨN(−→r , t) = U †2

[
− ~2

2m∗
∇2 + V (−→r )

]
U2ΨN(−→r , t). (2-117)

At this point, it is necessary to explicitly calculate the term U †2V (−→r )U2 since the
momentum operator is not affected by the transformation. To do this, let’s use
the Campbell-Baker-Hausdorff identity eÂB̂e−Â = B̂+[Â, B̂]+[Â, [Â, B̂]]/2!+

· · · ,

U †2V (−→r )U2 = e
i
~
−→α (t)·p̂ V (−→r )e−

i
~
−→α (t)·p̂

= V (−→r ) + [−→α (t) · ∇]V (−→r ) +
1

2!
[−→α (t) · ∇]2V (−→r ) + · · ·

= V [−→r +−→α (t)].

(2-118)

This means that the only time dependence of the Schrödinger equation, through
Kramers-Henneberger transformation, is through the potential term V . Note
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that U2 operator generates a translation given by −→α (t). Of the above, the
Schrödinger equation takes the form

i~
∂

∂t
ΨN(−→r , t) =

[
− ~2

2m∗
∇2 + V [−→r +−→α (t)]

]
ΨN(−→r , t). (2-119)

The shape of the new potential (commonly called laser-dressed potential) is a
consequence of the laser effect.
It is convenient to find an explicit form for −→α (t), for this, let’s calculate the
second derivative with respect to the time of −→α (t), we have −̈→α (t) = e

m∗
−→
E (t),

where
−→
E (t) is an electric field. Hence, −→α (t) is interpreted as the classical dis-

placement of the electron under the electric field
−→
E (t). In the case of a steady

laser field, i.e.
−→
E (t) = E0 sin(ωt) x̂ (E0 is the amplitude of the electric field,

ω is the angular frequency of the laser, and x̂ represents the propagation di-
rection of the field), later −→α (t) = eE0

m∗ω2 sin(ωt) x̂. This can be rewritten as
−→α (t) = α0 sin(ωt) x̂, where α0 = eE0

m∗ω2 represents the oscillation amplitude of
the electron under the laser field (called the laser-dressing parameter).
The Floquet theory provides a solution for the Eq. (2-119) [14, 17]:

ΨN(−→r , t) = e−
EN
~ t
∑
n

ΨN
n (−→r )e−inωt, (2-120)

where EN is the Floquet quasi-energy. By expanding the potential V in Fourier
series,

V [−→r +−→α (t)] =
∞∑

n=−∞
Vn(α0;

−→r )e−inωt, (2-121)

with Vn(α0;
−→r ) =

in

π

∫ 1

−1

V (−→r + α0u x̂)Tn(u)(1− u2)−1/2du (2-122)

where Tn(u) are the Chebyshev polynomials.
Considering a high frequency laser field (compared with the transition frequen-
cies characteristic to the system), it is enough to consider the lowest order in
(2-122)

V0(α0,
−→r ) =

1

π

∫ 1

−1

V (−→r + α0uê)√
1− u2

du. (2-123)
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By making a trigonometric substitution u = sin(ωt), the laser-dressed potential
can be written as:

V0(α0,
−→r ) =

ω

2π

∫ 2π/ω

0

V (−→r + α0 sin(ωt) ê)dt. (2-124)

Finally, the time dependent Schrödinger equation will have the form

i~
∂

∂t
Ψ(−→r ) =

[
− ~2

2m∗
∇2 + V0(α0,

−→r )

]
Ψ(−→r ), (2-125)

Note that this equation only depends on −→r since V0(α0,
−→r ) corresponds to the

average of the oscillating potential function:

V0(α0,
−→r ) =

1

T

∫ T

0

V (−→r +−→α (t))dt. (2-126)

Equations (2-125) and (2-126) must be solved to take into account the effect of
an intense non-resonant laser field on electrons confined in a structure.

2.6. Finite elements method

The Finite Element Method (FEM) is a numerical method for solving in ge-
neral non-trivial partial differential equations applied to systems with complex
geometry [18]. It is a method widely used in fields such as physical sciences and
engineering and is applicable to problems from 1 to 3 dimensions. The objec-
tive of the method is to generate a discretization of the geometric system by
means of a mesh that completely fills the domain of smaller subsystems called
finite elements, these elements can be of different shapes, depending on the
dimension of the geometry in which the differential equations are being solved,
these elements can be line segments, rectangles, tetrahedral, etc. The objective
of the FEM is to convert a problem of a partial differential equation into a
problem of a system of algebraic equations. Fig. 2-4 shows a mesh diagram of a
one-dimensional system (upper figure), where the finite elements correspond to
line segments, a two-dimensional system (lower left figure) where the finite ele-
ments are triangles, and a three-dimensional system (lower right figure) where
the finite elements correspond to tetrahedron. The diagrams are obtained from
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Figure 2-4.: Different mesh for a 1D, 2D and 3D problem respectively, the
diagrams are obtained from the COMSOL multiphysics Software
[19, 20].

the COMSOL multiphysics Software [19, 20].

Brief method description in the weak formulation
Consider the boundary conditions problem:

∇ · [f(−→r )∇]u(−→r ) + g(−→r )u(−→r ) = λu(−→r ), (2-127)

In this equation λ is an coordinate independent parameter of −→r , note that the
time independent Schrödinger equation is a particular case of 2-127. The last
equation can be rewritten as,

∇ · [f(−→r )∇]u(−→r ) + (g(−→r )− λ)u(−→r ) = 0, (2-128)
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Equation 2-128 must be true in a region Ω whose boundary ∂Ω must be smooth
and it must be true that u(∂Ω) = 0 (Dirichlet problem). If u solves the Eq.
2-128, then for any smooth function φ that satisfies the boundary conditions
φ(∂Ω) = 0, we have∫

Ω

∇ · [f(−→r )∇u(−→r )]φ dΩ +

∫
Ω

(g(−→r )− λ)u(−→r )φ dΩ = 0. (2-129)

remembering the vectorial property ∇ · (
−→
Av) =

−→
A · ∇v + (∇ ·

−→
A )v, where

−→
A = f(−→r )∇u(−→r ) and v = φ, the Eq. 2-129 becomes∫

Ω

f∇u · ∇φ dΩ +

∫
Ω

∇ · [(f∇u)φ] dΩ + +

∫
Ω

(g − λ)uφ dΩ = 0. (2-130)

In the last equation the explicit dependency on the position vector −→r has been
removed. In this point, it is convenient to use the Green’s first identity,∫

Ω

∇ · (a∇b) dΩ =

∮
∂Ω

a∇b · n̂ d(∂Ω), (2-131)

where ∂Ω is the boundary of the system and n̂ is the outward pointing unit
vector perpendicular on the surface. By using 2-131 in 2-130 we get,∫

Ω

f∇u · ∇φ dΩ +

∮
∂Ω

f∇u · n̂ φ d(∂Ω) +

∫
Ω

(g − λ)uφ dΩ = 0, (2-132)

In stationary problems, due to the zero flux condition in the boundary of the
system, the second term in 2-132 is zero, this is the case of the wave function
in the Schrödinger equation. From the above, the final expression of the weak
formulation is obtained∫

Ω

f∇u · ∇φ dΩ +

∫
Ω

(g − λ)uφ dΩ = 0, (2-133)

There are non-trivial proofs in which the uniqueness of the φ functions is de-
monstrated for a single u solution of 2-128. The Fig. 2-5 shows the scheme of
the discretization in the FEM, the exact solution corresponds to the blue curve,
the violet segments correspond to the approximate solution, the curves in dark
blue and red are two functions (vi and vi+1 respectively) of the linear base and
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Figure 2-5.: Scheme of the discretization in the FEM, the exact solution co-
rresponds to the blue curve, the violet segments correspond to
the approximate solution, the curves in dark blue and red are
two functions (vi and vi+1 respectively) of the linear base and
ψi are the adjustment coefficients between the numerical solution
and the exact solution.
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ψi are the adjustment coefficients between the numerical solution and the exact
solution. Each of the ψi takes the exact value of the real solution at each node
(xi). In this scheme, the real solution u has been divided into n finite elements
of equal length l = xi+1 − xi (in other more complex forms of discretization,
the length of each element does not necessarily remain fixed), each element is
contained between the vertical dashed lines in figure 2-5. Within each of the
finite elements, the base of linear functions vi are defined as:

vi =


0, x < xi−1

x−xi−1
xi−xi−1 , xi−1 ≤ x < xi
xi+1−x
xi+1−xi , xi ≤ x ≤ xi+1

0, xi+1 < x

(2-134)

two of these functions (vi and vi+1) are highlighted at the bottom of figure 2-5
in dark blue and red. Note that within each finite element contained between
xi and xi+1 there is only contribution of two base functions vi and vi+1, the
other functions base are zero in this region. The real solution to the problem
u can be approximated by means of the linear combination u =

∑
i viψi. Note

that at each node xi the coefficient ψi takes the exact value of the function u
at that point since the function vi is equal to 1 at that node. These coefficients
ψi are obtained by modeling the partial deferential equation in a system of
algebraic equations that are generated by discretization. The first step to solve
a problem is to take the initial differential equation to its weak form, similar
to equation 2-133, later the integrals are solved in each of the finite elements
and the complete solution corresponds to the sum of each of the contributions
of each element, finally what results is a system of n algebraic equations that
correspond to the n nodes in the discretization. In the Galerkin method ref. [21]
these base functions vi correspond to the functions φ in the equation 2-133. This
method is very precise for the solution of differential equations in systems with
complex geometries since it allows the generation of adaptive meshes as well as
a refinement or an increase of the nodes in points of difficult solution.

To highlight that in COMSOL Multiphysics software it is possible to enter the
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coefficients for a partial differential equation in a general form,

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− αu+ γ) + β · ∇u+ au = f (2-135)

where u is the function to solve and ea, da, c, α, γ, β, a and f they are coeffi-
cients that can be arbitrary functions. Through these functions it is possible to
introduce effects of magnetic and electric fields, among others, into a problem,
noting that the Eq. (2-135) is reduced to the Schrödinger equation.
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3. Shallow-donor impurity
states with excitonic
contribution in
GaAs/AlGaAs and
CdTe/CdSe truncated
conical quantum dots under
applied magnetic field

Using the effective mass approximation in a parabolic two-bands model, we
study the effects of the geometrical parameters on the electron and hole states
in two truncated conical quantum dots: i) GaAs-(Ga,Al)As in the presence of a
shallow-donor impurity and under an applied magnetic field and ii) CdSe-CdTe
core-shell type-II quantum dot. For the first system, the impurity position and
the applied magnetic field direction have been chosen to preserve the system’s
azimuthal symmetry. The finite element method obtains the solution of the ei-
genvalues differential equations for electron or hole with or without impurity
with an adaptive discretization of a triangular mesh. The correlation of the elec-
tron and hole states is calculated in a first-order perturbative approximation.
This study shows that the magnetic field and donor impurities are relevant fac-
tors in the optoelectronic properties of conical quantum dots. Additionally, for
the CdSe-CdTe quantum dot, where again the axial symmetry is preserved, a
switch between direct and indirect exciton is possible to be controlled through
geometry.
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3.1. Introduction

For decades, the low dimensional systems have been one of the most widely
investigated objects in semiconductor physics because of their interesting pro-
perties and applications, particularly the quantum confinement effect in these
systems, which has opened up a different recipe for designing novel semicon-
ductor materials for optoelectronic devices [1–4]. A great deal of attention of
investigators has been attracted to the theoretical analysis of the effect of the
quantum confinement on the impurity energies in various nanostructures, such
as quantum wells [5–7], quantum-well wires [8], and quantum dots (QDs) [9–11].
In particular, in QDs, which are formed when there is a difference in the energy
gap between the materials to be used [12, 13], the charge carriers (electrons
and holes) are subjected to three-dimensional confinement, resulting in a dis-
crete energy spectrum for the charge carriers and the system is very sensitive
to nano-scale changes in geometry and composition, which generates an im-
portant modification in semiconductor properties, such as optical, mechanical,
electrical, and thermal. This character is similar to that observed in atoms, but
with the advantage that for a QD, the spectrum is adjustable with changes in
geometry or by applying external effects such as electric field, magnetic field,
and nonresonant intense laser fields. Another effect on which several authors
have been interested corresponds to the presence of a shallow donor and ac-
ceptor impurities, neutral and charged excitons, which generate changes in the
confinement of charge carriers due to attractive or repulsive effects.
In the study of QDs, one of the relevant characteristics is the geometrical shape
of the nanostructure. Researches on semiconductor QDs have included different
morphologies: pyramidal, spherical, and lens-shaped nanostructures. In the last
three decades, different geometries have been intensively studied [12–17]. The
sizes and shapes of these quantum systems have been shown to have more predo-
minance in the properties of a semiconductor than its composition [18]. Among
these structures, a special interest presents the cylindrical QDs [19–21]. These,
depending on their radius and height ratio, can be represented as i) 1D-systems,
called quantum-well wires, in which the height of the cylinder is much larger
than the radius of the structure and ii) 2D-systems, called quantum-wells. Mo-
re recently, the growth and study of QDs with a nanocone type structure [22]
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which have fascinating physical properties for the development of new techno-
logies, has also been possible. As a result of these investigations, nowadays, it is
well known that morphologies of nanostructures can manifest unique physical
properties of the material [23], for example, cone-shaped QDs can be quantum
wires, quantum wells, or QDs, as a function of the structure height and solid
angle at their top [24, 25].

Nanowires and nanocones have a natural ability to capture light, so their appli-
cations in creating optoelectronic devices such as solar cells and photodetectors
have a promising future. Currently, quantum wires (nanowires) and cone-shaped
QDs (nanocones) are recognized as promising candidates for the next genera-
tion of nanoscale devices [26–29]. A strong dependence of light absorption on
geometry has been demonstrated for some time by making comparisons of the
properties of conical and cylindrical nanowires [30]. The optical and electronic
properties of tapered QDs, including the effects of electric and magnetic fields
and donor impurities, have also been studied in different works [31, 32].

Analytical solutions of the Schrödinger equation are possible in very limited si-
tuations [33], for that, several numerical methods are found in the literature to
solve the effective mass differential equations and to model different properties
of semiconductor QDs. However, these analytical solutions are used in various
works to show the validity of numerical calculations. The different variants of
diagonalization, variational calculus, finite differences, and finite elements are
among the methods used. The computation time of the numerical calculation
can be very long if the codes are not optimized or if there is a need to obtain
results for some parameter that is very susceptible to small changes, such as
for the magnetic field. The finite element method (FEM) has been used to mo-
del QDs since the early 1990s [34], and at present, several studies dealing with
electronic structure can be mentioned: optical, structural, impurity, transport,
and deformation effects in QDs [35–37]. In [38], research on binding energy and
susceptibility for cylindrical and spherical QDs under a different kind of con-
finement potential was carried out. In recent works, exciting applications have
been mentioned concerning QDs. Due to the outstanding optical properties,
QDs can be used for cancer cell imaging [39, 40]. A review article on biome-
dical and drugs administration mediated by QDs is developed in [41]. CdSe
and CdTe QDs are candidates for several applications such as memory and
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spintronic devices [42].

Type-II QDs come from the combination of two semiconductors where the align-
ment of the energy gaps gives rise to the confinement of electrons and holes in
different regions of space. In this case, while one of the semiconductors behaves
as the region of the well for the electron and the barrier for the hole, the situa-
tion is reversed in the other semiconductor. Thus, the second semiconductor
behaves as the barrier region for the electron and the well region for the hole.
In core-shell quantum dots formed for example by the combination of CdTe
and CdSe, it is observed that: i) the CdTe material is the barrier/well region
for the electron/hole and ii) the CdSe material is the well/barrier region for
the electron/hole. Discussed, for example: biophotonics applications, applica-
tions in nanomedicine, pharmacokinetics and biodistribution, in vitro and in
vivo toxicity, quantum confinement effects, core/shell architectures, tunability
in the biological transparency window, opportunity to introduce tunable plas-
monic features, doping to achieve enhanced emission from dopant states, and
magnetic doping to introduce magnetic imaging capability.

In this work, we are interested in studying the electron, shallow-donor impurity,
and heavy-hole exciton states for two kinds of conical QDs: i), shallow-donor
impurity states in truncated conical shaped GaAs-(Ga,Al)As QDs, which can
be modeled through a Coulomb interaction, in the simple model of a hydrogenic
atom and considering the effects of an externally applied magnetic field. The
magnetic field and impurity center are considered such as to preserve the axial
symmetry of the system; ii) CdSe-CdTe core/shell QDs without magnetic field
and impurity effects. Once the wavefunctions and energies for electron and hole
are available, in the presence or absence of impurity, the correlation between
both carriers is calculated using the Coulomb integral together with a first-order
perturbative model. We carry out calculations for different donor impurity posi-
tions along the symmetry-axis, considering the effects of the magnetic field and
the side of the structure (i). Finally, the overlap integral is reported, informa-
tion that is key to understanding the behavior of the binding energies for each
configuration (i and ii). The solution of the differential equations is obtained
by applying the FEM. The paper is organized as follows: Section II contains the
theoretical framework; Section III is devoted to the results and corresponding
discussion; finally, in Section IV are presented the main conclusions.
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3.2. Theoretical model

An illustrative scheme of the GaAs-AlGaAs QD under study is shown in Fig.
3-1. Fig. 3-1(a) is an axis-symmetric representation of the problem (ϕ = 0,
with ϕ the azimuth angle) where the dimensions of the QD bases radii (R1

and R2) and the QD height (h) are shown. Two effects on the structure have
been taken into account: i) a static magnetic field ~B, applied in the z-direction
and ii) the presence of a shallow-donor impurity at different positions along
the same z-direction—(0, zi). In Fig. 3-1(b) a three-dimensional view of the
system obtained from the rotation of Fig. 3-1(a) around the z-axis is shown. In
(c) and (d) are shown the schematic views of the CdTe-CdSe and CdSe-CdTe
truncated core-shell QDs without magnetic field and impurity effects. We have
two specific cases: in Fig. 3-1(c) a system of CdTe (core) and CdSe (shell), and
in Fig. 3-1(d), the materials are reversed, i.e., CdSe (core) and CdTe (shell).
The ξ-parameter in Fig. 3-1(c) is the thickness of CdSe, whereas in 3-1(d) is
the thickness of CdTe.
Using the effective mass and parabolic bands approximations, with Dirichlet
boundary conditions at the outer edges of the barrier matrix and the Ben
Daniel-Duke conditions at the QD and surrounding barrier-matrix interface (see
Fig. 3-1(b)), the Schrödinger equation for an electron (or heavy-hole) confined
in the structure under the effect of an applied magnetic field, in the z-direction,
and in the presence of a shallow-donor impurity, can be written, in Cartesian
coordinates, in the form:

[
1

2m∗,cj

(
p̂− q ~A

)2

+ Vj(x, y, z) +
κ q2

4 π ε0 εr r

]
ψ(x, y, z) = E ψ(x, y, z) , (3-1)

where r =
√
x2 + y2 + (z − zi)2 is the electron-impurity (hole-impurity) dis-

tance, p̂ = −i ~ ~∇, m∗,cj is the electron or heavy-hole effective mass (j = e, h

for electron and heavy-hole, respectively, and c = w/b indicates the dot/barrier
material), q = +e,−e are the electron and hole charges, respectively, e being
the elemental charge, κ = −1 for the electron, whereas κ = +1 for heavy-
hole, and ~A = −B

2 (y î − x ĵ) is the vector potential associated to the applied
magnetic field, where ~B = ~∇× ~A comes from the symmetric gauge. Vj is the
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Figure 3-1.: Schematic view of the truncated conical-shaped GaAs-
Al0.3Ga0.7As quantum dot, (cone region GaAs, outside the cone
AlGaAs). In (a) is depicted the ϕ = 0 projection, where the dot
dimensions (R1, R2, and h), the shallow-donor impurity position
(0, zi), the reference frame, the vertically applied magnetic field,
and the dimensions of the large-size square where the open and
Dirichlet boundary conditions are applied (Lx = Ly = 50nm),
are indicated. The position of the cone half-height coincides with
the half-height of the large square, and the reference frame coin-
cides with the base of the cone. In (b) is shown the structure
obtained by rotating around the z-axis the structure represented
in (a). Schematic view of the truncated conical CdTe-CdSe (c)
and CdSe-CdTe (d) core-shell quantum dots. The ξ-parameter
corresponds to the shell-width of CdSe (c) and CdTe (d). R1 and
R2 are the bases radii, and h is the QD height. In (c) and (d) the
impurity and magnetic field effects have been neglected.
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structural potential, which is zero in the dot region and V 0
j in the barrier ma-

terial. Additionally, ε0 = 8.85× 10−12 C2/(Nm2) and εr is the static dielectric
constant. The image charge effects have been ignored. Tenemos que anotar que
en el caso de los core-shell QDs formados de CdTe y CdSe, en el caso de los
electrones la región del pozo corresponde a
Expanding the first term in Eq. (3-1) and using the azimuthal symmetry con-
dition of the structure, it is possible to consider in cylindrical coordinates a
solution of the type ψ(x, y, z) = ψ(ρ, ϕ, z) = R(ρ, z) ei l ϕ. Consequently, the
R(ρ, z) function satisfies the differential equation

[
− ~2

2m,c
j

∇2 + V c
j (ρ, z) +

~2 l2

2m,c
j ρ

2
−q ~B l

2m,c
j

+
q2B2 ρ2

8m,c
j

+
κ q2

4 π ε0 εr r

]
R(ρ, z) = E R(ρ, z) ,

(3-2)

where l ∈ Z is the principal quantum number and ∇2 is the ρ- and z-dependent
two-dimensional Laplacian operator.
Once the electron and heavy-hole uncorrelated ground state wavefunctions
(ψ1

e (~re) and ψ1
h (~rh), respectively) are obtained, we can proceed to compute

the excitonic contribution from the interaction between the two charges. In a
first order perturbative approximation, the Coulomb integral magnitude reads

Ceh =
q2

4 π ε0 εr

∫
Ωh

∫
Ωe

∣∣ψ1
e (~re)

∣∣2 ∣∣ψ1
h (~rh)

∣∣2
|~re − ~rh|

dVe dVh , (3-3)

where dVe = ρe dρe dze dϕe and dVh = ρh dρh dzh dϕh are the volume differen-
tials in cylindrical coordinates for the electron and hole, respectively. In Eq.
(3-3), Ωh and Ωe indicate the volume of the cylinder represented in Fig. 3-
1(b) for hole and electron, respectively, whose radius and height are Lx and
Ly, respectively. Since we are only interested in the magnitude of the Coulomb
interaction, in Eq. (3-3), we have omitted the negative sign of the electrostatic
energy.
Because of the azimuthal symmetry, it is possible to write the angular part of
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Eq. (3-3) analytically. This reduces the integral from 6 to 4 variables:

Ceh =
q2

4 π ε0 εr

∫
Sh

∫
Se

∣∣ψ1
e (ρe , ze)

∣∣2 ∣∣ψ1
h (ρh , zh)

∣∣2 8πK
(

rp
1+rp

)
r
√

1 + rp

 dV
′

e dV
′

h ,

(3-4)

where r =
√

(ρe − ρh)2 + (ze − zh)2, rp = 4ρe ρh
r , K(x) is the complete elliptic

integral of the first kind, dV ′e = 2π ρe dρe dze, and dV
′

h = 2π ρh dρh dzh. In Eq.
(3-4), the expression inside the squared parenthesis comes from the double an-
gular integral of the inverse of electron-hole distance and Sh and Se correspond
to the large rectangle area in Fig. 3-1(a). Note that in Eq. (3-3) and due to the
azimuthal symmetry of the system, the electron and heavy-hole ground state
wavefunctions are independent of the ϕe and ϕh coordinates, respectively.
A quantity that allows complementing the exciton analysis is the overlap in-
tegral between the electron and heavy-hole ground states, whose calculation is
obtained in cylindrical coordinates using the expression

Ieh = 4π2

∣∣∣∣∫
S

ψ1
e (ρ, z)ψ1

h (ρ, z) ρ dρ dz

∣∣∣∣2 , (3-5)

where in the previous equation, the electron and heavy-hole are located simul-
taneously at the same place, (ρ, z) of the large rectangle in Fig. 3-1(a) with
area S.
The wavefunctions and corresponding energies associated with Eq. (3-2) have
been obtained by implementing the FEM [43–47]. Within the Comsol-Multiphysics
licensed software [45–47], a user-controlled mesh was chosen in order to achieve
greater control over discretization. Since the quantum states of interest corres-
pond to the location of the charge carrier in the GaAs QD, three refinements
have been generated in that region of the system. As a result, the number of
evaluation nodes in the entire mesh is 7005. Thanks to the mesh adaptation,
there are 11328 triangles in the GaAs QD region and 2513 in the AlGaAs ma-
trix. On the border between the QD and the matrix, there are 217 nodes. Other
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general characteristics of the mesh are the maximum and minimum element si-
ze of 1.85nm and 0.00625nm, respectively. In an 8th generation Intel core i7
processor, the computation time for calculating energies in fixed parameters
is approximately 8 s. For the numerical calculation of Eq. (3-4), a Fortran 77
code was used. From the results obtained in Comsol-Multiphysics, the values
of the ground state wavefunction were exported in a regular mesh, in terms of
the (ρ, z) coordinates, taking as input of these coordinates the same values for
electron and hole. Since we have values of the wavefunctions at discrete points
of the coordinates, the integral in Eq. (3-4) is converted to a Riemann sum.
Due to the azimuthal symmetry of the system, the integration corresponding
to the ϕ-angular coordinates was obtained by using elliptic integrals.
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Figure 3-2.: The ground state level for a confined electron/hole (a)/(b) in a
truncated conical-shaped GaAs-Al0.3Ga0.7As quantum dot as a
function of the R2-lower structure radius and the corresponding
biding energy (c). Calculations are for R1 = 10nm, h = 15nm,
B = 0, with and without impurity effects according to the color
code. Three impurity positions were considered: zi = 0, 7.5nm,
and 15nm.
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3.3. Results and discussion

3.3.1. Electron and hole spectra in GaAs-Al0.3Ga0.7As
truncated conical quantum dot under donor
impurity and static magnetic field effects

In subsections A and B the parameters we will use are: m∗,we = 0.067m0 (where
m0 is the free electron mass),m∗,be = 0.092m0,m∗,wh = 0.51m0,m∗,bh = 0.57m0,
V 0
e = 0.262 eV, V 0

h = 0.174 eV, and ε = 13 [48, 49].
In this subsection, the impurity and static magnetic field effects on GaAs-
Al0.3Ga0.7As truncated conical QD are explored.
In Fig. 3-2, the electron and heavy-hole energy spectra in a GaAs-Al0.3Ga0.7As
truncated conical QD are shown as a function of the lower base radius (R2),
leaving fixed the upper base radius (R1) and the dot height (h). Three different
positions for the donor impurity were considered according to the color code.
In order to interpret the results, the ground state level for impurity absence
also was plotted. Fig. 3-2(a) and 2(b) are for the ground state of electron and
hole, respectively. Fig. 3-2(c) is the corresponding binding energy for impurity
associated with the electron. This fact allows to have a change in geometry
from a conical QD (R2 = 0), through a cylindrical QD (R2 = R1 = 10nm)
and reaching a truncated conical QD, as shown in Fig. 3-1(b). The results are
given with consideration of donor impurity and without applied magnetic field
effects. In general, it is observed that by increasing R2 there is a decrease in the
confinement effect for both charge carriers due to the increase in the volume
of the structure. This is reflected in a systematic decrease in all energy levels
with R2. The ground state exhibits a higher rate of decrease in energy values
in the range 0 < R2 < 10nm. This behavior is explained by the fact that
for these small R2 values, the vertex region expels the carriers’ wavefunction
towards the base of radius R1. When R2 increases, the ground state rapidly
shifts its maximum probability towards the lower dot region, a condition that
occurs until the formation of the cylindrical QD (R2 = 10nm). When the value
of R2 continues to increase, the ground state, which tends to show its maximum
probability density at the center of the QD (away from the edges), does not
show drastic changes, which results in energy with a low rate of decline.
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The most considerable differences between the electron and the hole spectra
occur in the magnitudes of their energies, a situation that is typical of the
potential barriers associated with each particle and of their corresponding ef-
fective masses. A donor impurity is located in three different positions along
the z-axis: zi = 0, zi = 7.5nm, and zi = 15 nm. Compared with the energy
without the impurity, the difference related to the interaction between the two
types of carriers and the impurity is remarkable. On the one hand, the elec-
tron experiences attraction towards the impurity reflected in a spectrum shift
towards lower energies. In contrast, the heavy-hole is modeled with a repulsive
interaction with the donor impurity (see the Eq. (3-1)), which causes an energy
increase for each impurity position. In Fig. 3-2(a), the ground state with an
impurity at zi = 0, for R2 values close to zero, is the one with the smallest
energy redshift in comparing with the other two positions of the impurity, due
to the existence of a competition between the geometrical confinement, which
causes the wavefunction to be concentrated in the upper part of the QD, and the
attractive effect of the impurity, which is responsible for the impurity shifting
towards the lower structure region. Clearly, for the ground state, the Coulomb
interaction effect is less significant concerning the geometric effect. It should
be noted that the presence of the impurity does not influence the degeneracy
associated with azimuthal symmetry.

The ground state binding energy (Eb) for the same three impurity positions is
obtained by the difference Eb = E1−Ei

1, where E1 is the electron ground state
energy in the absence of impurity center (κ = 0) and Ei

1 is the corresponding
one but in the presence of the impurity (κ = −1). For zi = 0, the binding
energy is increasing in the range 0 < R2 < 7nm. In this R2-regime, the ma-
ximum probability density occurs in the upper part of the QD (that is, near
the surface of radius R1) because the electron tends to be in the region of least
confinement, that is, in the region of greater local volume and away from the
edges of the cone. With the appearance of the impurity at zi = 0, there is a
systematic decrease in the electron-impurity distance as R2 increases due to the
decrease in the repulsive effect associated with the potential barriers present
in the apical point. This results in an increase in the Coulomb interaction and
consequently in the binding energy. Once the cylindrical shape of the QD is
obtained (R2 = 10nm) and R2 continues to increase from there, it is observed
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an effective reduction of the confinement effect due to the systematic increase
in the volume of the structure. In this case, the binding energy is mainly asso-
ciated with the Coulomb interaction, and the geometric confinement associated
with the structure is transformed into a perturbative effect that decreases with
the increase of R2. For the case in which the impurity is located in the half-
height of the QD, zi = 7.5nm, the binding energy is an increasing function in
the range 0 < R2 < 2.3nm, which is associated with the fast saturation and
weak effect of the potential barriers located at the apical point of the inver-
ted truncated cone (R2 < R1). When zi = 15 nm, the Eb is a monotonically
decreasing function of R2. In this case, the increase of R2 implies a constant
displacement of the probability density maximum from the top of the structure
towards the half-height region, or even below it, with a permanent increase of
the mean electron-impurity distance. This is reflected in a drop in electrostatic
interaction and consequently in binding energy.

In Fig. 3-3, the energy results are presented as a function of the applied mag-
netic field for l = 0 and l = 1, both for the electron, Fig. 3-3(a), and the heavy-
hole, Fig. 3-3(b), confined into a truncated conical-shaped GaAs-Al0.3Ga0.7As
QD. For κ = 0, the electron ground state maintains its symmetry over the
entire range of the calculated magnetic field, which corresponds to an s-like
state with l = 0. In the case of the heavy-hole, there are multiple crossovers for
excited states since one set loses degeneration accompanied by an increase in
energy, and the other set of states, which was part of the degeneration in the
absence of a magnetic field, goes towards lower energies. This behavior can be
observed, for example, for the first excited state in Fig. 3-3(b) with an impurity
at zi = 7.5nm; the first excited state (l = 1) goes towards lower energies, and
on the contrary, the ground state (l = 0) goes towards higher energies.
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Figure 3-3.: The ground state level for a confined electron/hole (a)/(b) in
a truncated conical-shaped GaAs-Al0.3Ga0.7As quantum dot as
a function of the vertically applied magnetic field and the co-
rresponding binding energy (c). Calculations are for R1 = 10nm,
R2 = 20nm, h = 15nm, with and without impurity effects accor-
ding to the color code. Three impurity positions were considered:
zi = 0, 7.5nm, and 15nm.
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Considering the presence of a donor impurity which is located at three different
positions along the z-axis: zi = 0, zi = 7.5nm, and zi = 15 nm, the combi-
ned effect of the applied magnetic field and the impurity allows for shifting the
energy levels and generating a rise in the degeneracy for the states with l 6= 0.
The uncorrelated electron’s ground state has its maximum probability density
along the z-axis, which coincides with the impurity position. In this case, the
magnetic field generates additional confinement towards the z-axis, thus effec-
tively reducing the electron-impurity distance, thereby enhancing the Coulomb
interaction. The greatest effects on the energies of the correlated system occur
for the impurity located at the QD’s half-height, Fig. 3-3(c)-green color, since
the influence of the Coulomb interaction occurs in all directions of space. For
the heavy-hole, the repulsive effect of the donor impurity generates a quantum
ring-like behavior, which becomes evident with the ground state’s oscillations
when the magnetic field is turned on. For example, in Fig. 3-3 the ground state
corresponds to l = 0 for B = 0 while for B = 15T the ground state occurs
with l = +1. It is evident from that, for impurities in the lower and upper
bases of the structure, the heavy-hole ground state continues to present the
oscillatory character with the magnetic field. However, the repulsion generated
by the potential barriers reduces the manifestation of this effect. In Fig. 3-3(c),
the ground state binding energies for the confined electron are presented as
a function of the applied magnetic field for three considered donor impurity
positions, zi = 0, zi = 7.5nm, and zi = 15 nm. The results were obtained
by subtracting from the ground state energy in black color in Fig. 3-3(a), the
corresponding ground state energies to the three impurity positions. Although
the magnetic field decreases the expected value of ρ =

√
x2 + y2, that is, it

compresses the wavefunction towards the z-axis, when the impurity is located
at the upper or lower face of the QD, the variation of the binding energy increa-
ses to a low rate. For impurities located at the QD’s half-height, zi = 7.5nm,
the most significant interaction with the electron is reached. With the increa-
se in the magnetic field, there is a smaller distance between the electron and
the impurity, obtaining higher binding energy. In the latter case, as mentioned
above, the Coulomb interaction has a quasi-3D symmetrical character, except
for the variations that the structure shape induces at the boundaries between
the QD and the surrounding material.
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Two sets of panels for the electron and heavy-hole ground state wavefunction
(WF) are shown in Fig. 3-4. There are cuts in the first, third and fourth rows
for the y = 0-plane. A first set corresponds to the electron WFs, Figs. 3-4(a-d)
and the second one, Figs. 3-4(e-l) for hole WFs. The real and imaginary parts
of the heavy-hole WFs correspond to Figs. 3-4(e-f, i-j) and Figs. 3-4(g-h, k-l),
respectively. The second set of cuts is for the plane z = 7.5nm, Figs. 3-4(c-d, i-
l), and the two columns are for two different values of the applied magnetic field.
With a ground state of s-like symmetry, the electron is located fundamentally in
the QD center and independently of the applied magnetic field’s value, but the
strength of confinement is stronger with the magnetic field. This distribution of
the WF is the result of the attraction towards the impurity center. When the
magnetic field is applied, it is evident that the electron has a more significant
location towards the axial axis. Note that the s-like symmetry of the electron
ground state is maintained with the magnetic field’s inclusion, even for the
highest value of B = 20T used in this work. The real part of the heavy-hole
WF (Figs. 3-4(e-f, i-j)) shows that the WF has the ring’s symmetry in the
absence of a magnetic field since the donor impurity generates electrostatic
repulsion on the hole. When the magnetic field is included, there are
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Figure 3-4.: The x = 0 (a-b, e-h) and z = 7.5nm (c-d, i-l) projections of
the electron and heavy-hole ground state wavefunctions (WF) in
a truncated conical-shaped GaAs-Al0.3Ga0.7As quantum dot, for
two values of the vertically applied magnetic field (each column
corresponds to a fixed value of the magnetic field). The first two
rows are for the real part of the electron WF, rows 3 and 5 are
for the real part of the hole WF, whereas rows 4 and 6 are for the
imaginary part of the hole WF. Calculations are for R1 = 10nm,
R2 = 20 nm, h = 15 nm, and with a donor impurity located at
zi = 7.5nm.
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changes in the symmetry of the heavy-hole ground state (evolving from l = 0

for B = 0 up to l = +1 for B = 20T; (see the row 5 in Fig. 3-4). These results
are in agreement with the ground state of Fig. 3-3(b). For B = 20T, there is
complementarity between the WF’s real and imaginary components (see panels
(j) and (k)). This means that the sum of the two components’ squares generates
a probability density that shows ring-shaped symmetry, as occurs in the absence
of a magnetic field, see Fig. 3-4(i).

