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Abstract

In this thesis the electronic properties in various confinement geometries are
analyzed for the study of systems such as quantum wells, quantum wires, and
quantum dots based on materials such as GaAs, AlGaAs, InTe, among others.
In the study carried out, the response of these systems to the action of external
fields such as electric, magnetic and intense non-resonant laser fields is investi-
gated. In addition to the study of the electronic properties in these systems, in
the particular work related to 3D confinement, the hole states and with these,
the excitonic contribution, and the modification of the properties by means of
the inclusion of an impurity along the axis of symmetry of the system were stu-
died. In the 2D confinement system, the electronic properties in quantum wires
with various cross-sectional shapes were analyzed by means of a self-consistent
Schrodinger-Poisson coupling, the emergence of Friedel-like oscillations in the
electron density profile at low temperatures should be highlighted. Regarding
one-dimensional systems, the electronic and optical response of a Razavy-like
quantum well was analyzed with the inclusion of a doped delta layer, as well
as the application of external magnetic and electric fields. Similarly, a finite
semiconductor superlattice connected to two metal contacts was analyzed for
the study of electron tunneling current, as well as the application of an ex-
ternal laser field for various geometric shapes. Finally, the electronic transport
properties were studied again by means of the self-consistent method in double-
barrier tunneling systems with doping in the outer layers, these properties were
calculated by means of the Landauer-Biittiker formalism and compared with
experimental results of a resonant tunneling diode based on InGaAs/AlAs.

The first part of the thesis corresponds to the theory and obtaining the equa-
tions used in this research, starting with the Landauer-Biittiker theory of elec-
tronic transport, continuing with a brief development of linear susceptibility, a
section dedicated to the development of the self-consistent method, then we get
the Hamiltonian for systems subjected to external electric and magnetic fields,
as well as the action of an intense non-resonant laser field, and finally a brief
description of the finite element method. In all the calculations, the effective
mass approximation has been used and the differential equations involved ha-
ve been calculated using the finite element method. The main details of each
chapter are:



Chapter 3: Using the effective mass approximation in a parabolic two-band
model, the effects of the geometrical parameters, on the electron and hole states,
in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a
shallow donor impurity and under an applied magnetic field and (ii) CdSe-CdTe
core—shell type-II quantum dot is studied. The interaction of the electron and
hole states is calculated in a first-order perturbative approximation. This study
shows that the magnetic field and donor impurities are relevant factors in the
optoelectronic properties of conical quantum dots.

Chapter 4: In this chapter, the problem of determining the electron states in
semiconductor quantum wires in a self-consistent way is revisited. For that pur-
pose, it is numerically solved the 2D system of coupled Schrodinger and Poisson
equations within the envelope function and effective mass approximations. The
calculation method uses the finite-element approach. Circle, square, triangle
and pentagon geometries are considered for the wire cross-sectional shape. The
features of self-consistent band profiles and confined electron state spectra are
discussed. Particular attention is paid to elucidate the origin of Friedel-like
oscillations in the density of carriers at low temperatures.

Chapter 5: In this chapter, we review an out-of-equilibrium double-barrier re-
sonant tunneling diode system (DBRTD), including the effect of donor density
and external potentials in a self-consistent way. The calculation method uses the
finite-element approach, as well as the Landauer formalism. Quasi-stationary
states, transmission probability, current density, and conductance are discussed
considering variations in the donor density and the width of the central well.
Finally, a comparison of the simulation with an experimental double barrier
system based on InGaAs with AlAs barriers reported in the literature has been
obtained.

Chapter 6: In this chapter, the energy states of confined electrons in doped
quantum structures with Razavy-like confining potentials are studied. The theo-
retical investigation is performed within the effective mass and parabolic band
approximations, including the influence of externally applied electric and mag-
netic fields. We analyze the case of a Razavy quantum well and determine its
conduction subband spectrum, focusing on the lowest energy levels and their
probability densities. These properties have been numerically determined by



VI

self-consistently solving the coupled system of Schrédinger, Poisson, and charge
neutrality equations. Doping is introduced via an on-center d-like layer. In order
to evaluate the associated total (linear plus nonlinear) optical absorption coef-
ficient, we have calculated the corresponding diagonal and off-diagonal electric
dipole matrix elements, the main energy separation, and the occupancy ratio
which are the main factors governing the variation of this optical response. As
an extension of the self-consistent method to a two-dimensional problem, the
energy states of a quantum wire system of circular cross section, with internal
doping and Razavy potential have been calculated. The response of eigenvalues,
self-consistent potentials and electron densities is studied with the variation of
d-doping layer width and of the donor density. Finally, the origin of Friedel-like
oscillations, that arise in the density profile, generated by the occupation of
internal and surface electronic states has been explained.

Chapter 7: In this chapter, a finite periodic superlattice is studied, analyzing the
probability of electronic transmission for two types of semiconductor materials,
GaAs/AlGaAs and InSe/InP. The changes in the maxima of the quasistationary
states for both materials are discussed, making variations in the number of
periods of the superlattice and its shape by means of geometric parameters.
The effect of a nonresonant intense laser field has been included to analyze the
changes in the electronic transport properties.
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1. Introduction

In the last fifty years, experimental developments have evolved significantly,
mainly in techniques for the growth of semiconductor heterostructures [1-4],
which has allowed the possibility of creating devices based on low-dimensional
systems such as quantum wells, quantum wires or quantum dots [5-7]. Nowdays,
it is possible to generate and characterize structures, more complex forms, of
various materials that make it possible to implement them in devices for fields
such as microelectronics, medicine, engineering, telecommunications, etc [8-11].

In the same way, the theoretical models increasingly take into account more
variables in the problems to get closer to the experimental results in a mo-
re meaningful way, which leads to much more complex differential equations
that in many cases can be addressed through the implementation of numerical
methods such as the finite element method (FEM) through softwares such as
COMSOL Multiphysics [12-15] that are increasingly popular in different fields
of applied physics. Through this and other numerical techniques, impurity pro-
blems in low-dimensional heterostructures have been addressed and in more
recent works the response of these systems to the action of an intense non-
resonant laser field has been analyzed, finding interesting results regarding the
modification of electronic and optical properties [16, [17].

In the field of electronic transport, due to the need of having devices that can
work at frequencies of the order of Tera Hertz, we work from a theoretical point
of view in the characterization of the properties through the Landauer forma-
lism combined with Green’s function methods and the Schrédinger equation to
reproduce current-voltage curves that are measured experimentally [18;[19]. As
examples of these are resonant tunneling devices such as diodes that, depending
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on certain geometric characteristics or materials, can present regions of negati-
ve differential resistance that are useful in applications to electronics [20, 21].

Three-dimensional confinement systems like quantum dots can be formed by
joining two or more materials of different gap, this leads to discrete energy
levels. The importance of this type of systems is the strong dependence of the-
se energy levels on the shape, size, composition or the application of external
fields. A consequence of this is the direct modification of the semiconductor
properties such as optical, mechanical, electrical, among others. In the last
thirty years, quantum wires of various geometric shapes have been extensively
studied [22-25], in particular cylindrical systems [26] since under certain con-
ditions they can modify the electronic confinement regime, for this reason they
are sometimes referred to as quantum-well wires. In recent years, experimental
techniques have allowed the synthesis of conical-shaped structures [27], it has
been shown that these structures have interesting physical properties that can
be attractive for modern technological applications and can be considered as
potential candidates for the development of devices to nanometric scale 28] 29],
one of these properties is the quality of the system to behave like a quantum
wire, a quantum well or a quantum dot depending on geometric characteris-
tics [30]. For approximately fifteen years, works related to the characterization
of conical and cylindrical quantum wires from the point of view of light ab-
sorption or response to magnetic fields have emerged [31, |32]. An incentive to
study QDs mainly based on materials such as CdSe and CdTe are their possibi-
lities for potential applications in spintronic devices and memory systems [33].

In this way, the electron, shallow-donor impurity, and heavy-hole exciton states
for two kinds of conical QDs are studied: i), shallow-donor impurity states in
truncated conical shaped GaAs-(Ga,Al)As QDs, which can be modeled through
a Coulomb interaction, in the simple model of a hydrogenic atom and conside-
ring the effects of an externally applied magnetic field. 77) CdSe-CdTe core/shell
QDs without magnetic field and impurity effects. Once the wavefunctions and
energies for electron and hole are available, in the presence or absence of im-
purity, the correlation between both carriers is calculated using the Coulomb



integral together with a first-order perturbative model. The calculations for dif-
ferent donor impurity positions along the symmetry-axis, considering the effects
of the magnetic field and the side of the structure (i) are carried out. Finally,
the overlap integral is reported, information that is key to understanding the
behavior of the binding energies for each configuration (i and ii).

