

Evaluación del modelo WRF/WRF-Hydro para representar caudales mínimos durante la temporada seca de años El Niño en la cuenca Magdalena-Cauca

Laura Ortiz Gaviria

Tesis de maestría presentada para optar al título de Magíster en Ingeniería Ambiental

Tutor Juan Fernando Salazar Villegas, Doctor (PhD)

> Universidad de Antioquia Facultad de Ingeniería Maestría en Ingeniería Ambiental Medellín, Antioquia, Colombia 2022

Cita	(Ortiz-Gaviria & Salazar, 2022)		
Referencia	Ortiz Gaviria, L., & Salazar Villegas, J. F. (2022). Evaluación del modelo WRF/WRF- Hydro para representar caudales mínimos durante la temporada seca de		
Estilo APA 7 (2020)	<i>años El Niño en la cuenca Magdalena-Cauca</i> [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.		
©creative commons			

Maestría en Ingeniería Ambiental, Cohorte XVI.

Grupo de Investigación Ingeniería y Gestión Ambiental (GIGA).

Centro de Documentación Ingeniería (CENDOI)

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.

Decano/Director: Jesús Francisco Vargas Bonilla.

Jefe departamento: Diana Catalina Rodríguez Loaiza.

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos de autor y conexos.

Evaluación del modelo WRF/WRF-Hydro para representar caudales mínimos durante la temporada seca de años El Niño en la cuenca Magdalena-Cauca

Laura Ortiz Gaviria

Tesis presentada para obtener el título de Magíster en Ingeniería Ambiental

Director: Juan Fernando Salazar Villegas, PhD

Escuela Ambiental, Facultad de Ingeniería Universidad de Antioquia Medellín, Colombia Noviembre de 2019

Índice

1.	Intr	oducción	4
2.	Datos y Métodos		
	2.1.	Área de estudio	12
	2.2.	Descripción del modelo WRF-Hydro	17
	2.3.	Configuración del modelo WRF	22
	2.4.	Datos y observaciones de referencia	24
		2.4.1. Caudales estación Calamar, Macrocuenca Magdalena–Cauca	25
	2.5.	Configuración del modelo WRF-Hydro	29
	2.6.	Análisis de sensibilidad de parámetros	31
	2.7.	Criterios estadísticos de evaluación	34
3.	3. Resultados y discusión a		
	3.1.	Análisis de precipitación y temperatura del modelo WRF $\ .\ .\ .$	36
	3.2.	Caudales mínimos durante eventos El Niño	53
		3.2.1. Análisis de sensibilidad parámetros generales	60
		3.2.2. Modelo conceptual de flujo base	66
	3.3.	Caudales mínimos durante otros eventos El Niño $\ .\ .\ .\ .$	76
4.	Con	clusiones	78
5.	5. Recomendaciones 8		80

Evaluación del modelo WRF/WRF-Hydro para representar caudales mínimos durante la temporada seca de años El Niño en la cuenca Magdalena-Cauca

Laura Ortiz-Gaviria^{a,*}, Juan F. Salazar^a, José A. Posada-Marín^a

^a Grupo de Ingeniería y Gestión Ambiental (GIGA), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia

Resumen

Las retroalimentaciones existentes entre el clima regional y los procesos hidrológicos en superficie ponen en evidencia la necesidad de representar las interacciones superficie-atmósfera en la modelación hidroclimática. En este sentido, el acoplamiento de modelos atmosféricos e hidrológicos ha posibilitado la representación de estos procesos en diferentes escalas espaciales y temporales. Por lo tanto, la evaluación del desempeño de estas herramientas permite entonces potencializar su implementación, particularmente en el contexto de regiones tropicales con características complejas como los Andes colombianos. En este estudio se evalúa el acoplamiento unidireccional de los modelos WRF/WRF-Hydro para representar los caudales mínimos en la cuenca Magdalena-Cauca. El análisis se centra en la temporada seca de diferentes años con la ocurrencia del fenómeno El Niño-Oscilación del Sur, condición crítica para la oferta hídrica en la cuenca. Se evalúa la capacidad de las variables atmosféricas simuladas por el modelo WRF para reproducir los patrones espaciales y temporales de la precipitación y la temperatura en la cuenca, las cuales se utilizan como forzamientos meteorológicos para el acoplamiento con WRF-Hydro. En general, WRF-Hydro representa adecuadamente la variabilidad temporal de los caudales mínimos en la cuenca, sin embargo produce una subestimación del volumen simulado en los