3.3.2. Exciton states in GaAs-Al0.3Ga0.7As truncated
conical quantum dot under impurity and static
magnetic field

This subsection is dedicated to studying the excitonic contribution in GaAs-
Al0.3Ga0.7As truncated conical QD considering the effects of shallow-donor im-
purity and static applied magnetic field.
In Fig. 3-5 are shown the results for the electron-hole pair in a truncated
conical-shaped GaAs-Al0.3Ga0.7As QD as a function of the R2-lower structure
radius. In Fig. 3-5(a) is shown the Coulomb energy calculated by Eq. (3-4).
Fig. 3-5(b) results are for the overlap integral (OI) between the electron and
heavy-hole ground states. Finally, the Figs. 3-5(c-d) correspond to the electron
and heavy-hole z-expected value (〈ze〉 and 〈zh〉). From Fig. 3-5(a), it can be
inferred that, regardless of the presence or not of the donor impurity, with
the increase of R2 there is a loss of the electron-hole interaction. Note the
decreasing character with R2 of all the curves, which can be explained by an
increase in the expected value of the electron-hole distance —〈|~re−~rh|〉. In the
absence of impurity, the electron and hole are located essentially at the same
vertical position. As R2 goes from zero to 20 nm, the maxima of the electron
and hole probability densities shift (with decreasing values of 〈ze〉 and 〈zh〉)
from the gravity center of an inverted cone towards the gravity center of a
truncated cone with a major/minor radius at the bottom/top base of the QD.
This fact explains the quasi-overlap and decreasing behavior of 〈ze〉 and 〈zh〉 in
Figs. 3-5(b-d). The increase of the OI with κ = 0 is mainly associated with the
increase of the structure’s volume. In the case κ 6= 0, the OI follows the behavior
exhibited by the difference between 〈ze〉 and 〈zh〉. The OI is maximum when
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|〈ze〉−〈zh〉| → 0 and is minimum when |〈ze〉−〈zh〉| is maximum. The previously
mentioned change in the structure’s geometry also explains the decreasing value
of 〈ze〉 and 〈zh〉 in Figs. 3-5(c-d). Including the impurity at different positions
modifies the behavior of 〈ze〉 and 〈zh〉. For zi = 0, |〈ze〉 − 〈zh〉| increases in
the range 0 < R2 < 7nm. With the increase of R2, the electron moves towards
the impurity center; this explains why it goes faster towards lower ze-values. In
contrast, the hole is subjected to two conditions that generate inverse effects;
on the one hand, the decrease in confinement associated with the increase R2

implies a fall in 〈zh〉, but the rate of decrease is lower than that of 〈ze〉, with a
quasi-linear behavior, because on the other hand, the impurity at zi = 0 repels
the hole.
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Figure 3-5.: Characterization of the heavy-hole exciton states in a truncated
conical-shaped GaAs-Al0.3Ga0.7As quantum dot as a function of
the R2-lower structure radius. (a) Electron-hole Coulomb energy,
(b) overlap integral, and (c-d) the z-average position of the ca-
rriers; electron (c) and heavy-hole (d). According to the color
code, calculations are without and with a shallow-donor impu-
rity, localized at three positions along the z-axis. The results are
for R1 = 10nm, h = 15nm, and B = 0.

In Fig. 3-6, the same kind of results are reported as in Fig. 3-5, but for fixed
QD dimensions and as a function of the applied magnetic field. In Fig. 3-
6(a), without impurity, the electron-hole Coulomb energy increases. This fact
is largely explained by the decrease in the carriers’ separation with the increase
in the magnetic field, information extracted from Figs. 3-6(d-f) for |〈ze〉 −
〈zh〉|, where the OI systematically increases. Due to the opposite effect that
the impurity has on the electron and the hole, that is, attraction and repulsion,
respectively, lower Coulomb energies are generally observed compared to the
case of no impurity. In Figs. 3-6(b-c), the Coulomb energies for zi = 7.5nm
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and zi = 15nm, respectively, from Fig. 3-6(a) are plotted. The idea of these
plots is to emphasize the confinement behavior of both the electron and the hole
when symmetry changes of the ground state WFs occur due to the effect of the
applied magnetic field. In Fig. 3-6(b), for B < 8.5T, the electron and hole
ground state WFs are obtained for l = 0, and in this case, the imaginary part
of the WFs for both carriers is zero. The s-type symmetry for the electron and
ring symmetry for the hole is clearly identified. For B > 8.5T, the ground state
of the hole corresponds to l = 1, and complementarity between the real and
imaginary parts of the WFs appears, but a ring symmetry for the probability
density is maintained. In Fig. 3-6(c), the results are similar to those depicted
in Fig. 3-6(b), but in this case, the transition of the ground state hole WF
moves to a higher magnetic field value. The small increase observed in the
Coulomb energy for zi = 0 and zi = 15nm, with the magnetic field influence,
is because despite having a lower OI with the increasing of the magnetic field,
the WFs are located in a smaller volume, which increases the Coulomb integral
value. The change in symmetry of the WFs for the ground state of the hole
explains the jumps in the curves of the Coulomb integral for zi = 7.5nm and
zi = 15 nm shown in Fig. 3-6(a) and detailed in Figs. 3-6(b) and 3-6(c) with
the corresponding electron and hole WFs for two particular values of the applied
magnetic field.
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Figure 3-6.: Characterization of the exciton effects in a truncated conical-
shaped GaAs-Al0.3Ga0.7As quantum dot as functions of the verti-
cally applied magnetic field. (a) e-h Coulomb energy with κ = 0

and κ 6= 0 with three impurity positions, (b) e-h Coulomb energy
with the impurity at zi = 7.5nm, (c) e-h Coulomb energy with
the impurity at zi = 15 nm, (d) overlap integral, (e) ze-average
electron position, and (f) zh-average hole position. The results are
for R1 = 10nm, R2 = 20nm, and h = 15nm. Few electron and
hole wavefunctions projections (real and imaginary parts) at the
z = 7.5nm plane are shown in panels (b) and (c).
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In order to have a better perspective on the effects of the impurity position, it
has been varied from the lower base to the upper base of the truncated conical-
shaped GaAs-Al0.3Ga0.7As QD, always located along the z-axis. This position
is controlled by the parameter zi. The following graphs are shown in Fig. 3-7:
(a) the electron and hole ground state energies, (b) the electron-hole Coulomb
energy, (c) the overlap integral, and (d) z the average position of the electron
and hole along the z-axis. Calculations are for R1 = 10 nm, R2 = 20 nm,
h = 15 nm, and B = 0. In Fig. 3-7(a), the reverse effect on the electron and
the hole of a donor impurity is clearly seen. The electron has an attractive
character, and for the hole, it is a repulsive one. When the impurity is in the
first half of the height, that is zi ≤ 15nm, the electron is attracted to a region
of lower confinement, and the hole is being expelled to the region of higher
confinement. In the second half of the height, i.e. for zi ≥ 15nm, the opposite
effect on each charge carrier occurs. Hence, there is increasing energy for the
electron and decreasing energy for the hole. The Coulomb energy in



3.3 Results and discussion 85

0 3 6 9 12 15
11

12

13

14

0 3 6 9 12 15
4

6

8

10

0 3 6 9 12 15
0.5

0.6

0.7

0.8

0.9

0 3 6 9 12 15
5

10

15

20

zi (nm)

E eh
 (m

eV
)

(b)

 electron
 hole

(d)z eh
- e

xp
ec

te
d 

va
lu

e 
(n

m
)

ov
er

la
p 

in
te

gr
al

(c)

 electron
 hole

(a)

en
er

gy
 (m

eV
)

Figure 3-7.: Characterization of the exciton effects in a truncated conical-
shaped GaAs-Al0.3Ga0.7As quantum dot as a function of donor
impurity position zi. (a) Ground state for electron and hole, (b)
electron-hole Coulomb energy, (c) overlap integral, and (d) z ex-
pected value for each carrier. Calculations are for R1 = 10 nm,
R2 = 20nm, h = 15nm, and B = 0.

Fig. 3-7(b) decreases up to zi = 8.5nm because statistically speaking, the
electron and hole are being separated by the donor impurity. From zi = 8.5nm,
the competition between the impurity effect and the volume for the electron
causes the electron to stay in a region that is in a better overlap with the hole,
which is in absolute agreement with the OI in Fig. 3-7(c). Since the impurity is
located on the z-axis, the z-expected value for each of the particles is evidence
from how the impurity modifies the positions of the charge carriers. Note that
the Coulomb energy for the impurity at zi = 0 is higher than the energy
for zi = 15nm, which is justified by the larger z-separation between the two
particles at zi = 15nm (see Fig. 3-7(d)). Also, note that for zi = 4.75nm the
combined effects of geometry and impurity make the expected z-value the same
for electron and hole. At that value of zi the higher Coulomb energy does not
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occur because it must be taken into account that there are geometry effects at
different z-planes.

3.3.3. Tuning from direct to indirect exciton in
truncated conical CdSe-CdTe core-shell
quantum dots

In this section, according with the Figs. 3-1(c) and 3-1(d), a core-shell system
of CdTe-CdSe and CaSe-CdTe quantum dots is studied, in which a transition
between spatially direct and spatially indirect exciton occurs. The parameters
we will use in this subsection are: i) in CdTe me = 0.096m0, mh = 0.40m0,
and ε = 10.2; ii) in CdSe me = 0.120m0, mh = 0.45m0, and ε = 10.2 [50].
Additionally, V 0

e = 0.42 eV and V 0
h = 0.57 eV. [50]

In Fig. 3-8 is presented the characterization of the exciton states related to the
case of Fig. 3-1(c). As stated in the introduction section, the CdTe behaves
as the barrier/well region for electrons/holes in this case, and the CdSe corres-
ponds to the well/barrier region for electrons/holes. When ξ = 0, the electron
and hole are confined in a truncated conical QD with an infinite potential ba-
rrier. When ξ 6= 0 appears, the potential well for electrons is located in the
CdSe region. For small values of ξ (ξ < 1.5 nm), the electron remains in the
CdTe region due to the strong confinement in the CdSe region. For ξ > 1.5nm,
the CdSe volume becomes large enough for the electron to penetrate the region
where its potential well is located. At that time, both charge carriers are each
located in the regions of their own potential wells, i.e., the hole in CdTe and the
electron in CdSe, and a spatially indirect excitonic system appears. The sharp
drop in electron energy in Fig. 3-8(a) is associated with the change of confi-
nement region and the subsequent increase in the volume of the shell region.
The slight perceptible variations in the hole’s energy appear when the finite
potential barrier located on the lateral face of the structure becomes present.
However, from a specific value of ξ, the hole’s energy does not show variations
due to the constant volume of the core region as ξ increases. The drop in the
Coulomb energy in Fig. 3-8(c) is explained by the fact that the mean electron-
hole distance is increasing with the ξ-parameter. Fig. 3-8(d) allows identifying
the transition from direct to indirect exciton, due to initially the particles are
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in the CdTe and as ξ increases, the electron shifts to the CdSe region, with the
hole always localized at the CdTe region, reaching an indirect exciton.
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Figure 3-8.: Characterization of the exciton effects in a truncated CdTe-CdSe
conical-shaped quantum dot concerning the ξ-parameter. The
first fourth energy levels for the electron (a) and hole (b) are
shown. In (c) electron-hole Coulomb energy, whereas in (d) are
depicted the probability density for both electron and hole in each
material CdTe and CdSe. The calculations are for R1 = 3 nm,
R2 = 8nm, h = 12nm, B = 0 and impurity absence.

The characterization of the exciton states related to the case of Fig. 3-1(d)
is shown in Fig. 3-9, where the results are concerning the ξ-parameter. From
Fig. 3-1(d), it can be seen that by increasing the ξ-parameter, the volume of
the CdSe region decreases, which corresponds to the potential well for electrons.
Consequently, the energy of the electron levels must grow with the ξ-parameter,
as shown in Fig. 3-9(a). When ξ → 0, the hole is confined in the region of its
potential barrier, surrounded by an infinite potential, and in this case, the
energies of all confined states (E) fulfill the condition E > V 0

h = 0.57 eV, as
shown in Fig. 3-9(b) in the regime ξ < 1.0nm. When ξ > 1.0nm, the volume
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of the shell region becomes large enough for the hole to migrate towards the
region of its potential well, that is, towards the CdTe region. The volume of
the CdTe, shell region, grows progressively with the ξ-parameter, and with
it, the confinement on the hole decreases, which is manifested in a fall in all
energy levels, a situation shown in Fig. 3-9(b). We can then conclude that
the system presents an evolution from a spatially direct exciton with the hole
and the electron both located in the CdSe region towards a spatially indirect
exciton for large values of ξ-parameter with the electron in the core region,
whose volume decreases, and the hole in the shell region, the volume of which
increases. The interpretation presented here is confirmed by the ever-decreasing
behavior of the Coulomb integral in Fig. 3-9(c) and the probability densities
in Fig. 3-9(d).
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Figure 3-9.: Characterization of the exciton effects in a truncated CdSe-CdTe
conical-shaped quantum dot as a function of the ξ-parameter in
accordance with Fig. 3-8(b). The lowest energy levels for the
electron (a) and hole (b) are shown. In (c), the results are for
the electron-hole Coulomb energy, whereas in (d), the probability
density for both electron and hole in each CdSe and CdTe material
are presented. The calculations are for R1 = 3nm, R2 = 8nm,
h = 12nm, B = 0, and impurity absence.

3.4. Conclusions

In this paper, we have studied the electron and hole states in GaAs-(Ga,Al)As
conical-shaped QDs in the presence of an axially located shallow-donor impu-
rity under the effects of an externally applied magnetic field and CdSe-CdTe
core-shell QDs without impurity and magnetic field effects. The impurity posi-
tion and the magnetic field direction preserve the axial symmetry of the system.
Variations of the geometry have been considered, in which case the structures
evolve from conical QDs to truncated conical QDs. Calculations have been do-



90
3 Shallow-donor impurity states with excitonic contribution in GaAs/AlGaAs and

CdTe/CdSe truncated conical quantum dots under applied magnetic field

ne in the effective mass approximation and considering a parabolic two-bands
model. The eigenvalues differential equations have been solved via a finite ele-
ment method with a flexible discretization mesh. The electron-hole correlation
was studied with a first-order perturbation approximation. Among the most
relevant results of this study we can cite: i) the presence of the shallow-donor
impurity is responsible for a red/blue shift of the electron/hole energies, ii) the
binding energy for the electron-impurity system in general decreases with the
size of the structure; but with exceptions for specific geometries, the binding
energy is an increasing function with the radius of the lower base of the system,
iii) the applied magnetic field is responsible for the hole-impurity ground state
oscillations, iv) the binding energy for the electron-impurity system is always
an increasing function of the applied magnetic field, and v) a control to tune
between direct and indirect exciton by changes of thickness of CdSe or CdTe
in the core-shell type QD was reached. In the case of the correlation energy
between the electron-impurity and hole-impurity states, it is observed that, in
general, they decrease with the size of the structure. Considering the presen-
ce of applied magnetic fields, they present an essentially constant behavior in
specific ranges of the magnetic field with jumps associated with oscillations of
the hole-impurity ground state. The localization of the electron and hole states
in the presence of impurity and the overlap integral are essential information
to adequately interpret the Coulomb correlation between the electron-impurity
and hole-impurity states.
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[16] Cristea, M.; Niculescu, E.C.; Truşcǎ, C.R. Optical non-linearities associa-
ted to hydrogenic impurities in InAs/GaAs self-assembled quantum dots
under applied electric fields. Philos. Mag. 2017, 97, 3343–3360.

[17] Niculescu, E.C.; Stan, C.; Cristea, M.; Truscǎ, C. Magnetic-field depen-
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4. Self-Consistent
Schrödinger-Poisson Study
of Electronic Properties of
GaAs Quantum Well Wires
with Various Cross-Sectional
Shapes

Quantum wires continue to be a subject of novel applications in the fields of elec-
tronics and optoelectronics. In this work, we revisit the problem of determining
the electron states in semiconductor quantum wires in a self-consistent way. For
that purpose, we numerically solve the 2D system of coupled Schrödinger and
Poisson equations within the envelope function and effective mass approxima-
tions. The calculation method uses the finite-element approach. Circle, square,
triangle and pentagon geometries are considered for the wire cross-sectional
shape. The features of self-consistent band profiles and confined electron sta-
te spectra are discussed, in the latter case, as functions of the transverse wire
size and temperature. Particular attention is paid to elucidate the origin of
Friedel-like oscillations in the density of carriers at low temperatures.

4.1. Introduction

Quantum wires (QWs) are low-dimensional semiconductor structures with strong
two-dimensional localization of charge carriers, leaving a single spatial direction
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for their “free” displacement so that the term quasi-one-dimensional systems be-
came adopted. This feature leads to the quantization of the energy spectrum for
the motion along the cross-section of the conduction channel. The beginnings
of research on this type of nanosystems date back to the 1980s, with illustrati-
ve examples in References [1–17], and has continued until the present, with a
significant number of experimental and theoretical reports in the literature.
Among the most recent works on QWs, we can mention those appearing in
References [18–28].

With time, the concept of QW has included a modification through the term
“nanowire”, due to the possibility of practical realization of wire-shaped struc-
tures with finite length [29]. Among the applications of these low-dimensional
semiconductor systems, one finds the case of solar cells, in which a suitable selec-
tion of nanowire geometry can have advantages in terms of cell performance and
efficiency [30]. On the other hand, in a recent report, Jia and collaborators re-
view the state-of-the-art concerning applications of nanowires to electronics [31].
The authors discuss nanoscale devices and integrated circuits assembled from
nanowire building elements, including nanowire thin-film transistors, oriented
to the fabrication of high-performance large-area flexible electronics.

The self-consistent (SC) method has been a choice for determining the spec-
trum of electron and hole states in low-dimensional semiconductor nanostruc-
tures when many-body contributions on the energy band profile are taken into
account. A typical procedure of this kind is the one described in [32], which uses
the finite element method for the SC non-linear problem of coupled Schrödin-
ger and Poisson equations for layered heterostructures with arbitrary doping
profiles and layer geometries within a multiband ~k · ~p framework. In the parti-
cular case of QW-like systems, it is possible to mention initial works by Laux
and co-workers [33, 34]. In the first of these two works, the electron states in
narrow gate-induced channels in a one-dimensional Si conduction channel are
self-consistently determined solutions. In the second one, the solution of the
Schrödinger-Poisson (SP) system of equations allowed to calculate electron sta-
tes in a split-gate quasi-one-dimensional GaAs/AlGaAs heterostructure. Later
on, Luscombe et al. solved the SCSP problem to investigate the electron confine-
ment in laterally confined cylindrical QWs [35]. The Fourier expansion method
was the approach selected by Tadić and collaborators to investigate the SC elec-
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tronic structure of rectangular free-standing quantum wires [36]. A report by
Trellakis and Ravaioli discusses the computational issues in the SC simulation
of the electronic features of QWs [37]. The authors discuss the numerical solu-
tion for the coupled SP equation system (including exchange and correlation
effects) and outline an iteration procedure—based on the predictor-corrector
method—for convergence of the outer iteration.

The SC method of 2D finite differences for solving the SP equations for etched
mesa GaAs/AlGaAs structures has been reported by Snider et al. in a 1990
paper [38]. This was one of the first studies showing that, for quantum wire
behavior to occur, it is necessary to precisely control the width variation of the
fabricated wire. The coupled Schrödinger and Poisson equations, within the
Hartree approximation, have been solved by Proetto for a GaAs quantum wi-
re with cylindrical symmetry [39]. The charge distribution, potential profile
and electronic structure dependence on the wire radius and surface states’ con-
centration were discussed. Kerkhoven et al. have demonstrated the importance
of self-consistency for analyzing the electrons confined in quantum wires [40].
By solving the Schrödinger and Poisson equations, they simulated the beha-
vior of the low-temperature electrons behavior in QW-like structures formed
by crossing layers of GaAs and AlGaAs. By using an SC screening scheme, Hu
and Das Sarma have calculated the elastic mean free path of impurity-scattered
carriers in a quantum wire [41]. They discussed the scale over which the electro-
nic conduction in quantum wires is expected to exhibit metallic behavior. By
solving the Poisson and Schrödinger equations iteratively for a QW-like split-
gate heterojunction, Martorell et al. have studied the accuracy of the commonly
used 2D approximation when applied to whole 3D systems [42]. Their work fo-
cused on interpreting general trends rather than on some specific system and
simplifying assumptions for reducing the computational effort. Aristone and
Sanchez-Dehesa have used the SC-SP method to investigate arbitrary profile
quantum wires [43]. They discussed the numerical results for QWs of rectangu-
lar cross-sections, emphasizing the conditions under which such low-dimensional
systems exhibit bi-stability. May et al. have performed an SC two-dimensional
calculation of the electronic width of quantum wires formed by local oxida-
tion on GaAlAs heterostructures [44]. They envisioned the key role that was
going to be played by the SC simulations in designing novel structures and bet-
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ter understanding the electrostatic action of the electronic gates. Chuen et al.
have calculated by an SC approach the induced charge density, capacitance,
and conductance of a quantum wire [45]. They discussed the dependence of
these quantities on the Fermi energy and the frequency of the external volta-
ges.
Sharma and Suryanarayana presented a cyclic and helical symmetry-adapted
formulation and large-scale parallel implementation of real-space Kohn-Sham
density functional theory for one-dimensional nanostructures, with application
to the mechanical and electronic response of carbon nanotubes subject to torsio-
nal deformations. They developed a high-order finite-difference parallel imple-
mentation capable of performing accurate cyclic and helical symmetry-adapted
Kohn-Sham calculations in both the static and dynamic settings. Their findings
were in good agreement with experimental observations and measurements.
Their numerical tools and formalism were previously applied to the study of
band structure and bending properties of large X (X = C, Si, Ge, Sn) nano-
tubes and Xene sheets [46, 47].
A theoretical study of two-dimensional quantum dots with the shape of a re-
gular polygon where the number of sides has varied from three (triangle) to
infinity (circle) has been reported by Popescu and coauthors [48]. They used
the finite element method to calculate the energies and probability densities for
an electron confined in the quantum system. Among their findings, they report
that no matter the shape, any regular polygonal quantum dot with more than
four sides and a given area has just the same quantitative optoelectronic pro-
perties. Additionally, they found that at the nanoscale, the shape may not be
as important as the size is.
Efforts to develop cheap and efficient schemes for the electron states’ numerical
solution in wire-shaped nanosystems have continued throughout the years. A 3D
finite-difference time-domain simulation was recently used to solve the problem
in cylindrical QWs [49]. Bearing all this in mind, we are interested in bringing a
new vision to the subject by solving the SCSP problem in quantum wires with
the help of finite-element approach. We shall explore the influence of the QW
cross-section shape by considering the circle, square, triangle, and pentagon
geometries. We aim at discussing the features of confined state energies and
electron density in the system. We are also widely motivated to extend the work
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of Popescu et al. [48] to analyze to what extent the shape of the QW boundary
(which is controlled by the number of sides of the regular polygon corresponding
to its cross-section) can or not be relevant compared to other characteristics of
the system such as the cross-sectional area, the density of donors with which
the system is doped, and the temperature. In this work, using the effective
mass approximation, we study an electron confined in a GaAs QW of infinite
length and infinite confinement potential added to an electrostatic potential at
the boundary. These two potentials are associated with QWs surrounded by a
vacuum or by a matrix with an energy gap greater than that corresponding to
the QW one. We report the energy levels in each of the structures with different
cross-sections as a function of the transversal area, the doping donor density,
and the temperature. We analyze the oscillations that appear in electron density
at low temperatures and discuss the contribution made by each of the confined
electron states to such oscillations. The chapter is organized as follows—Section
4.2 presents the theoretical framework of the simulation. In Section 4.3 we show
and discuss the results obtained, whilst Section 4.4 is devoted to the conclusions
of the work.

4.2. Theoretical Framework

The system of interest corresponds to a GaAs QW with a so-called exposed la-
teral surface. Under this condition, the model has a core-shell structure, where
the core constitutes the wire region and the shell would be the surface of the
semiconductor. The electronic properties are studied for this system with four
different cross-section geometries. In Figure 4-1 are depicted the four structures
considered in this work and are defined the coordinate axis, the surrounding
material, and the radius of the cylindrical wire case. The wire length is large
enough such that a wire with infinite length along the z-axis is a good appro-
ximation. Due to the vacuum surrounding matrix, the confinement potential
is zero inside the wire region and infinite elsewhere. Having the system with
exposed borders is a characteristic of fundamental importance in the numerical
approach since the boundary conditions are established for the potential V (Ω),
where Ω represents, in each case, the boundary. This function V establishes the
form of the confinement potential.
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Figure 4-1.: Pictorial view of the GaAs quantum well wire studied in this
work. In (a) are depicted the four considered structures. In (b)
are defined the coordinate axis, the R0-radius for the cylindrical
case, and the vacuum surrounding matrix. The wire length is
large enough such that a wire with infinite length along the z-
axis is a good approximation. Due to the vacuum surrounding
matrix, the confinement potential is zero inside the wire region
and infinite elsewhere.

In the GaAs quantum wire with the exposed surface, a depletion region is
generated at the bottom of the conduction band, which allows the appearance
of empty states above the Fermi level; these are surface states that cause a
charge transfer from bulk energy states to surface energy states. Consequently,
a phenomenon known as “Fermi level Pinning” is present [50]. That is, the Fermi
level is kept fixed to a characteristic value within the bandgap of the system,
and this value is independent of the density of donors or acceptors. For GaAs,
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it is normally used the value on the surface which corresponds to half of the
energy bandgap. So, defining the Fermi level as EF , then the potential at the
frontier for each structure will be V ∗(Ω)− EF = 0.7 eV [35].
The Schrödinger-Poisson Equation multiphysics interface, available in the COM-
SOL Multiphysics version 5.4 [51–53], creates a bidirectional coupling between
the electrostatics interface and the Schrödinger Equation interface to model
charge carriers in quantum-confined systems. The electric potential from the
electrostatics contributes to the potential energy term in the Schrödinger equa-
tion. A statistically weighted sum of the probability densities from the energy
eigenvalues of the Schrödinger equation contributes to the space charge density
in the electrostatics. All spatial dimensions (1D, 1D axial symmetry, 2D, 2D
axial symmetry, and 3D) are supported.
In the numerical procedure, it is required to solve coupled SP differential equa-
tions in a self-consistent way to obtain the potential profile and electron density
for each of the quantum wire systems and the corresponding wave functions
and energy eigenvalues [32]. Here, we use the effective mass approximation and
choose the finite element method (FEM) to perform the SCSP calculation. It
is worth mentioning here that this is the typical SC scheme of working wit-
hin a single-band or multiband ~k · ~p environment in semiconductor physics.
However, there are very recent reports on the adaptation of density functional
theory which is, intrinsically, self-consistent to deal with nanowire-type systems
or with nanotubes; thus opening a way to a powerful, although more compu-
tationally demanding, microscopic calculation tool for this particular kind of
systems [46, 47].
Following [54], we select the electron gas density given by the Thomas-Fermi
approximation as the starting point for the method. This quantity will enter
the Poisson equation to contribute to the system’s charge density along with
donor concentration Nd (assumed to be fully ionized) within the QW core. We
have

n(x, y, T ) = NC F1/2

(
EF − V ∗(x, y, T )

kBT

)
, (4-1)

where NC = (2m∗kBT/π~2)3/2/4 is the effective density of states, V ∗(x, y, T )

is the electronic potential generated by the Fermi level Pinning on the exposed
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lateral surface, the level of doping and the lateral dimensions of the system, m∗

is the electron effective mass, and F1/2(x) is the Fermi-Dirac integral given by

F1/2(ξ) =
1

Γ(3/2)

∫ ∞
0

β1/2

eβ−ξ + 1
dβ . (4-2)

In this equation, Γ is the Gamma function and in this case ξ = (EF −
V ∗(x, y, T ))/kBT , where kB is the Boltzmann constant and T is the temperatu-
re. The potential energy of the electron is given by V ∗(x, y, T ) = −e φ(x, y, T ),
where φ(x, y, T ) is the Hartree potential. Then, the associated Poisson equation
is:

∇2φ(x, y, T ) = − 1

ε0 εr
ρ(x, y, T ) , (4-3)

where ρ(x, y, T ) = e [Nd − n(x, y, T )] is the charge density, e is the electron
charge, and εr and ε0 are the GaAs relative permittivity and vacuum per-
mittivity, respectively. This equation must be solved taking into account the
boundary conditions imposed by the Fermi level pinning, which for GaAs takes
the form φ(Ω) = −(EF + 0.7eV)/e.
The potential, φ(x, y, T ), obtained through Equation (4-1) must contribute to
the potential energy term in the Schrödinger equation as −e φ(x, y, T ). On the
other hand, the electrons are assumed to be totally confined within the volume
of the QW and, therefore, it must be satisfied that for the Ψ-electron wave
function the condition Ψ(Ω) = 0 must be satisfied. Under these considerations,
the Schrödinger equation for the confined electron in the QW reads

− ~2

2m∗
∇2Ψ(~r) + (V − e φ(x, y, T ))Ψ(~r) = EΨ(~r), (4-4)

where V is the confinement potential of the structure. Considering the infinite
length along the z-axis, the 3D wave function of the system can be written as

Ψ(~r) = eikzz ψ(x, y) . (4-5)

By using Equation (4-5) in Equation (4-4), we obtain the following 2D diffe-
rential equation

− ~2

2m∗
∇2ψ(x, y) + (V − e φ(x, y, T ))ψ(x, y) = E0 ψ(x, y) , (4-6)
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where E = ~2 k2z
2m∗ + E0.

As the electrons must be confined to the interior of the quantum wire, therefore,
to solve this equation, it is necessary to impose the boundary condition ψ(Ω) =

0. Solving the last equation, we shall find the first set of self-functions ψi and
self-energies E0,i for the system. With these elements at hand, it is possible to
calculate the electron density associated with the occupation of each of these
states:

η(x, y, T ) =
∑
i=1

Ni F−1/2

(
EF − E0,i

kBT

)
|ψi(x, y)|2 , (4-7)

where Ni = gi
3
√

4NC , EF is the Fermi energy and gi is the degeneracy factor.
This equation represents the density of electron gas in a (x, y)-point at a tem-
perature T . It can also be understood as the summation of the probability of
finding the electron in the point (x, y) inside the quantum wire in each determi-
ned state ψi with energy E0,i. From the electron density calculated in Equation
(4-7), a new profile for the charge density of the system is obtained:

ρnew(x, y, T ) = e[Nd − η(x, y, T )] . (4-8)

By solving the Poisson Equation (4-3) and using the corresponding charge den-
sity profile, a new Hartree potential φnew(x, y, T ) is obtained that will -again-
contribute to the potential energy term in the Schrödinger equation. Then,
via the solution of Equation (4-6), with this consideration, we obtain a new
set of eigenfunctions and eigenvalues for the system ψnewi , Enew

0,i . This set will
be associated with a new electron density profile ηnew relative to each sta-
te of the system’s occupation. In this way, the process is repeated iteratively
until the absolute value of the difference between potential terms correspon-
ding to two successive self-consistent steps is smaller than a certain tolerance
|U − Uold| < 10−6 eV, where U = V − e φ(x, y, T ). At this point, the system
has reached self-consistency, finally obtaining a set of eigenstates, eigenvalues,
a definitive form for the potential profile of the system, and the SC electro-
nic densities.
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4.3. Results and Discussion

For all calculations, the following parameters have been set—effective mass of
electron in GaAs m∗ = 0.067m0 (where m0 is the mass of the free electron)
and dielectric constant εr = 12.9. All the equations have been solved through
the finite element method with the COMSOL-Multiphysics licensed software
(5.4, COMSOL AB, Stockholm, Sweden.) [51–53]. The used typical numerical
parameters are inner mesh with triangular-shaped elements, 6550 elements, 160
edge elements, 3356 mesh vertices, 40 as the maximum number of iterations of
the self-consistent method, and 10−6 as the absolute tolerance.