Another type of low-dimensional structures are the quantum wires (QWs),
which are systems with strong two-dimensional localization of charge carriers,
leaving a single spatial direction for their displacement. This feature leads to
the quantization of the energy levels for the motion along the cross-section of
the structure. The beginnings of research on this type of structures date back
to the 1980s [37-42|, currently there is a considerable number of experimental
and theoretical reports in the literature [43-46).

When considering an internal donor density of QWs, it is convenient to solve the
problem by means of a self-consistent method (SC). This method is very useful
to determine the spectrum of electron in low-dimensional semiconductor nanos-
tructures when many-body contributions on the energy band profile are taken
into account. In this way, it is possible to mention initial works by Laux and co-
workers [47, 48|. In the Laux work, the electron states in narrow gate-induced
channels in a one-dimensional Si conduction channel are self-consistently de-
termined solutions. In the second one, the electron states were calculated by
solving the Schrodinger-Poisson (SP) system of equations in a split-gate quasi-
one-dimensional GaAs/AlGaAs heterostructure.

At this same time, that is, in the decade of the 80s, M. Razavy used double
potential wells in the quantum theory of molecules to describe the motion of
a particle in the presence of two force fields [49]. These types of potentials are
known today as Razavy potentials [50, 51|, and are used as a model to describe
the coupling of two molecules or quantum dots [52/-55]. Effects of intense laser
field and position dependent effective mass in Razavy-like quantum wells were
investigated in Ref. [56].
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In the year 2000 Trellakis et al. [57] discusses the computational issues in the SC
simulation of the electronic features of QWs. The authors discuss the numerical
solution for the coupled SP equation system and developed an iteration proce-
dure based on the predictor-corrector method for convergence of the iteration.
The coupled SP equations, have been solved by Proetto for a GaAs quantum
wire with cylindrical symmetry within the Hartree approximation [58]. In this
work, the potential profile and electronic structure dependence on the wire ra-
dius and surface states concentration were discussed. In 2019 Popescu et al. [59]
used the finite element method to calculate the energies and probability densi-
ties for an electron confined in a two-dimensional quantum dots, the shape of
this system was a regular polygon where the number of sides has varied from
three (triangle) to infinity (circle). They found that for very large systems, the
shape may not be as important as the size is.

In this work, the effect of the QW cross-section shape by considering the circle,
square, triangle, and pentagon geometries are studied. By using the effective
mass approximation, we study an electron confined in an infinite GaAs QW
and infinite confinement potential added to an electrostatic potential at the
boundary caused by the fact of having the system with exposed borders. The
energy levels in each of the structures with different cross-sections as a function
of the transversal area, the doping donor density, and the temperature are
reported. The oscillations that appear in electron density at low temperatures
and the contribution percentage made by each of the confined electron states
to such oscillations are discussed.

On the other hand, motivated by Razavy’s work of 1980, we investigate the
effects of the concentration of an on-center thin doping layer and of externally
applied electric and magnetic fields on the total optical absorption coefficient
in Razavy-like GaAs quantum structures. In a first development we develop the
one-dimensional problem of a GaAs d-doped quantum well having a Razavy-
type confinement potential. For this system, the confined electronic states are
calculated, as well as the self-consistent potentials, with a special care taken on
determining the Fermi level position, affected by the both temperature and ioni-



zed impurity distribution. The second problem dealt with is a two-dimensional
system corresponding to a GaAs quantum wire with circular cross section and
exposed borders, with an additional J-type doping and an inner Razavy-like
potential. The problem for the electron energy states in this case is also solved
in a self-consistent way, taking into account a fundamental difference: In this
case the Fermi level is no longer modified by the density of donors because the
system has exposed borders. So, a “Fermi Level Pinning” is presented which
keeps it fixed.

Regarding one-dimensional confinement systems, Resonant Tunneling Diodes
(RTDs) should be highlighted, these are semiconductor devices that consist of
a system of two or more potential barriers that allow the transport of electrons
only for certain states known as resonant states. The operating mechanism
is fundamentally based on the tunneling effect of quantum mechanics. This
type of system is characterized by developing one or more negative differential
resistance (NDR) zones that are the central particularity of RTDs that permit
a various application.

From the experimental point of view, these devices are developed in very thin
layers, enabling them for applications even in the terahertz range [60-62|. The
first investigations in this field were carried out around the 1950s from the
theoretical point of view, later, after the development of experimental epita-
xial growth techniques, between 1970 and 1980, there was an increase in the
production of experimental work [63-68]|. Of course, since that time the expe-
rimental techniques have been becoming more sophisticated, to mention some
of the current work in this area, the following references are included [69-73|.
The resonant tunneling effect is not only possible in double barrier systems,
this feature is also present in multi-barrier systems or superlattices (SLs), in
2020 Mehmet Bati studied the effects of an intense laser field on the properties
of resonant tunneling in a double-well structure parabolic reverse triple barrier
system implementing the method of finite differences combined with the Green
function formalism to calculate the transmission functions, obtaining as a con-
clusion that the increment of the well width causes the incident electron waves
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to be localized. Consequently, the transmittance decreases, and the resonant
peak becomes small or disappear [74].

At present, the SLs of semiconductor materials continue to be studied either to
understand excitations in the system or to analyze the response under external
fields. In works such as that from Komatsu et al. [75], the authors analyzed the
intensity of exciton photoluminescence in the presence of an external magnetic
field in a GaAs SL. In this type of material, the study of structural properties
is of great importance since it is possible to tune electronic properties that
lead to the optical response of the system. In 2004, Jeong et al. [76] studied
these properties in a GaAs/AlGaAs SL layer on InAs quantum dots by means
of photoluminescence, photoreflectance spectroscopy, and transmission electron
microscopy. Their results showed that the wavelength of the quantum dots was
effectively tailored by the high potential barriers. The effect of the interface
on the modulation-doped of the SL-type heterostructures can considerably mo-
dify the electronic properties in n-doped and p-doped systems. This effect was
studied by Bezerra et al. [77], finding that the presence of graded interfaces
modifies the carrier confinement inside of the GaAs quantum well. When the
semiconductor system is subjected to the action of external magnetic fields, it
is possible to modify the properties of electronic transport, in particular, the
current-voltage curves, or to generate the appearance of Magnetoresistance os-

cillations |78, [79].

In this work, we analyze the effect of charge redistribution and electron density
in the system out of equilibrium to obtain in this way the profile at the bot-
tom of the self-consistent conduction band, first, for a double barrier system.
This profile act as an input parameter for the potential term in the Schrodin-
ger equation considering open boundary conditions, this equation as well as the
Poisson equation are solved to obtain a set of quasi-stationary states and proba-
bilities of electronic transmission in the system, finally with these transmission
functions the Landauer formalism is implemented for the calculation of the den-
sity current and conductance. In this first study we report the self-consistent
potentials, quasi-stationary electronic states, tunneling currents, and conduc-



tances for different widths of the central well and different donor densities, then
a comparison is made between theoretical results of this procedure with recently
reported experimental results. In a second work, the transport properties of a
finite periodic lattice are studied. We are particularly interested in studying
the tunneling current considering geometric variations of the heterostructure
for two different combinations of the semiconductor materials, GaAs/AlGaAs
and InSe/InP. The current due to the tunneling of electrons from the emitter
to the collector, generated by a potential difference between the terminals of
the device, is calculated. The power due to the diffusion of charge carriers and
the effects of a nonresonant intense laser field (ILF) on the conduction band
profile and, therefore, on the conduction current are also studied.

In most of the studied systems, obtaining an analytical solution for the Schro-
dinger equation is practically impossible, and in fact the possibility of obtaining
analytical solutions in systems of interest is very limited. This fact makes it ne-
cessary to implement of numerical methods for the solution of differential equa-
tions involved in the description of the properties of semiconductor systems.
Some of these methods can be variational, perturbative, finite differences, finite
elements, diagonalization, among others. Particularly, the results presented in
this work are obtained through the implementation of the finite element method
(FEM) that has proven to be very effective in obtaining the solution to the diffe-
rential equations that arise in the analysis of electronic properties in structural
problems, deformations, impurities, transport, among others [80-82]. In all the
problems, the effective mass approximation for electrons has been used [83, 84],
considering for the wave function, the boundary conditions imposed according
to the Bendaniel duke theory [85].

The thesis order is as follows: the next chapter is devoted to the theoretical
framework. Chapter 3 contains an study of the shallow-donor impurity states
with excitonic contribution in GaAs/AlGaAs and CdTe/CdSe truncated coni-
cal quantum dots under applied magnetic field. Chapter 4 is an study of the
electronic properties of GaAs Quantum Well-Wires using the self-consistent
Schrodinger-Poisson method. Chapter 5 contains the study of electronic and
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transport properties in double barrier resonant tunneling systems. Chapter
6 shows results for the electro-transport properties in GaAs/AlGaAs and In-
Se/InP finite superlattices under the effect of nonresonant intense laser field.
Finally, general conclusions are included.