^{*}Laura Ortiz Gaviria

Email address: laura.ortizg@udea.edu.co (Laura Ortiz-Gaviria)

diferentes años El Niño. Esto sugiere la necesidad de evaluar la capacidad del modelo para representar procesos físicos complejos que obedecen a las dinámicas hidrológicas de la cuenca, particularmente las interacciones con sistemas de humedales y su impacto sobre los caudales mínimos.

Palabras clave. WRF-Hydro, WRF, caudales mínimos, El Niño, cuenca Magdalena-Cauca.

Abstract

A manifest necessity to represent surface-atmosphere interactions in hydroclimatic modeling is highlighted by the feedbacks between the regional climate and the surface hydrological processes. In this sense, representation of these processes in different spatial and temporal scales is enabled by the coupling of atmospheric and hydrological models. Therefore, tools implementation is allowed through performance evaluation, particularly in tropical regions with complex characteristics such as the Colombian Andes. Consequently, the oneway coupling of the WRF / WRF-Hydro models representing low flows in the Magdalena-Cauca river basin is evaluated in this study. The dry season of El Niño years, a critical state for the basin's water supply, is the analysis condition. Here, the WRF model atmospheric variable's ability to reproduce the spatial and temporal patterns of precipitation and temperature in the basin are evaluated, which are used as meteorological forcings for coupling with WRF-Hydro. In general, the temporal variability of low flows in the basin is represented by WRF-Hydro. However, it produces an underestimation of the simulated volume in the different El Niño years. Results suggest the need to evaluate the model's capacity to represent complex physical processes associated with the hydrological dynamics of the basin, especially the interactions with wetland systems and their impact on low flows.

Keywords. WRF-Hydro, WRF, low flows, El Niño, Magdalena-Cauca river basin.

1. Introducción

5

Los componentes del ciclo hidrológico en la atmósfera, la superficie terrestre y el subsuelo conforman un sistema acoplado donde tienen lugar interacciones complejas que regulan el intercambio de masa, momentum y energía entre estos distintos almacenamientos (Fan et al., 2007; Wagner et al., 2016). Este acoplamiento produce retroalimentaciones que condicionan la evolución del sistema en una amplia variedad de escalas espaciales y temporales (Yang, 2004). Sin embargo, los mecanismos que posibilitan las retroalimentaciones superficie-atmósfera no son completamente entendidos, lo que dificulta su adecuada representación,

especialmente en los modelos atmosféricos y su acoplamiento con los modelos hidrológicos y de superficie terrestre (Seneviratne et al., 2006; Santanello Jr et al., 2013).

La evolución conceptual de la física de los procesos y los avances en la resolución espacial y temporal implementada en los modelos atmosféricos, ponen en evidencia la necesidad de integrar los procesos hidrológicos superficiales que afectan el acoplamiento superficie-atmósfera (Xiang et al., 2017). Los modelos atmosféricos tradicionales se encuentran acoplados con modelos de superficie terrestre (*LSM*, por sus siglas en inglés) que describen la dinámica de los procesos

- ²⁰ hidrológicos superficiales y subsuperficiales de forma simplificada, siguiendo típicamente una estructura unidimensional de una sola columna (Ning et al., 2019; Overgaard et al., 2006; Niu et al., 2011). Estos modelos no tienen en cuenta la contribución de los flujos laterales y por lo tanto, la distribución horizontal del agua superficial, subsuperficial y la humedad del suelo, lo cual constituye una
- ²⁵ limitada capacidad para representar la dinámica del ciclo hidrológico terrestre, especialmente a escala de cuencas hidrográficas (Rummler et al., 2019; Yang, 2004; Zhang et al.).