Figure 4-2 shows the plots of the first five QW confined state wave functions
in each of the four configurations studied, from top to bottom—circle, square,
triangle and pentagon. It should be noted that the cross-sectional area for all
considered QWs has been kept the same. The cross-sectional area of all struc-
tures are set to be equal to π R2

0 (the area of the circular QW with R0 radius).
The electron density Nd has been fixed as 3 × 1019 cm−3 for all cases. For all
considered structures, the ψ1 and ψ2 states are doubly degenerated. The states
ψ3 and ψ4 are degenerate only for circular and pentagon QW. The states’ se-
quence of degeneration in the structures shown is as follows—(1, 2, 1, 2, 2) for
the square and triangle and (1, 2, 2, 1, 2) for the circle and pentagon. The color
scale in each figure goes from blue, which corresponds to the wave function’s
negative values, to dark red, which represents positive values of the wave fun-
ction. The yellow color indicates the points at which the wave function is zero.
The first column on the left corresponds to the ground state ψ0 for each system.
There, it is possible to notice the s-type character that this state acquires for
all studied configurations, as detailed by the next paragraph. Additionally, it is
emphasized that the electrons in the wire with the triangular section are more
confined towards the symmetry axis than in the other structures. The first and
second excited states, ψ1 and ψ2, are presented on the second and third columns
from left to the right. Note that these states have a p-type character. Finally,
in the rightmost two columns, the third and fourth excited states, ψ3 and ψ4,
are shown for each configuration. These states show a d-type behavior, as can
be noticed from their projections.
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Figure 4-2.: First five wave functions for a confined electron in GaAs quan-
tum wires. The rows from top to bottom are for circle, square,
triangle, and pentagon, respectively. The left−hand side column
corresponds to the ground state; the next four columns from left
to right are for each system’s first four excited states. For all
figures, the cross−sectional areas are the same.

The xy-cross-sections of the electron wave functions exhibit particular sym-
metries that we refer to by partial analogy with electronic orbitals in atoms.
For all types of wire, the ground level orbital is the s-like orbital, which means
a single central extreme (sharp orbital) of the wave function in the xy-plane,
corresponding to the symmetry center of the wire cross-section. There is only
the central lobe (positive amplitude) and no angular nodal surface (zero ampli-
tude) for the s-like orbitals. The second energy level (second and third column)
is double degenerate in all types of wire. The two orthogonal wave functions
corresponding to this energy have two extremes each (principal orbitals), the-
refore being denoted as p-like orbitals. They both have one lobe of positive
amplitude and one lobe of negative amplitude, separated by an angular nodal
surface perpendicular to the xy-plane. The angular nodal surfaces of the two
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different p-like orbitals are orthogonal.
Figure 4-3 shows the self-consistent confinement potential for each of the struc-
tures. In the calculation, the circular QW radius has been taken equal to 50 nm,
which fixes the cross-sectional area of all the other systems. Keeping the color
code in which red indicates the most significant values shows that the potential
becomes higher at the boundary regions, which favors electronic confinement in
the core regions within the QW. Electrons feel a similar potential near the sym-
metry axis of each structure. The change is noticeable mostly near the border
of the QW where the potential presents a less smooth behavior.

Figure 4-3.: Self−consistent confining potentials for the different GaAs quan-
tum wire geometries investigated: circle (a), square (b), triangle
(c), and pentagon (d). Calculations are with Nd = 3× 1019 cm−3

and T = 10K.
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Figure 4-4 shows the electron density η(x) (with y = 0) for each structure,
normalized to the doping value Nd = 3 × 1019 cm−3. It has been calculated
along the arrow indicated in the inset at the bottom of each figure. Accordingly,
a higher concentration is evidenced in the core region or near the symmetry axis
of each QW. This feature was expected, given that—as seen from Figure 4-3—
the confining potential is low around this zone. The results plotted in Figure 4-4
are for T = 10K. In these systems, with exposed borders, at low temperatures,
Friedel-like spatial oscillations of the carrier density appear [55]. These can be
viewed as irregularities in the density profile, especially around the central zone
of the QW. These oscillations could be explained by the presence of subbands
associated to surface states and by how the electrons populate each of them.
They can be caused by the electronic occupation of the oscillation-related lower
states closer to the center of the QW, while the higher occupied states can also
contribute to a lesser extent. One may observe that very fast decrease of the
electron density occurs in regions close to each system’s boundary, while in
regions close to x = 0 a maximum value is reached. However, η(x)/Nd does not
reach 1.0 in any system. This is evidence of the charge transfer from inner states
(the core) to surface states since the complete system must remain neutral.
These states are the ones that contribute to the Fermi level pinning.
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Figure 4-4.: Normalized electron density functions for each investigated GaAs
quantum wire structure as a function of the x−coordinate (see
the red arrow in the inset in each figure) for T = 10K and Nd =

3 × 1019 cm−3. For all figures the cross−sectional area has been
set at A = 2500π nm2.
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Figure 4-5 presents the ground state energy variation for the four studied GaAs
QWs as a function of R0. In this figure, the donor density has been taken as
Nd = 2×1018 cm−3, the temperature is T = 10K, and the Fermi level is EF = 0.
As long as R0 increases for all structures, a clear decreasing behavior of the
ground state is evidenced [56, 57]. This decrement is more abrupt for the circular
system, and it is less so for the triangular one. To explain this fall in energy,
we must notice that, due to the increase in R0, the cross-section area of all the
QWs augments leads to a reduction of the electronic confinement, a redshift
in the eigenvalues takes place. For R0 = 10 nm, the ground state energy is
very similar in all structures, taking a value around 0.67 eV. Something alike
occurs for R0 = 50nm where the energy decreases to approximately −0.075 eV.
For intermediate values, a separation between the states corresponding to each
structure is clearly noted, this separation being greater for R0 = 30 nm. This
fact appears in the inset, where the difference between the ground state of the
triangular and circular GaAs QWs is shown. It reaches a maximum value of
approximately 130meV. The ground state’s behavior for the circular, square,
and pentagonal systems is very similar, and the largest differences appear for
the triangular system.
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Figure 4-5.: Ground state energy for each GaAs quantum wire structure as a
function of the R0 parameter. The inset shows the energy diffe-
rence between the triangular and circular wires. Calculations are
for Nd = 2× 1018 cm−3, T = 10K, and EF = 0.

Figure 4-6 shows the first excited state energy for the four GaAs QWs as a
function of the R0 under the same conditions as for Figure 4-5. We can see
that a clear decreasing trend is evidenced as R0 increases. The first excited
state of the four systems presents an energy of 0.69 eV at R0 = 10 nm which
decreases to −0.06 eV when R0 = 50nm. Quantitatively, this first excited is
very similar for the circular, square, and pentagonal QWs. The main difference
appears with the triangular system, which has higher energy. This behavior
is evidenced in the inset where the circular and triangular systems’ energy
difference is presented. As in Figure 4-5, a maximum difference is noted for
R0 = 30nm.
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Figure 4-6.: First excited state energy for each GaAs quantum wire structure
as a function of R0. The inset shows the energy difference between
the triangular and circular wires. Calculations are for Nd = 2 ×
1018 cm−3, T = 10K, and EF = 0.

In Figure 4-7, the first two energy states are shown for each of the systems—
circular (a), square (b), triangular (c), and pentagonal (d)—plotted as functions
of the R0 parameter. For R0 < 25nm the systems show an approximately pa-
rabolic decrease in energy. Then, for 25nm< R0 < 35nm this decrease displays
an approximately linear behavior and for R0 > 35nm the decrease becomes
approximately exponential. There is a degeneracy of order two for all systems
concerning the first excited state (this generation is indicated by label 2 in each
figure).
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Figure 4-7.: First two energy levels for a confined electron in a GaAs quantum
wire as a function of the R0 parameter. The label 2 indicates that
the first excited state is doubly degenerated. Calculations are for
Nd = 2× 1018 cm−3, T = 10K, and EF = 0.
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Figure 4-8 shows the energy difference between the first excited state and the
ground state for each of the four GaAs QW structures as a function of the R0

parameter. In this case, the donor density and temperature have been kept fixed
at Nd = 2×1018 cm−3 and T = 10K, respectively. An increase in the separation
between these two states is evidenced as R0 augments within the range between
10nm and 17nm, going from an average value of 28meV to around 38meV,
for all structures. In this range, it is also noted that the separation between levels
in the cases of square and pentagonal geometry presents a very similar behavior.
The curves show a linear and parallel tendency. The greatest separation of
E1−E0 appears from the comparison between the circular and triangular QWs,
followed by that involving the pentagonal and triangular wires. Within the
range 17nm < R0 < 30nm, the separation between the levels does not show
significant growth, maintaining an average value of about 38meV. In this region,
the curves show a kind of oscillatory behavior, presenting a close approach
between the circular, square and triangular QWs for a value of R0 ∼ 23.5nm.
Then, for values R0 > 30nm, these energy values keep getting closer until
reaching a difference of 8.8meV approximately at R0 = 50nm for circular
and pentagonal QWs and of 10meV and 12.3meV for wires with square and
triangular sections, respectively. Note the similar behavior shown by the curves
corresponding to the circular and pentagonal QW for values of R0 greater than
35nm. This is explained as a consequence of the fact that electrons, for a
large QW cross-section, do not feel the edge effects in the system. This fact
can be analyzed in conjunction with the results presented in Figure 4-4, which
show that the electron density is practically concentrated at the center of the
structure, and the pentagonal profile is closer to the circular one. The opposite
occurs with the square and triangular systems, for which the profile electron
density is changed in greater extent due to the shape of system boundaries.
In the region, R0 < 17nm, a greater separation between the curves occurs again
for the circular and triangular QWs. But now, the curves have been inverted,
being higher than that of the triangular QW.
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Figure 4-8.: Energy difference between the first excited state and the ground
state for each GaAs quantum wire as a function of the R0 pa-
rameter. Calculations are with Nd = 2 × 1018 cm−3, T = 10K,
and EF = 0.

In previous figures, the electronic energies in each system have been plotted
as functions of R0, keeping the doping fixed at Nd = 2 × 1018 cm−3 and the
temperature at T = 10K. Next, the variation of the energies will be studied
while allowing variations of the Nd parameter and keeping fixed the dimensions
of the QWs and the temperature. At this point, it must be remembered that
the system under study is a QW with exposed boundaries. Thus, an immediate
consequence is the Fermi level pinning due to the transfer of charge towards sur-
face states. These states’ appearance is transcendental since it fixes the surface
potential and the Fermi level independently of the donor density in the system.
Figure 4-9 shows the ground state energy for each of the GaAs QW systems
as a function of the donor density, Nd. The remaining system parameters have
been fixed at R0 = 30nm and T = 10K. Note that for Nd < 5 × 1018 cm−3,
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there is practically no difference in electron energy when comparing results for
the four distinct cross-section geometries. This fact can be more clearly noticed
by seeing the upper inset, in which the energy difference between the ground
state of the triangular and circular QWs is presented. One may observe that the
difference between state energies is of the order of 4meV when Nd → 0. On the
other hand, when Nd = 5×1018 cm−3, this difference reaches a maximum value
of 18.7meV to subsequently show an approximately constant decrease around
7.5meV. Note the type of linear decrease that occurs forNd > 12×1018 cm−3 for
all structures. In general, the ground state shows a decrease from 0.69meV for
Nd = 0 to approximately −0.5meV, independently of the QW shape. The lower
inset is a magnification of the curves, where the very close behavior for circular,
square and pentagonal QW structures is again obvious, with the state of the
triangular system presenting a more noticeable separation.
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Figure 4-9.: Ground state energy for each GaAs quantum wire structure as a
function of the Nd parameter. The inset shows the energy diffe-
rence between the triangular and circular wires. Calculations are
for R0 = 30nm and T = 10K.
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Figure 4-10 presents the first two electronic states for each of the GaAs QW
systems as a function of the donor density, Nd. The temperature has been
kept fixed at T = 10K and the geometric R0 parameter at 30nm. For all
the structures, a decreasing behavior is observed with the increase in Nd, this
decrease being approximately linear for values Nd > 1019 cm−3. It should be
noted that there is a degeneracy of the second degree in the case of the first
excited state for all systems. Just to quantify the fall in energy levels, for the
circular system it goes from 0.7 eV for Nd = 1016 cm−3 to −0.5 eV for Nd =

3× 1019 cm−3 in the case of the first excited state.
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Figure 4-10.: First two states of each GaAs quantum wire system as a function
of the Nd parameter. The label 2 in each figure indicates that
the first excited state is doubly degenerated. Calculations are
for R0 = 30nm and T = 10K.

We are presenting in Figure 4-11 the difference between the first excited sta-
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te energy and the ground state energy for all considered GaAs QW systems,
depicted as a function of the electron density, Nd. The same parameters as
in Figure 4-10 have been kept fixed. A monotonically decreasing behavior is
immediately evident for all curves. In the same way it should be noted that
the maximum separation between these two levels takes place in the particular
case of the QW with triangular cross-section, reaching a maximum value of
approximately 32.2meV at Nd = 5 × 1018 cm−3, and decreasing to 18meV at
Nd = 3 × 1019 cm−3. In order of separation between these two levels, the next
structure is the square-shaped QW which goes from 27.2meV to 15.7meV in
the same range of Nd. Here, a particular behavior is present for circular and
pentagonal QWs. Actually, they present exactly the same separation between
these two lowest levels for Nd = 5 × 1018 cm−3, taking a value of 24.7meV.
However, as Nd is increased, an appreciable difference is reached between these
two kinds of QWs, the circular one taking a slightly higher value. This behavior
is maintained with the increase in Nd.
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Figure 4-11.: Energy difference between the first excited state and the ground
state for each GaAs quantum wire system as a function of the
Nd parameter. Calculations are for R0 = 30nm and T = 10K.

The variation of the lowest six energy levels for the four GaAs QW systems as
a function of temperature is shown in Figure 4-12. For this case, R0 has been
fixed at 50nm and Nd = 2×1018 cm−3. The number that appears next to some
states indicates their degree of degeneracy. Note the similar behavior of the
energy degeneracy for the circular and pentagonal QWs (also for the triangular
and square QW). This was expected, bearing in mind the results obtained in
Figures 4-9 and 4-11. It should be noted that the highest value of the ground
state energy happens for the triangular QW system, taking a minimum value
of −72.9meV at T = 10K and a maximum of −65.3meV at T = 290K. Note
that all states show an increasing trend with rising temperatures. This fact is
a consequence of the stronger confinement at high temperatures.
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Figure 4-12.: The first six energy levels of each GaAs quantum wire system
as a function of temperature. The labels 1 and 2 indicate the
degree of degeneracy. Calculations are for R0 = 50nm and Nd =

2× 1018 cm−3.
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Figure 4-13 shows the difference between the first excited state energy and
the ground state energy as a function of temperature for the four QW types
analyzed. The other parameters have been kept fixed in a similar way as in
Figure 4-12. The highest separation is given for the triangular system, and goes
from 12.3meV at T = 10K to 13.1meV at T = 290K. It is followed by
the square QW which, for the same temperature range, goes from 9.9meV
to 10.5meV. Finally, as in the previous figures, again the most similar behavior
is exhibited by the curves of circular and pentagonal system. This was seen in
Figure 4-12 with the similar behavior that the first two levels followed in both
structures. However, this similarity is not present in the case of higher states.
The minimum separation between the levels is given for pentagonal-shaped
QW, which, in the same range of temperatures studied, goes from 8.6meV to
9.2meV. Note the increasing character of all the curves with temperature.
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Figure 4-13.: Energy difference between the first excited state energy and the
ground state energy for each GaAs quantum wire system as a
function of temperature. Calculations are for R0 = 50nm and
Nd = 2× 1018 cm−3.

The results for the electron density profile given by Equation (4-7) are presented
in Figure 4-14 for the circular QW at a temperature of T = 10K and R0 =

50nm. Figure 4-14a shows the total density (black curve). The dashed vertical
lines indicate the local maxima that appear as oscillations in points (1), (2),
and (3). The contributions coming from the different electron states in these
points appear in Table 4-1. The first number in parentheses corresponds to
the azimuthal quantum number (m) and the second to the radial quantum
number (l). Note that in the case of the circular quantum wire, and due to its
axial symmetry, the ψi(x, y) wave function in Equation (4-6) can be written as
ψi(x, y) = fl(ρ) exp(imφ), where m = 0,±1,±2, ... is the azimuthal quantum
number, l = 1, 2, 3, ... is the radial quantum number, and ρ =

√
x2 + y2.

The percentage that appears next to each state in Table 4-1 corresponds to
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the contribution of each of them to the oscillation of the total density profile
at points (1), (2), and (3) in Figure 4-14, where the probability density has
been plotted for the states with a contribution greater than 15.0% for all peaks.
As seen from Figure 4-14a and Table 4-1, for the oscillation centered at x =

4.75nm, denoted by (1) in the figure, the highest contribution is due to the
ground state of the system, ψ0,1, with 23.0%, followed by the ψ0,2 and ψ1,2

states with 19.6% and 19.2%, respectively. The last significant contribution
is due to the ψ1,3 state with 16.0%. Meanwhile, the other states present a
contribution of less than 10.0% for this first oscillation in the electron density
profile. Accordingly, this particular oscillation is due mainly to the contribution
of the lower states of the system; note that states with m > 3 do not contribute
to the appearance of this oscillation. On the other hand, for the oscillation
centered at x = 12.25nm, denoted as (2) in the figure, the state that contributes
the most is ψ1,1 with 23.5%, followed by ψ2,1 with 16.3% and ψ2,2 with 12.1%.
The other states present contributions of the order of 10.0% and less. Note that
the lower states ψ0,1 and ψ0,2, that for the first oscillation contributed 42.6% to
the electron density, for this second oscillation only provide 10.9%. However,
the ψ1,1 and ψ2,1 states went from 9.7% in the first oscillation to 39.8% in
the second one. For the third oscillation at x = 20.5 nm, denoted by (3) in
the figure, being more tenuous, a rather equitable contribution is evidenced
between the states with the largestm quantum number. This contribution is on
average 13.26%, while the proportion from the lowest states is less than 7.0%.
An important conclusion here is that the oscillation generated in the density
profile near the central zone of the circular QW is due to the contribution
of the lower states of the system, while the second oscillation is caused by
intermediate occupied states and the final one—around 20nm—occurs due to
the highest occupied states. It should be mentioned that the empty spaces in
Table 4-1 correspond to states that do not contribute to the electron density
at that specific point. For example, the ψ0,3 state contributes to the oscillations
presented in points (1) and (2), but it does not contribute to the oscillation
generated in point (3). The curves plotted in Figure 4-14b correspond to the
electron density for the cylindrical QW, separating the individual contribution
of states with differentm-quantum number. This quantum number is kept fixed,
and the sum in the Equation (4-7) is made over the l-quantum number. It should
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be noted that, form > 6, there are no longer occupied states, and therefore they
do not contribute to the electron density. Figure 4-14c, together with the total
electron density (black curve), shows the sum over occupied states up to the
state m = i (the Σmi symbol represents the value of summation). Sums up to
the states that have m = 6—the highest occupied—are shown. Figure 4-14b,c
are evidence that the contribution to the first oscillation’s appearance at x =

4.75nm is mainly caused by electrons occupying the states with m ≤ 3. On the
other hand, for the outermost oscillations that are located at x = 12.25nm
and x = 20.5nm, the oscillations are caused by states with 4 < m < 6,
that correspond to the highest occupied states in the system. All this means
that electrons with lower state energies are located close to the center of the
structure’s symmetry, between 0 < x < 10nm; while electrons in higher energy
states mainly locate at intermediate regions, 10 < x < 35nm.
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Figure 4-14.: Electron density for circular GaAs quantum wire. In (a) the
|ψi(x, y = 0)|2 states that contribute with the highest percenta-
ge to the density profile in points denoted by (1), (2), and (3) to
the density profile. In (b), the contribution to the electron den-
sity for each quantum number m. In (c), the sum over the states
with equal m. Note that in the case of the circular quantum wi-
re, and due to its axial symmetry, the ψi(x, y) wave function
in Equation (4-6) can be written as ψi(x, y) = fl(ρ) exp(imφ),
where m = 0,±1,±2, ... is the azimuthal quantum number,
l = 1, 2, 3, ... is the radial quantum number, and ρ =

√
x2 + y2.

Calculations are for R0 = 50nm , Nd = 2 × 1018 cm−3, and
T = 10K.
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Table 4-1.: Contribution in percentage of each of the states to the oscillations
at points (1), (2) and (3) in the density profile presented in Figu-
re 4-14.

(m, l) P1 ( %) P2 ( %) P3 ( %)
(0,1) 23.0 10.2 1.5
(0,2) 19.6 0.7 6.5
(0,3) 8.6 5.5
(1,1) 8.8 23.5 7.4
(1,2) 19.2 4.3 12.1
(1,3) 16.0 1.8 0.2
(2,1) 0.9 16.3 12.0
(2,2) 3.4 12.1 7.0
(3,1) 0.2 8.4 14.9
(3,2) 0.3 10.6 2.0
(4,1) 3.5 15.0
(4,2) 1.5
(5,1) 1.3 12.3
(6,1) 0.3 6.9

Finally, Figure 4-15 shows the electron density as a function of the x-position
for the structures with square, triangle, and pentagon cross-section geometries.
It is equivalent to Figure 4-14a for the circular system. Each figure shows the
plot of the probability density of the states that contribute simultaneously to
the two oscillations in all the systems of Figure 4-15. That is, ψ0, ψ2, ψ5, ψ10,
and ψ14, as indicated in Table 4-2, where the percentage contribution of each
one to the electron density at the position determined by the dashed line (points
(1) and (2)) is also shown. States above ψ15 present a contribution much less
than 1.0% and therefore were not included in Table 4-2. In these structures,
we see again how the lower states provide a higher contribution to the elec-
tron density near the symmetry axis of the QW systems. Since these figures
have been calculated at low temperature (T = 10K), then the electrons will
be—to a greater extent—occupying the lowest states of each QW. The opposite
case occurs at points far from the symmetry axis of the structure, where we
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see a minimum contribution from the lowest states of the system and a hig-
her contribution—in percentage—from the highest occupied states. The x = 0

coordinate corresponds to the symmetry axis of each structure. Note the asym-
metry in the electron density profile concerning this point for the triangular
and pentagonal systems.
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Figure 4-15.: Electron density and |ψi(x, y = 0)|2 that contribute with the
highest percentage to the density profile in points (1) and (2).
Results are for square (a), triangle (b), and pentagon (c) QW.
Calculations are for R0 = 50nm , Nd = 2 × 1018 cm−3, and
T = 10K.



4.4 Conclusions 129

Table 4-2.: The first 16 states and their percentage contribution to the electron
density profile at points (1) and (2) of Figure 4-15.

Square Triangle Pentagon

ψn P1 ( %) P2 ( %) P1 ( %) P2 ( %) P1 ( %) P2 ( %)
ψ0 27.3 3.4 30.4 1.7 25.5 1.1
ψ1 0.4 0.1
ψ2 7.6 13.8 14.4 14.4 7.2 7.2
ψ3 14.2 19.5 7.4 3.3
ψ4 0.7 19.7 10.5 18.0
ψ5 24.6 6.6 0.6 0.6 16.9 17.2
ψ6 8.3 24.4
ψ7 2.8 10.8 2.3 2.1 7.0
ψ8 13.5 16.3
ψ9 3.4 2.1 10.2 13.8 24.6
ψ10 2.4 14.1 2.4 1.4 3.9 4.1
ψ11 0.4
ψ12 9.2 1.6 5.6 6.0
ψ13 1.9 0.8 6.7 4.8
ψ14 10.2 2.9 0.7 1.1 5.1 15.9
ψ15 1.8 8.3

4.4. Conclusions

Electronic properties such as wave functions, state energies, potentials and elec-
tron densities have been calculated in a self-consistent way, using the finite
element method, for GaAs quantum wire systems of different cross-section geo-
metry, taking into account variations in geometric parameters, such as cross-
sectional area and non-geometric parameters, such as the donor density and
the temperature. It has been shown that the increase in cross-section and/or
donor density in all structures generates a lesser degree of confinement by the
self-consistent potential and, therefore, a decrease in electronic energies. The op-
posite case occurs when the temperature is increased, for which there is an in-
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crease in the self-consistent potential profile, thus impacting on the increase of
energy eigenvalues for all systems. The system that presents the highest values
of the confined energy levels is the quantum wire with a triangular cross-section,
and the one with the lowest energies is the circular wire. At low temperatu-
res, all structures present irregularities in the electron density profile. These
Friedel-like oscillations are due to the degree of occupation of internal and sur-
face states (that arise from having the surface of the quantum wire exposed)
by conduction electrons. This new understanding of the quantum wires can
be extended without significant changes to the study of finite-length nanowires
with the most diverse geometries. Hence, we believe that the results and scheme
presented here can be of interest to researchers in the area.
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5. Study of Electronic and
Transport Properties in
Double Barrier Resonant
Tunneling Systems

Resonant tunneling devices are still under study today due to their multiple
applications in fields such as optoelectronics or logic circuits. In this work, we
review an out-of-equilibrium double-barrier resonant tunneling diode system,
including the effect of donor density and external potentials in a self-consistent
way. The calculation method uses the finite-element approach, as well as the
Landauer formalism. Quasi-stationary states, transmission probability, current
density, and conductance are discussed considering variations in the donor den-
sity and the width of the central well. Finally, a comparison of the simulation
with an experimental double barrier system based on InGaAs with AlAs ba-
rriers reported in the literature have been obtained.

5.1. Introduction

Resonant tunneling diodes (RTDs) are semiconductor devices that consist of a
system of two or more potential barriers that allow the transport of electrons
only for certain states known as resonant states. The operating mechanism is
fundamentally based on the tunneling effect of quantum mechanics. This ty-
pe of system is characterized by developing one or more negative differential
resistance (NDR) zones that are the fundamental peculiarity of RTDs that
enable them for various applications. These devices are experimentally deve-
loped in very thin layers which allows an ultra-fast operation speed, enabling
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them for applications even in the terahertz range [1–3]. The first investigations
in the field of resonant tunneling were carried out around 50 years ago, some
of these early developments have been included in the references [4–11]. These
studies have progressed continuously, characterizing RTDs both experimentally
and theoretically. To mention some of the most recent work in this area, the
following references are included [12–21].

Over the years, knowledge about the operation and physics behind this type
of semiconductor devices has expanded, thus allowing a numerous applications,
among which we can highlight: Wei and Shen’s work where a novel univer-
sal threshold logic gates (UTLG) based on RTD with simple structure and
fixed parameters are proposed, taking advantage of the characteristics of Ne-
gative Differential Resistance [22]. Jijun et al. analyzed the piezoelectric effects
in RTDs based on GaAs/InxGa1−xAs/AlAs for potential applications in mi-
cromachined mechanical sensors, obtaining as a result that the piezoresistive
sensitivity of RTDs can be adjusted through the bias voltage [23]. Due to their
particular NDR behavior, these systems are excellent candidates for applica-
tions to nanoelectronics, in this sense, Malindretos et al. grew a GaAs/AlAs
RTD by means of an epitaxy molecular beam, their results are satisfactory and
of good precision to fabricate RTDs suitable for application in robust digital
logic circuits [24]. Among all the applications of this type of system, it is worth
highlighting applications in detector devices that can filter in a varied range of
frequencies by simply modifying geometric or material parameters. To mention
such a device, Dong et al. [25] developed an RTD based on In0.53Ga0.47As for
detection in the 1550 nm range, they found that the detector responsivity is
nonconstant, it decreases with the increase of the power density of the incident
light, this provides the basis for optimizing the performance of the RTD.

Resonant tunneling systems go beyond double-barrier based systems, in 2020
Mehmet Bati studied the effects of an intense laser field on the properties of
resonant tunneling in a double-well structure parabolic reverse triple barrier
system implementing the method of finite differences combined with the Green
function formalism to calculate the transmission functions, obtaining as a con-
clusion that the increment of the well width causes the incident electron waves
to be localized. Consequently, the transmittance decreases, and the resonant
peak becomes small or disappear [26].
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In this problem, the Landauer approach has been chosen for the calculation of
conductance since it is a model that has a fairly broad theoretical development
and that has been studied in depth for more than 40 years, in 1981 Langreth
D.C. and Abrahams E. gave a rigorous derivation to the conductance formula
from the linear response theory (Kubo’s formula), giving a generalization to the
case of many-scattering-channel and found that only in very special circumstan-
ces can the currents in different channels are decoupled in such a way as to give
a simple conductance formula [27]. Six years later, S. Eränen and J. Sinkkonen
further generalized this formalism, studying the electrical current transport in
conductor-insulator-conductor structures, where the charge carriers are assu-
med to traverse the insulating layer by tunneling. They self-consistently solved
the coupled system of Poisson and Boltzmann equations, the latter giving the
form of temporary relaxation. An important conclusion of this work is that
the tunneling current density comes from the contribution of two effects: the
first is the ordinary contribution of the Landauer formula in the linear voltage
regime, and the second is a correction term originated by the screening of the
electric potential through the insulating layer. The contribution to the current
due to this screening term in most systems is negligible compared to the cu-
rrent generated by the effect of resonant tunneling. These results are detailed
in reference [28].

Apart from the effect of the charge redistribution caused by the ionized donors
and the external electric field applied to the contacts, it is possible to analyze the
effect of the electronic spin dependence on the transport properties in magnetic
RTD. The three combined effects generate an effective modification in the profile
associated with the bottom of the conduction band in the heterostructure that
finally causes modifications in the electronic transport properties. In the work
of Havu et al. [29] it was implemented the self-consistent spin-density-functional
theory method within the Wigner formalism with Green functions to analyze
the properties of electronic transport in a magnetic resonant tunneling diode
obtaining the electronic densities and potentials, studying the computational
cost that this requires.

Over the years, work continues to improve numerical techniques to make them
more efficient and extend theoretical developments in various physical situa-
tions. Taking advantage of the versatility in terms of materials and external
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parameters with which it is possible to develop RTDs, our main interest is
to develop a methodological approach to address these types of problems by
first solving the effect of charge redistribution and electron density in the sys-
tem out of equilibrium to obtain in this way the profile at the bottom of the
self-consistent conduction band. This will act as an input parameter for the
potential term in the Schrödinger equation considering open boundary condi-
tions in the effective mass approximation, this equation as well as the Poisson
equation are solved by means of the finite element method (FEM) to obtain
a set of quasi-stationary states and probabilities of electronic transmission in
the system, finally with these transmission functions the Landauer formalism
is implemented for the calculation of the density current and conductance. In
this study we report the self-consistent potentials, quasi-stationary electronic
states, tunneling currents, and conductances for different widths of the central
well and different donor densities, then a comparison is made between theore-
tical results of this procedure with recently reported experimental results. The
chapter is organized as follows—Section 5.2 and 5.2.1 presents the theoretical
framework of the simulation. In Section 5.3 we show and discuss the results ob-
tained, Section 5.3.1 includes a comparison with experimental results reported
in the literature, whilst Section 5.4 is devoted to the conclusions of the work.

5.2. Theoretical model

Our system corresponds to an RTD (Resonant Tunneling Diode), consisting
of a GaAs central region (Quantum Well) of length Lw surrounded by two
Al0.3Ga0.7As barriers with equal lengths Lb, then two aditional GaAs undoped
spacer with lengths Ls, the purpose of these layers is to prevent electronically
tunneling scattering effects due to impurities in the contact region. Finally, two
outer GaAs doped layers of length Ld. This is the central system that is contac-
ted with two electronic reservoirs or metal contacts on each side as presented
in Fig. 5-1. For this work, we consider a non-rectifying metal-semiconductor
junction, which consists of a negligible relative resistance of the contacts com-
pared to the resistance of the central device. In this case, it is considered that
mobility effects are due solely to the electronic movement in the conduction
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Figure 5-1.: Scheme of the resonant tunneling diode (RTD), with doping nd
in the outer regions, two Al0.3Ga0.7As barriers, a GaAs well and
two outer regions of the GaAs undoped with two metal contacts
in the external regions.

band.

The system has been solved through the finite element method with the COMSOL-
Multiphysics licensed software by (5.4, COMSOL AB, Stockholm, Sweden) [30–
32] implementing the semiconductor module ("Semiconductor Module User’s
GuideÇOMSOL Multiphysics R©) [33]. As a starting point, we must consider
the effect on the potential due to the donor density and electron density in the
system, this can be modeled by means of the Poisson equation,

~∇ · (ε0εr ~∇V (x)) = −ρ(x), (5-1)

in this equation, εr and ε0 are the relative permittivity and vacuum permittivity
respectively, and the charge density ρ(x) has the form

ρ(x) = −qe(n(x)−Nd), (5-2)

in this equation Nd is the number of donors which are considered to be fully
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ionized, and qe is the electronic charge. The electronic density has the form

n(x) = Ncγne
−β (Ec−EF ), (5-3)

in Eq. 5-3, Ec is the bottom of the conduction band which, due to the effect
of the redistribution of charges, is not a straight line but is a function that can
vary with position, EF is the quasi-Fermi level (for the system out of equili-
brium) associated with the conduction band. The term Nc = 2(m∗/ 2πβ~2)3/2

corresponds to the effective density of states, with m∗ the electron effective
mass, kB is the Boltzmann constant, ~ is the reduced Planck constant, and β
is the Boltzmann factor β = 1/kBT . In Eq. 5-3, the term γn is equal to

γn = F1/2 (β(EF − Ec)) e
β(Ec−EF ), (5-4)

where F1/2 is the Fermi-Dirac integral, kB is the Boltzmann constant and T

the system temperature. In the nondegenerate states limit, the Fermi-Dirac
distribution approaches the Maxwell-Boltzmann distribution and γn = 1. The
values of the electronic affinity qe χ = E0−Ec (E0 is the vacuum level) and the
band gap Eg = Ec − Ev, are input parameters associated with the properties
of the materials and necessary to establish the quasi-Fermi level as a reference
point during the calculations. The band energies in equations 5-3 and 5-4 are
related to the electrostatic potential V (x) , as follows [34, 35]:

Ec = −χ− qe V (x). (5-5)

The potential obtained in Eq. 5-5 can be replaced in the Schrödinger equation
to obtain the eigenfunctions and eigenvalues,

−~2~∇ ·

(
~∇ψi(~r)
2m∗

)
+ U(~r)ψi(~r) = Eiψi(~r), (5-6)

~ is the reduced Planck constant, U(~r) = Ec is the profile of the conduction
band obtained by solving the system of equations 5-1-5-5 in a self-consistent
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way, this includes the potential band offset and the effect of the redistribution of
charges due to doping. Ec is depicted in Fig. 5-2 for Lw = 4nm, Lb = 3nm, Ls
= 3nm, Ld = 12nm and nd = 1.2×1018 cm−3, the quasi-Fermi level calculated
for this configuration is EF = 0.026 eV as presented in Fig. 5-2 with the dashed
line. ψi is the system wave function corresponding to the eigenvalue Ei, the
subscript i names the quasi-stationary states generated inside the device central
quantum well region. The solutions of equation 5-6 for this system considering
open boundary conditions are plane waves,

ψi(~r) = A(~r)ei
~ki·~r +B(~r)e−i

~ki·~r. (5-7)

The functions A(~r) and B(~r) indicate that the amplitude of the wave that
propagates from left to right and from right to left depends directly on the
point in the system at which they are calculated and the full wave function is
a superposition of these waves, ki is the magnitude of the wave vector and is
given by ki = (2m∗(Ei − Ec)/~2)1/2.
Knowing the amplitude of the wave function in all regions, it is possible to
calculate the transmission function T (E) through the device by,

T (E) =
|A(~rf)|2

|A(~ri)|2
, (5-8)

where A(~ri) represents the amplitude of the wave that propagates from left to
right evaluated at the emitter (amplitude of the incident wave) and A(~rf) is
the amplitude of a wave that propagates from left to right but evaluated in the
collector (amplitude of the transmitted wave). This function is proportional to
the probability of electronic tunneling through the double barrier system.