1.1. General objective

Calculate and analyze the electronic, optical and transport properties in low
dimensional systems under the action of external fields.

1.1.1. Specific objectives

» To studying the effects of the geometrical parameters on the electron
and hole states in two truncated conical core-shell quantum dots based
on GaAs-(Ga,Al)As and CdSe-CdTe, in the presence of a shallow-donor
impurity and under an applied magnetic field.

= Analyze the problem of the electron states, electron density in semicon-
ductor quantum wires of different cross section (circle, triangle, square
and pentagon) in a self-consistent way.

» Calculate the Quasi-stationary states, transmission probability, current
density, and conductance in a Double Barrier Resonant Tunneling System
considering geometric and donor density variations.

= Analyze a Razavy quantum well and determine its conduction subband
spectrum and the optical absorption coefficient, including the effect of a
doped delta layer and under the application of an external electric and
magnetic field.

= Calculate the energy states of quantum wire system of circular cross sec-
tion, with internal doping and Razavy potential and explain the origin of
the oscillations in the electron density profile at low temperatures.



1.1 General objective

= To study the changes in the electronic transmission probability and the
current-voltage characteristics in a finite superlattice of GaAs/AlGaAs
and InSe/InP, considering geometric changes and the application of a
nonresonant intense laser field.
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2. General theoretical
framework

2.1. Electronic transport in semiconductor
systems

This section briefly demonstrates the equation for the tunneling current, bet-
ter known as the Landauer formula [1, 2|. This equation is not only valid for
semiconductor systems, it is also widely used for the calculation of transport
properties through molecular systems |3} 4].

The starting point is the eigenvalue Schrodinger equation,

H |U) = E |0), (2-1)

where H is the complete Hamiltonian of the system that accounts for the con-
tacts through an operator H for the left contact and Hg for the right contact,
the dispersion region or central region is characterized by the term ﬁc, see Fig.
2-1] E is the system energy and |¥) the wave function that has [¥;) compo-
nents with ¢ = [L, R, C] for each of the regions. With these considerations, the

Eq. (2-1]) can be written as,

{:IL ‘A/ALC AO W) W)
Vie Ho Vig | | 1%e) | =E | %) |, (2-2)
0 Ver Hg |WR) |WR)

where the terms VLC and VCR represent the interaction between the left and
right contract with the central region respectively. The Green’s function of the
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Contac L

Dispersion Region

Contac R

Figure 2-1.: System scheme characterized by the dispersion zone (H¢) con-
nected with each of the contacts on the left and right (Hy and

Hpg).

A

system is defined as the function (operator) G which,

(E . H) G=1. (2-3)

and

2-2 2-3
complete Hamiltonian of the system in terms of the Green’s matrix:

where I is the identity matrix. From Egs. , we can write the

E—-H;, —Vic 0
Ve E-He Vi |G=1
0 —Ver E—Hp
J T : (2-4)
E—H;, —Vico 0 Gr Gre Grgr I 00
_VLTC L jHC - cTﬁ (A;CL GC Gp}{ =101 0|,
i 0 —Ver E—HR_ Grr Gre Grg 00 [

doing the multiplication of the two matrices on the left, subsequently, extracting
only the equations corresponding to the product with the second column of
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matrix G:

<E - ﬁL) Gro— VieGe =0,

— Vi Gre+ (E - ﬁc> Go— ViGre =1, (2-5)
— VenGe + (B = Hr) Gro =0,

from the first equation in ([2-5)):

<E - lT:[L) Gre = VieGe,

Cro = (B~ 1) VicCe, (2:6)
Gro = GrVieGo,

where the Green function associated with each contact had already been defined
as:

) ) -1
Grr) = (E — HL(R)) : (2-7)

Similarly, from the last of the equations in (2-5),

(E — ]:[R) Gre = VerGo,

A N (2-8)
Gre = GrVerGe.

Replacing (2-6|) and (2-8]) in the equation of the middle of ([2-5)),

- VLTOGLVLCGC + (E - ]:[C’) GC - VctRéRVCRéC =1, 2.9

<_VECGLVLC + <E - ﬁc) — VctRG’R‘A/CR) GC = ],

the terms ‘A/LTCCA? LVLC =2 1, and ‘A/Ct RG’ RVC R= 5 r are known as the self-energies
of the system,

(EL + (E . ﬁc) _ 2R) Go =1, (2-10)
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where we obtain the Green’s function associated with the central region

~ “ “ ~ -1
Go = (E—HC—EL—ER> . (2-11)

This equation indicates that the effect of the contacts on the device is to add
the self-energies to the device Hamiltonian since when we calculate the Green’s
function on the device we just calculate the Green’s function for the effective
Hamiltonian Heffective = ﬁc + XfL + f)R.

Non-equilibrium system

When the system is non-equilibrium, electrons can pass through the central
region due to the difference between the Fermi functions in both contacts, these
inputs will enter as plane waves (incident waves). Therefore, we want to find
the solutions corresponding to these incoming waves.

Consider contact L isolated from the other contacts and the device. At a certain
energy we have a wavefunction corresponding to an incoming wave that is
totally reflected at the end of the contact. We will denote this wavefunction
with |91 ), where L is the contact name and n is a quantum number associated
to several modes in the contacts.

For connecting the contacts to the device we can calculate the total wavefun-
ction caused by the incoming wave in contact L (the incident electron acts as
a disturbance in the central region). We note that a wavefunction has the form
)+ [7) where [1hr,,,) is the totally reflected wave and [1®) is the retarded
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response of the system. With them, the Schrodinger equation gives,

H ([$ra) +[9%)) = E ([ra) +[¢7)) |
(ﬁL+ﬁR+ﬁb+ﬁhy+%%+4%R+ﬁaﬁ(Wmm+ﬂw®):
E (|¢L,n> + ‘¢R>) )

(I:IL [Yrn) + Hp [Yrn) + He YL n) + Vie Vrn) + Vgo VL n) +
(2-12)

Vi Wrn) + Ver |¢L,n>>+1ﬁf ) = E (|vra) + [07)),

<E YL} + Vie |¢L,n>> + H |07y = E |[¢.) + B [7),
E ) + VieWra) + H[WRY — E ) = B |7,
H %) = E|¢") = Vie Wra) .

We see that |¢R> is the response of the system to a perturbation of Vgc |ULn)-
On the other hand, the last equation can be written in the form,

(B— ) [ = Ve ven), (2-13)

from ([2-3|) we to see that,

(E—-ﬁ)::é—R (2-14)

replacing Eq. 2-14]in [2-13],

G ") = Vi ) (2-15)

from this equation it is finally obtained,

[45) = GV [vr) - (2-16)
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The Eq. (2-16) is a scattering state generated by the incident electron, using
all possible incoming waves from each contact |9 ).

Secondly, the device wavefunction |¢¢) in given by

o) = GCVLTC VL) (2-17)

It is not difficult to show that the wavefunction in the R contact is given by,

|0r) = Gr(2)Ver|oc) = G’R(Z)VC’RGCVLTC VL)

O (2-18)
|9r) = Gr(2)VerGeVie VL) -
Similarly, the wavefunction in the L contact is given by,
1) = [Yr0) + Gr(2)VieGeVie ) 210

60) = (1+ Go(2WVicGoVo) e

Through the wave functions -[2-19)), in terms of the incident perturbation
|Y1.n), it is possible to calculate the complete set solutions for the Schrodinger
equation both in the contact regions L and R as well as in the central scattering
region and analyze how the electrons that enter with a given energy can modify
the properties of the system.