La mayoría de los modelos hidrológicos, en cambio, tienen representaciones

- bidimensionales o tridimensionales para simular los principales procesos hidrológicos en superficie, basados en esquematizaciones de alta resolución que generan mayor precisión en comparación con las escalas de simulación de los modelos atmosféricos que no logran capturar estos procesos (Ning et al., 2019). A pesar de que la modelación meteorológica e hidrológica se ha realizado tradicionalmente
- ³⁵ de forma independiente, la necesidad de entender las interacciones y retroalimentaciones superficie-atmósfera ha posibilitado los avances en el acoplamiento unidireccional (*one-way coupling*) y bidireccional (*two-way coupling*) de modelos atmósfericos e hidrológicos (Givati et al., 2016; Ning et al., 2019; Zabel & Mauser, 2013).

40

45

El acoplamiento en una dirección se basa en utilizar las variables de salida de modelos atmosféricos como forzamientos meteorológicos de entrada para los modelos hidrológicos. En este proceso se emplean métodos de conversión de escala para llevar las variables meteorológicas a la resolución hidrológica deseada. En este caso la retroalimentación se da en una dirección ya que los procesos atmosféricos van a condicionar los procesos hidrológicos pero esto no se da de forma inversa, es decir, los procesos hidrológicos no retroalimentan las condiciones atmosféricas (Bindlish & Barros, 2000; Ning et al., 2019). El acoplamiento bidireccional, por su parte, es uno de los principales retos en este campo

- de la modelación ya que las retroalimentaciones se dan de forma simultánea y ejercen una influencia en las variables meteorológicas e hidrológicas simuladas (Seuffert et al., 2002; Senatore et al., 2015). Con este tipo de acoplamiento se incrementan las potencialidades de los modelos atmosféricos e hidrológicos y son una herramienta importante para la investigación en cambio climático y gestión
- del recurso hídrico. Sin embargo, la representación acoplada de las interacciones superficie-atmósfera presenta desafíos importantes en términos del correcto ajuste de los modelos, las diferentes resoluciones que emplean, la incertidumbre en las parametrizaciones y la mejora en la estabilidad, aplicabilidad y precisión de los modelos completamente acoplados (Ning et al., 2019; Yang, 2004).

Generalmente, el acoplamiento dinámico en la modelación atmosférica-hidrológica se basa en la inclusión de algoritmos que representan los procesos hidrológicos en los modelos de superficie terrestre. Algunos de estos acoplamientos reportados en la literatura y que destacan una mejor representación de las in-

- ⁶⁵ teracciones superficie-atmósfera son: Advanced Regional Prediction System ARPS y Parflow Hydrologic model (Maxwell et al., 2007); Weather Research and Forecasting atmospheric model – WRF y Parflow Hydrologic model (Maxwell et al., 2011); Consortium for Small-scale Modeling – COSMO y Parflow Hydrologic model (Shrestha et al., 2014); Community Atmosphere Model – CAM y Soil
- ⁷⁰ and Water Assessment Tool SWAT (Goodall et al., 2013); Fifth-Generation Penn State/NCAR Mesoscale Model – MM5 y Processes of Radiation, Mass and Energy Transfer – PROMET (Zabel & Mauser, 2013); High Resolution Limited Area Model – HIRLAM y Système Hydrologique Européen – MIKE SHE (Butts et al., 2014; Larsen et al., 2014); Weather Research and Forecasting atmospheric
- ⁷⁵ model WRF y Hydrologic Model System HMS (Wagner et al., 2016) y Weather Research and Forecasting atmospheric model WRF y Weather Research and Forecasting model Hydrological extension package WRF-Hydro (Gochis et al., 2013, 2015).
- A nivel nacional, Rogelis & Micha (2018) implementaron el modelo atmosférico WRF acoplado unidireccionalmente con el modelo hidrológico TOPMO-DEL en la cuenca alta del río Tunjuelo, ubicada en Bogotá. Este estudio tenía la finalidad de evaluar la potencialidad en el procesamiento de la precipitación estimada por WRF para la simulación de caudales que posibiliten la alerta tem-
- prana de inundaciones en áreas tropicales de montaña. Por su parte, Sánchez & Rodríguez (2014) utilizaron el esquema de superficie terrestre SAVT-ISBA (Interactions Soil Biosphere Atmosphere Scheme) para simular los flujos de agua y energía en la cuenca del río La Vieja, ubicada en el centro-occidente de Colombia. En este estudio se resalta la necesidad de acoplar el esquema SAVT-ISBA
- $_{\tt 90}~$ a un modelo hidrológico que permita representar el enrutamiento superficial de