Current-voltage characteristics of this device can be calculated using the Lan-
dauer formula which gives the electronic tunneling current between the contacts,

I =
e

π~

∫ ∞
−∞

T (E) [Fem(E,Φ)−Fcol(E,Φ)] dE, (5-9)

in this equation e is the electron charge and ~ is the reduced Plank constant, the
terms Fem(E,Φ) and Fcol(E,Φ) correspond to the Fermi functions evaluated at
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Figure 5-2.: Conduction band profile. The dashed line correspond to the
quasi-Fermi Level. The calculations are for Lw = 4 nm, Lb =

3nm, Ls = 3nm, Ld = 12nm and nd = 1.2× 1018 cm−3.
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the emitter and collector respectively, given by Fem(E,Φ) = (1+e(E−EF )/kBT )−1

and Fcol(E,Φ) = (1+e(E−(EF−Φ))/kBT )−1 , where the term Φ is the bias voltage
applied between both terminals of the device.
At the zero bias limit (at low temperature) the Fermi functions take the form
of Heaviside functions and the Eq. 5-9 reduces to the well known Landauer
equation for conductance [36],

G =
e2

π~
T (E), (5-10)

the term T (E) represents the transmission function between the contacts, that,
in this case, correspond to the two terminals of the device (emitter and collec-
tor).

5.2.1. A device macroscopically large in the transverse
directions

In most of these types of devices, it is reasonable to consider that the struc-
ture growth direction is very small compared to the transverse directions of
this. Considering this statement, the electronic energy associated with their
transverse directions is given by,

εy,z =
~2

2m∗
(k2
z + k2

y). (5-11)

With this expression, it is possible to calculate the electronic distribution, de-
pending only on the device growth direction, obtaining,

F(E) = S
m∗

βπ~2
ln
(

1 + eβ(EF−E)
)
, (5-12)

where S is the cross-sectional area of the device and β = 1/kBT , with kB
the Boltzmann constant and T the device temperature. This expression is pro-
portional to the number of electrons with energy E. With these results, it is
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possible to calculate the total current density through the device J = I/S,
using equation 5-9,

J =
em∗

2βπ2~3

∫ ∞
0

T (E) ln

(
1 + eβ(EF−E)

1 + eβ(EF−E−Φ)

)
dE. (5-13)

By means of this equation it is possible to calculate the current-voltage charac-
teristics through the device, considering variations in electronic concentration
and temperature.

In this type of systems, the electronic transport process is ballistic, that is, there
are no dispersion mechanisms within the device, however, the current does not
reach infinite values due to the electron reflection probability is different from
zero that acts as a resistance to the passage of charge carriers through the
system [37].

In Fig. 5-3 we can see the profile of the conduction band as well as the pro-
bability density that corresponds to the only quasi-stationary level within the
central region, It is noteworthy that the energy corresponding to this level has
an imaginary part as it is expected for this type of confinement in which the
electrons do not remain indefinitely inside the well, but they may eventually
come out through tunneling through the walls of AlGaAs after a certain half-
life that is proportional to the width of the transmission function peak as will
be seen later. Since the state presented in this figure corresponds to the quasi-
stationary state of the central region (that is, the free electrons have exactly
the same energy as the state inside the well), then it corresponds to a state
of maximum tunneling probability and therefore the wave function amplitude
is not affected after the electrons cross the two barriers. For any other free
electron energies in the emitter region, a decrease in the amplitude of the wave
function occurs, which implies a decrease in the probability of transmission.
The red dashed curve corresponds to the quasi-stationary state with energy E0

= 0.147 eV, this is precisely the energy for which there must be a maximum
electron tunneling incident from the emitter.



5.2 Theoretical model 147

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

en
er

gy
 (e

V)

x (nm)

 V(x)
 EF

 | 0(x)|2

 E0

Figure 5-3.: Potential energy for the system in equilibrium (bias voltage 0.0
V), the blue curve corresponds to the probability density of the
resonant state and the red dashed curve is the energy for this
state E0. The quasi-Fermi level is also presented with the blue
dashed curve. The calculations are for Lw = 4 nm, Lb = 3 nm,
Ls = 3nm, Ld = 12nm and nd = 1.2× 1018 cm−3.



148
5 Study of Electronic and Transport Properties in Double Barrier Resonant

Tunneling Systems

5.3. Results and discussion

For the transmission calculation except the conductance, the following input
parameters have been used [38, 39] at 300K, for GaAs: electron effective mass
m∗ = 0.067m0 (where m0 is the mass of the free electron), dielectric cons-
tant εr = 12.9, band gap 1.42 eV, and electronic affinity χ = 4.07 eV. For
Al0.3Ga0.7As: electron effective mass m∗ = 0.0879m0, dielectric constant εr =

12.048, band gap 1.81 eV, and electronic affinity χ = 3.74 eV. For the conduc-
tance calculations at 5K, the following parameters have been used, for GaAs:
electron effective massm∗ = 0.0665m0, dielectric constant εr = 12.4, and band
gap 1.52 eV. For Al0.3Ga0.7As: electron effective mass m∗ = 0.0916m0, dielec-
tric constant εr = 11.56, and band gap 1.95 eV. All the equations have been
solved through the finite element method considering the following parame-
ters: 538 elements, 538 edge elements, 0.5149 element length radius, 400 as the
maximum number of iterations of the self-consistent method, and 10−6 as the
absolute tolerance. Figure 5-4 shows the self-consistent potential profile and
the way in which it changes as well as the resonant state probability density
as the potential difference between the emitter and the collector increases. The
clear redshift of the resonant level must be highlighted, as well as the decrease
in the electronic probability density inside the quantum well, mainly due to the
electric field effect. For voltages higher than 0.4V, the resonant state is very clo-
se to the bottom of the conduction band at the emitter and therefore, from this
limit, it no longer contributes to the transport properties in the system. From
Fig. 5-4(d), it is possible to notice that, for high voltages, there will no longer
exist in the system electronic current due to resonant tunneling, the incident
electrons do not have a state inside the well to tunnel and therefore, their pro-
bability of passing to the collector must be significantly decreased, this occurs
until reaching a certain limit voltage from which the electrons will have two
possibilities, perform resonant tunneling with a higher state of the system or
perform non-resonant tunneling, this depends on both geometric characteristics
and the materials involved in the system.

In Fig. 5-5 we see the transmission probability for different voltage values,
as indicated by the arrow, the voltage varies from 0.0V to 0.6V, Fig. 5-5(a)
corresponds to a doping nd = 1.2×1018 [1/cm3], while in 5-5(b) it is nd =
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Figure 5-4.: Potential energy change with bias voltage from 0.0 V to 0.4 V, the
blue curve correspond to the resonant state probability density
and the red curve is the energy for this state E0. The quasi-Fermi
level is also presented by the dark blue dashed line for emitter
and collector. The calculations are for Lw = 4 nm, Lb = 3 nm,
Ls = 3nm, Ld = 12nm and nd = 1.2× 1018 cm−3.

10×1018 [1/cm3]. The red curve is for a 10 nm QW and the black one is 4 nm.
As indicated in Fig. 5-5(b), the quasi-Fermi level at the emitter (shaded region)
presents a higher value for the system that has a higher doping, which means
that there are a greater number of occupied states in the conduction band that
can contribute to current through the device, in Fig 5-5(a) the quasi-Fermi
level at the emitter takes the value of EF = 0.026 eV, while in Fig. 5-5(b) it
is of EF = 0.081 eV. For zero voltage, the system with Lw = 4nm presents a
single resonant level in 0.147 eV, while for Lw = 10nm there are two resonant
peaks in 0.083 eV and 0.179 eV respectively, where the one closest to the bottom
of the band has a medium amplitude lower than the peak of the highest quasi-
steady state, this characteristic in the amplitudes of the peaks is maintained
approximately independent of the applied voltage. As the voltage is increased,
as mentioned in Fig. 5-4, there is a redshift of the levels inside the well and at
the same time a decrease in the transmission amplitude, this behavior is clearly
evidenced in the Fig. 5-5(a) and 5-5(b). In Fig. 5-5(b), where the system
presents higher doping, for Lw = 4 nm now presents the resonant state for the
energy of 0.271 eV, that is, 0.124 eV higher than in the case of lower donor
density presented in Fig. 5-5(a). A fundamental difference with respect to the
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system with lower nd is that now for Lw = 10 nm there is only one resonant
state inside the well and not two as occurs in the initial case, with an energy
of 0.230 eV which, as in Fig. 5-5(a), presents a much smaller mean amplitude
than for the QW of Lw = 4nm.

In Fig. 5-5, notice how as the voltage increases, the redshift of all the states
occurs, for voltages higher than 0.05V, the system with Lw = 10nm presents a
third resonant peak well-defined of greater average width than the previous two,
this does not happen for the system with Lw = 4nm. The increase in the average
width of each peak is due to the fact that the upper states are “less stable”, that
is, the lifetime of the electrons in these states is less than in the lower states
and this time is proportional to the imaginary part of the energy associated
with each of these states and the average width of the resonant peaks. The
shaded area indicates the region between the bottom of the conduction band
and the quasi-Fermi level at the emitter, as shown in Fig. 5-5(a), note how the
first resonant peak reaches the quasi-Fermi level at the emitter faster for the
system with less doping, at approximately 0.1V for Lw = 10 nm and 0.3V for
Lw = 4nm. In the case of higher doping, these values become 0.3V and 0.45V
for Lw = 10nm and Lw = 4nm respectively. This indicates that the system
of Fig. 5-5(a) will reach a peak in the current faster than the system of Fig.
5-5(b).

Figure 5-6 shows the transmission probability for 0.0V red curve and for 0.4V
black curve, Fig. 5-6(a) is for nd = 1.2×1018 [1/cm3], Fig. 5-6(b) is for nd
= 10×1018 [1/cm3], from bottom to top results are indicated by increasing the
width of the QW. The shaded area indicates the region between the bottom of
the conduction band and the quasi-Fermi level at the emitter. As the width of
the well increases, a new resonant state with higher energy and higher mean
amplitude emerges for both electron densities, this state appears for LW ≥ 6 nm
in the case of nd = 1.2×1018 [1/cm3] and for LW ≥ 8nm in the case of nd =
10×1018 [1/cm3] as indicated in the Fig. 5-6(a) and Fig. 5-6(b) with the red
curve respectively. For larger Lw, the first quasi-stationary state appears closer
to the bottom of the conduction band at the emitter (which corresponds to
0.0 energy), which generates the appearance of the first current peak for lower
voltages, this effect is more significant in the case of lower donor density. With
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Figure 5-5.: Transmission coefficient for different values of bias voltage, the
black curve is for Lw = 4nm and, the red curve is for Lw =
10nm. (a) with nd fixed at 1.2×1018 [1/cm3] and (b) with nd
fixed at 10×1018 [1/cm3]. The shaded area indicates the region
between the bottom of the conduction band and the quasi-Fermi
level at the emitter. As indicated by the arrow in (b), the voltage
for each curve varies from 0.0V to 0.6V in steps of 0.05V.
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Figure 5-6.: Transmission coefficient for different values of Lw, the red curve
is for 0.0V and the black curve is for 0.4V. (a) with nd fixed
at 1.2×1018 [1/cm3] and (b) with nd fixed at 10×1018 [1/cm3].
The shaded area indicates the region between the bottom of the
conduction band and the quasi-Fermi level at the emitter.
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respect to the increase in donor density, there is a slight shift in transmission
peaks towards lower energies, which translates into reaching resonance slightly
faster than for the lower density. For the 0.4V voltage, it is possible to see
how the peaks have shifted, approaching the bottom of the conduction band
and present a decrease in intensity produced by the asymmetry of the potential
generated by the effects of the applied electric field.

Figure 5-7 presents the tunneling current density calculated by means of Eq.
5-13 for two different values of Lw, Lw = 4nm black points and Lw = 10nm red
points, as a function of the bias voltage. In Fig. 5-7(a) nd = 1.2 ×1018 [1/cm3],
in Fig. 5-7(b) nd = 10×1018 [1/cm3]. An increase in the magnitude of the cu-
rrent peak is evidenced for Lw = 4 nm compared to Lw = 10 nm, this is due
to a greater amplitude in the electron transmission probability associated with
the only quasi-stationary level for the smaller well compared to the amplitude
for the larger system. This is evidenced in Fig. 5-5(a) comparing the mean am-
plitudes of the resonant states for both systems, obtaining, as a result, a higher
mean amplitude for the system with lower LW , that is, for LW = 4 nm, this
behavior holds for both electron densities. Note how there are two peaks asso-
ciated with the current for the system Lw = 10nm one for 0.15V and the other
for 0.45V, reaching current density values of the order of 0.042 [mA/µm2] and
0.449 [mA/µm2] respectively. Note the difference in magnitude of these two cu-
rrent density peaks and it is due to the fact that the first maximum corresponds
to the resonant transmission with the lower energy red peak in Fig. 5-5 which,
for non-zero voltages, when it reaches values below from the quasi-Fermi level at
the emitter, this peak has a very low magnitude compared to that of the second
resonant peak. On the other hand, for Lw = 4 nm there is only one of greater
magnitude for 0.35V, reaching a current density magnitude of 0.566 [mA/µm2],
this is due to the fact that the larger system has two quasi-stationary states
(states inside the well), while the smallest system presents only one as evidenced
in Fig. 5-6(a) with the red curves. The marked difference concerning the mag-
nitude of the current peaks associated with LW = 10nm is due to the difference
in amplitude of the quasi-stationary states, the amplitude being much smaller
for the state of lower energy. It should be noted that for both well lengths, ne-
gative differential resistance occurs, that is, a decrease in current density from
a certain limit voltage. In Fig. 5-7(b) which corresponds to a higher donor
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density, it is evident that the system with LW = 4nm reaches the maximum
current density faster than the system with LW = 10nm. This is due to the fact
that in this system, the quasi stationary state with the lowest energy reaches
the bottom of the conduction band at the emitter with a negligible amplitude
and average width compared to the second quasi stationary state, this means
that in Fig. 5-7(b), the peak presented at 0.6V of the red curve corresponding
to a current of 0.102 [mA/µm2] is due to the resonance generated by the second
state inside the well. For the system with LW = 4nm, the resonance with the
only quasi steady state is presented for a value of 0.5V, which corresponds to
a current density value of 0.204 [mA/µm2]. For both values of LW , with nd =
10×1018 [1/cm3] negative differential resistance is presented. For voltages hig-
her than 0.6V and 0.8V in Figs. 5-7(a) and 5-7(b) respectively, there is a
monotonous increasing behavior in current density due to the combination of
two processes, the first being tunneling not resonant, that is, tunneling through
a single potential barriers and the second is a probable transmission of charge
carriers in regions above the potential barriers.

The system conductance is proportional to the electronic probability transmis-
sion, the constant of proportionality is known in the literature as the conduc-
tance quantum and is given by G0 = e2/π~2. Fig. 5-8(a) shows the conductance
as a function of the incident electron energy for a well width LW = 4 nm for
T = 5K, this function is calculated by means of Eq. 5-10, each curve co-
rresponds to a different donor density level, the black solid curve is for nd =
1.2×1018 [1/cm3], and the red dashed curve is for nd = 10×1018 [1/cm3]. For
the given value of LW , the system presents a single resonant state, note that
as the donor density increases, a blue shift occurs in the conductance peaks,
these quasi-stationary states are ordered from the system with the lowest nd to
the system with the highest nd, 0.1213 eV, and 0.1299 eV respectively. It should
be noted that for both curves the resonant peak average width remains ap-
proximately independent of the donor density in the system. The intensity of
the resonant peaks must reach the maximum value, that is, a 100% probabi-
lity of electronic transmission when the energy of the incident electrons exactly
coincides with the energy of the quasi-stationary states inside the well, this
result was expected since the system is in equilibrium or equivalently without
applied fields. Fig. 5-8(b) shows the self-consistent potential corresponding to
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Figure 5-7.: Tunneling current density for two different values of LW as a
function of bias voltage. (a) with nd = 1.2×1018 [1/cm3] and (b)
with nd = 10×1018 [1/cm3].
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Figure 5-8.: (a) Conductance for LW = 4nm, for two different donor con-
centrations in units of G0 = e2/π~2, solid black line nd =
1.2×1018[1/cm3], and dashed red line nd = 10×1018[1/cm3]. (b)
Corresponding self-consistent potentials. The curves have been
calculated at T = 5K.

each donor density with which the curves in Fig. 5-8(a) were calculated, notice
how the height of the central region changes with the increase of nd, taking
the quasi-stationary state towards higher energies. This figure also shows the
position of the quasi-stationary states inside the well for each nd. It must be
taken into account that the conductance at the calculated temperature, that is,
T = 5K, differs very little from the conductance at room temperature, which
is in agreement with experimental results such as those mentioned in Ref. [40].

Table 5-1 presents in detail the value of the quasi-steady state corresponding
to the two donors concentrations calculated, as well as their difference ∆E. The
value of the potential in the center of the well and its difference for both confi-
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gurations has also been included. As mentioned above, the highest energy state
corresponds to the system with the highest donor density. The energy differen-
ce between the states corresponding to the two concentrations is 8.6×10−3 eV,
while the potential difference reaches a value slightly greater than 8.8×10−3 eV.

nd (1018[1/cm3])⇒ 1.2 10 ∆E (10−3 eV) ⇓
V (eV) 0.0105 0.0193 8.8
E1 (eV) 0.1213 0.1299 8.6

Table 5-1.: Energy associated with the conductance peaks and potential at the
center of the well and their differences ∆E for the two calculated
concentrations, the data correspond to Fig. 8.

Fig. 5-9(a) shows the conductance as a function of the energy of the incident
electron for a well width LW = 10nm and T = 5K, each curve corresponds
to a different donor density level as in Fig. 5-8 for LW = 4nm. The black
solid curve is for nd = 1.2×1018 [1/cm3], and the red dashed curve is for nd =
10×1018 [1/cm3]. With the increase in the well width, the number of resonant
states in the system increases, this is evident by comparing Fig. 5-8(a) and
5-9(a). For this greater width, the same shift behavior of the states towards
higher energies occurs as the donor density increases. The two curves present
a very sharp peak for the first state inside QW and two more peaks of grea-
ter amplitude for an intermediate energy state and for the state closer to the
continuum.

nd (1018[1/cm3])⇒ 1.2 10 ∆E (10−3 eV) ⇓
V (eV) 0.0138 0.0235 9.7
E1 (eV) 0.0463 0.0558 9.5
E2 (eV) 0.1432 0.1523 9.1
E3 (eV) 0.2986 0.3076 9.0

Table 5-2.: Energy associated with the conductance peaks and potential at the
center of the well and their differences ∆E for the two calculated
concentrations, the data correspond to Fig. 5-9.
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Figure 5-9.: (a) Conductance for LW = 10 nm, for two different donor con-
centrations in units of G0 = e2/π~2, solid black line nd =
1.2×1018[1/cm3], and dashed red line nd = 10×1018[1/cm3]. (b)
Corresponding self-consistent potentials. The curves have been
calculated at T = 5K.
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As detailed in table 5-2, the system with nd = 1.2×1018 [1/cm3] presents three
peaks in conductance with energies of 0.046 eV, 0.143 eV, and 0.299 eV respec-
tively, in the same way, the system with nd = 10×1018 [1/cm3] also presents
three peaks with energies of 0.056 eV, 0.152 eV, and 0.308 eV respectively. For
both configurations there are three conductance peaks. Table 5-2 also shows
the energy difference ∆E between each of the states corresponding to the dif-
ferent configurations, as well as the potential difference in the center of the
well. The difference in energy becomes smaller for the highest states, that is,
the states closest to the continuum are practically unchanged by the difference
in donor concentration. An important conclusion is that the average width of
the conductance peaks is independent of the density of donors in the system,
what is modified is the position of the peaks, generating a shift towards higher
energies. Fig. 5-9(b) shows the self-consistent potential profile corresponding
to each donor density with which the curves in Fig. 5-9(a) were calculated. For
this greater well width, the central region height is modified in a more signifi-
cant way as compared to the depth of the smaller well width as nd is increased.
This figure also shows the position of each of the states for the two calculated
concentrations.

5.3.1. Comparison with experimental data

One way to test the method is through comparison with experimental results,
in this section a comparison is made with experimental results obtained by
Muttlak et al. [41] in 2018, in which the authors presented an experimental
study of InGaAs/AlAs resonant tunneling diodes designed to improve the diode
characteristics by varying geometric characteristics. The Fig. 5-10 shows a
diagram of the simulated device that is made up of 9 layers, of which the
DBRTD (Double Barrier Resonant Tunneling Diode) zone, the spacer layers
that are on both sides of the DBRTD zone, and zones 1, 2 and 8, 9 which is
where donors are added to the system. This arrangement of layers is connected
to two electronic reservoirs that are also presented in the figure.
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Figure 5-10.: RTD structure composed of 9 layers that are expanded in de-
tail in table 5-3. The letters DBRTD stand for Double Barrier
Resonant Tunneling Diode.
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Parameters by layer
Layer Material Dimensions (nm) Doping (n+ cm−3)

1 In0.53Ga0.47As 400 1×1019

2 In0.53Ga0.47As 25 3×1018

3 In0.53Ga0.47As 5
4 AlAs 1.1
5 In0.8Ga0.2As 3.5
6 AlAs 1.1
7 In0.53Ga0.47As 5
8 In0.53Ga0.47As 25 3×1018

9 In0.53Ga0.47As 45 2×1019

Table 5-3.: Parameters corresponding to each of the layers in Fig. 5-10.

Table 5-3 shows in detail the materials characteristics, as well as the layer
dimensions and the donor densities corresponding to those presented in Fig.
5-10. The outer regions are composed of In0.53Ga0.47As with large dimensions
compared to the central region of the device, the DBRTD region is made up of
two AlAs barriers with equal widths of 1.1 nm and the QW region is In0.8Ga0.2As
with a width of 3.5 nm.
Figure 5-11 shows the self-consistent potential corresponding to the background
of the conduction band obtained using the parameters presented in Table 5-3
at a temperature of 300K that come from an experimental development. The
white region in the figure corresponds to the conduction band of the system, the
red segment indicates the first quasi-stationary state inside the well that has
an energy of 0.67 eV and is near the bottom of the well. Note how the potential
that is initially flat is modified considerably due to the electronic redistribution
generated by the self-consistent method that takes into account the effect of the
density of donors in the outer layers (regions 1,2,8, and 9). Note how the system
is asymmetric with respect to the center of the QW due to the asymmetry in
the regions outside the DBRTD, these differences are both geometric and with
respect to the density of donors in each layer.
Figure 5-12 shows a comparison between the results using our model for the
self-consistent calculation of the conduction band bottom profile and later use
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Figure 5-11.: Self-consistent potential corresponding to the conduction band
obtained numerically with the experimental parameters detailed
in table 5-3.
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Figure 5-12.: Comparison between simulated results using Eq. 5-13 (red and

blue dots) and experimental results [41] (black stars).

it to calculate the transmission by means of the Schrödinger equation in the
system and finally by means of Eq. 5-13 which corresponds to a Landauer ap-
proach, calculating the current density in the device. The red dots (a) corres-
pond to the current density due to resonant tunneling including the scattering
effects simulated as additional resonances in the system, the blue points (b)
correspond to the current density obtained only by resonant tunneling, while
the black stars are the experimental points. The simulation parameters that
correspond to the characteristics of the materials, the dimensions, as well as
the donor density are presented in Table 5-3 at a temperature of 300K, which
corresponds to the temperature reported on the experimental level.
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In the region between 0V and 0.46V there is a very good correspondence of the
simulated results with the experimental ones, having a change in the current
density between 0 and 10.9 [mA/µm2] approximately which corresponds to the
maximum value generated by the resonance between the incident electrons and
the first quasi-stationary state inside the well shown in Fig. 5-11. For values
greater than 0.46V, the simulation presents an drop in current density that
represents a negative differential resistance. For voltage higher than 0.5V, the
current in the system is mainly due to dispersion effects (this is evident due to
the difference between the blue points and the red points in this region), due to
possible impurities in the interlayer regions that can eventually contribute to
electronic transport in the system. On the other hand, because the experimen-
tal temperature is 300K, it is important to consider dispersion effects due to
thermionic emission and electronic absorption of phonons, processes that can
provide electrons with enough energy to tunnel through barriers and contribute
to current density [42, 43]. These effects are included in the model by adding th-
ree additional resonances to the simulated one at positions 1.02 eV, 1.12 eV, and
1.81 eV respectively, these effects correspond to the red dots in Fig. 5-12 that
generate a current peak between 0.5V and 0.7V and exponential-like behavior
for voltages higher than 0.7V, generated by the third resonance with a state
that exceeds the height of the potential barriers of the system as seen in Fig.
5-11, which corresponds to 1.81 eV, that is, it is a state of the continuum. When
only the contribution to the current density due to the resonant tunneling is
considered, the blue points are obtained that correspond to a considerable de-
crease in the current density due to the absence of a second state in resonance
inside the well for this maximum voltage.

This model includes the effect generated by the conduction properties of the
electrons that can tunnel through the resonance states inside the well, for this
to happen, it is necessary that these states are available to be occupied by
electrons that come from the emitter, the first peak in current density that is
presented in Fig. 5-12 is generated by the resonant transmission between the
electrons that are in occupied states in the emitter towards available states in
the collector through the first state inside the QW. There is no second state
inside the well available for tunneling for the maximum applied voltage, which is
1V, for this reason, no more zones of negative differential resistance are present
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in the system.

This work From references
Eg (eV) χ (eV) Eg (eV) χ (eV)

AlAs 2.17 3.41 2.16 [44], 2.19 [45] 3.50 [44]
In0.8Ga0.8As 0.50 4.50 0.50 [47], [48] 4.73 [47], [48]
In0.53Ga0.47As 0.75 4.46 0.74 [46], [48] 4.51 [46], [48]

Table 5-4.: Comparing simulation parameters with reported parameters.

For the results presented in Fig. 5-12, a variation was made in the input para-
meters of the numerical method to obtain a convergence and in this way find
the optimal parameters that best fit for the experimental description, these
parameters were the band gap Eg for each of the materials in each layer and
the electron affinity χ in each region. The result of the convergence of these
parameters is shown in table 5-4, where a comparison with results reported in
the literature is shown. All the parameters present an error of less than 3%,
which generates certainty with respect to the results presented in Fig. 5-12.

5.4. Conclusions

The wave functions, quasi-stationary states and self-consistent potentials, among
other electronic properties in a double barrier resonant tunneling diode system
based on GaAs and InGaAs have been calculated, solving the equations in
each step by means of the finite element method. By means of the Schrödin-
ger equation, the probabilities of electronic transmission have been calculated
considering variations in geometric parameters such as the width of the central
well and non-geometric parameters such as the density of donors in the layers
outside the barrier region. Additionally, the system has been converged out of
equilibrium to analyze the response of the internal quasi-stationary states to an
external potential difference applied to the contacts, obtaining a red shift in all
transmission peaks regardless of the donor density used. A way has been found
to tune the system, particularly the position or quantity of quasi-stationary sta-
tes inside the central well, by modifying the bias voltage, modifying the width
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of the central well and modifying the density of donors in the system. Once
the system was characterized by means of the probability of electronic trans-
mission, the Landauer formalism was used to calculate the density of electric
current that circulates through the diode for different well widths and diffe-
rent donor densities. An important conclusion is that the first current peak is
obtained for lower voltages in the case of narrower width of the central well.
On the other hand, when the donor density is lower, the current peaks reach a
higher value for the simulated parameters. For the cases studied, it is possible
to show negative differential resistance. The conductance in the double barrier
system has been calculated, changing the dimensions of the well and the density
of donors, obtaining multiple peaks of conductance for a width of 10 nm and
a single peak for a width of 2 nm, the increase in concentration only modifies
the position of the peaks, but does not change the shape of the conductance
function. Finally, the theoretical procedure has been applied to an experimental
system reported in recent literature, this is a non-symmetric system based on
InGaAs with AlAs barriers consisting of 9 regions. The current density at room
temperature for this system has been compared, obtaining satisfactory results
for the calculation of the position of the first resonance in the system and the
magnitude of the current density at this point. Likewise, the converged para-
meters for the experimental comparison do not exceed 3% error compared to
the same parameters reported in the literature. These results indicate that this
system could be a good candidate for potential applications in various fields of
science or engineering.
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6. Theoretical Study of
Electronic and Optical
Properties in Doped
Quantum Structures with
Razavy Confining Potential:
Effects of External Fields

We investigate the energy states of confined electrons in doped quantum struc-
tures with Razavy-like confining potentials. The theoretical investigation is per-
formed within the effective mass and parabolic band approximations, including
the influence of externally applied electric and magnetic fields. First, we analy-
ze the case of a Razavy quantum well and determine its conduction subband
spectrum, focusing on the lowest energy levels and their probability densities.
These properties have been numerically determined by self-consistently solving
the coupled system of Schrödinger, Poisson, and charge neutrality equations.
Doping is introduced via an on-center δ-like layer. In order to evaluate the
associated total (linear plus nonlinear) optical absorption coefficient (TOAC),
we have calculated the corresponding diagonal and off-diagonal electric dipole
matrix elements, the main energy separation, and the occupancy ratio which
are the main factors governing the variation of this optical response. A detai-
led discussion is given about the influence of doping concentration as well as
electric and magnetic fields, which can produce shifts in the light absorption
signal, towards either lower or higher frequencies. As an extension of the self-
consistent method to a two-dimensional problem, the energy states of quantum
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wire system of circular cross section, with internal doping and Razavy potential
have been calculated. The response of eigenvalues, self-consistent potentials and
electron densities is studied with the variation of δ-doping layer width and of
the donor density. Finally, the origin of Friedel-like oscillations, that arise in the
density profile, generated by the occupation of internal and surface electronic
states has been explained.

6.1. Introduction

Semiconductor structures based on quantum wells (QWs), quantum-well wires
, and quantum dots have acquired a huge importance in the process of desig-
ning low-dimensional devices, mostly due to their features of charge carriers
confinement. To satisfy the exigence required by new generation of optoelec-
tronic devices, the involved semiconductor structures must be suitably selected
upon the basis of their confinement potential geometry, their dimensions, and
the possible influence of certain external physical factors. Among these factors,
we can cite the insertion of delta doped layers, as well as the application of
either nonresonant intense laser field radiation, electric fields, magnetic fields,
or a combination of these probe fields. All of them would play a crucial role in
tuning the energy spectrum of the confined carrier states [1–10].
As it is well known, the application of an external electric field leads to a tilt
of the confining potential and pushes the electron wave functions towards the
edge of the structure, producing a significant change in the energy levels and,
per consequent, in the transition energies. This, in turn, produces noticeable
modifications in the optical absorption response of the system. The application
of a magnetic field provides an additional parabolic confinement that causes
further spatial spread in the wave functions so that affecting the dipole matrix
elements. The influences of both electric and magnetic fields have been theore-
tically and experimentally studied by many researchers [11–21]. For instance,
Dakhlaoui et al., investigated the effects of magnetic and electric fields on the
TOAC [22]. They showed that these probes can control the red and blue shifts
of the TOAC in double and triple δ-doped GaAs semiconductor heterostruc-
tures. Ungan et al. reported on the optical responses in hyperbolic-like QWs
under external electric and magnetic fields [23]. They demonstrated that the
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TOAC and the total relative refractive index change coefficient can be shif-
ted towards the blue or the red by adjusting the applied field intensities. The
impacts of external perturbations on the optical and magnetic properties of
GaAs/AlGaAs semi-parabolic QW have been widely discussed and commented
by Hien et al. [24]. They proved that the magneto-optical properties are largely
affected by the external fields.

Besides the application of external fields, the δ−doping technique represents
an ultimate concept in semiconductor’s processing [25–31]. It is proved among
the last years that this method is highly practical to adjust the energy levels
in order to obtain the desired electronic mobility and optical absorption. For
instance, in GaAs-based systems, the most typical n-type δ−doping technique
consists of inserting a thin layer containing silicon atoms. Once these atoms
are ionized, they supply additional free electrons into the system. In addition,
the silicon layer creates a triangular-shaped quantum well which would affect
the spatial spread of the wave functions and furnish further confinement to
the carriers [32, 33]. Various research works have explored, both experimentally
and theoretically, the impact of δ-doping on the behavior of the TOAC in
semiconductor quantum nanostructures [34–41]. For instance, Gaggero-Sager
et al. studied the effects of temperature on the energy levels in a single doped
QW [42], whereas Dhafer et al. showed the importance of an inserted δ-InGaAs
layer in a single AlxGayIn1−x−yAs QW. They found that the inserted layer can
improve the intensity of the optical gain which is a requirement for fiber-optical
communications [43]. J. Osvald studied the effect of a non-central δ-doping
layer on the energy levels and electronic density in GaAs QWs [44]. On the
other hand, in 1980 M. Razavy used double potential wells in the quantum
theory of molecules to describe the motion of a particle in the presence of
two force fields [45]. These types of potentials are known today as Razavy
potentials [46, 47], and are used as a model to describe the coupling of two
molecules or quantum dots [48–51]. Effects of intense laser field and position
dependent effective mass in Razavy QWs (Razavy-like quantum wells) were
investigated in Ref. [52]. In their works, these authors have shown that the
intensity of the TOAC can be largely tuned by varying the ionized impurity
concentration in the doping layer.