When calculating the electronic current through the system, it is necessary to
know the charge density in each reservoir. For the system out of equilibrium,
this quantity is different in each one. The starting point is to write the density
matrix of the system,

p=>_ f(Ex. Ep)tr) (Wl (2-20)
k

The electronic occupation of the reservoirs can be measured by means of the
Fermi-Dirac function in terms of the Fermi Ep (g level in each reservoir at a
fixed temperature T,

1

f(Ek, EFL) = & o Bl T (2-21)
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The sum in (2-20]) runs over all occupied states given by ([2-21)).
The wavefunction on the device (Eq. (2-17))) generated by an incoming wave in
contact L in a k mode is

[er) = GeVie [heg) (2-22)

Adding over all states of contact L:

pe,L = /OO > F(E,Epr) [ax) (Vaxl 6(E — Ey)dE, (2-23)
.

by using (2-22)) in [2-23|

po.r = / Z f(E, Er) GeVia os) (i VieGLS (E — Ey) dE,
L

por = / f(E,Erp) GeVie <Z5 (E — Ex) [¢rk) <¢L,k|> VieGLAE,
o -

(2-24)

the term in parentheses is known as the spectral function and by definition, it
is given by

D(E)=i(G"—G)/2r =) 0 (E — Ey) [ri) (Ve (2-25)
k

where G and G~ are the leading and lagging Green’s functions respectively.
Taking into account the above, we get

pos = / (B, Epp)CGoViLD(E)VioGlLdE, (2-26)
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it is possible to rewrite the integrand considering:

.
1o D(EYWie =V, (ZT> Vie =

(2-27)
U (0t AT ot AT
- (VLCG Vie — Vi.G vm) -

i (e . 1 -
(s 2-) =
2 2 ( LT2L) T on k
The term I'; that appears in the last equality is a definition in terms of the

selfenergies and corresponds to the coupling potential between the dispersion
region with the contact of the region L. Replacing this result in (2-26]),

1 [~ A A A
pc,L = %/ f(E,Ep1)Gcl [GLAE. (2-28)

Similarly, an expression is obtained for the charge density associated with the
R contact,

1 [ A A A
pCﬂR:%/ f(E, Erg)GcT RGLAE. (2-29)

The total charge density is a sum over the two contacts L and R, adding a
factor of 2 by spin degeneration,

P = 2 (pCﬂL + pc,R),
2 o0 N 00 o
P=5- [/ f(E,Err) GC’FLGTCdE +/ f(E,Erg) GOFRGTCdE] :

1 [ o s
p== / [f(E,EF,L)GOFLGTC+ f(E,EF,R)GOFRGg] dE.

m 00

(2-30)

Probability Current
Already at this point, it is possible to calculate the tunneling current that is
generated by the electron population difference in both reservoirs, to derive
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an expression of the current, let’s use the temporal conservation of the total

probability density in the complete system,

0=

by using the Schrédinger equation:

019
ot

Gin (i),
<J \ ¢>

L — (1),

5<JW>_ P
o~ Ryl

= Hlv),

and

]
S = (Wi,

A2 ) = i),
<¢\J> s
R ),

oW 1) _ i 5
L — L iAlg),

02 \% = ¢|J (J])

= 3 (2 Gy + ol 21,

j (2-31)

(2-32)

(2-33)
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replacing Eqgs. (2-32) and (2-33) in ([2-31]), we get,

(OG0 - (0135 1ET) ).

Dt‘l's

0= ;Zwmm L) — (0 | ) GLH)), (2-34)
-+ (wﬁ [Z el w>] - [Zw | j><j|] fw) ,

on the other hand, we see that:

[pe) = <Z] JI)I% = 2_1i) (ilve) = ZU Z!J Gl

(2-35)
(e = (vl (Z] J) > (el 1) = Zw 15) Z (1) 17) -
j (2-36)
Using these results in Eq. (2-34)),
i i .
= = (@l lve) — twelfl), (2-37)

expanding H :

0=+ (1 (e + Ve + Vo) lwe) — (el (Fe + Vo + Vin) 1) (238)
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0= %( (Wl Helbe) + (W Viclve) + @Verlte) — (olHelw) — (el Viphb)

(ol Virlv) ),

0= 1 (Be (hie) + (WlViclve) + (Venbic) — e (els) — (elViolv) -
(ol Vi) ),

0=+ ( WlViclbe) + WITerlve) — WelViole) — GelVinle) ).

0=+ { WalViclve) — (welVielwn) } + 5 { (wrlVenlic) - <¢c|ng|¢<R>}.>
2-39

The term in the first bracket correspond to the incoming probability current
into the device from contact L and the second bracket from contact R.

For an arbitrary contact k, the electric current is given by the product between
the electron charge —e and the probability current:

1e

i = 7 { (k| Verlte) — <¢C|ng\¢k>} : (2-40)

1 1s positive for a current from the contacts into the device.

To calculate the total tunneling current through the device we need to put all
the contributions together in the wavefunction of the device and the contacts

(1), ), [¥r)) given by Eqgs. (2-17-

izon = 5 { WalVenlve) = (el Viglon) |
iLsR = —% { (Wr|VerGoVia|brn) — <¢L,n|VLCGATCVCT‘R|¢R>} 7 (2-41)

re

iLsR = % WralVieGLVL {GE — @R} VerGeViclra) .
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On the other hand, from Eq. (2-27),

A N [ . N
—ilp =Vl |G - GH Ve,
N Rt
—il'p =Vop |Gr — R} Ver,
ZfR = VCJLR [GTR — GR VC’R,
Replacing these result in the expression for i;_, g, we get,
iR = e (Ll Vie G} {ifR} GeVialbrn)
— h ,n C LC /o (2_43>

. e N SN
inon = — (Wpa|VieGLD RG] v ,) -
h

This equation correspond to the current into the device from an electron in-
cident (|¢r,)) of one energy (F) and one mode n in contact L through the
coupling defined by Ver. Adding over the n modes and considering that the
electrons enter through the reservoir L,

: 2e A oAk A A A
ir-r(E) = %f(ﬂ Epp) Y 0(E = E,) ($ra|VieGETrGVcltbra) |
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(2 is for spin), adding up all the possible energies of the incident wave F,

2e [ A b A A
I1p = %/ f(E,Epp)> 6 (E — Ey) (ralVieGLLrGeViclry) dE,

2 o A Al A A A
- / (B, Brp) S 6 (B - By) ($raViclGLT rGeViolvn ) dE,
o L) SUCEH
- A o y F L . n
(Wra|Vie (Z Im,) <m> GLTRGAVclvrn) dE,
2 o ~ At A A A
=2 [ BB X 8B — Ba) {nalVic il GLE GVl dB,

n,m

% [ ha A .
=% | FBE) Y8 (E - B) (mICLEGeViclbia) (el Viclm) dE,

n,m

2e [ A B A ~
== / (B, Bri) Y (m|GeLrGoVied (B = E)ldra) (il Viclm) dE,

=%3/waﬂ%m

> (m|GETRGVI {6 (B — Ey) [¢10) (Yral} Vielm) dE,
2 xXO
-5 | rEEw

> (m|GLRGeV {Z 5 (E — E,) [tpn) <¢L,n} Vie|m) dE,

(2-44)
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by using Eq. (2-25),
1
IL—>R—_/ f(E,Epy) Z (m|GLTRG o (2 FL)| )dE,

2e 1
I g = ——/ f(E EFL)Z (m|GLTRG T pm) dE
(2-45)
IL—>R: ﬁi/_ f(E, EF’L)Z (m|GgFRGCFL|m> dFE
IL—>R: ih/ f(E, EF,L) Tr (Ggfgéch) dE,
T —00
to get the total current through the device the current is given by,
I'=1Ip,r—Ir-1, (2-46)
e [~ At A A a
= _h/ {f (E, EF,L) — f (E, EF,R)} Tr (GTCFRGCFL) dE (2-47)

The transmission in the system can be calculated by means of the Green’s
functions according to the relation known as the Fischer-Lee relationship [5],

T(E) =Tt (égf RGCFL) . (2-48)

From the above, an expression for the electronic tunneling current is finally
obtained in terms of the difference in electronic population in both reservoirs
and the probability transmission through the system,

- £ /_OO {f(B.Epp) — [ (E.Epg)} T(E)dE. (2-49)

The Eq. (2-49) is known as the Landauer formula for tunneling current and is
necessary to calculate transport properties through semiconductor structures
or molecular systems.
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2.2. Optical absorption theory

Consider a two-level system with |a) and |b) corresponding to the low and
high level, respectively in a monochromatic electromagnetic radiation presence
of frequency w (classic field), which is a coupling field with these states. The
most common approach to tackle the problem of interaction of radiation with
matter is that of the density matrix, whose time evolution is governed by the
Liouville-Von Neumann equation [6] (including dissipation terms):

dp 1 1

o = 57 Ho—= ME(),p] = 5 |7(p = p") + (0 — A0, (2-50)

where p is the density matrix, Hy is unperturbed Hamiltonian of the system, i.e.
without the resonant electromagnetic radiation, M is a dipole operator, E(t)
the electric field with frequency w, p is the density matrix for the unperturbed
system, and ~ is the phenomenological term that accounts for the dissipations
in the system presented by the presence of impurities or electron-phonon and
electron-electron interactions. v can be considered as a diagonal matrix and its
elements v, correspond to the inverse of relaxation time for the |m) state.
The Hamiltonian Hj has the eigenvalues E, and Ej corresponding to the levels
la) and |b), respectively.
The electric field can be expressed as:

By 1 1. -~ ~
E(t) = Re (Eye™") = §E0 e "+ §E0 ' =Fe ™+ Ee", (2-51)
where Fy denotes the amplitude of the field. The only nonzero matrix elements
for the v operator are:

1 1
(b|7|b) = — and  {aly[a) = —, (2-52)
Th T

a

where 7, and 7, are the relaxation times for the states |a) and |b), respectively.
One way to calculate the density matrix is by means of a perturbative method,
expanding it in a power serie as:

=3 0", (2:53)
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the density matrix for zero order p(”) has only diagonal elements because the
electronic population is located in each of the states and there are no inter-
action effects between them. The notations used for the m-order density ma-
triX elements are: pi = (a|p™|a), p&) = (a] p™ [b), pi" = (b] p™ |a), and
pbb = (b|p™|b). Thus, p has the symmetric property pu(t) = pi, (t).