60

la cuenca.

Entre los sistemas de acoplamiento de modelación atmósférica-hidrológica, se hace énfasis en el acoplamiento WRF/WRF-Hydro. El modelo de predicción numérica WRF, *Weather Research and Forecasting atmospheric model* (Skamarock et al., 2008), es uno de los modelos más utilizados debido a su amplio rango de aplicaciones (p. ej. química atmosférica, hidrología, incendios forestales, huracanes y clima regional) (Powers et al., 2017). Gracias a su capacidad de predicción y su operación con resoluciones espaciales y temporales finas, es adecuado para representar los procesos asociados con la dinámica atmosférica en terrenos complejos como la región tropical de los Andes de Colombia, particularmente las condiciones locales que tienen lugar en los valles inter-andinos (Posada-Marín et al., 2018).

Asimismo, el modelo hidrológico WRF-Hydro, Weather Research and Forecasting model Hydrological extension package (Gochis et al., 2013, 2015) fue desarrollado para facilitar el acoplamiento de múltiples componentes del ciclo hidrológico terrestre con modelos atmosféricos, principalmente el modelo WRF. Además, WRF-Hydro no-acoplado es un sistema de modelación hidrológica e hi-

- draúlica basado en la física, completamente distribuido, multiescala, que permite representar los flujos superficiales, subsuperficiales, enrutamiento en canales, lagos y embalses, como también el flujo base. WRF-Hydro ha sido implementado en diferentes regiones del mundo, ya sea en modo acoplado a un modelo atmosférico (Senatore et al. (2015); Arnault et al. (2016); Givati et al. (2016); Kerandi
- et al. (2018); Naabil et al. (2017); Silver et al. (2017); Verri et al. (2017); Arnault et al. (2018); Zhang et al.; Rummler et al. (2019)) o no acoplado (autónomo) (Yucel et al., 2015; Somos-Valenzuela & Palmer, 2018; Xue et al., 2018; Yang et al., 2018). Las aplicaciones del modelo incluyen la predicción de eventos extremos requeridos como insumo para el análisis de inundaciones, la evaluación
- de impactos hidroclimáticos regionales, el análisis de los impactos del cambio climático sobre el recurso hídrico, el pronóstico del recurso en términos de la

variabilidad espacial y temporal de la oferta hídrica y estudios de acoplamiento superficie-atmósfera.

- En este estudio, el modelo WRF-Hydro (versión 3.0, Gochis et al. 2015) fue implementado para representar procesos hidrológicos en la Macrocuenca Magdalena-Cauca, el principal sistema hídrico de Colombia. En esta macrocuenca se han realizado diversos estudios que involucran modelos hidrológicos y de superficie terrestre. Por ejemplo, Nakaegawa & Vergara (2010) acoplaron un modelo global de circulación atmósferica (20-km AGCM), el modelo de superficie terrestre SiB (Simple Biosphere Model) y el modelo de enrutamiento superficial en el río GriVET (Global River flow for Total Runoff Integrating Pathways) para estimar proyecciones del caudal del río considerando las condiciones de cambio climático proyectadas para el siglo XXI. En este mismo sentido,
- Arboleda & Rodríguez (2018) utilizaron el modelo hidrológico y de superficie terrestre MESH (Modélisation Environnementale communautaire -Surface Hydrology) para simular el balance energético e hídrico en la cuenca considerando diferentes escenarios de cambio climático y de uso del suelo.
- Enfocados hacia la modelación hidrológica, se encuentra el estudio de Ramirez et al. (2015), en el cual emplean el modelo hidrológico Wflow-HBV para desarrollar un análisis hidraúlico en diferentes subcuencas. Asimismo, el modelo hidrológico WEAP (Water Evaluation And Planning system) ha sido implementado para el aprendizaje social a través de la representación de las relaciones complejas que tienen lugar en la cuenca (Craven et al., 2017) y para el análisis de las alteraciones de los regímenes hidrológicos bajo diferentes escenarios de expansión del sector hidroenergético (Angarita et al., 2013). Elgamal et al. (2017) implementaron el modelo hidrológico REW (Representative Elementary Watershed) para comparar diferentes productos de precipitación satelital y observaciones en superficie en las simulaciones de los caudales del río Magdalena.