Another class of heterostructures that can be studied by a similar procedure are
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quantum wires (QWRs), which are semiconductor structures in which electrons
are confined in the transverse plane and therefore can only move in one dimen-
sion. A consequence of the above is that the electronic energy levels present
a discrete behavior along the cross section of the structure, while in the free
dimension the electrons present a continuous spectrum. QWRs have been the
subject of study for more than 40 years, as noticed -for example- from a bunch
of early references [53–57]. Due to the remarkable applications of this type of
low-dimensional structures in areas as diverse as flexible electronics (when de-
signing thin-film transistors) or high-efficiency solar cells [58], among others; to
seek an improvement in the properties of electronic conduction would become
a boost to development and characterization of this type of systems. In recent
years, results of great interest have been reported along these lines, some of
which have appeared in references [59–62].

Motivated by all the cited works, here we aim to investigate the effects of the
concentration of an on-center thin doping layer and of externally applied electric
and magnetic fields on the TOAC in Razavy-like GaAs quantum structures. We
shall study the impact of these parameters on the lowest energy separations, the
occupancy ratios, and dipole matrices which are preponderant factors governing
the TOAC variation. In the first part we develop the one-dimensional problem
of a GaAs δ-doped QW (with z-oriented growth direction) having a Razavy-
type confinement potential. For this system, the confined electronic states are
calculated, as well as the self-consistent potentials, with a special care taken on
determining the Fermi level position, affected by the both temperature and io-
nized impurity distribution. Subsequently, external electric and magnetic fields
are applied in order to analyze the variations in obtained results and finally the
optical absorption response is investigated. The second problem dealt with is
a two-dimensional system corresponding to a GaAs QWR with circular cross
section and exposed borders (the confinement plane has been taken as xy), with
an additional δ-type doping and an inner Razavy-like potential. The problem
for the electron energy states in this case is also solved in a self-consistent way,
taking into account a fundamental difference: In this case the Fermi level is
no longer modified by the density of donors because the system has exposed
borders. So, a “Fermi Level Pinning” is presented which keeps it fixed. Another
fundamental difference with respect to the QW structure is that, in this type of
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systems, variations in the electron density profile known as Friedel oscillations
can occur at low temperatures. To study this particular phenomenon, electron
states in this system has been calculated for T = 10K and not at 300K as the
first problem. In this second case, the electronic states, self-consistent potential
and electron density have been calculated for different widths of the δ-layer,
with different concentrations. Self-consistent procedures have been performed
by numerically solving the effective mass conduction band equation using the
finite element method (FEM). In accordance, this chapter is organized as fo-
llows: in sections 6.2 we outline the theoretical equations and the method of
resolution for the one-dimensional system quantum well and the quantum wire
system with exposed boundaries. The discussion and comments on the obtained
results for each system are presented in section 6.3, while the conclusions are
given in section 6.4.

6.2. Theoretical framework

6.2.1. Razavy quantum-well (quantum well with
Razavy-like potential)

The problem under consideration here consists of a GaAs conduction electron
that moves under the influence of an on-center doped Razavy-like QW potential
and undergoes the effect of external electric and magnetic fields. The electric
field is assumed to be oriented along the z-growth direction and the magnetic
field is applied perpendicular to the electric field, and lies within the plane of
the layers. In Fig. 6-1 we plot a Razavy-like confining profile, together with
a schematic representation of the n-type doped layer. The δ-parameter (2-nm
in this work) corresponds to the finite width of the on-center doped layer,
which has a two-dimensional Nd concentration of ionized donor atoms. Within
the effective mass and parabolic band approximations, the Hamiltonian for a
confined electron is given by [1]:

H =
1

2m∗

[
~p+

e

c
~A(~r)

]2

+ Vc(z) + VH(z) + e F z , (6-1)



178
6 Theoretical Study of Electronic and Optical Properties in Doped Quantum

Structures with Razavy Confining Potential: Effects of External Fields

-10 -5 0 5 10
0

100

200

300

400

500

en
er

gy
 (m

eV
)

z (nm)

y

xA = 2
M = 3

V(z) = V0 [ A cosh(z/d) - M ] 2

F
B

z
do

pe
d 

la
ye

r

Figure 6-1.: (color online) Schematic representation of doped Razavy quantum
well under applied electric and magnetic fields.
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where c, e, and m∗ denote the speed of light in the vacuum, the absolute
value of the elementary charge, and the electron effective mass, respectively.
Additionally, ~p represents the momentum operator, and F is the intensity of the
applied electric (~F ). Within the Landau gauge, the vector potential associated
to the applied magnetic field ( ~B) is given by ~A(~r) = B z x̂ (B stands for the
magnetic field intensity). Furthermore, VH(z) is the Hartree potential, which
represents the additional conduction band reshaping due to the presence of
the low-dimensional electron gas that arises from the donor ionization in the
δ-layer. Besides, Vc(z) is the Razavy-like confining potential given by [52]:

Vc(z) = V0

[
A cosh

( z
D

)
−M

]2

, (6-2)

where a set of parameters with V0 = 228meV, A = 2, M = 3, D =
Leff

3 , and
Leff = 20nm (the total width of the QW) has been chosen for the calculation.

The wave function associated to the Hamiltonian in Eq. (6-1) can be written
as [63]:

ψ (~r) = exp
(
i ~k⊥ · ~ρ

)
Φ′(z) , (6-3)

where ~k⊥ = (kx, ky), ~ρ = (x, y), and Φ′(z) satisfies the following differential
equation [63]:

H0 Φ′ (z) =

(
Ez −

~2 k2
y

2m∗

)
Φ′ (z) . (6-4)

where

H0 = − ~2

2m∗
d2

dz2
+
e2B2

2m∗

(
z +

~ kx
eB

)2

+e F (z + Leff/2) + VH (z) . (6-5)

The z-component of the Eq. (6-4) can be written in the form [63]:

H Φ (z) = Ez Φ (z) . (6-6)
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where

H = − ~2

2m∗
d2

dz2
+
e2B2

2m∗
z2

+e F (z + Leff/2) + VH (z) . (6-7)

Note that the solutions of Eq. (6-6) correspond to the bottom of the confined
conduction subbands, i.e., (kx, ky) = (0, 0).
The calculation of the Fermi level (EF ) is based on the charge neutrality condi-
tion, such that the total number of electrons must be equal to the total number
of ionized donors per unit area (assuming that all the silicon atoms are ionized)

nd =
∑
i

m∗ kB T

π ~2
log

[
1 + exp

(
EF − Ei

kB T

)]
, (6-8)

where kB is the Boltzmann constant and T (= 300K in this work) denotes the
absolute temperature.
The Hartree potential VH (z) which describes the electrostatic interaction of
electrons and ionized ions results from the solution of the generalized Poisson
equation [64]:

d2VH (z)

dz2
=

e2

ε ε0
[nd (z)− n (z)] , (6-9)

where ε (ε0) is the GaAs (vacuum) static dielectric constant and nd is the 3D
donor density in the delta layer. Also, in Eq. (6-9)

n(z) =
∑
i

m∗ kB T

π ~2
log

[
1 + exp

(
EF − Ei

kB T

)]
Φ2
i (z) , (6-10)

The Eqs. (6-6-6-10) are discretized using the finite difference method (FDM)
and solved iteratively. Under such a procedure, the Schrödinger and Poisson
equations are then changed to matrices of type Ax = λx and B x = ρ, respec-
tively. Here, λ represents the energy and x is a column wave vector describing
the electron wave function. After computing the energy levels and their co-
rresponding wave functions, the linear, third-order nonlinear, and total optical
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absorption coefficients for the intersubband transitions between initial and final
states Ei → Ef can be evaluated from [65–67]:

α1 (ω) = ω

√
µ

εR
× e2 |Mif |2 σ̃if ~/τin

(∆E − ~ω)2 + (~/τin)2 , (6-11)

α3 (ω, I) = −2ω

√
µ

εR

(
I

ε0 nr c

)
× e4 |Mif |4 σ̃if (~/τin)[

(∆E − ~ω)2 + (~/τin)2
]2

×

(
1− Ω

(∆E − ~ω)2 − (~/τin)2 + 2 ∆E (∆E − ~ω)

(∆E)2 + (~/τin)2

)
(6-12)

and

α (ω, I) = α1 (ω) + α3 (ω, I) . (6-13)

In the previous equations Ω =
|Mff−Mii|2
|2Mif |2 , ∆E = Ef − Ei,

Mif =

∫ +∞

−∞
Φ∗f(z) Φi(z) z dz (6-14)

is the reduced dipole matrix element, and σ̃if = m∗ kB T
Leff π ~2 σif , with

σif = ln

{
1 + exp [(EF − Ei)/kBT ]

1 + exp [(EF − Ef)/kBT ]

}
. (6-15)

Here, µ represents the free space permeability, τin = 0.14ps stands for the
intersubband relaxation time, and I is the intensity of incident light. The other
physical parameters used in this work are [68, 69]: m∗ = 0.067m0 (where m0 is
free electron mass), e = 1.602× 10−19 C, ~ = 1.056× 10−34 J s; nr =

√
ε = 3.2,

µ = 4π × 10−7 Hm−1, ε = 12.35, ε0 = 8.854 × 10−12C2 N−1 m−2, εR = ε ε0,
and I = 0.5MW/cm2.
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6.2.2. Razavy quantum-wire

The theory required to study the two-dimensional problem of a QWR with
delta-type doping is very similar to that developed for the one-dimensional
well system since both problems are solved by means of the self-consistent
method. For this reason, and to clarify the procedure without being redundant,
some equations have been rewritten in this section, with the aim of presenting
generalization to a 2D system.
The structure under consideration corresponds to an infinite QWR of GaAs
with circular cross section and exposed borders. That is, the system is not im-
mersed in any substrate but is in contact with vacuum. Additionally, a Razavy
potential and a delta-doped layer have been added to shape the confining po-
tential. A consequence of the above is the appearance of both inner and surface
states in the system, giving rise to the phenomenon known as “Fermi Level Pin-
ning” [70] in which a charge transfer from bulk states to surface states occurs,
thus causing the Fermi level to remain fixed at a value within the band gap,
regardless of the donor density in the system. For GaAs, a potential value of
0.7 eV, which corresponds to half the gap is normally used for the surface.

Figure 6-2 shows the schematic representation of the quantum wire, as well as
the coordinate system used for numerical calculations. This is a QWR of radius
R0, surrounded by vacuum. Inserted at the center of this cylinder, an inner
layer of -fully- ionized donors of radius rd is included.
Again, the chosen numerical approach to solve this type of problem is the self-
consistent method. It consists of a bidirectional coupling between the Poisson
and Schrödinger equations. The electric potential that comes from the Poisson
equation (including the effect of donor density) must be added to the confining
potential term to later be included in the Schrödinger equation. Similarly, a
statistically weighted sum of the probability density associated with the elec-
tronic occupation of the states of the Schrödinger problem contributes to the
space charge density that enters the Poisson equation. This process implies an
iteration scheme where the confining potential becomes modified by the redis-
tribution of charges.
As a starting point of the self-consistent method, and following the Luscombe
and Luban procedure [71], we shal consider that electrons in the cross section of
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Figure 6-2.: Diagram of the infinite quantum wire of GaAs surrounded by
vacuum, with a circular cross section of radius R0. The coordinate
system is centered on the symmetry axis of the wire. An inner
doping layer of radius rd has been included in the system.
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the QWR behave as a two-dimensional charge-carrier gas. This indicates that
a good approximation for the electron density would be the Thomas-Fermi one
(Eq. 6-16). Such electron density must contribute to the charge density in the
system and therefore to the Hartree potential that is obtained through the
Poisson equation,

n(x, y, T ) = NC F1/2 (β (EF −Υ(x, y, T ))) (6-16)

where β = 1/kBT is the Boltzmann factor, NC = (2m∗/πβ~2)3/2/4 is the
effective density of states, Υ(x, y, T ) is the electronic potential generated by
the Fermi level pinning on the exposed lateral surface, the level of doping and
the lateral dimensions of the system and is given by Υ(x, y, T ) = −e φ(x, y, T ),
where φ(x, y, T ) is the Hartree potential. Besides, e is the charge of the electron,
m∗ is the effective mass, and F1/2(x) is the well known Fermi-Dirac integral.
With the electron density given by Eq. (6-16) and the density of donors Nd

given by Nd for r ≤ rd and 0 for r > rd, it is possible to write the expression
for the charge density in the system as,

ρ(x, y, T ) = e (Nd − n(x, y, T )) (6-17)

where εr and ε0 are the relative permittivity and vacuum permittivity respecti-
vely. Note that, unlike the QW, now the charge density has a two-dimensional
dependence, in the same way the donor density for this case is identified as Nd

(for the well system it is labeled as nd). This charge density must enter the
two-dimensional Poisson equation (Eq. 6-18) to obtain the Hartree potential,

−ε0εr∇2φ(x, y, T ) = ρ(x, y, T ) (6-18)

This equation should be solved taking into account the boundary conditions
imposed by the Fermi level pinning, which for GaAs takes the form φ(Ω) =

−(EF + 0.7eV)/e, where Ω represents the QWR boundary. The potential,
φ(x, y, T ), obtained through Eq. (6-18) must contribute to the potential energy
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term in the Schrödinger equation,

U(x, y, T ) = −e φ(x, y, T ) + Vc(x, y) (6-19)

where −e φ(x, y, T ) is the contribution that comes from the Poisson equation
and the redistribution of charges due to doping, and Vc(x, y) is the Razavy 2D
potential, which has the same form as Eq. (6-2), changing z for

√
x2 + y2. In

this case, V0 = 0.228 eV, A = 2, M = 3, D = 1.57L, and L = 20 nm. On
the other hand, the electrons are assumed to be totally confined within the
volume of the QWR and, therefore, it must be satisfied that Ψ(Ω) = 0 in the
Schrödinger equation,

− ~2

2m∗
∇2Ψik(~r) + U(x, y, T ) Ψik(~r) = Eik Ψik(~r) (6-20)

Note that in Eq. (6-20) we have used the approximation of effective mass for
electrons in GaAs. In this equation Ψ(~r), the wave function of the system, takes
the form,

Ψik(~r) = eikz ψi(x, y) (6-21)

Considering now the Schrödinger equation in the xy plane, with eigenvalue Ei

associated with the state ψi(x, y), we have to solve the problem

− ~2

2m∗
∇2ψi(x, y) + U(x, y, T )ψi(x, y) = Ei ψi(x, y), (6-22)

with ψi(Ω) = 0. From here, it is possible to find the first set of eigenfunctions
and eigenvalues for the system. With this set we can calculate the electron
density associated with the occupation of the internal states in the system,

η(x, y, T ) = ξ
∑
i=1

F−1/2(β (EF − Ei)) |ψi(x, y)|2 (6-23)
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where ξ = 3
√

4NC . This equation represents the density of electron gas at a
point (x, y) and temperature T . From the electron density calculated in Eq.
(6-24), a new profile for the charge density of the system is obtained:

ρnew(x, y, T ) = e(Nd − η(x, y, T )). (6-24)

Replacing this charge density into Poisson’s equation (6-18), a new Hartree
potential φnew(x, y, T ) is obtained that will -again- contribute to the potential
energy term in the Schrödinger equation. Then, a new set of eigenfunctions and
eigenvalues for the system ψnewi , Enew

i is obtained. This set will be associated
to a new electron density profile ηnew relative to the occupation of each of each
state of the system. In this way, the process is repeated iteratively until the
absolute value of the difference between potential terms corresponding to two
successive self-consistent steps is smaller than a certain tolerance |U − Uold| <
10−6 eV. When this condition is met, the system is said to have reached self-
consistency. Note that the confining potential and the Razavy potential do not
change with the iterative process, only the electrostatic potential changes due
to the redistribution of the charge carriers.
Once self-consistency has been reached, the final set of eigenvalues and eigen-
functions as well as the self-consistent potential found are the correct solutions
for the quantum wire with exposed boundaries, Razavy potential, and donor
density Nd. Figure 6-3 shows the plots of first five QWR confined state wave
functions for three different values of rd; from left to right, each column corres-
ponds to: rd = 5 nm, rd = 10 nm, and rd = 15 nm. Despite varying the inner
radius rd, all the figures maintain the same cross-sectional area since the outer
radius R0 = 50nm remains fixed. The electron density Nd has been fixed as
3 × 1019 cm−3 for all three cases, and the temperature has also been kept at
T = 10K. The color scale in each figure goes from the blue, which corresponds
to negative values of the wave function, to dark red which represents positive
values. Yellow indicates the points at which the wave function is zero. With
these parameters a degeneracy between ψ1 and ψ2 appears for all rd. Note how
for rd = 5 nm -first column plots- the state ψ3 has the shape of an s-orbital,
followed by the state ψ4 which has a d-type orbital (in analogy with atomic or-
bitals). For values of rd = 10nm and rd = 15nm, this s state no longer appears
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in ψ3, it takes the form of a d state. This means that as long as the value of rd
augments, an exchange between states of type s and type d is present for the
third excited state.
On the other hand, the first row at the top of Fig. 6-3, corresponds to the
ground state ψ0 for each system, again in analogy with the atomic orbitals, a
clear symmetry equivalent to an s-type state is evidenced. For all system con-
figurations, it is readily apparent that there is a high probability of finding the
electrons close to the center of gravity of the structure. Moreover, as rd increa-
ses, the probability at the center of the structure diminishes, at the time that
increases along the radial direction. Then, the electrons tend to be distributed
along the cross section with the increase of the doping region width. The first
and second excited states, ψ1 and ψ2, are presented on the second and third
rows from top to bottom. Note that these states present a symmetry similar to
the p-type orbitals.

6.3. Results and discussion

6.3.1. Results Quantum Well

In Fig. 6-4, we present our results for the confining potential, energy levels,
Fermi level, and probability densities for the lowest four bound electron states in
GaAs Razavy-like QWs, considering four different cases of the external electric
and magnetic fields, as well as doping concentration. Despite the inclusion of
the third excited state, it does not contribute to the electron density since it
is above the Fermi level of the system. From Fig. 6-4(a), where these three
parameters are set to zero, it is observed that the central barrier is high enough
such that the ground state is almost-degenerate; corresponding to the ground
state -with even symmetry- and the first excited state -with energy very close to
the ground state one- showing odd symmetry with respect to the z = 0 point.
The energy difference between the ground state and the second excited state is
approximately 150meV. Notice that the second excited state is located above
the central barrier. In Fig. 6-4(b), where an on-center doping concentration of
nd = 4.5 × 1019 cm−3 is considered in the absence of external fields (doping
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Figure 6-3.: First five wave functions for a confined electron in GaAs quantum
wires. The rows from top to bottom are the ground state and first
four excited states, columns from left to right correspond to rd =

5nm, rd = 10 nm, and rd = 15 nm, respectively. For all figures
the radius of the quantum wire has been set at R0 = 50 nm,
T = 10K, and Nd = 3× 1019 cm−3.
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of this order is discussed in Ref. [72]), one may observe the appearance of an
additional central potential well. The energy minima of the two side QWs, which
in Fig. 6-4(a) have zero value, now show a slight shift towards lower energies.
Besides, the minimum of the central well positions itself at an energy slightly
higher than the energy of the two lateral minima.

Under these conditions, the GaAs Razavy-like double quantum well in the pre-
sence of central doping is transformed into a triple quantum well with outer
barriers that rapidly diverge, generating an infinite confining potential. The
presence of the central well in Fig. 6-4(b) has the function of coupling the two
quantum wells initially observed in Fig. 6-4(a). In this sense, the breakdown
of the ground state degeneration is clearly noticed. It is also observed that the
first excited state shows a blue shift of 36meV concerning the ground state.
The latter, whose energy is 3meV less than the maximum of the finite poten-
tial barriers, is an even function with its maximum probability density in the
central region; the presence of shoulders associated with the irregularity of the
potential well bottom is also well apparent. Besides, the first excited state is an
odd function whose maximum probability density is located in the region of the
two lateral quantum wells. The second excited state is remarkably insensitive
to the shape of the potential well. This is concluded by observing that the two
lateral maximums in the probability density present magnitudes slightly lower
than that shown by the central maximum. On the other hand, in Fig. 6-4(c),
where a delta-like doping volume density of nd = 4.5× 1019 cm−3 is combined
with an applied electric field of 30 kV/cm (developments in high electric fields
can be seen in Ref. [73, 74]), it is possibel to see that, by breaking the sym-
metry of the system, the ground state is pushed towards the left-hand side well
structure while, due to orthogonality conditions, the first excited state displa-
ces its maximum towards the right-side of the system. The ground state has a
quasi-constant probability density in the region −5nm< z < 0. The compari-
son between the second excited state in Figs. 6-4(b) and 6-4(c) shows a slight
blue shift due to the field-effect without significant changes in the probability
density shape. This effect is associated with the fact that the electric potential
is zero at z = −10nm. Now, turning to analyzing Fig. 6-4(d), where a delta-
like doping of nd = 4.5× 1019 cm−3 combines with an applied magnetic field of
30T (some experimental and theoretical works in high magnetic fields [75–77]),
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Figure 6-4.: (color online) Confining potentials, energy levels, Fermi level, and
probability density for the lowest four bounded electron states in
a GaAs Razavy-like quantum wells. Four different cases of the
external fields and doping concentration (F,B, nd) are conside-
red: (0, 0, 0) (a), (0, 0, 4.5 × 1019 cm−3) (b), (30 kV/cm, 0, 4.5 ×
1019 cm−3) (c), and (0, 30T, 4.5 × 1019 cm−3) (d). In (b-d) the
Fermi level is depicted with the horizontal line close to 200meV.
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a parabolic confinement appears associated with the second term in the squa-
red parenthesis of Eq. (6-5). By comparing the confinement potentials in Figs.
6-4(b) and 6-4(d), it is observed that, as a first effect, the parabolic potential is
responsible for equalizing in energy the bottom of the three quantum wells. In
this way, the central maximum of the ground state probability density is rein-
forced. Additionally, the three confined states show a blue shift related with the
reinforcement of carrier space confinement; noting an increase in the separation
in energy between the ground state and the first excited state. The probability
density of the second excited state now appears with three maxima, all of them
with equal amplitude, reflecting a systematic disappearance of the influence of
potential well bottom shape. In Figs. 6-4(b-d), where central doping is present,
it is clearly seen that in the three cases there are only three confined levels with
energies lower than the Fermi level.

In Fig. 6-5, we present the results for the variation of the lowest three energy
separations (E2−E1, E3−E1, and E3−E2) in a central doped GaAs Razavy-
like QW as a function of the applied electric field, without magnetic field effects,
Fig. 6-5(a), and as a function of the applied magnetic field, without electric
field effects, Fig. 6-5(b). The simulations include a fixed delta-like doping con-
centration, nd = 4.5× 1019 cm−3. The results in Figs. 6-5(a) and 6-5(b) are in
complete agreement with those presented in Figs. 6-4(c) and 6-4(d), respecti-
vely. The electric field -variable in Fig. 6-5(a)- has the function of tilting the
potential well profile, generating a greater localization of the carriers towards
the z < 0 region. This effect translates into greater confinement of the carriers,
thereby increasing the separation between the confined levels and consequently
the transition energies. The quasi-parallel behavior of the E2−E1 and E3−E1

curves justifies the quasi-constant behavior with the electric field of the E3−E2

curve which, in the whole range of electric fields considered, only presents a va-
riation of 8meV; less than 10 %. It is important to note that the wave functions
associated to the three states in Fig. 6-5(a) lose their odd or even symmetry
with respect to the z = 0 point, which means that all inter-subband transitions
are allowed. As commented, the magnetic field -the variable in Fig. 6-5(b)- is
responsible for a parabolic potential whose effect is to increase the localization
of all confined states within the region close to z = 0. This greater localization
of the states translates into an increase in the transition energies with the ap-
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for nd = 4.5× 1019 cm−3.
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plied magnetic field. Due to its greater extension in space, the second excited
state (Φ3) is the one most susceptible to being spatially modified by the effect
of the applied magnetic field. The ground state (Φ1), which has its maximum
probability density close to the z = 0 region, is essentially insensitive to the
effects of the magnetic field. Combining these two aspects, one may understand
why, as in Fig. 6-5(a), the E2−E1 and E3−E1 transition energies are the most
sensitive to the magnetic field, with a growing behavior and parallel to each
other. This justifies that in the range of magnetic fields, the E3−E2 transition
energy is constant. The wave functions associated with the three states consi-
dered in the transitions of Fig. 6-5(b) preserve their even or odd symmetries.
The Φ1 and Φ3 states are even functions concerning z = 0 while the Φ1 state
is an odd function. Consequently, only the 1 → 2 and 2 → 3 transitions are
allowed whereas the 1→ 3 transition is forbidden.

In Figs. 6-6 and 6-7 we present the variation of the reduced dipole matrix
elements-|Mif |2 (a), the occupancy ratio-σif (b), and the function Fif = σif |Mif |2 (Ef−
Ei) (c) in a central doped GaAs Razavy-like QW, plotted as functions of the
applied electric field, for zero magnetic field; and as functions of the applied
magnetic field, for zero electric field, respectively. The results correspond to a
delta-like doping with nd = 4.5 × 1019 cm−3. As already said before, since the
presence of an electric field removes the even or odd symmetry of the confined
states then all the transitions between lowest three confined states are allowed,
as shown in Fig. 6-6(a). therefore all corresponding intersubband |Mif |2 ele-
ments are nonzero. However, as seen from Fig. 6-7(a), since the ground and
the second excited states are even functions, then M 2

13 = 0.

Taking into account that both the electric and magnetic fields have the effect
of increasing the location of carriers, then the spatial extension where the wave
functions spread out decreases. This explains the decreasing tendency of the
reduced dipole matrix elements in Figs. 6-6(a) and 6-7(a) as functions of the
electric and magnetic fields, respectively. An unexpected situation occurs with
the term M 2

23 in Fig. 6-7(a). Its growing character with the magnetic field is
essentially associated with the increasing spatial overlap of Φ2 and Φ3 states.
Note that the magnetic field is responsible for the increment (decrement) of
the probability density of Φ3 state in the region where Φ2 has its two maxima
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Figure 6-6.: (color online) Variation of the reduced dipole matrix elements-
|Mif |2 (a), the occupancy ratio-σif (b), and the function Fif =

σif |Mif |2 (Ef−Ei) (c) in a central doped GaAs Razavy-like quan-
tum well as a function of the applied electric field, for zero mag-
netic field. The results are for nd = 4.5× 1019 cm−3.
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Figure 6-7.: (color online) Variation of the reduced dipole matrix elements-
|Mif |2 (a), the occupancy ratio-σif (b), and the function Fif =

σif |Mif |2 (Ef−Ei) (c) in a central doped GaAs Razavy-like quan-
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tric field. The results are for nd = 4.5× 1019 cm−3.
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values (has its minimum value). From Fig. 6-6(a) it is also possible to observe
that the term M 2

13 is approximately zero over the entire range of electric fields.
Despite the symmetry breaking in the wave functions, the Fig. 6-4(a) shows
that the electric field shifts the only maximum present in the Φ1 state towards
the region where Φ3 has a minimum. For this reason, the overlap between these
two wave functions tends to zero, giving an approximately negligible value of
the dipole matrix element. From the increasing behavior of σ12 and σ13 and
approximately constant of σ23 in Figs. 6-6(b) and 6-7(b), it is concluded that
in general the energy separation between the Φ2 and Φ3 states is approximately
constant with the electric and magnetic fields and that the transition energy
between Φ1 and Φ2 (or between Φ1 and Φ3) is an increasing function of the
electric and magnetic fields. As the strength of the two external probe fields
augments, an increase in confinement is observed, greater spacing between levels
appears; and it is much more difficult to thermally excite the electrons from
the ground to excited states. This explains why there is an increase in the
occupancy rate with the electric and magnetic field. Figs. 6-6(c) and 6-7(c),
where we present the function Fif = σif |Mif |2 (Ef − Ei), show quite intricate
mixing behavior of the three factors involved, which can be summarized as
follows. For the electric field effects in Fig. 6-6(c), it is observed that: i) F12

and F13 are dominated by the behavior of their corresponding σif and Ef −Ei

parameters and ii) F23 is dominated by the behavior ofM 2
23. In the case of Fig.

6-7(c), the nonzero F12 and F23 functions increase with the magnetic field and
essentially follow the transition energy behavior.

In Fig. 6-8 we present the variation of the total optical absorption coefficient
in a central δ-like doped GaAs Razavy-like QW as a function of the z-polarized
incident photon energy for three different values of the applied electric field,
with B = 0 (a) and for three values of the applied magnetic, with F = 0

(b) and keeping constant the nd concentration. According to Eq. (6-11), the
magnitude of the first-order correction resonant peak of the optical absorption
coefficient is proportional to Fif = |Mif |2 σif (Ef − Ei) which is precisely the
quantity reported in Figs. 6-6(c) and 6-6(c). The incident radiation intensity
chosen in this study is I = 0.5MW/cm2 and, under such assumption, a clear
dominance of the linear contribution to the total light absorption is present.
Note that the magnitude of the maxima of αij in all the curves of Fig. 6-8 follow
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Figure 6-8.: (color online) Variation of the total optical absorption coefficient
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The results are for nd = 4.5× 1019 cm−3.
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the behavior of Fij reported in Figs. 6-6 and 6-7. For example, in Fig. 6-6(c),
we can see that F23 decreases with the electric field, a situation that is identical
to the decrease of the resonant peak of α23 in the three corresponding curves in
Fig. 6-8(a) as it increases the electric field. The almost constant behavior of the
magnitude of the resonant peak of α23 in Fig. 6-8(b) is directly related to the
slight variation shown by F23 in Fig. 6-7(c). The absence of the α13 coefficient
in Fig. 6-8(b) for all the magnetic fields strengths considered and in Fig. 6-8(a)
for F = 0 is since the α13 transitions are forbidden between states that have
the same even symmetry. As mentioned, in general, the electric and magnetic
fields used as external probes in this study are responsible for the increase in
carriers’ confinement, which finally translates into a greater spacing between
adjacent levels and consequently in an increase in the transition energies. This
fact is in perfect coherence with the blue shift shown by the resonant peaks of
the total absorption coefficient as the electric field increases, as shown in Fig.
6-8(a), or as the magnetic field increases, as shown in Fig. 6-8(b).

In Fig. 6-9 we present the variation of the reduced dipole matrix elements (a),
the occupancy ratio (b), the transition energies (c), and the Fif -function (d)
in a central δ-like doped GaAs Razavy-like QW as a function of the doping
volume concentration for zero electric and magnetic field. As shown in Fig. 6-
4(b), central doping creates a potential well in the center of the structure, giving
rise to a system of three coupled wells in the Razavy-like double quantum well
system studied here. When nd = 4.5×1019 cm−3, see Fig. 6-4(b), it is observed
that the central well, where doping exists, has its minimum with energy slightly
higher than the original two minimums of the Razavy-like double quantum well.
As nd grows from that value, the two potential barriers that separate the wells
decrease in their heights until they finally collapse, and the system evolves from
three potential wells to a single QW that drags the ground state successively
towards lower energies. This effect is responsible for the increasing behavior
of the E2 − E1 and E3 − E1 transition energies in Fig. 6-9(c). The central
potential well, with increasing nd, confines within it the Φ1 and Φ2 states,
with which an increasing behavior appears reinforced by the confinement of
the E2 − E1 transition energy. This fact justifies that the slope with nd of the
E2 − E1 transition is higher than that exhibited by E3 − E1, which explains
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Figure 6-9.: (color online) Variation of the reduced dipole matrix elements-
|Mif |2 (a), the occupancy ratio-σif (b), the transition energies-
Ef − Ei (c), and the function Fif = σif |Mif |2 (Ef − Ei) (d) in
a central doped GaAs Razavy-like quantum well as a function
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the decreasing character of the E3−E2 transition. As the Φ1 and Φ2 states are
confined in the central well, a greater localization oaround z = 0 gives rise to
the diminishing character of M 2

12 in Fig. 6-9(a). Due to the increment in the
localization of Φ2 close to z = 0 and that the spatial extension of Φ3 shows
negligible changes with the increase of nd, the augmenting character of M 2

23

is justified. The variations of σif in Fig. 6-9(b) exactly follow the behavior of
Ef −Ei as previously justified. Fig. 6-9(d) shows unequivocally that in the Fif
function, the dominant factors are the transition energies and the occupancy
ratio.

Figure 6-10 contains our results for the variation of the total optical absorption
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coefficient α12 and α23 in the investigated GaAs Razavy-like QW with on-center
delta-like doping, plotted as a function of the incident photon energy for three
different values of the nd-doping concentration in the absence of any external
field. The absence of the α13 transitions is justified by the symmetric nature
of the structure, in which case both the ground state and the second excited
state are even functions between which the dipole matrix element is zero. The
red/blue shift of α12/α23 is explained by the results in Fig. 6-9(c). Likewise, Fig.
6-9(d) justifies the variations in the magnitudes of the resonant structures and
again makes it possible to argue that the first order correction is the dominant
one in the optical absorption coefficient.

6.3.2. Results Quantum Wire

In this subsection, we present the results of calculations for the two-dimensional
QWR system with a Razavy potential as described in section 2. As in the
previous case, the following parameters have been set: effective mass of electron
in GaAsm∗ = 0.067m0, wherem0 is the mass of the free electron and dielectric
constant εr = 12.9. Coupled differential equations have been solved by means of
the finite element method with the following setup: inner mesh with triangular
shaped elements, number of elements 6550, edge elements 160, mesh vertices
3356, maximum number of iterations for Self-consistent method 40, absolute
tolerance for Self-consistent method 10−6.