By expanding the commutator from Eq. ([2-50)):

0 1
= = = [(Hy — ME(t))p — p(Hy — ME(t))
=5 o=+ (p =],
by substituting into Eq. (2-54)):
(n)
Zﬁgt Zlh [(HOME ZP ZP (Ho — ME(t))
" (2-55)

1
S Y D P CITR W § S R

and taking into account that

3o —p® = (p<o> SR CI ) —p 0 = pp gy = 5 gD,

(2-56)
this expression is substituted into Eq. (2-55))
RS (AR YEoltS ) = 3~ (D)
ot ih 0 0
" (2-57)

_% [,sz(n—kl) n Zp(n—kl),y] _

For the calculation of the first order absorption, it is sufficient to calculate the
matrix element p,,. Applying the states (b| and |a) on the left and right in the
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last equation, we obtain

<b

(n)
> > - <b > ((Ho = ME®)) o) = p(Hy — ME(2)))
DD D a> |

1
5<b

by using the distributing property:

a> mz<<< ‘Hoﬂ >— <b’ME(t)p(n)
- <b‘p”ME(t)‘a>)>
_%< d < ’w ”“‘ >+Z<b‘p<”+”7‘a>>,

n

)

(2-58)

X "

(2-59)

by using the completeness relation |a) (a| 4 |b) ()] = 1 and substituting the
corresponding energy values

> 9 (b]p]a) = %;((Ebpg? — (8| M0} tal + 1) (0|0 (1))

~ (i B = (o] el + ) 02 B0

N %(Z <b‘7(\a> (al +[b) (b))p" Y ‘a>

n

+ 3 (8} e} (el + 18 @) )

(2-60)

) )= (o ol
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by distributing terms

3058 = 5 (s~ [0 (o) + 1010 (3] 0
(0= (o) -+ () 1] 20))
B %(Z [(bMa < ‘anrl ) >_|_ (b|y|b) <b‘p(n+1)’a>}
£ 3 [l o) sl + (ol ) i) ).

(2-61)

and taking into account that the matrix v has only diagonal elements and by
defining the matrix element of M as M,,,, = (n|M|m)

P (n)
Z gbta - zh Z (Ebpba [ apgza) + Mbbﬂéa)} E(t)

n

~ (b Bu - [pé’{? Mao + iy M| E(t))) (2-62)

— % (Z Tpp )+ Z Y %a) ,

Ta Th

rewriting terms Ep, = By — E,, I'ypy = 'y = % (i + l), and reordering

83 - E Z <Eba/01()a) - (pga) - p((,b)> MbaE(t)
n ) (2-63)
_ (Mbb — Maa ,Oba ) Z FabprH ’

since the unperturbed density matrix only has diagonal elements, i.e. pl()g) =

pg%) = 0 which implies ) pl()z) =y p[()ZH) , using this result in the last equa-
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tion,

o (n+1) ;
2 pat = Z (Ebapba — (o) = o)) MuaBE(2)

(2-64)
—(Mbb_Maa pba ) ZF anrl7

extracting the nth term from this equation, it is possible to write a recurrence
relation:

P — (B~ T ) o™ = 5 (o) = ) M)

ot Zfi ih (2-65)
- (Mbb - Maa) E(t)p(()z)a
1h
Expanding the density matrix elements as proportional terms of e*™! it is

possible to obtain the solutions for this equation by equaling both sides. Taking
into account that there will be two equalities, one of them for the exponent sign
(4+) and the another one for (—). Under steady state conditions, the n-order
perturbative term is:

P(t) = P (W) e ™ p (—w) e, (2-66)

which is valid for n odd.
Taking n = 0 in Eq. (2-65))

I (L p,) 0 1(@) W) MiE(t) (2-67)
ot \ap ' et ) Pea TG \Pea T P ) b AL ]

Let n = 1 in Eq. (2-66)) for the coupling b — a and by substituting it in conjun-
ction with Eq. (2-51)) into Eq. (2-67)

0 /.1 Ciwt <01 iw

= (A @) e + 5 (—w) )

_ iE -T ~(1) —iwt ~(1) _ wt 2-68
= ih ba ab Phra (w)e +pba( w)e ( )

1 . - o
7 (Pgé) - Péz)) Myq (E e+ Eem) :
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evaluating the derivative and grouping the terms with negative and positive
power,

—iwﬁé? (w) e ™" + iwﬁé?(—w) et

B 1 ~(1) L7 o) (0) o it
= [(%Eba - Fab) Prq (w) - ﬁi <paa — Prp ) My E| e (2—69)
1 ~(1) 1 0 Sl iw
+ [(%Eba — Fab) Pz(m (—w) — i <P£L%) - Pz(;b>) MbaE} e,

equaling terms for the negative power and solving for ,01()(11) (w)

~

0 0
<p((m) - pl()b)> MbaE

(1)
_ 2-70
P W) = T (2-70)

where py are the state occupations in equilibrium, and depend on the Fermi
level of the system by means of the Fermi-Dirac distribution function,

1 1
0) _ 0) _ _
Pas = T epEEy M Pw = T pmoE (2-71)
where E; is the Fermi level of the system and 8 = 1/kgT is the Boltzmann
factor, with T" the temperature, and kp the Boltzmann constant.
Remembering the relationship between the electronic polarization P(t) and the
susceptibility x [7]:

~ . ~ 1
P(t) = eox(w)E e ™ + gox(—w)E ' = vTr(p M), (2-72)

where V' is the volume, g is the vacuum permittivity. The absorption coefficient
a(w) is related to x by

a(w) = w [ Im (eox(w)) (2-73)

€R
where 1 is the permeability of the system, g is the real part of the permittivity
and x(w) is the Fourier component of (). The electronic polarization can be
expressed as

P(t) = 1 lalpMla) + {bloMIB)], (2-74)
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where we can include the completeness relation:
1
P(t) = 37 lalp (la) {al +[b) (o)) Mla) + (blp (|8) {al + |) BI) M[B)],  (2-75)

by using distribute property

1

P(t) = 37 [ {alpla) (al Mla) + (alp|b) (6| M |a)

+ (blpla) (al Mb) + (blp|b) (b|M]b) ],

(2-76)

we can write this electronic polarization by using matrix notation and the

definitions of p given by Egs. ) and (2-66))
1 ~(n ~(n ~(n ~(n —iw
P() = 7 3 [0)0) Maa + 5 () M + 550 () M + 53 () Mg | 75",
(2-77)

neglecting the terms outside of resonant transition a—b and by using Eq. (2-72)):

~ 1 /.
cox W) E = = (5 @) Ma) (2-78)

by substituting Eq. (2-70]) into Eq. (2-78)). It follows that

| (42 = ) 24
V Eba — hw — ihl“ab

coxV(w)E = My, (2-79)

deleting E and multiplying numerator and denominator by Ep, — hw + thl'g
in order to eliminate the imaginary number in denominator

(0)
l (paa pbb > |Mab| (Eba — hw + thab)
V (Eba — hw — ZhFab) (Eba — hw + thab)’

eoxM(w) = (2-80)

this equation takes the form,

50X(1)(w)

1 Ey, — hw hI'
% (P Pbb | M| <(Eba 5 T1 2

— hw)? + (hlgp) (Epy — hw)” + (hFab)Q) '
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(2-81)

Hence, by substituting the imaginary part of this expression into Eq. (2-73)),
the absorption coefficient is finally obtained in linear order |6, [8]:

o IMaf? (pld = of)) AT
V(W) =w, /= : (2-82)
er V ((EBpa — hw)? + (Ala)?)

2.3. Self-Consistent method

Currently there are several self-consistent methods to solve the Schrodinger
equation coupled with the Poisson equation to model charge diffusion problems
due to donor and acceptor effects included in semiconductor structures. This
section briefly describes one of these methods for solving a quantum well [9]
and includes the corresponding Fortran code in appendix B. The Fig. shows
the conduction band corresponding to a well of width 2L and depth AFE,, the
shaded regions correspond to doped regions of n-type with density N;. The
entire system contains a small unintentional acceptor doping N,. The term
A FE,; corresponds to the donor levels, in the low temperature limit 7' = 0 K, the
Fermi level Er is the highest populated level, clearly this level is characterized
by the donor density Ny, in this case it is defined as Ep = Er. From the above
it is clear that the distance between the bottom of the conduction band and the
Fermi level is given by AFE,;. The Fig. shows the self-consistent potential
corresponding to the bottom of the conduction band in black, electron density
is shown in red. Note how the profile of the bottom of the conduction band
no longer has a square profile, this is modified by the effect of the diffusion of
the charge carriers towards the interior of the well, as seen in the figure, the
electron density n(z) presents an accumulation region in the interior region of
the well and decreases in the barrier regions. The charge density is given by

;

—en(x), t < —(Dg+Ds+ L)
e(Ng— N, —n(x)), —(Dg+Ds+L)<x<—(Ds+1L)
p(x) = ¢ —e (N, + n(z)), —(Ds+ L) <2< (Dy+ L) (2-83)

e(Ng— N, —n(x)), (Ds+L)<zx<(Dg+ Ds+ L)
| —en(z), x> (Dg+ Ds+ L)
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Figure 2-2.: Conduction band corresponding to a well of width 2L and depth
AFE,, the shaded regions correspond to doped regions of n-type
with density Ng4. The entire system contains a small unintentional
acceptor doping N,,.



42 2 General theoretical framework

Self-Consistent
Conduction Band
—— Electron Density n(x)

energy

X (nm)

Figure 2-3.: Self-consistent potential corresponding to the bottom of the con-
duction band in black, electron density is shown in red.
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in this equation e correspond to the electron charge. The Hartree potential is
obtained from the Poisson equation,

d? ¢(x)
dz?

where, €y and €, are the vacuum and the relative dielectric constants, respec-

€o€ = p(z), (2-84)

tively. From this last equation we obtain the Coulomb electronic potential as
U.(x) = e¢. At this point it is possible to introduce an exchange correlation
term,

Use(x) = —x (n(a:))l/3, (2-85)

where, a = 0.0783¢e?/ege for an GaAs well with Alg3Gag7As barriers [10].
In equation 2-85] the image charge effect has been ignored, considering two
materials whose dielectric constant does not differ greatly. If we define Uy, () as
the band offset potential due to the energy difference between the well material
and the barrier material in the conduction band band, then, it is possible to
write an expression for the total potential:

U(x) = Up(x) + Us(x) + Uype(), (2-86)

this potential energy term must enter the Schrodinger equation to calculate the
eigenvalues and eigenfunctions inside the well,

o hz d2 wl(ﬂj)

2m*  dx?

+ U(x)¢i(x) = Eii(z), (2-87)

where E; is the electron energy associated with the i-th state 1;(x). Note that
in Eq. the effective mass approximation has been used as m*. It should
be noted that in the research results presented in the following chapters for
materials such as GaAs/AlGaAs, CdTe/CdSe, etc. this approximation for the
effective mass is not applied and instead of Eq. 2-87, a more general expres-
sion must be used to consider position-dependent effective masses. In this sec-
tion, this approach is sufficient since the objective is to guide the operation of
the self-consistent method. This last equation must be solved strictly applying
BenDaniel-Duke boundary conditions, however, if the wave function penetra-
tion in barrier regions is small, it is possible to assume a single effective mass
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through the system as the mass of the well material. Shifting the highest po-
pulated level to zero energy Er = 0 and considering the low temperature limit
T = 0 K, the electron density takes the form,

n(z) ==Y BEi|¢i(x)], (2-88)

2

where 3 = m*/wh?. The sum in Eq. must go over occupied states, that is,
up to the Fermi level of the system. Taking into account that the Fermi level
must coincide with the level of donors Er = Ep = 0, then, in the bulk of the
system it must be fulfilled that,

Uz — £o00) = AE,, (2-89)

This condition is a consequence of the fact that the electron density in these
bulk regions tends asymptotically to zero. The Eqgs. 2-83-[2-89] must be solved
in a self-consistent way according to the following algorithm:

(1) First, solve the Eq. considering an initial potential that could contain
only the band offset term Uyq(z) = Up(x), in this first step we obtain a first
set of eigenvalues and eigenfunctions {F;, 1;(z)}.

(2) Calculate an expression for the electron density from Eq. using the set
of eigenvalues and eigenfunctions found in step (1).

(3) Calculate the exchange correlation potential U,.(z) by using the electron
density obtained from the previous step by means of Eq. 2-85

(4) The charge conservation equation implies that,

Ny +2N,(L + Dy)

D 2-
! 2(Ng—N,) (2-90)
with,
400
Ny = / n(x)dzx. (2-91)

(5) With the calculation of Dy from Eq. [2-90] it is now possible to calculate

the charge density p(z) by means of [2-83|
(6) Next, the electron density found in the previous step is replaced in Eq.

to obtain the Hartree potential ¢(z) at first approximation, considering
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the boundary conditions ¢(x — +o0) = 0 and d¢(x)/dz|(z — £o0) — 0
(similarly, it must be fulfilled that U,.(x — +o00) = 0).

(7) According to Eq. [2-86, we can write an expression for the new potential
Unew() = 95% Upo(z) + 5% U () (It is important to introduce the old
potential in small proportion to improve the numerical convergence of the self-
consistent problem, in this case a 5% has been used).

(8) If it is true that: |Uyg(x) — Upew(x)| < € for e << 1, stops the program and
self-consistency has been obtained. If this condition is not met, the potential
Unew(x) must be replaced again in equation , to start the cycle again until
reaching self-consistency. Appendix B includes a Fortran code that reproduces
this self-consistent scheme for a GaAs well with Aly3Gag7As barriers.

2.4. External magnetic and electric fields

Consider a one-dimensional system (like a quantum well, for example) grown
along the z axis, subjected to the action of a static magnetic field directed along
y and an electric field directed at z. The magnetic field is clearly perpendicular
to the growth direction of the structure. Let us consider explicitly = B},
in this way, the magnetic vector potential has the form A = B 20 (within the
Landau gauge), where B is the intensity of the magnetic field. On the other
hand, the potential associated with the electric field is given by —eF'z, where
I is the intensity of the electric field and e is the charge of the electron. Taking
the above into account, the Schrodinger equation takes the form [11]:

1 o~ 2

[2 (T red) —eray v<z>] U(=) = Bu(2) (2-92)
m

where V' (z) is the geometrical confinement potential, m* is the electron effective

mass, and F is the electron energy along the growth direction. To get a more

common expression, firstly, the quadratic term in Eq. (2-92)) is expanded:

L (7 +ed) - [(7+e4) v(2)

2m

= [P reT A ed T ea ),

(2-93)
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by using % = —thV and substituting (2-93) into Eq. (2-92

1
2m*

[—hQVZ—ieﬁV-Z—iehZ-VJrezAQ—erJrV(z)}w(z) = Ey(z). (2:94)
Let’s see that the cross terms are canceled

v (Au) = (g7 5T+ 5o k) - [BTue)

_ 5 0U(2)
= Bz o
=0
~ 0
= Bzi- ¢( ) (2-95)
_ B 3"¢( )7 ()~ () ¢
= b ( Ox oy I 0z
~ (O~ O~ O~
= Bzi - (%Z+6_y +£k> P (2)
— A V),
by using this result in Eq.
[2;* (=R*V? + e?A%) —eFz + V(z)} P(z) = E(2). (2-96)
replacing Z in terms of the magnitude of the magnetic field,
[2;* (=R*V? +e*B*2%) —eFz + V(z)} W(z) = EY(z). (2-97)

finally writing the gradient explicitly in the direction of growth of the structure,

> 0>  e*B?
o R P V()] 0(e) = Bu() (2-98)
This equation is used to solve one-dimensional structures subjected to the ac-
tion of static electric and magnetic fields in the directions indicated in the

Landau gauge [12].
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States with Momentum in z,y, z and Position-Dependent Mass
Starting from the three-dimensional Schrodinger equation,

() = Ev(), (2-99)

the dependence of the effective mass with the position, modifies only the kinetic
term,

S Sy A W G ]
[ Y . A T R R

in this last equation the definition of the three-dimensional momentum opera-

tor has been used again. By including the magnetic field, a correction to the
momentum term proportional to the magnetic vector potential is generated, in

this way the Eq. (2-100)) takes the form,

. 5+ eA
(ﬁ+a®°<p+e >, (2-101)

2m*(r)

considering a magnetic field of the form B = Bj, then the magnetic vector
potential is given by A = Bzi (considering again the Landau Gauge). Taking
this in mind, let us expand the operator given by Eq. operating on the
wave function,