Figure 6-11 shows the self-consistently determined confinement potential for
three different radii, rd, for the GaAs QWR: rd = 5 nm (a), rd = 10 nm (b),
and rd = 15 nm (c). Calculations are with R0 = 50 nm, T = 10K, and
Nd = 3 × 1019 cm−3. The red color in each figure indicates larger values for
the potential, while the blue color indicates the smaller values for it. For the
three cases studied, the self-consistent potential presents a stable equilibrium
point at x = 0 (center of symmetry of the system), which corresponds to a mi-
nimum potential and therefore, the electrons will be practically confined around
the central region of the QW, feeling an infinite potential at the system boun-
dary. For rd = 5nm, the potential presents a very sharp peak near the center of
the structure generated by the rearrangement of charges. Such a charge distri-
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Figure 6-11.: (color online) Variation of the total optical absorption coefficient
α12 and α23 in a central doped GaAs Razavy-like quantum well
as a function of the incident photon energy for three different
values of the nd-doping concentration. The results are for F = 0

and B = 0.
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bution practically resembles a delta type doping in the system, given the very
small value of rd compared to the total radius of the wire R0. For the larger
radii of the on-center doping region the sharp peak no longer appears. Instead,
the profile shows a flatter bottom around the center of symmetry. However, in
all cases, these lower structures correspond to smaller values of the potential
energy, compared to the entire cross section of the QW. This indicates that
electrons will tend to localize towards the interior this central region.

In the Fig. 6-12(a) we plot the projection along the x direction of the self-
consistent potential for the three values of doping radii rd considered: 5, 10
and 15 nm. The black curve corresponds to the Razavy potential inside QWR,
which is included as a reference. Calculations consider R0 = 50nm, T = 10K,
and Nd = 3 × 1019 cm−3. Vertical bars indicate the different doping radii, rd.
The potential reaches a minimum value of -0.49 eV, for rd = 5 nm, followed
that with rd = 15nm, where the minimum is at -0.32 eV and, finally, when
rd = 10 nm the minimum is -0.28 eV. The value of these minima is crucial for
the positioning of the electronic states as well as to quantify their contribution
to the electron density in the system. In the regions close to the QWR boundary,
all potentials converge to a single value of 1.72 eV which corresponds to the sum
of the potential due to the Fermi level Pinning in GaAs which is 0.7 eV plus
the Razavy potential at the boundary that is equal to 1.02 eV. That is, the
potential at the boundary is not modified by the effect of the doped delta layer
in the central region of the wire. Note the similarity of the black curve that
corresponds to the projection of the Razavy potential on the x-axis with the
potential presented in Figure 6-4(a) (blue curve) for the one-dimensional QW.
Figure 6-12(b) shows the electron density for each configuration of the system.
Due to the symmetry of these quantities, they have are plotted only from the
center of the structure towards the border. The colors on each curve exactly
match to each of the potentials in Fig. 6-12(a). The electron density that
reaches the maximum value is that corresponding to rd = 5nm, which is,
precisely, the cylindrical delta-doping region with the smallest radius. In this
case, electrons are confined within a circular cross-section that does not exceed
20 nm in diameter, and the behavior of electron density is completely decrea-
sing as we move away from the center of symmetry of the system. For the radii
rd = 10nm and rd = 15nm, the densities decrease in magnitude, having a



204
6 Theoretical Study of Electronic and Optical Properties in Doped Quantum

Structures with Razavy Confining Potential: Effects of External Fields

en
er

gy
 (e

V)

x (nm)

 Razavy
 rd = 5 nm
 rd = 10 nm
 rd = 15 nm

(a) (b)

(x
,1
0K

)/N
d

x (nm)

 rd = 5 nm
 rd = 10 nm
 rd = 15 nm

Figure 6-12.: Projection in the x direction of the self-consistent potential for
the three doping radio rd studied, 5, 10 and 15 nm. The black
curve corresponds to the Razavy potential inside QW, included
as a reference (a). Self-consistent electron densities correspon-
ding to each of the potentials presented in (a) maintaining the
same projection direction in the x direction (b). Calculations
are with R0 = 50nm, T = 10K, and Nd = 3× 1019 cm−3.
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distribution along the cross section of the wire with diameters not greater than
30 nm and 40 nm respectively. The system that reaches the lowest magnitude
in electron density is the system with rd = 10 nm, which, as described before,
corresponds to the highest potential in the center of the system. It should be
noted that density profiles generated for rd = 10nm and 15 nm are not always
totally decreasing, but exhibit the so-called Friedel-like oscillations, which ap-
pear as irregularities in the electron density near the center of symmetry of the
system.

Figure 6-13 shows the first energy levels for a confined electron in a GaAs
QWR as functions of the rd parameter. The inset shows a zoom for rd values
between 5 nm and 10 nm. Calculations correspond to R0 = 50 nm, T = 10K,
and Nd = 3× 1019 cm−3. For all states there is a clear monotonous decreasing
behavior. For rd values smaller than 2.5 nm, the states presented are very close
to each other around an average value of 0.72 eV. For rd values bigger than
2.5 nm, the states present a considerable separation and there are crossovers
between some excited states. The inset shows the region 5 nm < rd <10 nm in
which it is possible to clearly observe some of these crossovers between states,
with double or even triple degenerations occurring at specific points. For rd
values greater than 20 nm, the states again tend to be closer together due to
the distribution of charges along the cross section of the wire.

The plot in Figure 6-14 shows the lowest energy levels for a confined electron
in a GaAs QWR as a function of the Nd parameter. Results presented are for
R0 = 50nm, rd = 2nm, and T = 10K. With this setup, all states present a
parallel and approximately linear behavior, existing degeneration of order two
for all the states except for the ground one. It should be noted that, unlike Fig.
6-13 in which the rd is varied, there are no longer any crossovers between the
states. Note that the first excited state and the ground state present very close
energies, with a separation of approximately 0.7meV, whilst the other excited
states exhibit a more notable separation.

The electron density appears in Fig. 6-15 as a function of the distance from
the QWR center (along the x direction), together with the those quantities,
|ψi(x, y = 0)|2, that contribute with the highest percentage to the density pro-
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Figure 6-13.: First energy levels for a confined electron in a GaAs quantum
wire as a function of the rd parameter. The inset shows a zoom
for rd values between 5 nm and 10 nm. Calculations are with
R0 = 50nm, T = 10K, and Nd = 3× 1019 cm−3.
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Figure 6-14.: First energy levels for a confined electron in a GaAs quantum
wire as a function of the Nd parameter. Calculations are with
R0 = 50nm, rd = 2nm, and T = 10K.
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Figure 6-15.: Electron density and |ψi(x, y = 0)|2 that contribute with the
highest percentage to the density profile at the points marked
with the dashed lines. Results are for rd = 5nm (a), rd = 10nm
(b), and rd = 15nm (c) QW. Calculations are with R0 = 50nm,
T = 10K, and Nd = 3× 1019 cm−3.
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file at the points marked with the dashed lines. Results correspond for rd = 5nm
(a), rd = 10 nm (b), and rd = 15 nm (c) QWR. Calculations were performed
with R0 = 50nm, T = 10K, and Nd = 3× 1019 cm−3.

In Fig. 6-15(a) the projection of the electron density along the x direction is
presented for rd = 5nm and, for this configuration, there are no oscillations
in the density profile. The dashed line corresponds to the point at which the
percentage contribution of each of the states of the system to the total electron
density has been calculated. This contribution is presented in detail in Table
6-1. For this first system, the electron density profile is due only to the con-
tribution of four states. the highest contribution is due to the ground state ψ0

with 73.1% corresponding to the red curve in Fig. 6-15(a), followed by state
ψ3 with 25.1%. No Friedel-like oscillations are present in this case. Fig. 6-15(b)
contains the electron density profile for rd = 10nm and the states that present
a contribution greater than 10% at the point x = 2.1nm marked with the das-
hed line. For the total electron density, a contribution of eight states is present
as reported in Table 6-1. Again, the state that has a greater contribution is ψ0,
with 42.8%, and corresponds to the red curve in the figure. It is followed by the
state ψ5 which is already a higher state with 21.2% and later the state ψ1 with
17.8%. The appearance of this oscillation is mainly due to the occupation of the
lowest states in the system (ψ0 and ψ1) with a contribution greater than 60%.
Fig. 6-15(c) presents the electron density profile for rd = 15nm, together with
the probability densities of states that present a contribution greater than 9%
to the electron density at the point x = 4.3nm -marked with the dashed line.
Comparing with figures (a) and (b), in this case the first oscillation appears
further from the center of symmetry of the system. It should be noted that the
electron density for this case contains contributions from thirty states, however,
none of them exceeds the 19% contribution to this Friedel-like oscillation as
evidenced in Table 6-1. The state that contributes the most (state with the
highest occupancy at this specific point) is one of the higher states, ψ8, with
18.5% followed by the ground state, ψ0, with 15.1%. The Table 6-1 does not
include states with a contribution lower than 1%. Comparing the three values
of rd and the data collected in Table 6-1, it is possible to conclude that as the
value of rd augments, the ground state ceases to be the predominant state in
terms of occupancy. Instead, a significant contribution from the highest states
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in the system will occur.

Contribution by state (%)
rd (nm) ⇒ 5 10 15

ψ0 73.1 42.8 15.1
ψ1 0.5 17.8 13.2
ψ2 1.3 0.3 1.7
ψ3 25.1 1.0 1.6
ψ4 0.9 3.0
ψ5 21.2 6.0
ψ8 12.3 18.5
ψ9 3.7 4.2
ψ12 9.4
ψ13 2.7
ψ18 3.3
ψ19 7.9
ψ20 1.8
ψ25 4.8
ψ26 3.2
ψ27 1.2

Table 6-1.: Contribution in percentage of each of the states to the oscillations
in the density profile presented in figure 6-15.

Finally, in order to have a comparison about the effect of doping geometry
on the self-consistent potential in the cylindrical Razavy-like QWR, Fig. 6-
16 shows the projection of the self-consistent potential along the x direction
considering two different doping zones, the black curves correspond to a central
cylinder-shaped doping, as indicated by the dark vertical column, the red curves
correspond to a cylindrical ring-shaped doping (the two light red columns in
the figure indicate the cross section of the ring in the xz plane, the columns are
centered at x = −30nm and x = 30nm respectively). The dashed lines are for
Nd = 1 × 1018 cm−3 and the solid lines are for Nd = 5 × 1018 cm−3. The inset
shows the electron density obtained for Nd = 5 × 1018 cm−3. Calculations are
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Figure 6-16.: Projection of the self-consistent potential in the x direction con-
sidering two different doping zones, the black curves correspond
to a central cylinder-shaped doping, as indicated by the dark
vertical column, the red curves correspond to a cylindrical ring-
shaped doping such as show the two light red columns. The das-
hed lines are for Nd = 1× 1018 cm−3 and the solid lines are for
Nd = 5× 1018 cm−3. The inset shows the electron density obtai-
ned for Nd = 5× 1018 cm−3. Calculations are with R0 = 50nm,
rd = 5nm, and T = 10K.
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with R0 = 50nm, rd = 5nm, and T = 10K. When the doping corresponds to
the central cylinder, that is, to the black curves, one observes that when the
density of donors in the system increases, there is a considerable decrease of the
potential in the central zone. This is much more significant when the doping is
included in a region with the shape of a cylindrical ring (red curves), where the
potential is lowered by an average of 0.5 eV in the regions between -30 nm and
30 nm. It should be noted that in the latter case there is no longer a specific
decrease in the central area, that is, the repulsive character is not lost in the
center of symmetry. Analyzing the continuous black curve it is possible to realize
that, for higher donor densities, the dominant potential in the system will be
the potential due to the redistribution of charges, that is, the Hartree potential
and the Razavy potential loses significance. Therefore, when the density of
donors accumulates in a central cylinder, the self-consistent electron density
will be very sensitive to the magnitude of these donors since they can drastically
modify the potential profile. The opposite case occurs when the donor density
accumulates in a cylindrical ring. There, as the donor density increases, the
dominant potential remains the Razavy one, and the Hartree potential only
generates a decrease in magnitude of the potential without drastically modifying
the shape. The inset in Fig. 6-16 shows the electron density for Nd = 5 ×
1018 cm−3 for the system with cylindrical ring doping. By comparing this result
with the one presented in Fig. 6-12(b), we see a totally different profile in which
the electrons accumulate mostly in the area of doped ring and, despite being
at a low temperature, no Friedel-like oscillations are present.

6.4. Conclusions

By using the effective mass and parabolic band approximations, the finite diffe-
rence method, as well as a self-consistent calculation, we have investigated the
features of total optical absorption coefficient of confined electrons in a delta-
like doped Razavy-like quantum well under the combined effects of externally
applied electric and magnetic field. In the absorption peaks, a clear blue shift
is evidenced for all the transitions studied, keeping the donor density fixed, the
shift being more significant for changes in the electric field than in the magnetic
field, in all cases a change in the magnitude of the optical absorption peaks is
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presented. The transition with the greatest resistance to modifications due to
external fields is α23. On the other hand, with the increase in donor density,
red and blue shifts of the absorption peaks were also reported, as well as a
decrease in their magnitude depending on the transition studied. This allows
us to tune the system without modifying geometric parameters directly, only
applying external fields or increasing the density of donors to obtain the maxi-
mum absorption of the material in the positions that are required for a certain
application.
On the other hand, the delta-doping effect on electron states has been analy-
zed in quantum wire systems with exposed borders and circular cross-section
subjected to an internal Razavy-like potential at low temperatures. Effects of
varying geometric parameters such as the width of delta-doped layer, and not
geometric as the density of donors in the system have been studied. In both
cases a decrease in the magnitude of all electronic states has been found both
with the increase of rd and Nd. The appearance of irregularities in the electron
density profile has been reported for rd = 10 nm and 15nm, these oscillations
are Friedel-like and have been explained by means of the occupation of the
electronic states of the system. We hope that this research will stimulate future
investigations related to intentional doping in low-dimensional semiconductor
heterostructures.
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7. Electro-transport properties
in GaAs/AlGaAs and
InSe/InP finite superlattices
under the effect of
nonresonant intense laser
field and considering
geometric modifications

In this work a finite periodic superlattice is studied, analyzing the probability of
electronic transmission for two types of semiconductor materials, GaAs/AlGaAs
and InSe/InP. The changes in the maxima of the quasistationary states for both
materials are discussed, making variations in the number of periods of the su-
perlattice and its shape by means of geometric parameters. The effect of a
nonresonant intense laser field has been included on the system to analyze the
changes in the electronic transport properties by means of the Landauer forma-
lism. It is found that the highest tunneling current is given for the GaAs-based
compared to the InSe-based system and that the intense laser field improves
the current-voltage characteristics. Finally, the power of the system is discussed
for different bias voltages as a function of the chemical potential.
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7.1. Introduction

The study of semiconductor systems has advanced significantly during the last
fifty years, particularly in systems based on superlattices (SLs) of GaAs, InSe,
among other materials. Modern experimental techniques have allowed us to un-
derstand in a much more precise way the behavior of charge carriers within these
heterostructures and develop theoretical models with a high degree of precision
hand to hand with theoretical models. A significant motivation for the study
of heterostructures based on these materials are the novel applications in fields
such as the development of field-effect transistors or high electronic mobility,
systems in which the effects of impurities, pressures, and applied fields have
been analyzed to improve optical absorption; these devices are candidates for
the advancement of future technologies in the electronics field [1–5]. Likewise,
in this field, there are switching devices capable of working at high-speed [6]. In
the optoelectronics field, the development of solar cells that can provide strong
absorption in a much wider range of the electromagnetic spectrum stands out,
which considerably improves the efficiency of usable energy [7–16]. A typical
application of semiconductor systems are detectors, which, depending on the
type of material or the geometric arrangement, can be tuned to detect from
ultraviolet, infrared, and even up to the terahertz range [17–23]; also in this
field, mention should be made to the cascade laser [24]. Finally, various appli-
cations such as biosensors to detect some type of cancer cells or zeno-logical
applications [25, 26] are worth mentioning. In some of these applications, low
dimensional semiconductor devices such as quantum dots, quantum wires or
quantum wells are implemented [27, 28].
Some of the first studies of SLs based on semiconductor systems were develo-
ped around the 70’s in works such as those by Esaki and Chang [29] in which
the properties of electronic transport in systems with a periodic structure of
GaAs/AlAs were experimentally analyzed. By means of the molecular-beam
epitaxy technique, in their work, the evidence of the system oscillatory con-
ductance behavior increasing voltage was found. Later, using the same growth
technique for the heterostructures, Dingle et al. [30] experimentally demons-
trated the formation of a GaAs/AlGaAs SL at low temperatures using optical-
absorption measurements on ultra-thin layers. Later in the 90’s, Fedirko and
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Eremtchenko [31] analyzed the SLs based on GaAs/AlGaAs by means of scan-
ning probe microscopy, finding a pretty good periodic structure.
In more recent years, the SLs of semiconductor materials continue to be studied
either to understand excitations in the system or to analyze the response un-
der external fields. In works such as that from Komatsu et al. [32], the authors
analyzed the intensity of exciton photoluminescence in the presence of an exter-
nal magnetic field in a GaAs SL. In this type of material, the study of structural
properties is of great importance since it is possible to tune electronic properties
that lead to the optical response of the system. In 2004, Jeong et al. [33] studied
these properties in a GaAs/AlGaAs SL layer on InAs quantum dots by means
of photoluminescence, photoreflectance spectroscopy, and transmission electron
microscopy. Their results showed that the wavelength of the quantum dots was
effectively tailored by the high potential barriers. The effect of the interface
on the modulation-doped of the SL-type heterostructures can considerably mo-
dify the electronic properties in n-doped and p-doped systems. This effect was
studied by Bezerra et al. [34], finding that the presence of graded interfaces
modifies the carrier confinement inside of the GaAs quantum well. When the
semiconductor system is subjected to the action of external magnetic fields,
it is possible to modify the properties of electronic transport, in particular,
the current-voltage curves, or to generate the appearance of Magnetoresistance
oscillations [35, 36].
One way to characterize the semiconductor structures is by analyzing the trans-
port properties, whether thermal or electrical, depending on if the system is put
in contact with electronic reservoirs at different temperatures or if the system is
subjected to a potential difference. These properties can be analyzed by means
of the Landauer-Büttiker formalism [37, 38].
In this work, we are interested in studying the electronic transport proper-
ties of a finite periodic lattice. We are particularly interested in studying the
tunneling current considering geometric variations of the heterostructure for
two different combinations of the semiconductor materials, GaAs/AlGaAs and
InSe/InP. Using the Landauer formalism, the current due to the tunneling of
electrons from the emitter to the collector, generated by a potential difference
between the terminals of the device, is calculated. The power due to the diffu-
sion of charge carriers and the effects of a nonresonant intense laser field (ILF)
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on the conduction band profile and, therefore, on the conduction current are
also studied. The solution of the differential equations and the calculation of the
electronic transmission probability have been carried out using the finite ele-
ment method (FEM). The chapter is organized as follows: Section 7.2 contains
the theoretical framework; Section 7.3 is devoted to the results and correspon-
ding discussion; finally, in Section 7.4 are presented the main conclusions.

7.2. Theoretical model

The system under study corresponds to a SL with InSe (GaAs) well regions
and InP (AlGaAs) barrier regions. As shown in Fig. 7-1, each well has a w-
width and is made of InSe (GaAs) and the left and right barriers of the first
period have b1 and b2 lengths, respectively, and are of InP (AlGaAs) material,
as shown in Fig. 7-1(c). The full length of the first period is a = b1 +b2 +w and
remains fixed for all three figures (see Figs. 7-1(a-c)). The total length of the
barriers inside the first cell is b = b1 +b2. From the above, it is possible to define
the γ-parameter (γ = b/a) that sets the relationship between the total barrier
length and the length of the first SL period. At this point, it is possible to
define a factor that can modify the geometry of the complete periodic system,
β = b2/b, with 0 ≤ β ≤ 0.5. As we see in Fig. 7-1, depending on the β-value,
the first SL period will have an established form: i) for β = 0.0, the barriers will
have the same width as wells; ii) for β = 0.2, the system will be asymmetric
regardless of the number of periods, and the well on the right will always be
thinner than the one on the left, and finally iii) for β = 0.5, the system will
be symmetric for all periods, but the two lateral barriers will always be smaller
than the central barriers. Depending on the number of calculated periods and
each β-value, Figs. 7-1(a), 7-1(b), and 7-1(c) will be repeated periodically.

From the above, it is possible to write expressions for the barrier and well
widths in terms of the γ, β, and a parameters, i.e.,

b1 = γ a (1− β) ,

b2 = γ a β ,

w = a (1− γ) .

(7-1)
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Figure 7-1.: (a-c) Scheme corresponding to a single period of the superlattice
for β = 0.0, β = 0.2, and β = 0.5, respectively.
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Table 7-1 shows the particular case with β = 0.0, 0.2, and 0.5,

β a (nm) w (nm) b1 (nm) b2 (nm)
0.0 10 5 5 0
0.2 10 5 4 1
0.5 10 5 2.5 2.5

Table 7-1.: Geometric parameters for different values of β.

The shape of each potential can be modified by means of variations in the
geometric parameters according to Eq. (7-1) and Table 7-1, to later be replaced
in the time-independent Schrödinger equation to obtain a set of eigenfunctions
and eigenvalues (ψβn,i(~r) and Eβ

n,i),[
~∇ ·
(
−~2

2m∗(x)
~∇
)

+ Uβ
n (x)

]
ψβn,i(~r) = Eβ

n,i ψ
β
n,i(~r) , (7-2)

where m∗(x) is the x-dependent electron effective mass (note that in this work,
we deal with different values of the electron effective mass at the well and barrier
regions). Uβ

n (x) is the SL-potential (the SL is grown along the x-direction)
which depends directly on the n-parameter (number of SL-periods, i.e., the
number of times that each panel of Fig. 7-1 is repeated for each β-parameter
value). Additionally, ψβn,i(~r) is the electron wavefunction corresponding to the i-
th quasi-stationary state and of course it depends on both n and β. Finally, Eβ

n,i

is the corresponding energy; in general, the eigenvalues have real and imaginary
parts since the states are not stationary. Consequently, the electrons have a
lifetime inside the wells to later leave these by quantum tunneling effect.
By using the separation of variables method, we can write ψβn,i(~r) = ei

~k⊥·~ρ Ψβ
n,i(x),

where ~k⊥ and ~ρ are the wavevector and electron coordinate along the yz-plane,
perpendicular to the growth direction of the heterostructure. With the previous
wavefunction inserted in Eq. (7-2), and taking into account that we are dealing
with the bottom of all energy subbands (it means ~k⊥ = 0), we can obtain a
1D-differential equation for the x-coordinate, where by imposing the open boun-
dary conditions, the Ψβ

n,i(x) function can be written as a linear combination of
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plane waves as follows

Ψβ
n,i(x) = Aβ

n(x) e+i kβn,i x +Bβ
n(x) e−i k

β
n,i x . (7-3)

The Aβ
n(x) and Bβ

n(x) functions are the probability amplitudes of the system.
The first term on the right-hand side in Eq. (7-3) corresponds to an electron
moving from left to right with probability amplitude Aβ

n(x), whereas the second
term is an electron moving from right to left (reflected wave) with probability
amplitude Bβ

n(x); the complete wave function for any region of the system is
a superposition of these plane waves. It is clear that these amplitudes must
depend on the x-point, at which they are being calculated, as well as on the (n,
β) geometric parameters of the superlattice. kβn,i is the magnitude of the wave
vector and is given by kβn,i = (2m∗(Eβ

n,i − Uβ
n (x))/~2)1/2.

The x-dependent differential equation associated with the Eq. (7-2) when the
wave function represented by Eq. (7-3) has been considered is solved through
the FEM with the COMSOL-Multiphysics licensed software (5.4, COMSOL
AB, Stockholm, Sweden) [39–41] by implementing the semiconductor module
(Semiconductor Module User’s Guide COMSOL Multiphysics R©) [42–45]. In
this way, the values of the probability amplitudes are found in any region of
the system. After that, it is possible to calculate the electron transmission
function T βn,i(E) through the device as the quotient between the amplitude of
the transmitted wave and the amplitude of the incident wave,

T βn (E) =
|Aβ

n(xf)|2

|Aβ
n(xi)|2

, (7-4)

where Aβ
n(xi) represents the amplitude of the wave that propagates from left

to right evaluated at the emitter and Aβ
n(xf) is the amplitude of a wave that

propagates from left to right but evaluated in the collector. This function is
proportional to the probability of electron tunneling through the system.
Once the transmission probability has been calculated, it is possible to calculate
the voltage-current characteristics in the SL using Landauer’s theory, which tells
us that employing a connection of the system with two electronic reservoirs, it
is possible to obtain the electronic tunneling current through the system, given
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by

I(Λ) = I0

∫ ∞
−∞

T βn (E,Λ) [fL(E,Λ)− fR(E,Λ)] dE , (7-5)

where e is the electron charge, ~ is the reduced Planck constant, and I0 = e/π~.
The terms fL(E,Λ) and fR(E,Λ) correspond to the Fermi functions evalua-
ted at the emitter and collector, respectively. They are given by fL(E,Λ) =

(1 + e(E−EF )/kBT )−1 and fR(E,Λ) = (1 + e(E−EF+Λ)/kBT )−1, where Λ is the bias
voltage applied between both terminals of the device. By means of the trans-
mission function, it is also possible to calculate the heat flux and the power in
the system, given, respectively, by

Θβ
n(l) =

2

h

∫ ∞
−∞

T βn (E,Λ)(E − Ef(l))(fL(E,Λ)− fR(E,Λ))dE

(7-6)

and

P β
n = Θβ

n(L)−Θβ
n(R) . (7-7)

The term T βn (E,Λ) represents the transmission probability for a fixed voltage,
Ef(l) is the Fermi energy for l = L (l = R), that is, for the emitter (collector).
In our study, we consider the effects of a x-polarized nonresonant intense laser
field (ILF) applied to the SL structure, which can be modeled as a mono-
chromatic plane wave with angular frequency φ. Due to the presence of this
nonresonant laser field, a modification occurs in the potential profile that en-
ters Eq. (7-2). So, the transformation Uβ

n (x)→ 〈V β
n (x, α0)〉 is obtained through

the relation

〈V β
n (x, α0)〉 =

φ

2π

∫ 2π/φ

0

Uβ
n [x+ α0 sin(φ t)] dt . (7-8)

The 〈V β
n (x, α0)〉 potential is known as the laser dressed potential, where the

ILF-parameter is defined as α0 = (eA0)/(m
∗φ) (here, A0 is the strength of the

laser field). The Eq. (7-8) is obtained by applying an intense, high frequency
laser field to an atomic system [46–48].
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7.3. Results and discussion

For the calculations the following input parameters have been used at 300K:
m∗ = 0.067m0 (m∗ = 0.0879m0) for the GaAs (AlGaAs) electron effective
mass (where m0 is the mass of the free electron) and Uβ

n (x) = 0 (Uβ
n (x) =

0.261 eV) in the GaAs (AlGaAs) material [49, 50]. Additionally, m∗ = 0.023m0

(m∗ = 0.08m0) is the InSe (InP) and Uβ
n (x) = 0 (Uβ

n (x) = 0.57 eV) in the
InSe (InP) material [51]. Geometric parameters: unit cell length a = 10nm, γ
= 0.5, and angular laser frequency φ = 1THz. The equations have been solved
through the FEM considering the following parameters: 5000 elements, 2 edge
elements, 1.0 element length radius, and 5001 mesh vertices.

Fig. 7-2 shows the bottom of the conduction band for a GaAs-Al0.3Ga0.7As
lattice (for the InSe-InP system, it would be an equivalent figure, only the value
of the band offset changes) varying from 1 to 4 periods and three values of the β-
parameters. The dashed lines indicate the potential without ILF effect, whereas
the solid curved regions show the potential modified by an ILF-parameter of
α0 = 1.0nm. As we can see, when β = 0, the number of barriers is equal to the
n-parameter, whereas, for β 6= 0, the number of barriers is equal to n+ 1. Each
region shaded with light blue or light red color corresponds to a superlattice
period. Note that depending on the n and β values, in the union of two or more
periods an overlap of the barrier regions may occur; for example, for n = 2 and
β = 0.5, which corresponds to Fig. 7-2(c2), the union of two periods generates
the appearance of a central barrier of 5 nm wide. This being wider than the
two lateral barriers that each measure 2.5 nm. Note how applying an ILF to
the system can significantly modify the shape of the potential barriers; this
variation is more significant for the barriers of smaller width, as can be seen,
for example, in Figs. 7-2(b1,b2,b3,b4) for β = 0.2; when comparing this effect
on the right barrier with the other barriers, a clear decrease in the height of the
barrier on the right is seen. This effect is not observed for β = 0 and β = 0.5.

Fig. 7-3 shows the energy dependence of the electronic transmission function
for the GaAs-Al0.3Ga0.7As well-barrier system presented in Fig. 7-2 for the lo-
wer states. Results are for α0 = 0, that is, without ILF effect on the system
(upper row), and α0 = 1.0nm (lower row). The different colors indicate the
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Figure 7-2.: x-dependent potential profile of a GaAs-Al0.3Ga0.7As lattice var-
ying from n = 1 to n = 4 periods. The shape of the periods
is also modified with the β = 0.0, 0.2, and 0.5 parameters. The
dashed lines indicate the potential with α0 = 0, whereas the solid
line show the potential modified with α0 = 1.0nm. The different
colors shadow regions indicate the superlattice periods for every
system.
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Figure 7-3.: Energy dependence of the electronic transmission probabilities
for a GaAs-Al0.3Ga0.7As finite lattice, according to Fig. 7-2, i.e.,
varying the n-number of periods and the shape according to the
structural β-parameter. Results are without intense laser field
effects (upper panels) and with α0 = 1nm (lower panels).
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number of periods calculated as indicated in Fig. 7-3(a3). Figs. 7-3(a1) and
7-3(b1) correspond to β = 0, Figs. 7-3(a2) and 7-3(b2) correspond to β = 0.2,
and finally Figs. 7-3(a3) and 7-3(b3) are for β = 0.5, therefore, each column
corresponds to a different structure. As we can see in Fig. 7-3(a1), the system
for n = 1 does not present a transmission peak; this is an approximately cons-
tant continuous function for this range of energies. This is expected behavior
since, for β = 0, only one potential barrier is present, the transmission is due
solely to the tunneling effect. For Fig. 7-3(a2), with n = 1, the system already
has two potential barriers (as can be seen in Fig. 7-2); however, the transmis-
sion still does not reach a maximum peak for the depicted energy range. This
is because, despite the existence of a resonant state in the central well region,
the non-symmetry of the barriers does not allow maximum transmission of 1,
furthermore, the right barrier is only 1 nm thick, so the tunneling is almost
complete. Already for β = 0.5 and n = 1 in Fig. 7-3(a3), the system reaches a
maximum transmission value that is presented by the effect of resonant tunne-
ling with the state inside the central well. In addition, due to the symmetry of
the barriers, for a given energy value, the maximum transmission probability
value is reached. For n = 2, a well-defined peak is evidenced for the system
with and without laser. In this case, the average width of the peak is grea-
ter for β = 0.2 compared to β = 0. Note that for β = 0.5, the transmission
presents a plateau-type structure, an energy range in which the transmission
probability is equal to or very close to 1. For n = 3 and n = 4, the transmission
probability presents 2 and 3 peaks, respectively, for both β = 0 and β = 0.2.
Finally, for β = 0.5, the transmission probability functions present flat regions
for values close to transmission equal to one. By comparing Figs. 7-3(a1,a2,a3)
with 3(b1,b2,b3), we note that the effect of the ILF on the system does not
significantly modify the shape or average width of the electronic transmission
peaks. However, there is an evident blue shift in the position of all transmission
peaks for all calculated periods and independently of the value of β-parameter.
For example, the red peak in Figs. 7-3(a1) and 3(b1), corresponding to n = 2

with β = 0, goes from 78.2meV to 88meV solely due to the laser effect. We have
to highlight that the variation in the average width of each transmission peak
is of fundamental importance for the response of the electric current through
the device.
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Figure 7-4.: Energy dependence of the electronic transmission probabilities for
an InSe-InP finite lattice, according to Fig. 7-2, i.e., varying the
n-number of periods and the shape according to the structural β-
parameter. Results are without intense laser field effects (upper
panels) and with α0 = 1nm (lower panels).
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Fig. 7-4 shows the electronic transmission function of the well-barrier system
presented in Fig. 7-2 for InSe-InP lattice. The upper row is for zero ILF-
parameter, whereas the lower row is for α0 = 1.0nm. The different colors
indicate the number of calculated periods calculated in a similar way to Fig.
7-3. The transmission functions present a trend very similar to that of GaAs-
Al0.3Ga0.7As well-barrier system, however, for the InSe-InP based system, the
average width of each transmission peak for β = 0 and β = 0.2 present a
small but appreciable decrease concerning the GaAs-Al0.3Ga0.7As system. The-
se differences can change the area under the transmission curve and modify the
properties of electronic transport. Due to the different band offsets for both
materials, clearly, the position of the maximum probability peaks is not the
same. To highlight one, in Fig. 7-3(a1) for GaAs-Al0.3Ga0.7As, the maximum
probability for the system with n = 1 and β = 0 is given for 78.2meV, while
in the InSe-InP system with the same parameters the resonant energy value is
145.6meV. Finally, in Figs 7-4(b1), 4(b2), and 4(b3) we see how once again the
ILF effect generates a shift towards the blue for all transmission maxima. The
value of the resonance in the red curve of Fig. 7-4(b1) appears at 171.5meV;
this indicates that the effect of the ILF on the quasi-stationary states for the
InSe-InP based system is more significant than in the GaAs-Al0.3Ga0.7As one.
Note that for both materials with and without laser effect, the system with
β = 0.5 (Figs. 7-3(a3) and 7-3(b3) and Figs. 7-4(a3) and 7-4(b3)) presents
approximately flat regions for the transmission profile and a point at which it
takes the same value regardless of the number of periods of the device. For
example, for the InSe-InP based system, this value is 145.8meV when the laser
is off and 170.9meV when the laser is on.