(F+ ) - (ﬁ - ef‘) () =

_; i 2 I‘Y T ]% e? A o
<%n%ﬁ) v <2nw@ﬁ>'+eA o @ 2 | Y T
Y G v - A L (—ihV) A2 L
—ihV - (Qm*(F)> — iehV <2m* (F)) +eA om (7 T 2@ P(7)
i = \Y iehV A iehA-V e2 A*
_— 2 . _— _
" <2m*<f>> Z (m*(*)) > w® o (| U
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Let’s consider the second term in Eq. (2-102)):

?ﬁ. (&Mﬁ) :?5- (M) _ieh & (M)

m* () m* () 2 Ox \ m*(r)
_iehBz 0 ([ () \ _ iehBz OY(r) iehBzy(r) Om*(7)
T2 Or <m (F)) T omH(R) dr  2m2(F) dx
(2-103)

On the other hand, the third term in Eq.(2-102)) takes the form:

iech A - | _ieh Bzt o, iehBz 0yY(7)
Tm*(F) Vo(r) = Tm*(f') Vo(r) = 2m*(r) Ox 5104
_ieh g AY(F) | iehBzy(7) 0m*(7) (2-104)
2 m* (1) 2m*? (r) Oz
from this last relation is found,
o (B0) 0 T g;
2 m* (1) 2 m*(r) (2-105)
_1ehBz0y(r) iehBz(F) om*(r)
- m*(F) Oz 2m*2 (F)  dx

From Eq. (2-104) it can be seen that the equality of the crossed terms in Eq.
(2-102) is presented only in the case in which the effective mass takes a constant

value. Replacing the Eq.(2-105) in the Eq.(2-102)) and rewriting the magnetic
vector potential,:

(7).

(2-106)

2m* () m*(7) 0r ~ 2m*2(rF) Ox 2m* ()

[_hzﬁ. < v > _iehBz 0 | iehBz Om*(F)  e2B22?

Remembering that this expression corresponds to the kinetic term of an electron
in a uniform magnetic field, we can write the complete Schrédinger equation
introducing the simultaneous action of an electric field in the form F' = Fk,
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with which we obtain,

2o Y _iehBz 6 zeth aom* (1)
2m* () m* () o 2 (r) Oz

o2 3252

* 2m* (1)

This equation includes the effect of states with momentum in z,y, z in addi-

(2-107)

—eFz+ V()| 9(r) = Ey(r).

tion to considering the position-dependent effective mass for an electron in a
simultaneous electric and magnetic field confined in a V() potential.

2.5. Non-resonant laser effect

In this section we will find an explicit form for the interaction potential of an
intense non-resonant laser field with a heterostructure. let’s start by analyze
the interaction between a confined electron and a laser beam considered as an
ideal monochromatic, plane wave described by the magnetic vector potential
Z(?, t) = Z)o exp [@(? T - wt)] . The laser field can be taken from a semi-
classical point of view, and for development the Coulomb gauge will be used.
The above means that V - X(?,t) = 0 and ¢ = 0, where Xg and ¢ are the
vector and scalar potentials respectively. With these considerations, the time
dependent Schrodinger equation is given by:

m%m(?, )—%( AP t) U (7 t) + V()L (7, 1),  (2-108)

the subscript in ¥, indicates that the equation is in the laboratory frame.
By expanding the first term on the right side of the Hamiltonian,

z’h%\h(?,t) _ [% 72— ep AT ) —eA(T,8) -7+ 6222(7%)}

+ V(7)] UL (7, 1)
:{ L 2 ¢ [ AT+ AT 1) - }+—Z2?t

2m* 2m*

V(?)] (7, 1).
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(2-109)

The product ﬁX(?, t) commutes due to the Coulomb gauge. At this point it is
possible to apply the dipole approximation for the magnetic vector potential, to
neglect its dependence on the 7 coordinate. The above implies that Z(?, t) ~

(). Secondly using the momentum operator representation in coordinates,
p = —ihV, the Schrodinger equation takes the form,

L0 h2 zhe 5
VLT ) = 5V Z v+—X ) w7 0),

(2-110)

This equation can be simplified according to the work of Kramers-Henneberger
[13, [14] who proposed a transformation to the previous expression for transfer
the time dependence from the kinetic to potential term [15], that is why this
transformation is largely known as the laser-dressing of the potential. This
transformation can be subdivided into two transformations Uy and U, [16], by
the first one the XQ term being reduced and by the second one, the Z(t)
term being ehmlnated.

The transformations U; and Us are defined as

Uy = ez [ A2l (2-111)
and
; ol t / /
Uy = e #1707 with & (t) = —i/ A )dt. (2-112)
m

applying the transformation U; to the wave function in the laboratory frame,
a new wave function in the velocity frame is obtained,

U, (7, t) = U0 (7, 1). (2-113)

By applying the UlT transformation in Eq. (2-110]), one will obtain

ihU] g[m\p (7, 1)] =
(2-114)

h
Ul |5 LR v ”X v+—22 ) U (7, 0).
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On the right side, the Uy operator only acts on the terms X2 and X since they
are the only terms that depend on ¢ like U;. Expanding the derivative on the
left side of the equation we have

Te ZQ tU, v, r,t)+z'h%\pv(7,t):

2 2 (2-115)
cq[ 2ZL @ﬁﬂz' i%éﬁ%ﬂ—%V(?ﬂ(ﬁ@A?ﬁt)

Simplifying, an independent equation of the quadratic term Z2 is obtained. In
this way, the Schrédinger equation takes the form,

mgt\p( ):[ 2?71 ZheZ SV + V( ?)] U, (7, 1). (2-116)

The objective now is to eliminate the term X -V by means of the second
transformation Us that this can be rewritten as Uy = em* S (t/)dt,'v. The wave
function can be modified by this operator as, U (7, ¢) = UJW, (7, t). Through
a similar procedure to the previous one, by applying this transformation to

Eq. (2-116)) it is possible to eliminate the term Zf—e -V, to obtain after a

simplification

)
zha\IfN(7>,t):U2T -

oY T VW)} UsUn (7, 1). (2-117)

At this point, it is necessary to explicitly calculate the term U2T V(_>)U2 since the
momentum operator is not affected by the transformatlon To do this, let’s use
the Campbell-Baker-Hausdorff identity eABe=4 = B+ [A, B]+A, [A, B]] /2! +

..7

USV(T)Uy = ex T 0Py () 7007
SV +[@0 - VIV(P) + 5@ VPV +o (2119
= V[V +d ().

This means that the only time dependence of the Schrédinger equation, through
Kramers-Henneberger transformation, is through the potential term V. Note
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that U, operator generates a translation given by ﬁ(t). Of the above, the
Schrodinger equation takes the form

h2
quJN(?, )= |—=—V2+ V[T + Q)] Un(7,1). (2-119)
ot 2m*
The shape of the new potential (commonly called laser-dressed potential) is a
consequence of the laser effect.
It is convenient to find an explicit form for ﬁ( t), for this, let’s calculate the

second derivative with respect to the time of @ (¢), we have ﬁ(t) = %B(t),
m

where ﬁ is an electric field. Hence, ﬁ(t) is interpreted as the classical dis-

placement of the electron under the electric field ﬁ . In the case of a steady

laser field, i.e. E = FEysin(wt)x (Ep is the amphtude of the electric field,
w is the angular frequency of the laser, and T represents the propagation di-
rection of the field), later o (t) = e*E’02 sin(wt) Z. This can be rewritten as
%

a(t) = agsin(wt) &, where ag = ni%2 represents the oscillation amplitude of
the electron under the laser field (called the laser-dressing parameter).
The Floquet theory provides a solution for the Eq. (2-119)) [14} [17]:

Un(7 NfZ\lfN e~ (2-120)

where Ey is the Floquet quasi-energy. By expanding the potential V' in Fourier

series,

VT + )= Y Vilog; 7)e ™, (2-121)
i !

with Vi, (ag; 7) = —/ V(7 + aou?) T, (u)(1 —u®) "V du (2-122)
T J

where T),(u) are the Chebyshev polynomials.
Considering a high frequency laser field (compared with the transition frequen-

cies characteristic to the system), it is enough to consider the lowest order in
(2-122))

1 [ V(7 4 ayue)
Volao, 7 :—/ du. 2-123
0( 0 ) . m ( )
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By making a trigonometric substitution u = sin(wt), the laser-dressed potential
can be written as:

w

‘/E)(Oé(), ?)> - %

21w
/ V(T + agsin(wt) O)dt. (2-124)
0

Finally, the time dependent Schrodinger equation will have the form

0

ih—U(7) = [ :

—2m*v2 + Vo(aw, 7)) | O(7), (2-125)

ot

Note that this equation only depends on 7 since Vo(ayp, 7)) corresponds to the

average of the oscillating potential function:

1 [T

Voo, 7) = 7 / V(T + 3 (0))dt. (2-126)
0

Equations (2-125)) and (2-126]) must be solved to take into account the effect of

an intense non-resonant laser field on electrons confined in a structure.