To understand why the curves in Figs. 7-3(a3-b3) and 7-4(a3-b3) lose their
symmetrical appearance and are so different from the other figures in the rest
of the panels, in Fig. 7-5(a) we have calculated the transmission probability for
the GaAs-Al0.3Ga0.7As system as a function of the electron energy for n = 3

and different values of the β-parameter. In Fig. 7-5(b,c), the real and imagi-
nary parts of the lattice eigenvalues (Eβ

n,i), respectively, as a function of the
β-parameter have been calculated. In Fig. 7-5(a) we see that for the lowest
values of the β-parameter, the transmission probability presents two clearly
defined peaks, such as β = 0.02 and β = 0.2 highlighted in red and blue,
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Figure 7-5.: In (a), transmission probability for the GaAs-Al0.3Ga0.7As lattice
for n = 3 as a function of the electron energy for different values of
the β-parameter. In (b-c), lattice eigenvalues real and imaginary
parts Eβ

n,i respectively as a function of the β-parameter.

respectively. However, as the β-value is increased, the average width of these
peaks, corresponding to resonant states within the superlattice, increases. For
β = 0.5 (green curve), which is the highest value, the transmission probabi-
lity has a peak around 0.08 eV and a region where the transmission probability
shows an approximately flat behavior between 0.076 eV and 0.078 eV. When the
Schrödinger equation is solved with open boundary conditions, a set of eigen-
values Eβ

n,i (where i is the order of the eigenvalue) is obtained for each pair of
(n, β) values, these eigenvalues generally have real and imaginary parts. In Fig.
7-5(b), the real part of the eigenvalues for n = 3 is presented as a function of
the β parameter in the range (0.0, 0.6). The vertical axis is in the same energy
range in which the transmission probability depicted Fig. 7-5(a) has been cal-
culated. The vertical dotted lines indicate the particular positions of β = 0.02,
β = 0.2, and β = 0.5 that correspond to the same values for the red, blue
and green curves of Fig. 7-5(a), respectively. The numbers (labels) indicate the
order of the eigenvalue (i-parameter). The red circles in Fig. 7-5(b) correspond
to the value of the two eigenvalues that are presented for β = 0.0, that is, these
values coincide with the two maxima that are shown in the red curve of Fig.
7-5(a). As we see in Fig. 7-5(b), for β = 0.2 in the range of energies presented,
the system shows three eigenvalues, however, in Fig. 7-5(a) the blue curve only
shows two resonant peaks corresponding to the eigenvalues 8 and 10 marked
by the blue circles, that is, there does not appear a peak associated with the
eigenvalue 9 that is around 0.079 eV. The reason for this resonance not appea-
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ring can be found by analyzing Fig. 7-5(c) in which the imaginary part of the
eigenvalues is presented. As we see for β = 0.2, the imaginary part of the eigen-
values 8 and 10 is very low compared to the imaginary part associated with the
eigenvalue 9. On the other hand, this imaginary part is inversely proportional
to the average life-time of the electrons in each state inside each well. From the
above, it is obtained that the life-time of the electrons in state 9 is very low
compared to states 8 and 10, which implies a probability density practically
zero at the interior of the wells of the superlattice for this state, which disables
it for the resonant tunneling process and for this reason that third peak does
not appear in the blue curve of Fig. 7-5(a). Analogous behavior happens for
β = 0.5, in Fig. 7-5(b) we see that four eigenvalues appear in the range of
energies presented; three of them very close between 0.075 eV and 0.078 eV and
one more close to 0.08 eV. When we analyze the imaginary part of each of these
states by means of Fig. 7-5(c), it is found that the imaginary part associated
with state 8 is very large compared to the other states for this value of β. This
implies that there is practically no probability of having electrons inside the
wells of the superlattice for this energy value. From the above it is concluded
that the green curve in Fig. 7-5(a) corresponds to the contribution of states 7,
9, and 10, where state 10, highlighted in Fig. 7-5(b) with a green circle, corres-
ponds at the resonance around 0.08 eV shown in Fig. 7-5(a). The flat region on
the green curve of Fig. 7-5(a), that is between 0.076 eV and 0.078 eV, is due to
the contribution of states 7 and 9 of Fig. 7-5(b). From the above, we see that
the transmission probability of the green curve corresponds to the resonance
of the electrons that come from the emitter with states 7, 9, and 10 inside the
wells of the superlattice; that is, there is a transmission due to three resonant
states, as opposed to the lower values of β for which transmission is due solely
to the contribution of two resonant states. This is the main cause of the asym-
metry that the green curve has compared to the red and blue curves in Fig.
7-5(a). This same explanation also applies to the difference marked between
Figs. 7-3(a3, b3) and 7-4(a3, b3) with respect to those of the other panels.

Fig. 7-6 shows the schematic diagram of the superlattice made up of a system
of GaAs (InSe) wells and Al0.3Ga0.7As (InP) barriers. The lower part represents
the device connected to two (hot and cold) reservoirs. The top represents the
bottom of the conduction band of the system. The width of the wells and the
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Figure 7-6.: Schematic diagram of the superlattice made up of a system of
GaAs (InSe) wells and Al0.3Ga0.7As (InP) barriers. The lower
part represents the device connected to hot-left and cold-right
reservoirs that also act as emitters and collectors. The top re-
presents the bottom of the conduction band of the system. The
width of the wells and the two central barriers have been set at
5 nm, and the barriers at the left and right are set at 2.5 nm (see
Fig. 7-2(c3)).
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Figure 7-7.: Corresponds to the system shown in Fig. 7-2(c3). In (a), the
transmission probability for the GaAs-Al0.3Ga0.7As lattice wit-
hout laser effect for different bias voltages concerning the inci-
dent electron energy. In (b), the scheme of the potential profile
for the barrier-well lattice system, the black curve corresponds to
the system without laser effect and the shaded region including
an intense laser field parameter strength of α0 = 1.0nm. In (c),
the same as in (a), but with intense laser field effect, α0 = 1.0nm.
The width of the wells and the two central barriers have been set
at 5 nm and the two lateral barriers at 2.5 nm.

two central barriers have been set at 5 nm and the end barriers at 2.5 nm. The
system can be brought out of equilibrium through a potential or temperature
difference between the electronic reservoirs. This would induce a flow of the
charge carriers, which implies an electric or thermal current between the device
terminals. An external ILF can be applied to this well-barrier arrangement and
analyze how the electronic probability changes; this is represented in Fig. 7-7
and 7-8.

Fig. 7-7 shows the transmission probability for the GaAs-Al0.3Ga0.7As system
without ILF effect for different bias voltages concerning the incident electron
energy, Fig. 7-7(a). Fig. 7-7(b) shows the scheme of the potential profile for the
barrier-well lattice system, see Fig.7-2(c3), where the black curve corresponds
to α0 = 0 and the shaded region for α0 = 1.0nm. In Fig. 7-7(c) is depicted
the same as in Fig. 7-7(a), but for α0 = 1.0nm. In Fig. 7-7(a), we can see how
as the bias voltage increases, the flat peak at the left side becomes narrower,
that is, more defined, and moves towards higher energies; this can be seen
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by comparing the corresponding red curve at zero bias, see Fig. 7-3(a3) blue
curve, with the blue curve corresponding to 5.0mV. Additionally, it is observed
that the peak located at higher energies loses intensity in a systematic way as
the bias voltage increases. Summarizing, at zero bias voltage, the transmission
probability presents two structures, a flat low-energy structure and a narrow
and well-defined high-energy structure, which collapse into a single, much more
defined structure with probability 1.0 and localized at 80.5 meV when the
bias voltage is 5.0 mV. According to Landauer’s theory, the area under each
probability curve must be proportional to the electric current due to the flow of
electrons through the system for this voltage. For the calculations presented in
Fig. 7-7(a), the profile of the bottom of the conduction band shown in Fig. 7-
7(b) (black curve) has been used. Fig. 7-7(c) shows the transmission probability
for the GaAs-Al0.3Ga0.7As system calculated for the potential profile of Fig.
7-7(b) (shaded region) including the ILF-effects. As we see in Fig. 7-7(b),
the nonresonant ILF induces a decrease in the width of the well-bottom; this
causes the quasi-stationary levels to rise, which corresponds to a blue shift as
evidenced in Fig. 7-7(c). The Fig. 7-7(c), the zero bias curve corresponds to
Fig. 7-3(b3) blue plot, shows similar behavior to that presented in Fig. 7-7(a)
as the bias voltage is increased in the system, that is, a decrease in the intensity
of the extreme peaks and the emergence of a single central peak of maximum
probability (one) attached to two external peaks of less intensity. However,
clearly, there is a notable difference in the area under each curve compared
to the ILF effects as the voltage increases. These differences in transmission
probability profiles cause changes in electronic transport properties.

The results depicted in Fig. 7-8 follow the same scheme as Fig. 7-7, but for the
InSe-InP system. In Fig. 7-8(a), we can see how the system goes from having
three peaks all associated with maximum probability 1, red curve for zero bias
voltage (see Fig. 7-4(a3) without laser effect and 7-4(b3) with intense laser
effects) to having a single central peak with probability one and two shoulders
of smaller amplitude on each side (blue curve). If we compare Figs. 7-7(a) and
7-8(a), we see that for both materials, there is a blue shift in the position of
the transmission peaks with the increase in voltage; however, the average width
of the peaks is greater in the case of the GaAs-Al0.3Ga0.7As structure than
in the InSe-InP one. Analogous behavior occurs when an intense nonresonant
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Figure 7-8.: In (a), the transmission probability for the InSe-InP lattice wit-
hout laser effect for different bias voltages concerning the incident
electron energy. In (b), the scheme of the potential profile for the
barrier-well lattice system, the black curve corresponds to the
system without laser effect and the shaded region including an
intense laser field parameter strength of α0 = 1.0nm. In (c), the
same as in (a), but with intense laser field effect, α0 = 1.0nm.
The width of the wells and the two central barriers have been set
at 5 nm and the two lateral barriers at 2.5 nm.

laser is applied to the system; see Figs. 7-7(c) and 7-8(c). From Figs. 7-7
and 7-8 it has been found that the transmission profile of the well-barrier
lattice system can be modified by applying an external nonresonant laser field
and modifying the materials that make up each layer of the system, and of
course, applying a bias voltage between the emitter and collector, maintaining
fixed geometric parameters. The previous indicates that this system is a good
candidate for an electronic device since it is possible to tune the electronic
transmission through which physical quantities such as electric current, heat
flow, conductance, power, among others, can be modeled.

Fig. 7-9(a) shows the electronic tunneling current for the well-barrier lattice
system as a function of the bias voltage. Analyzing the current for both mate-
rials without including laser effects (full symbols), it is found that the system
based on GaAs-Al0.3Ga0.7As reaches a value of 5.4mI0 for the maximum current
peak that occurs at 0.3mV, and on the other hand, for InSe-InP based material,
the maximum current value is 2.9mI0 which occurs for the same bias voltage.
It should be noted that for both materials, the geometric parameters have re-
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Figure 7-9.: In (a), the electronic tunneling current for the well-barrier lattice
system as a function of the bias voltage, in units of I0 = 2 e/h, for
zero ILF-parameter (full symbols) and α0 = 1.0nm (open sym-
bols). In (b), the power for five different bias voltages concerning
the chemical potential of the hot reservoir. The width of the wells
and the two central barriers has been set at 5 nm and the two
lateral barriers at 2.5 nm (see Fig. 7-2(c3)). Calculations are for
GaAs-Al0.3Ga0.7As and InSe-InP lattices.
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mained unchanged. Both materials present an abrupt increase in the current
between zero and 0.3mV to later present a monotonous decreasing behavior,
reaching up to 3.9mI0 for GaAs-Al0.3Ga0.7As and up to 1.1 mI0 for InSe-InP.
These differences between the currents of both materials are due to the diffe-
rences in the heights of the potential barriers generated by the different band
offsets. The above generates changes in the area under the curve of the probabi-
lity of electronic transmission, which can be evidenced comparing Figs. 7-7(a)
and 7-8(a), where we see that the area under the curve is greater for the GaAs-
Al0.3Ga0.7As system and according to Landauer’s theory, the tunneling current
is proportional to such area. With the application of the ILF (α0 = 1.0nm), as
found in previous figures, there is a shift in the quasi-stationary states inside the
wells, in the same way, there is a small increase in the area under the curve of
electronic transmission for both materials. This fact implies that the tunneling
current also shows an increase. For the system based on GaAs-Al0.3Ga0.7As, the
maximum current peak is now 6.2mI0 at 0.3mV and that of InSe-InP is 3.8mI0

at 0.4mV. The behavior is similar to the system without ILF effects, presenting
an abrupt increase for low voltages and a subsequent decrease. Lattices based
on GaAs-Al0.3Ga0.7As and InSe-InP reach the values of 4.9mI0 and 2.1mI0

respectively for 5mV. This indicates that both by changing the materials and
through the application of an external laser field, it is possible to modify the
properties of electronic transport, such as the electric current in the wells and
barriers system. Fig. 7-9(b) shows the power for the GaAs-Al0.3Ga0.7As system
(black curves) and InSe-InP (red curves) for five different bias voltages concer-
ning the chemical potential of the hot reservoir. The GaAs system shows close
to flat power curves, having an increasing slope for low values of the chemical
potential, going through a maximum, and the decreasing slowly. The Inse sys-
tem show almost a lineal behavior starting from low chemical potential values
and increasing to larger magnitudes. As the bias voltage is increased, the va-
lue of the power in each system decreases. On the other hand, for 1mV, the
power is maximum for the GaAs-Al0.3Ga0.7As system only for µH < 0.15 eV,
since after this value the power is now maximum in the InSe-InP system. This
indicates that for the chemical potential of the hot reservoir at 0.15 eV, both
materials present the same power value of 5.8 (10−4 W) for a bias voltage of
1mV, similarly, each crossing of the red curves with the black ones indicates
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points in which the power is equivalent for both materials and at different bias
voltages.

7.4. Conclusions

A finite superlattice system based on GaAs-Al0.3Ga0.7As and InSe-InP has been
studied, analyzing how the probabilities of electronic transmission change for
both materials, as well as varying geometric parameters that allow changing the
number of periods in the lattice and the well and barrier widths. By applying
an external nonresonant intense laser field, it is possible to modify the latti-
ce potential profile, which leads to a blue shift in quasi-stationary states. A
four-barriers-three-well arrangement has been taken to analyze the electronic
transport properties by means of Landauer’s theory for both semiconductor ma-
terials, including the laser effects. It has been found that, for the same geometry,
the tunneling current is higher for the GaAs-Al0.3Ga0.7As based system than
for the InSe-InP based system, in the same way, the point of maximum current
is practically unchanged for both materials for the calculated bias voltages. By
applying the external laser field, an increase in the tunneling current has been
found for both materials but maintaining the same trend of the I-V curves.
Finally, the power for the same arrangement has been calculated concerning
the chemical potential, finding higher values for the system based on GaAs-
Al0.3Ga0.7As for small values of the chemical potential and for high values, the
power is more significant in the InSe-InP system. It should be noted that for a
set of points, the power for both systems takes the same value. Lastly, it should
be noted that depending on the particular application, the power required or
the measurable current required of this finite superlattice system, it could be
built either based on GaAs-Al0.3Ga0.7As or InSe-InP and improved electronic
transport properties employing the application of an external nonresonant in-
tense laser radiation.
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8. General conclusions

In this thesis, the electronic states and the transport properties in quantum
well, quantum wires and quantum dots have been theoretically investigated
considering different materials as GaAs/AlGaAs, InSe/InTe, among others. The
results are obtained by using the effective mass approach and numerical finite
element method. In the systems addressed, the effect of variations in geome-
tric parameters, the application of external electric and magnetic fields, intense
non-resonant laser field, shallow donor impurity, changes in temperature and
variations in donor density have been considered.
In the conical quantum dot core-shell based on GaAs-(Ga,Al)As and CdSe-
CdTe, the effect of the presence of an axially located shallow-donor impurity
was studied, as well as the application of an external magnetic field. The im-
purity position and the magnetic field direction preserve the axial symmetry of
the system. Variations of the geometry have been considered, in which case the
structures evolve from conical QDs to truncated conical QDs. The electron-hole
correlation was studied with a first-order perturbation approximation.
In this particular work, some of the main results are: the presence of the shallow-
donor impurity is responsible for a red/blue shift of the electron/hole energies.
The binding energy for the electron-impurity system in general decreases with
the size of the structure; but with exceptions for specific geometries. The ap-
plied magnetic field is responsible for the hole-impurity ground state oscilla-
tions. In the case of the correlation energy between the electron-impurity and
hole-impurity states, it is observed that, in general, they decrease with the size
of the structure.
For the GaAs quantum wire system, the electronic properties such as wave fun-
ctions, state energies, potentials and electron densities have been calculated in
a self-consistent way, taking into account variations in geometric parameters,
such as cross-sectional area and non-geometric parameters, such as the donor
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density and the temperature.
In this work it has been shown that the increase in cross-section and/or do-
nor density in all structures generates a lesser degree of confinement by the
self-consistent potential and, therefore, a decrease in electronic energies. The
opposite case occurs when the temperature is increased, for which there is an
increase in the self-consistent potential profile, thus impacting on the increase
of energy eigenvalues for all systems. At low temperatures, all structures pre-
sent irregularities in the electron density profile. These Friedel-like oscillations
are due to the degree of occupation of internal and surface states (that arise
from having the surface of the quantum wire exposed) by conduction electrons.
Another studied system is a double barrier resonant tunneling diode system
based on GaAs and InGaAs in which, the wave functions, quasi-stationary sta-
tes and self-consistent potentials, among other electronic properties have been
calculated. The probabilities of electronic transmission have been calculated
considering variations in geometric parameters such as the width of the central
well and non-geometric parameters such as the density of donors in the layers
outside the barrier region. Additionally, the system has been converged out of
equilibrium to analyze the response of the internal quasi-stationary states to
an external potential difference applied to the contacts, obtaining a red shift
in all transmission peaks regardless of the donor density used. The Landauer
formalism was used to calculate the density of electric current that circulates
through the diode for different well widths and different donor densities. An
important conclusion is that the first current peak is obtained for lower volta-
ges in the case of narrower width of the central well. For the cases studied, it
is possible to show negative differential resistance.
The theoretical procedure for this double barrier system, has been applied to
an InGaAs/AlAs experimental system reported in recent literature, the current
density at room temperature for this system has been compared, obtaining sa-
tisfactory results for the calculation of the position of the first resonance in the
system and the magnitude of the current density at this point.
In a following work, we have investigated the features of total optical absorption
coefficient of confined electrons in a delta-like doped Razavy-like quantum well
under the combined effects of externally applied electric and magnetic field.
In the absorption peaks, a clear blue shift is evidenced for all the transitions
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studied, keeping the donor density fixed, the shift being more significant for
changes in the electric field than in the magnetic field, in all cases a change in
the magnitude of the optical absorption peaks is presented. With the increase in
donor density, red and blue shifts of the absorption peaks were also reported, as
well as a decrease in their magnitude depending on the transition studied. This
allows us to tune the system without modifying geometric parameters directly,
only applying external fields or increasing the density of donors to obtain the
maximum absorption of the material in the positions that are required for a
certain application.
On the other hand, the delta-doping effect on electron states has been analy-
zed in quantum wire systems with exposed borders and circular cross-section
subjected to an internal Razavy-like potential at low temperatures. Effects of
varying geometric parameters such as the width of delta-doped layer, and not
geometric as the density of donors in the system have been studied. The ap-
pearance of irregularities in the electron density profile has been reported for
certain specific values of the geometric parameters, these oscillations have been
explained by means of the occupation of the electronic states of the system.
In the last developed work, a finite superlattice system based on GaAs-Al0.3Ga0.7As
and InSe-InP has been studied, analyzing the change of the electronic trans-
mission for both materials, as well as varying geometric parameters that allow
changing the number of periods in the lattice and the well and barrier widths.
By applying an external nonresonant intense laser field, it is possible to modify
the lattice potential profile, which leads to a blue shift in quasi-stationary sta-
tes.
By using the Landauer formalism, it has been found that, for the same geo-
metry, the tunneling current is higher for the GaAs-Al0.3Ga0.7As based system
than for the InSe-InP based system, in the same way, the point of maximum
current is practically unchanged for both materials for the calculated bias vol-
tages.
Each of these works can serve as a model to explain the behavior of charge
carriers in devices based on low-dimensional systems and under the effect of
external fields.



A. COMSOL Example:
Self-consistent quantum
wire with internal doping

The following is a guide for the implementation of the problem of a quantum
wire of circular cross section with internal doping in the COMSOL Multiphysics
software to solve the equations by means of the finite element method in a self-
consistent way.



256 A COMSOL Example: Self-consistent quantum wire with internal doping

Figure A-1.: Add the corresponding parameters in the system.
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Figure A-2.: In geometry, construct a circumference that will be the cross
section of the wire.



258 A COMSOL Example: Self-consistent quantum wire with internal doping

Figure A-3.: In variables, the electronic potential, the charge density, among
other functions are defined.
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Figure A-4.: In materials, for this case only the relative permittivity is defined.



260 A COMSOL Example: Self-consistent quantum wire with internal doping

Figure A-5.: In physics, Schrödinger’s equation must be added.
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Figure A-6.: In physics, the Poisson equation must be added for electrostatic
interaction.



262 A COMSOL Example: Self-consistent quantum wire with internal doping

Figure A-7.: The next step is to add the boundary conditions.



263

Figure A-8.: Including internal donor density.



264 A COMSOL Example: Self-consistent quantum wire with internal doping

Figure A-9.: In physics, add Multiphysics to solve the Schrödinger and Poisson
equations in coupled form.
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Figure A-10.: Defining the mesh for the finite elements calculation.



266 A COMSOL Example: Self-consistent quantum wire with internal doping

Figure A-11.: In study, select stationary and calculate only the Poisson equa-
tion for the initial step in Thomas Fermi approximation.
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Figure A-12.: In results, it is possible to visualize the initial electrostatic po-
tential.



268 A COMSOL Example: Self-consistent quantum wire with internal doping

Figure A-13.: In a new study, select Schrödinger-Poisson to solve for self-
consistency and consider the potential calculated in the pre-
vious step as the starting point for the method. This step also
defines the total number of iterations and the tolerance.
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Figure A-14.: Finally, in results, the probability density, the total electron
potential and the self-consistent electron density are obtained.



B. Fortran code for a
self-consistent doped
quantum well

This section includes the code for the self-consistent calculation of the GaAs
quantum well with Al0.3Ga0.7As barriers corresponding to the theory presen-
ted in section 2.3 of the General theoretical framework. If this code or the
previous one developed in COMSOL are required, you can request it at jale-
xander.gil@udea.edu.co.

C Grupo de Materia Condensada - UdeA
C Medellin - Colombia - 2021
C***********************************************************************
C Routines References
C (C) Copr. 1986-92 Numerical Recipes Software #0).
C cleve moler, university of new mexico, argonne national lab.

C***********************************************************************
C Dimensional parameters
C***********************************************************************
implicit double precision (a-h,o-z)
parameter(np=70)
parameter(nd=5000)
C***********************************************************************
C Definition of vectors and
C the matrices that will be used in the code
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C***********************************************************************
dimension zz(nd+1),roo(nd+1),v(nd+1),voff(nd+1),v_salida(nd+1)
dimension de(np),ve(np,np),punt(nd+1)
dimension AAA(nd+1,200),BBB(nd+1,200)
dimension vxc(nd+1)
C***********************************************************************
C Common parameters for the entire code
C***********************************************************************
character*16 filename1,filename2
common/coeficientes/ve
common/energias/de
common/parameters/xL,ee,hbar,xme,Pi,ef
common/x_infinito/x_infinito
common/v_salida/v_salida
common/AAA/AAA
common/iter/iter
DATA PI/3.141592653589793D0/
C***********************************************************************
C Defining file for writing eigenvalues
C***********************************************************************
open(4,FILE=’energias.dat’,STATUS=’UNKNOWN’)
C***********************************************************************
C Defining parameters for the code
C***********************************************************************
xnd = 1.0d24 ! Donor density in [1 / m ^ 3]
xna = 5.0d20 ! Acceptor density in [1 / m ^ 3]
xL0 = 50.0d-10 ! Well length in [m]
step_xL = 10.0d-10 ! Step size for xL0 in [m]
itermax = 40 ! Maximum number of iterations
n_pozos = 1 ! Total number of wells calculated
C***********************************************************************
C Varying the width to be solved
C***********************************************************************
do 11000 itt=1,n_pozos



272 B Fortran code for a self-consistent doped quantum well

xL = xL0 + dfloat(itt-1)*step_xL
ds = 100.0d-10
C***********************************************************************
C Defining the boundaries of the system (the Bulk)
C and some constants
C***********************************************************************
x_infinito = 1000.0d-10 ! Infinite for the system [m]
x1 = -x_infinito/2.0d0 ! Left border (-Bulk) [m]
x6 = +x_infinito/2.0d0 ! Right border (+ Bulk) [m]
ee = 1.6d-19 ! Electronic charge [C]
hbar = 1.05d-34 ! Reduced Plank constant [J * s]
xme = 0.067*9.1d-31 ! GaAs reduced mass [kg]
const = xme/(Pi*hbar**2)
eps0 = 8.8542d-12 ! permittivity of vacuum [C^2/N/m^2]
eprs = 12.244d0 ! relative permittivity
C***********************************************************************
C Starting the arrays with 0
C***********************************************************************
do 500 ip1=1,200
do 501 ip2=1,nd+1
AAA(ip2,ip1)=0.0d0
BBB(ip2,ip1)=0.0d0
501 continue
500 continue
C***********************************************************************
C Point lattice construction and initial entry potential
C***********************************************************************
ancho_infinito = x_infinito/1.0d-10
xme_1 = 0.067d0 ! Effective electrons mass
a0=eprs*0.529177d0/xme_1 ! Effective Bohr radius
ry=13.6058d0*xme_1/(eprs**2)*1000.0d0 ! Effective Rydberg

X1a = (-x_infinito/2.0d0)
X6a = (+x_infinito/2.0d0)
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do 7001 i=0,nd
punt(i+1)=x1a+(x6a-x1a)/dfloat(nd)*dfloat(i)
7001 continue
do 507 nq=1,nd+1
call f_boffset(nd+1,punt,voff)
507 continue
C***********************************************************************
C Starting the Self-Consistent process
C***********************************************************************
dLx = xL/(1.0d-10)/2.0d0
do 10000 iter=1,itermax
C ******************************************************************
do 503 nq=1,nd+1
if(iter.eq.1)then
AAA(nq,iter)=voff(nq)/ee*1.0d3/ry
else
AAA(nq,iter)=0.95d0*AAA(nq,iter-1)+0.05d0*BBB(nq,iter-1)
endif
503 continue
do 7041 i=0,nd/2
AAA(nd-i+2,iter)=AAA(i,iter)
7041 continue
C***********************************************************************
C Calculating Autofunctions and Eigenvalues
C***********************************************************************
call diagonalizacion(dLx)
C When running diagonalization, wave functions (expansion coefficients)
C and eigenvalues ??are obtained. And those results come out in effective units.
C That is, the energies in effective rydbergs and the wave functions in 1 / square
C root of effective Bohr radius

C***********************************************************************
C Screen writing of eigenvalues and number of iterations
C***********************************************************************
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write(*,*)itt,iter,de(np-0)*ry,de(np-1)*ry,de(np-2)*ry
C***********************************************************************
C Integrating the electron density to obtain the N_s
C***********************************************************************
C Calculation of N_s which is used to obtain Dd
paso = (x6-x1)/dfloat(nd)
suma=0.0d0
z = x1
200 continue
suma=suma+xnx(z,0,np)
z=z+paso
if(z.le.x6)go to 200
xns = suma*paso
C***********************************************************************
C With the calculated N_s, the Dd is obtained, which is proportional to
C the depletion region
C***********************************************************************
dd = (xns+ 2.0d0*(xL/2.0d0 + ds)*xna)/(2.0d0*(xnd - xna))
C***********************************************************************
C Defining each of the regions to solve
C***********************************************************************
x2 = -(xL/2.0d0 + dd + ds)
x3 = -(xL/2.0d0 + ds)
x4 = +(xL/2.0d0 + ds)
x5 = +(xL/2.0d0 + dd + ds)
C***********************************************************************
C charge density calculation
C***********************************************************************
do 1001 ij=0,nd
zz(ij+1) = x1+(x6-x1)/dfloat(nd)*dfloat(ij)
roo(ij)=ro(x1,x2,x3,x4,x5,x6,xnd,xna,0,np,zz(ij+1))*ee/(eps0*eprs)
z=z+(x6-x1)/dfloat(nd)
1001 continue
C***********************************************************************
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C Calculating the exit potential including exchange-correlation
C***********************************************************************
call v0(nd,zz,roo,v,voff,vxc)
do 504 nq=1,nd+1
BBB(nq,iter)=v(nq)/ee*1.0d3/ry+voff(nq)/ee*1.0d3/ry
% +vxc(nq)/ee*1.0d3/ry
504 continue
10000 continue
C***********************************************************************
C Writing energies and Dd after self-consistency
C***********************************************************************
write(4,*)xL,(de(np-i)*ry,i=0,10),dd
C***********************************************************************
C Writing wave functions after self-consistency
C***********************************************************************
z=x1
201 continue
zp=z/(1.0d-10)/a0
call FONDAL(ve,np,zp,np-0,f0)
call FONDAL(ve,np,zp,np-1,f1)
call FONDAL(ve,np,zp,np-2,f2)
call FONDAL(ve,np,zp,np-3,f3)
call FONDAL(ve,np,zp,np-4,f4)
call FONDAL(ve,np,zp,np-5,f5)
C In the next step the wave functions are output in 1 / meter root
C and are written in external files called f_ondas ##. dat
write (filename1,11)itt
11 format(’f_ondas’,i3,’.dat’)
open(50,file=filename1,status=’unknown’)
write(50,*)zp
% ,50.0d0*(f0)+de(np-0)*ry
% ,50.0d0*(f1)+de(np-1)*ry
% ,50.0d0*(f2)+de(np-2)*ry
% ,50.0d0*(f3)+de(np-3)*ry
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% ,50.0d0*(f4)+de(np-4)*ry
% ,50.0d0*(f5)+de(np-5)*ry
C In the same files the electron densities are written
C Adding were below the Fermi level
% ,xnx(z,0,0),xnx(z,1,1),xnx(z,2,2),xnx(z,0,2)

z=z+xL/dfloat(nd)
if(z.le.x6)go to 201
C***********************************************************************
C Writing the potential after self-consistency
C***********************************************************************
write (filename2,12)itt
12 format(’potencial’,i3,’.dat’)
open(51,file=filename2,status=’unknown’)
do 505 nq=1,nd+1
write(51,*)punt(nq)/1.0d-10/a0,punt(nq)/1.0d-10,AAA(nq,itermax)*ry
505 continue
C ******************************************************************
11000 continue
write(*,*)’Press any key and Enter to finish’
read(*,*)aaaaa
stop
end
C***********************************************************************
C***********************************************************************
C End of main program
C***********************************************************************
C***********************************************************************

C***********************************************************************
C Building charge density
C***********************************************************************
function ro(x1,x2,x3,x4,x5,x6,xnd,xna,ni,nf,z)
implicit double precision (a-h,o-z)
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common/parameters/xL,ee,hbar,xme,Pi,ef

f1= -ee*xnx(z,ni,nf)
f2= +ee*(xnd - xna - xnx(z,ni,nf))
f3= -ee*(xna + xnx(z,ni,nf))

if(z.ge.x1.and.z.le.x2)ro=f1
if(z.gt.x2.and.z.le.x3)ro=f2
if(z.gt.x3.and.z.le.x4)ro=f3
if(z.gt.x4.and.z.le.x5)ro=f2
if(z.gt.x5.and.z.le.x6)ro=f1

return
end
C***********************************************************************
C Constructing the electron density
C***********************************************************************
function xnx(z,ni,nf)
implicit double precision (a-h,o-z)
parameter(np=70)
dimension de(np),ve(np,np)
common/parameters/xL,ee,hbar,xme,Pi,ef
common/coeficientes/ve
common/energias/de
common/units/ry,a0

zp=z/(1.0d-10)/a0
const = xme/(Pi*hbar**2)

suma = 0.0d0
do 1 i=ni,nf
call FONDAL(ve,np,zp,np-i,fi)
en = de(np-i)*ry/(1.0d3)*1.6d-19
if(en.ge.0.0d0)go to 1
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f = fi/dsqrt(a0*1.0d-10)
suma = suma - en*f**2
1 continue
xnx = const*suma

return
end
C***********************************************************************
C Calculating the Hartree Potential
C***********************************************************************
Subroutine v0(nd,x,f,v,voff,vxc)
implicit double precision (a-h,o-z)
dimension x(nd+1),f(nd+1),v(nd+1),voff(nd+1),vxc(nd+1)

a = x(1)
b = x(nd+1)

alfa = 0.0d0
beta = 0.0d0

call double_integral(nd+1,a,b,alfa,beta,x,f,v)
call f_boffset(nd+1,x,voff)
call f_vxc(nd+1,x,vxc)

return
end
C***********************************************************************
C Double integral to solve the Poisson equation
C***********************************************************************
subroutine double_integral(nd,a,b,alfa,beta,x,f,v)
implicit double precision (a-h,o-z)
dimension x(nd),f(nd),g(nd),h(nd),w1(nd),w2(nd),v(nd)

dx = (b-a)/dfloat(nd-1)
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do 3 i=1,nd
suma = 0.0d0
do 2 j=1,i
suma=suma+f(j)
2 continue
g(i) = suma*dx
3 continue

do 4 i=1,nd
suma = 0.0d0
do 5 j=1,i
suma=suma+g(j)
5 continue
h(i) = suma*dx
4 continue

do 6 i=1,nd
w1(i) = alfa + h(i)
w2(i) = x(i) - a
6 continue

do 7 i=1,nd
v(i) = w1(i) + (beta-w1(nd))/w2(nd)*w2(i)
7 continue

return
end
C***********************************************************************
C Building Band-Offset Potential
C***********************************************************************
subroutine f_boffset(nd,x,voff)
implicit double precision (a-h,o-z)
dimension x(nd),voff(nd)
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common/parameters/xL,ee,hbar,xme,Pi,ef

v1 = +0.096d0*ee
v2 = -0.204d0*ee

do 1 i=1,nd
z=x(i)
if(dabs(z).le.xL/2.0d0)then
voff(i)=v2
else
voff(i)=v1
endif
1 continue

return
end
C***********************************************************************
C Building the exchange potential - Correlation
C***********************************************************************
subroutine f_vxc(nd,x,vxc)
implicit double precision (a-h,o-z)
parameter(np=70)
dimension x(nd),vxc(nd)
common/parameters/xL,ee,hbar,xme,Pi,ef

eps0 = 8.8542d-12
eprs = 12.244d0

do 1 i=1,nd
z=x(i)
vxc(i)=-0.0783d0*ee**2/(eps0*eprs)*(xnx(z,0,np))**(1.0d0/3.0d0)
1 continue

return
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end

C***********************************************************************
C Routines for calculating eigenvalues ??and eigenfunctions
C***********************************************************************
Subroutine diagonalizacion(dLx)

implicit double precision (a-h,o-z)
parameter(np=70)
parameter(nd=5000)

dimension de(np),ve(np,np)
dimension puntos(nd+1)
common/longitudes/X1,X6
common/VALORES/PI
common/length/dd, ds, dL
common/XLENGTH/XLENGTH
common/coeficientes/ve
common/energias/de
common/units/ry,a0
common/puntos/puntos
common/x_infinito/x_infinito

DATA PI/3.141592653589793D0/

ancho_infinito = x_infinito/1.0d-10
xme = 0.067d0
eprs = 12.244d0
a0=eprs*0.529177d0/xme
ry=13.6058d0*xme/(eprs**2)*1000.0d0
dL = dLx/a0

X1 = (-ancho_infinito/2.0d0)/a0
X6 = (+ancho_infinito/2.0d0)/a0
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do 7000 i=0,nd
puntos(i+1)=x1+(x6-x1)/dfloat(nd)*dfloat(i)
7000 continue

XLENGTH = ancho_infinito/a0
C fe0 calculates the self-energies of the well
e0 = fe0(x)
return
END
C ******************************************************************
C Writing the potential as a matrix
C ******************************************************************
REAL*8 FUNCTION potencial(j,x)
IMPLICIT double precision (A-H,O-Z)

parameter(nd=5000)

dimension v_salida(nd+1),AAA(nd+1,200)

common/units/ry,a0
common/length/dd, ds, dL
common/parameters/xL,ee,hbar,xme,Pi,ef
common/v_salida/v_salida
common/iter/iter
common/contadores/xmm,xnn
common/AAA/AAA

potencial = AAA(j,iter)

RETURN
END
C ******************************************************************
C Calculate the wave functions
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C ******************************************************************
SUBROUTINE FONDAL(v,np,z,nestado,summa)
implicit double precision(a-h,o-z)
dimension v(np,np)

COMMON/VALORES/PI
common/XLENGTH/XLENGTH

summa=0.0d0
do 2000 m=1,np
im = dfloat(m)
fun = dsqrt(2.0d0/XLENGTH)*dsin(im*PI*z/XLENGTH+im*PI/2.0d0)
summa = summa+v(m,nestado)*fun
2000 continue
RETURN
END
C ******************************************************************
C Calculation of eigenvalues
C ******************************************************************
function fe0(x)
implicit double precision (a-h,o-z)
parameter(np=70)
dimension de(np),ve(np,np)

common/coeficientes/ve
common/energias/de
CALL ESTADO(de,ve)
fe0 = de(np)
return
end
C **************************************************
C **************************************************
SUBROUTINE ESTADO(d,v)
implicit double precision(a-h,o-z)
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parameter(np=70)

DATA ITMAX,EPS1,EPS2,EPS3/50,1.E-10,1.E-10,1.E-5/
dimension a(np,np),d(np),v(np,np)
DIMENSION XHH(np,np),XPP(np,np),XWW(np,np),fv1(np),fv2(np)
C XHH: FULL HAMILTONIAN
C XPP: KINETIC ENERGY
C XWW: POTENTIAL WELL
COMMON/VALORES/PI
common/XLENGTH/XLENGTH

C MAKE ALL THE ENTRIES OF THE MATRICES EQUAL TO ZERO

DO 1 im=1,np
DO 2 in=1,np
XHH(im,in)=0.0D0
XPP(im,in)=0.0D0
XWW(im,in)=0.0D0
v(im,in)=0.0d0
2 CONTINUE
fv1(im)=0.0d0
fv2(im)=0.0d0
d(im)=0.0d0
1 CONTINUE

C CONSTRUCTION OF THE ELEMENTS OF KINETIC ENERGY
CONST1 = (PI/XLENGTH)**2
DO 3 im=1,np
DO 4 in=1,np
xm = dfloat(im)
xn = dfloat(in)
IF(in.eq.im)XPP(im,in)=CONST1*xn**2
IF(in.ne.im)XPP(im,in)=0.0D0
4 CONTINUE
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3 CONTINUE

DO 7 im=1,np
DO 8 in=1,np
xm = dfloat(im)
xn = dfloat(in)
CALL fein(xm,xn,XLENGTH,vpoz)
XWW(im,in) = vpoz
8 CONTINUE
7 CONTINUE

C CONSTRUCTION OF THE TOTAL HAMILTONIAN

DO 100 im=1,np
DO 200 in=1,np
XHH(im,in)=XPP(im,in)+XWW(im,in)
200 CONTINUE
100 CONTINUE

C This routine calculates eigenvalues and eigenvectors of a
C symmetric square matrix. The eigenvectors are normalized to unity.
call rs(np,np,xhh,d,1,v,fv1,fv2,ierr)
C This routine orders the eigenvalues ??given by jacobi in decreasing
C order.In that same order, then it returns the corresponding eigenvectors
call eigsrt(d,v,np,np)
return
end
C **************************************************
C **************************************************
SUBROUTINE fein(xm,xn,XLENGTH,vpoz)
implicit double precision (a-h,o-z)
parameter(nd=5000)
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common/contadores/xmm,xnn
common/longitudes/X1,X6
common/VALORES/PI
common/puntos/puntos

DIMENSION A11(1), B11(1)
dimension puntos(nd+1)

xmm = xm
xnn = xn

z=puntos(1)
fn = dsqrt(2.0d0/XLENGTH)*dsin(xnn*PI*z/XLENGTH+xnn*PI/2.0d0)
fm = dsqrt(2.0d0/XLENGTH)*dsin(xmm*PI*z/XLENGTH+xmm*PI/2.0d0)
V_i = fn*fm*potencial(1,z)

z=puntos(nd+1)
fn = dsqrt(2.0d0/XLENGTH)*dsin(xnn*PI*z/XLENGTH+xnn*PI/2.0d0)
fm = dsqrt(2.0d0/XLENGTH)*dsin(xmm*PI*z/XLENGTH+xmm*PI/2.0d0)
V_f = fn*fm*potencial(nd+1,z)

suma_i = 0.0d0
do 100 i=2,nd,2
z=puntos(i)
fn = dsqrt(2.0d0/XLENGTH)*dsin(xnn*PI*z/XLENGTH+xnn*PI/2.0d0)
fm = dsqrt(2.0d0/XLENGTH)*dsin(xmm*PI*z/XLENGTH+xmm*PI/2.0d0)
suma_i = suma_i+fn*fm*potencial(i,z)
100 continue

suma_p = 0.0d0
do 101 i=3,nd-1,2
z=puntos(i)
fn = dsqrt(2.0d0/XLENGTH)*dsin(xnn*PI*z/XLENGTH+xnn*PI/2.0d0)
fm = dsqrt(2.0d0/XLENGTH)*dsin(xmm*PI*z/XLENGTH+xmm*PI/2.0d0)
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suma_p = suma_p+fn*fm*potencial(i,z)
101 continue

vpoz=(x6-x1)/dfloat(nd)/3.0d0
% *(V_i + V_f + 2.0d0*suma_p + 4.0d0*suma_i)

return
end
C **************************************************
C **************************************************
C **************************************************
SUBROUTINE jacobi(a,n,np,d,v,nrot)
IMPLICIT double precision(a-h,o-z)

PARAMETER (NMAX=500)

DIMENSION a(np,np),d(np),v(np,np)
DIMENSION b(NMAX),z(NMAX)

do 12 ip=1,n
do 11 iq=1,n
v(ip,iq)=0.0d0
11 continue
v(ip,ip)=1.0d0
12 continue
do 13 ip=1,n
b(ip)=a(ip,ip)
d(ip)=b(ip)
z(ip)=0.0d0
13 continue
nrot=0
do 24 i=1,50
sm=0.0d0
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do 15 ip=1,n-1
do 14 iq=ip+1,n
sm=sm+dabs(a(ip,iq))
14 continue
15 continue
if(sm.eq.0.0d0)return
if(i.lt.4)then
tresh=0.2d0*sm/n**2
else
tresh=0.0d0
endif
do 22 ip=1,n-1
do 21 iq=ip+1,n
g=100.0d0*dabs(a(ip,iq))
if((i.gt.4).and.(dabs(d(ip))+
*g.eq.dabs(d(ip))).and.(dabs(d(iq))+g.eq.dabs(d(iq))))then
a(ip,iq)=0.0d0
else if(dabs(a(ip,iq)).gt.tresh)then
h=d(iq)-d(ip)
if(dabs(h)+g.eq.dabs(h))then
t=a(ip,iq)/h
else
theta=0.5d0*h/a(ip,iq)
t=1.0d0/(dabs(theta)+dsqrt(1.0d0+theta**2))
if(theta.lt.0.0d0)t=-t
endif
c=1.0d0/dsqrt(1+t**2)
s=t*c
tau=s/(1.0d0+c)
h=t*a(ip,iq)
z(ip)=z(ip)-h
z(iq)=z(iq)+h
d(ip)=d(ip)-h
d(iq)=d(iq)+h
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a(ip,iq)=0.0d0
do 16 j=1,ip-1
g=a(j,ip)
h=a(j,iq)
a(j,ip)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)
16 continue
do 17 j=ip+1,iq-1
g=a(ip,j)
h=a(j,iq)
a(ip,j)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)
17 continue
do 18 j=iq+1,n
g=a(ip,j)
h=a(iq,j)
a(ip,j)=g-s*(h+g*tau)
a(iq,j)=h+s*(g-h*tau)
18 continue
do 19 j=1,n
g=v(j,ip)
h=v(j,iq)
v(j,ip)=g-s*(h+g*tau)
v(j,iq)=h+s*(g-h*tau)
19 continue
nrot=nrot+1
endif
21 continue
22 continue
do 23 ip=1,n
b(ip)=b(ip)+z(ip)
d(ip)=b(ip)
z(ip)=0.0d0
23 continue
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24 continue
C pause ’too many iterations in jacobi’
return
END
C (C) Copr. 1986-92 Numerical Recipes Software #0).
C **************************************************
C **************************************************
SUBROUTINE eigsrt(d,v,n,np)
IMPLICIT double precision(a-h,o-z)

DIMENSION d(np),v(np,np)

do 13 i=1,n-1
k=i
p=d(i)
do 11 j=i+1,n
if(d(j).ge.p)then
k=j
p=d(j)
endif
11 continue
if(k.ne.i)then
d(k)=d(i)
d(i)=p
do 12 j=1,n
p=v(j,i)
v(j,i)=v(j,k)
v(j,k)=p
12 continue
endif
13 continue
return
END
C (C) Copr. 1986-92 Numerical Recipes Software #0).
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subroutine rs(nm,n,a,w,matz,z,fv1,fv2,ierr)

integer n,nm,ierr,matz
double precision a(nm,n),w(n),z(nm,n),fv1(n),fv2(n)
if (n .le. nm) go to 10
ierr = 10 * n
go to 50

10 if (matz .ne. 0) go to 20

call tred1(nm,n,a,w,fv1,fv2)
* tqlrat encounters catastrophic underflow on the Vax
* call tqlrat(n,w,fv2,ierr)
call tql1(n,w,fv1,ierr)
go to 50
c .......... find both eigenvalues and eigenvectors ..........
20 call tred2(nm,n,a,w,fv1,z)
call tql2(nm,n,w,fv1,z,ierr)
50 return
end
subroutine tql1(n,d,e,ierr)

integer i,j,l,m,n,ii,l1,l2,mml,ierr
double precision d(n),e(n)
double precision c,c2,c3,dl1,el1,f,g,h,p,r,s,s2,tst1,tst2,pythag

ierr = 0
if (n .eq. 1) go to 1001

do 100 i = 2, n
100 e(i-1) = e(i)

f = 0.0d0
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tst1 = 0.0d0
e(n) = 0.0d0

do 290 l = 1, n
j = 0
h = dabs(d(l)) + dabs(e(l))
if (tst1 .lt. h) tst1 = h

do 110 m = l, n
tst2 = tst1 + dabs(e(m))
if (tst2 .eq. tst1) go to 120

110 continue

120 if (m .eq. l) go to 210
130 if (j .eq. 30) go to 1000
j = j + 1

l1 = l + 1
l2 = l1 + 1
g = d(l)
p = (d(l1) - g) / (2.0d0 * e(l))
r = pythag(p,1.0d0)
d(l) = e(l) / (p + dsign(r,p))
d(l1) = e(l) * (p + dsign(r,p))
dl1 = d(l1)
h = g - d(l)
if (l2 .gt. n) go to 145

do 140 i = l2, n
140 d(i) = d(i) - h

145 f = f + h
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p = d(m)
c = 1.0d0
c2 = c
el1 = e(l1)
s = 0.0d0
mml = m - l

do 200 ii = 1, mml
c3 = c2
c2 = c
s2 = s
i = m - ii
g = c * e(i)
h = c * p
r = pythag(p,e(i))
e(i+1) = s * r
s = e(i) / r
c = p / r
p = c * d(i) - s * g
d(i+1) = h + s * (c * g + s * d(i))
200 continue
c
p = -s * s2 * c3 * el1 * e(l) / dl1
e(l) = s * p
d(l) = c * p
tst2 = tst1 + dabs(e(l))
if (tst2 .gt. tst1) go to 130
210 p = d(l) + f
c .......... order eigenvalues ..........
if (l .eq. 1) go to 250
c .......... for i=l step -1 until 2 do -- ..........
do 230 ii = 2, l
i = l + 2 - ii
if (p .ge. d(i-1)) go to 270
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d(i) = d(i-1)
230 continue
c
250 i = 1
270 d(i) = p
290 continue
c
go to 1001

1000 ierr = l
1001 return
end
subroutine tql2(nm,n,d,e,z,ierr)

integer i,j,k,l,m,n,ii,l1,l2,nm,mml,ierr
double precision d(n),e(n),z(nm,n)
double precision c,c2,c3,dl1,el1,f,g,h,p,r,s,s2,tst1,tst2,pythag

ierr = 0
if (n .eq. 1) go to 1001
c
do 100 i = 2, n
100 e(i-1) = e(i)
c
f = 0.0d0
tst1 = 0.0d0
e(n) = 0.0d0
c
do 240 l = 1, n
j = 0
h = dabs(d(l)) + dabs(e(l))
if (tst1 .lt. h) tst1 = h
c .......... look for small sub-diagonal element ..........
do 110 m = l, n
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tst2 = tst1 + dabs(e(m))
if (tst2 .eq. tst1) go to 120
c .......... e(n) is always zero, so there is no exit
c through the bottom of the loop ..........
110 continue
c
120 if (m .eq. l) go to 220
130 if (j .eq. 30) go to 1000
j = j + 1
c .......... form shift ..........
l1 = l + 1
l2 = l1 + 1
g = d(l)
p = (d(l1) - g) / (2.0d0 * e(l))
r = pythag(p,1.0d0)
d(l) = e(l) / (p + dsign(r,p))
d(l1) = e(l) * (p + dsign(r,p))
dl1 = d(l1)
h = g - d(l)
if (l2 .gt. n) go to 145
c
do 140 i = l2, n
140 d(i) = d(i) - h
c
145 f = f + h
c .......... ql transformation ..........
p = d(m)
c = 1.0d0
c2 = c
el1 = e(l1)
s = 0.0d0
mml = m - l
c .......... for i=m-1 step -1 until l do -- ..........
do 200 ii = 1, mml
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c3 = c2
c2 = c
s2 = s
i = m - ii
g = c * e(i)
h = c * p
r = pythag(p,e(i))
e(i+1) = s * r
s = e(i) / r
c = p / r
p = c * d(i) - s * g
d(i+1) = h + s * (c * g + s * d(i))
c .......... form vector ..........
do 180 k = 1, n
h = z(k,i+1)
z(k,i+1) = s * z(k,i) + c * h
z(k,i) = c * z(k,i) - s * h
180 continue
c
200 continue
c
p = -s * s2 * c3 * el1 * e(l) / dl1
e(l) = s * p
d(l) = c * p
tst2 = tst1 + dabs(e(l))
if (tst2 .gt. tst1) go to 130
220 d(l) = d(l) + f
240 continue
c .......... order eigenvalues and eigenvectors ..........
do 300 ii = 2, n
i = ii - 1
k = i
p = d(i)
c
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do 260 j = ii, n
if (d(j) .ge. p) go to 260
k = j
p = d(j)
260 continue
c
if (k .eq. i) go to 300
d(k) = d(i)
d(i) = p
c
do 280 j = 1, n
p = z(j,i)
z(j,i) = z(j,k)
z(j,k) = p
280 continue
c
300 continue
c
go to 1001
c .......... set error -- no convergence to an
c eigenvalue after 30 iterations ..........
1000 ierr = l
1001 return
end

SUBROUTINE TQLRAT(N,D,E2,IERR)
C
INTEGER I,J,L,M,N,II,L1,MML,IERR
DOUBLE PRECISION D(N),E2(N)
DOUBLE PRECISION B,C,F,G,H,P,R,S,T,EPSLON,PYTHAG

IERR = 0
IF (N .EQ. 1) GO TO 1001
C
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DO 100 I = 2, N
100 E2(I-1) = E2(I)
C
F = 0.0D0
T = 0.0D0
E2(N) = 0.0D0
C
DO 290 L = 1, N
J = 0
H = DABS(D(L)) + DSQRT(E2(L))
IF (T .GT. H) GO TO 105
T = H
B = EPSLON(T)
C = B * B
if (c .ne. 0.0d0) go to 105
C Spliting tolerance underflowed. Look for larger value.
do 102 i = l, n
h = dabs(d(i)) + dsqrt(e2(i))
if (h .gt. t) t = h
102 continue
b = epslon(t)
c = b * b
C .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ..........
105 DO 110 M = L, N
IF (E2(M) .LE. C) GO TO 120
C .......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP ..........

110 CONTINUE
C
120 IF (M .EQ. L) GO TO 210
130 IF (J .EQ. 30) GO TO 1000
J = J + 1
C .......... FORM SHIFT ..........
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L1 = L + 1
S = DSQRT(E2(L))
G = D(L)
P = (D(L1) - G) / (2.0D0 * S)
R = PYTHAG(P,1.0D0)
D(L) = S / (P + DSIGN(R,P))
H = G - D(L)
C
DO 140 I = L1, N
140 D(I) = D(I) - H
C
F = F + H
C .......... RATIONAL QL TRANSFORMATION ..........
G = D(M)
IF (G .EQ. 0.0D0) G = B
H = G
S = 0.0D0
MML = M - L
C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
DO 200 II = 1, MML
I = M - II
P = G * H
R = P + E2(I)
E2(I+1) = S * R
S = E2(I) / R
D(I+1) = H + S * (H + D(I))
G = D(I) - E2(I) / G
C Avoid division by zero on next pass
if (g .eq. 0.0d0) g = epslon(d(i))
h = g * (p / r)
200 CONTINUE
C
E2(L) = S * G
D(L) = H
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C .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST ..........
IF (H .EQ. 0.0D0) GO TO 210
IF (DABS(E2(L)) .LE. DABS(C/H)) GO TO 210
E2(L) = H * E2(L)
IF (E2(L) .NE. 0.0D0) GO TO 130
210 P = D(L) + F
C .......... ORDER EIGENVALUES ..........
IF (L .EQ. 1) GO TO 250
C .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
DO 230 II = 2, L
I = L + 2 - II
IF (P .GE. D(I-1)) GO TO 270
D(I) = D(I-1)
230 CONTINUE
C
250 I = 1
270 D(I) = P
290 CONTINUE
C
GO TO 1001
C .......... SET ERROR -- NO CONVERGENCE TO AN
C EIGENVALUE AFTER 30 ITERATIONS ..........
1000 IERR = L
1001 RETURN
END
subroutine tred1(nm,n,a,d,e,e2)
c
integer i,j,k,l,n,ii,nm,jp1
double precision a(nm,n),d(n),e(n),e2(n)
double precision f,g,h,scale

do 100 i = 1, n
d(i) = a(n,i)
a(n,i) = a(i,i)
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100 continue
c .......... for i=n step -1 until 1 do -- ..........
do 300 ii = 1, n
i = n + 1 - ii
l = i - 1
h = 0.0d0
scale = 0.0d0
if (l .lt. 1) go to 130
c .......... scale row (algol tol then not needed) ..........
do 120 k = 1, l
120 scale = scale + dabs(d(k))
c
if (scale .ne. 0.0d0) go to 140
c
do 125 j = 1, l
d(j) = a(l,j)
a(l,j) = a(i,j)
a(i,j) = 0.0d0
125 continue
c
130 e(i) = 0.0d0
e2(i) = 0.0d0
go to 300
c
140 do 150 k = 1, l
d(k) = d(k) / scale
h = h + d(k) * d(k)
150 continue
c
e2(i) = scale * scale * h
f = d(l)
g = -dsign(dsqrt(h),f)
e(i) = scale * g
h = h - f * g
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d(l) = f - g
if (l .eq. 1) go to 285
c .......... form a*u ..........
do 170 j = 1, l
170 e(j) = 0.0d0
c
do 240 j = 1, l
f = d(j)
g = e(j) + a(j,j) * f
jp1 = j + 1
if (l .lt. jp1) go to 220
c
do 200 k = jp1, l
g = g + a(k,j) * d(k)
e(k) = e(k) + a(k,j) * f
200 continue
c
220 e(j) = g
240 continue
c .......... form p ..........
f = 0.0d0
c
do 245 j = 1, l
e(j) = e(j) / h
f = f + e(j) * d(j)
245 continue
c
h = f / (h + h)
c .......... form q ..........
do 250 j = 1, l
250 e(j) = e(j) - h * d(j)
c .......... form reduced a ..........
do 280 j = 1, l
f = d(j)
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g = e(j)
c
do 260 k = j, l
260 a(k,j) = a(k,j) - f * e(k) - g * d(k)
c
280 continue
c
285 do 290 j = 1, l
f = d(j)
d(j) = a(l,j)
a(l,j) = a(i,j)
a(i,j) = f * scale
290 continue
c
300 continue
c
return
end
subroutine tred2(nm,n,a,d,e,z)
c
integer i,j,k,l,n,ii,nm,jp1
double precision a(nm,n),d(n),e(n),z(nm,n)
double precision f,g,h,hh,scale

do 100 i = 1, n
c
do 80 j = i, n
80 z(j,i) = a(j,i)
c
d(i) = a(n,i)
100 continue
c
if (n .eq. 1) go to 510
c .......... for i=n step -1 until 2 do -- ..........
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do 300 ii = 2, n
i = n + 2 - ii
l = i - 1
h = 0.0d0
scale = 0.0d0
if (l .lt. 2) go to 130
c .......... scale row (algol tol then not needed) ..........
do 120 k = 1, l
120 scale = scale + dabs(d(k))
c
if (scale .ne. 0.0d0) go to 140
130 e(i) = d(l)
c
do 135 j = 1, l
d(j) = z(l,j)
z(i,j) = 0.0d0
z(j,i) = 0.0d0
135 continue
c
go to 290
c
140 do 150 k = 1, l
d(k) = d(k) / scale
h = h + d(k) * d(k)
150 continue
c
f = d(l)
g = -dsign(dsqrt(h),f)
e(i) = scale * g
h = h - f * g
d(l) = f - g

c .......... form a*u ..........
do 170 j = 1, l
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170 e(j) = 0.0d0
c
do 240 j = 1, l
f = d(j)
z(j,i) = f
g = e(j) + z(j,j) * f
jp1 = j + 1
if (l .lt. jp1) go to 220
c
do 200 k = jp1, l
g = g + z(k,j) * d(k)
e(k) = e(k) + z(k,j) * f
200 continue
c
220 e(j) = g
240 continue
c .......... form p ..........
f = 0.0d0
c
do 245 j = 1, l
e(j) = e(j) / h
f = f + e(j) * d(j)
245 continue
c
hh = f / (h + h)
c .......... form q ..........
do 250 j = 1, l
250 e(j) = e(j) - hh * d(j)
c .......... form reduced a ..........
do 280 j = 1, l
f = d(j)
g = e(j)
c
do 260 k = j, l
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260 z(k,j) = z(k,j) - f * e(k) - g * d(k)
c
d(j) = z(l,j)
z(i,j) = 0.0d0
280 continue
c
290 d(i) = h
300 continue
c .......... accumulation of transformation matrices ..........
do 500 i = 2, n
l = i - 1
z(n,l) = z(l,l)
z(l,l) = 1.0d0
h = d(i)
if (h .eq. 0.0d0) go to 380
c
do 330 k = 1, l
330 d(k) = z(k,i) / h
c
do 360 j = 1, l
g = 0.0d0
c
do 340 k = 1, l
340 g = g + z(k,i) * z(k,j)
c
do 360 k = 1, l
z(k,j) = z(k,j) - g * d(k)
360 continue
c
380 do 400 k = 1, l
400 z(k,i) = 0.0d0
c
500 continue
c
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510 do 520 i = 1, n
d(i) = z(n,i)
z(n,i) = 0.0d0
520 continue
c
z(n,n) = 1.0d0
e(1) = 0.0d0
return
end
double precision function pythag(a,b)
double precision a,b
c
c finds dsqrt(a**2+b**2) without overflow or destructive underflow
c
double precision p,r,s,t,u
p = dmax1(dabs(a),dabs(b))
if (p .eq. 0.0d0) go to 20
r = (dmin1(dabs(a),dabs(b))/p)**2
10 continue
t = 4.0d0 + r
if (t .eq. 4.0d0) go to 20
s = r/t
u = 1.0d0 + 2.0d0*s
p = u*p
r = (s/u)**2 * r
go to 10
20 pythag = p
return
end
double precision function epslon (x)
double precision x
c
c estimate unit roundoff in quantities of size x.
c
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double precision a,b,c,eps

a = 4.0d0/3.0d0
10 b = a - 1.0d0
c = b + b + b
eps = dabs(c-1.0d0)
if (eps .eq. 0.0d0) go to 10
epslon = eps*dabs(x)
return
end
subroutine dpodi(a,lda,n,det,job)
integer lda,n,job
double precision a(lda,1)
double precision det(2)

double precision t
double precision s
integer i,j,jm1,k,kp1
c
c compute determinant
c
if (job/10 .eq. 0) go to 70
det(1) = 1.0d0
det(2) = 0.0d0
s = 10.0d0
do 50 i = 1, n
det(1) = a(i,i)**2*det(1)
c ...exit
if (det(1) .eq. 0.0d0) go to 60
10 if (det(1) .ge. 1.0d0) go to 20
det(1) = s*det(1)
det(2) = det(2) - 1.0d0
go to 10
20 continue
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30 if (det(1) .lt. s) go to 40
det(1) = det(1)/s
det(2) = det(2) + 1.0d0
go to 30
40 continue
50 continue
60 continue
70 continue
c
c compute inverse(r)
c
if (mod(job,10) .eq. 0) go to 140
do 100 k = 1, n
a(k,k) = 1.0d0/a(k,k)
t = -a(k,k)
call dscal(k-1,t,a(1,k),1)
kp1 = k + 1
if (n .lt. kp1) go to 90
do 80 j = kp1, n
t = a(k,j)
a(k,j) = 0.0d0
call daxpy(k,t,a(1,k),1,a(1,j),1)
80 continue
90 continue
100 continue
c
c form inverse(r) * trans(inverse(r))
c
do 130 j = 1, n
jm1 = j - 1
if (jm1 .lt. 1) go to 120
do 110 k = 1, jm1
t = a(k,j)
call daxpy(k,t,a(1,j),1,a(1,k),1)
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110 continue
120 continue
t = a(j,j)
call dscal(j,t,a(1,j),1)
130 continue
140 continue
return
end
c
subroutine dpoco(a,lda,n,rcond,z,info)
integer lda,n,info
double precision a(lda,1),z(1)
double precision rcond

double precision ddot,ek,t,wk,wkm
double precision anorm,s,dasum,sm,ynorm
integer i,j,jm1,k,kb,kp1
c
c
c find norm of a using only upper half
c
do 30 j = 1, n
z(j) = dasum(j,a(1,j),1)
jm1 = j - 1
if (jm1 .lt. 1) go to 20
do 10 i = 1, jm1
z(i) = z(i) + dabs(a(i,j))
10 continue
20 continue
30 continue
anorm = 0.0d0
do 40 j = 1, n
anorm = dmax1(anorm,z(j))
40 continue
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c
c factor
c
call dpofa(a,lda,n,info)
if (info .ne. 0) go to 180
c
c solve trans(r)*w = e
c
ek = 1.0d0
do 50 j = 1, n
z(j) = 0.0d0
50 continue
do 110 k = 1, n
if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
if (dabs(ek-z(k)) .le. a(k,k)) go to 60
s = a(k,k)/dabs(ek-z(k))
call dscal(n,s,z,1)
ek = s*ek
60 continue
wk = ek - z(k)
wkm = -ek - z(k)
s = dabs(wk)
sm = dabs(wkm)
wk = wk/a(k,k)
wkm = wkm/a(k,k)
kp1 = k + 1
if (kp1 .gt. n) go to 100
do 70 j = kp1, n
sm = sm + dabs(z(j)+wkm*a(k,j))
z(j) = z(j) + wk*a(k,j)
s = s + dabs(z(j))
70 continue
if (s .ge. sm) go to 90
t = wkm - wk
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wk = wkm
do 80 j = kp1, n
z(j) = z(j) + t*a(k,j)
80 continue
90 continue
100 continue
z(k) = wk
110 continue
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
c
c solve r*y = w
c
do 130 kb = 1, n
k = n + 1 - kb
if (dabs(z(k)) .le. a(k,k)) go to 120
s = a(k,k)/dabs(z(k))
call dscal(n,s,z,1)
120 continue
z(k) = z(k)/a(k,k)
t = -z(k)
call daxpy(k-1,t,a(1,k),1,z(1),1)
130 continue
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
c
ynorm = 1.0d0
c
c solve trans(r)*v = y
c
do 150 k = 1, n
z(k) = z(k) - ddot(k-1,a(1,k),1,z(1),1)
if (dabs(z(k)) .le. a(k,k)) go to 140
s = a(k,k)/dabs(z(k))
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call dscal(n,s,z,1)
ynorm = s*ynorm
140 continue
z(k) = z(k)/a(k,k)
150 continue
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
ynorm = s*ynorm
c
c solve r*z = v
c
do 170 kb = 1, n
k = n + 1 - kb
if (dabs(z(k)) .le. a(k,k)) go to 160
s = a(k,k)/dabs(z(k))
call dscal(n,s,z,1)
ynorm = s*ynorm
160 continue
z(k) = z(k)/a(k,k)
t = -z(k)
call daxpy(k-1,t,a(1,k),1,z(1),1)
170 continue
c make znorm = 1.0
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
ynorm = s*ynorm
c
if (anorm .ne. 0.0d0) rcond = ynorm/anorm
if (anorm .eq. 0.0d0) rcond = 0.0d0
180 continue
return
end
c
subroutine dpofa(a,lda,n,info)
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integer lda,n,info
double precision a(lda,1)

double precision ddot,t
double precision s
integer j,jm1,k
c begin block with ...exits to 40
c
c
do 30 j = 1, n
info = j
s = 0.0d0
jm1 = j - 1
if (jm1 .lt. 1) go to 20
do 10 k = 1, jm1
t = a(k,j) - ddot(k-1,a(1,k),1,a(1,j),1)
t = t/a(k,k)
a(k,j) = t
s = s + t*t
10 continue
20 continue
s = a(j,j) - s
c ......exit
if (s .le. 0.0d0) go to 40
a(j,j) = dsqrt(s)
30 continue
info = 0
40 continue
return
end
c
double precision function dasum(n,dx,incx)
c
c
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double precision dx(*),dtemp
integer i,incx,m,mp1,n,nincx
c
dasum = 0.0d0
dtemp = 0.0d0
if( n.le.0 .or. incx.le.0 )return
if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
nincx = n*incx
do 10 i = 1,nincx,incx
dtemp = dtemp + dabs(dx(i))
10 continue
dasum = dtemp
return
c
c code for increment equal to 1
c clean-up loop
c
20 m = mod(n,6)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dtemp = dtemp + dabs(dx(i))
30 continue
if( n .lt. 6 ) go to 60
40 mp1 = m + 1
do 50 i = mp1,n,6
dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2))
* + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5))
50 continue
60 dasum = dtemp
return
end
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c
subroutine daxpy(n,da,dx,incx,dy,incy)
c
c
double precision dx(*),dy(*),da
integer i,incx,incy,ix,iy,m,mp1,n
c
if(n.le.0)return
if (da .eq. 0.0d0) return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
dy(iy) = dy(iy) + da*dx(ix)
ix = ix + incx
iy = iy + incy
10 continue
return

20 m = mod(n,4)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dy(i) = dy(i) + da*dx(i)
30 continue
if( n .lt. 4 ) return
40 mp1 = m + 1
do 50 i = mp1,n,4
dy(i) = dy(i) + da*dx(i)
dy(i + 1) = dy(i + 1) + da*dx(i + 1)
dy(i + 2) = dy(i + 2) + da*dx(i + 2)
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dy(i + 3) = dy(i + 3) + da*dx(i + 3)
50 continue
return
end
c
double precision function ddot(n,dx,incx,dy,incy)

double precision dx(*),dy(*),dtemp
integer i,incx,incy,ix,iy,m,mp1,n
c
ddot = 0.0d0
dtemp = 0.0d0
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20

ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
dtemp = dtemp + dx(ix)*dy(iy)
ix = ix + incx
iy = iy + incy
10 continue
ddot = dtemp
return

20 m = mod(n,5)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dtemp = dtemp + dx(i)*dy(i)
30 continue
if( n .lt. 5 ) go to 60
40 mp1 = m + 1
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do 50 i = mp1,n,5
dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
* dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
50 continue
60 ddot = dtemp
return
end

subroutine dscal(n,da,dx,incx)

double precision da,dx(*)
integer i,incx,m,mp1,n,nincx
c
if( n.le.0 .or. incx.le.0 )return
if(incx.eq.1)go to 20

nincx = n*incx
do 10 i = 1,nincx,incx
dx(i) = da*dx(i)
10 continue
return

20 m = mod(n,5)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dx(i) = da*dx(i)
30 continue
if( n .lt. 5 ) return
40 mp1 = m + 1
do 50 i = mp1,n,5
dx(i) = da*dx(i)
dx(i + 1) = da*dx(i + 1)
dx(i + 2) = da*dx(i + 2)
dx(i + 3) = da*dx(i + 3)
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dx(i + 4) = da*dx(i + 4)
50 continue
return
end
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