2.6. Finite elements method

The Finite Element Method (FEM) is a numerical method for solving in ge-
neral non-trivial partial differential equations applied to systems with complex
geometry [18]. It is a method widely used in fields such as physical sciences and
engineering and is applicable to problems from 1 to 3 dimensions. The objec-
tive of the method is to generate a discretization of the geometric system by
means of a mesh that completely fills the domain of smaller subsystems called
finite elements, these elements can be of different shapes, depending on the
dimension of the geometry in which the differential equations are being solved,
these elements can be line segments, rectangles, tetrahedral, etc. The objective
of the FEM is to convert a problem of a partial differential equation into a
problem of a system of algebraic equations. Fig. shows a mesh diagram of a
one-dimensional system (upper figure), where the finite elements correspond to
line segments, a two-dimensional system (lower left figure) where the finite ele-
ments are triangles, and a three-dimensional system (lower right figure) where
the finite elements correspond to tetrahedron. The diagrams are obtained from
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Figure 2-4.: Different mesh for a 1D, 2D and 3D problem respectively, the
diagrams are obtained from the COMSOL multiphysics Software

1,0,
the COMSOL multiphysics Software [19} [20].

Brief method description in the weak formulation
Consider the boundary conditions problem:

V- [F(PVu(T) + g(P)u(T) = Au(T), (2-127)

In this equation X is an coordinate independent parameter of 7, note that the
time independent Schrédinger equation is a particular case of [2-127, The last
equation can be rewritten as,

V)V + (9(7) = A u(7) =0, (2-128)
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Equation must be true in a region €2 whose boundary 9€2 must be smooth

and it must be true that u(992) = 0 (Dirichlet problem). If u solves the Eq.

2-128] then for any smooth function ¢ that satisfies the boundary conditions
»(0€2) = 0, we have

/v F(7)Vu(T )]¢dQ+/ (g(7) = N w(7)pdQ = 0. (2-129)

Q

remembering the vectorial property V - (Xv) —A.-w + (V- Z)U, where
= [(7)Vu(7) and v = ¢, the Eq. [2-129 becomes

/fVu-V¢dQ—|—/V-[(fVu)¢] dQ++/(g—)\)u¢dQ:0. (2-130)
9] Q Q

In the last equation the explicit dependency on the position vector 7 has been
removed. In this point, it is convenient to use the Green’s first identity,

/ V - (aVb) dQ = f{ aVb - 7.d(09), (2-131)
Q o0

where 02 is the boundary of the system and 7 is the outward pointing unit

vector perpendicular on the surface. By using [2-131] in [2-130| we get,

/ fVU-Vod+ ¢ fVu-7¢d0Q)+ / (g — \) updQ =0, (2-132)
Q) o0 9]

In stationary problems, due to the zero flux condition in the boundary of the
system, the second term in is zero, this is the case of the wave function
in the Schrodinger equation. From the above, the final expression of the weak
formulation is obtained

/ FVU-VodQ + / (g — \) updQ =0, (2-133)
Q Q

There are non-trivial proofs in which the uniqueness of the ¢ functions is de-
monstrated for a single u solution of 2-128 The Fig. shows the scheme of
the discretization in the FEM, the exact solution corresponds to the blue curve,
the violet segments correspond to the approximate solution, the curves in dark
blue and red are two functions (v; and v;41 respectively) of the linear base and
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Figure 2-5.: Scheme of the discretization in the FEM, the exact solution co-
rresponds to the blue curve, the violet segments correspond to
the approximate solution, the curves in dark blue and red are
two functions (v; and v; 4 respectively) of the linear base and
1; are the adjustment coefficients between the numerical solution
and the exact solution.
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; are the adjustment coefficients between the numerical solution and the exact
solution. Each of the 1); takes the exact value of the real solution at each node
(x;). In this scheme, the real solution v has been divided into n finite elements
of equal length [ = x;,1 — x; (in other more complex forms of discretization,
the length of each element does not necessarily remain fixed), each element is
contained between the vertical dashed lines in figure [2-5] Within each of the
finite elements, the base of linear functions v; are defined as:

0, r < Tj—1

v = { T (2-134)

Tit1—T ) .
vz TiST S Tig

0, Tiy1 <

two of these functions (v; and v;11) are highlighted at the bottom of figure
in dark blue and red. Note that within each finite element contained between
x; and x; 1 there is only contribution of two base functions v; and v;,q, the
other functions base are zero in this region. The real solution to the problem
u can be approximated by means of the linear combination u =) . v;4;. Note
that at each node x; the coefficient v); takes the exact value of the function u
at that point since the function v; is equal to 1 at that node. These coefficients
Y; are obtained by modeling the partial deferential equation in a system of
algebraic equations that are generated by discretization. The first step to solve
a problem is to take the initial differential equation to its weak form, similar
to equation 2-133], later the integrals are solved in each of the finite elements
and the complete solution corresponds to the sum of each of the contributions
of each element, finally what results is a system of n algebraic equations that
correspond to the n nodes in the discretization. In the Galerkin method ref. [21]
these base functions v; correspond to the functions ¢ in the equation2-133] This
method is very precise for the solution of differential equations in systems with
complex geometries since it allows the generation of adaptive meshes as well as
a refinement or an increase of the nodes in points of difficult solution.

To highlight that in COMSOL Multiphysics software it is possible to enter the
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coefficients for a partial differential equation in a general form,

0?u ou

eaﬁikdaEJrV-(—cVu—ozu+’y)+B-Vu+au=f (2-135)
where u is the function to solve and e,, d,, ¢, a, v, 8, a and f they are coeffi-
cients that can be arbitrary functions. Through these functions it is possible to
introduce effects of magnetic and electric fields, among others, into a problem,

noting that the Eq. (2-135)) is reduced to the Schrodinger equation.
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3. Shallow-donor impurity
states with excitonic

contribution in

GaAs/AlGaAs and
CdTe/CdSe truncated

conical quantum dots under
applied magnetic field

Using the effective mass approximation in a parabolic two-bands model, we
study the effects of the geometrical parameters on the electron and hole states
in two truncated conical quantum dots: i) GaAs-(Ga,Al)As in the presence of a
shallow-donor impurity and under an applied magnetic field and i) CdSe-CdTe
core-shell type-II quantum dot. For the first system, the impurity position and
the applied magnetic field direction have been chosen to preserve the system’s
azimuthal symmetry. The finite element method obtains the solution of the ei-
genvalues differential equations for electron or hole with or without impurity
with an adaptive discretization of a triangular mesh. The correlation of the elec-
tron and hole states is calculated in a first-order perturbative approximation.
This study shows that the magnetic field and donor impurities are relevant fac-
tors in the optoelectronic properties of conical quantum dots. Additionally, for
the CdSe-CdTe quantum dot, where again the axial symmetry is preserved, a
switch between direct and indirect exciton is possible to be controlled through
geometry.
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3.1. Introduction

For decades, the low dimensional systems have been one of the most widely
investigated objects in semiconductor physics because of their interesting pro-
perties and applications, particularly the quantum confinement effect in these
systems, which has opened up a different recipe for designing novel semicon-
ductor materials for optoelectronic devices [1H4]. A great deal of attention of
investigators has been attracted to the theoretical analysis of the effect of the
quantum confinement on the impurity energies in various nanostructures, such
as quantum wells [5-7], quantum-well wires [§], and quantum dots (QDs) [9-H11].
In particular, in QDs, which are formed when there is a difference in the energy
gap between the materials to be used |12} [13], the charge carriers (electrons
and holes) are subjected to three-dimensional confinement, resulting in a dis-
crete energy spectrum for the charge carriers and the system is very sensitive
to nano-scale changes in geometry and composition, which generates an im-
portant modification in semiconductor properties, such as optical, mechanical,
electrical, and thermal. This character is similar to that observed in atoms, but
with the advantage that for a QD, the spectrum is adjustable with changes in
geometry or by applying external effects such as electric field, magnetic field,
and nonresonant intense laser fields. Another effect on which several authors
have been interested corresponds to the presence of a shallow donor and ac-
ceptor impurities, neutral and charged excitons, which generate changes in the
confinement of charge carriers due to attractive or repulsive effects.

In the study of QDs, one of the relevant characteristics is the geometrical shape
of the nanostructure. Researches on semiconductor QDs have included different
morphologies: pyramidal, spherical, and lens-shaped nanostructures. In the last
three decades, different geometries have been intensively studied [12417]. The
sizes and shapes of these quantum systems have been shown to have more predo-
minance in the properties of a semiconductor than its composition [18]. Among
these structures, a special interest presents the cylindrical QDs [19-21]. These,
depending on their radius and height ratio, can be represented as i) 1D-systems,
called quantum-well wires, in which the height of the cylinder is much larger