Es de resaltar que esta macrocuenca fue utilizada como caso de estudio en

Colombia para el proyecto EartH2Observe (E2O). Este proyecto tenía como principal objetivo desarrollar un ensamble de modelos hidrológicos para validar

la implementación de la base de datos de reanálisis de E2O y evaluar sus implicaciones en la representación de la dinámica hidrológica de la cuenca y su potencial uso para la gestión del recurso hídrico en el país (Rodríguez et al., 2016; Rodríguez et al., 2019).

- Algunos de los esquemas de interacción superficie-atmósfera y los modelos hidrológicos globales implementados en E2O (Rodríguez et al., 2016) son: JU-LES (Joint UK Land Environment Simulator), ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems), W3RA (World-Wide Water Resources Assessment), HTESSEL (Tiled ECMWF Scheme for Surface Exchanges over
- Land), SWBM (Simple Water Balance Model), LISFLOOD, HBV, SURFEX-TRIP, WaterGAP3 (Water - Global Assessment and Prognosis), PCR-GLOBWB (PCRaster Global Water Balance), VIC (Variable Infiltration Capacity), DWB (Dynamic Water Balance) y MESH (Modélisation Environnementale communautaire -Surface Hydrology). Estas implementaciones en la macrocuenca Mag-
- dalena-Cauca demuestran que el uso de información hidrometeorológica global y de la red de estaciones en superficie combinado con modelos hidrológicos globales y regionales permiten fortalecer herramientas para la formulación de políticas y gestión del recurso hídrico en la cuenca (Rodríguez et al., 2019).
- Sin embargo, se deben tener en cuenta algunos limitantes en torno a los modelos globales, los cuales se encuentran configurados con resoluciones espaciales gruesas, con tamaños de celda de 0.5° (alrededor de 50 kilómetros), lo cual incide en la adecuada representación de los régimenes de caudal. Además, no todos los modelos globales implementados en E2O cuentan con esquemas de
- enrutamiento en superficie que permitan capturar las características fisiográficas locales de la cuenca como también las interacciones río-humedal y con el agua subterránea. También, es importante considerar que la mayoría de los modelos globales tienen incertidumbres asociadas con la dificultad para ser calibrados

con datos observados (Rodríguez et al., 2016; Rodríguez et al., 2019). A partir

 de estos antecedentes, se encuentra que la configuración e implementación de WRF-Hydro en la macrocuenca Magdalena-Cauca posibilita la evaluación de una nueva herramienta de modelación hidrológica enfocada a mejorar la representación de las interacciones superficie-atmósfera a través del acoplamiento con modelos atmosféricos regionales y con grandes potenciales para su uso operacional y de pronóstico hidrológico.

Además, se considera la importancia de este tipo de herramientas de modelación para fortalecer la gestión integral del recurso hídrico. Esta gestión ha estado enfocada principalmente en los sistemas hídricos superficiales y por tanto, enfrenta grandes retos en términos de la inclusión de las retroalimentaciones por parte del componente atmosférico (Coe et al., 2009). Esta tarea es fundamental para comprender la respuesta hidrológica de las cuencas a cambios ambientales como la deforestación o el cambio climático (Salazar et al., 2018; Weng et al., 2019), los cuales generan alteraciones en las interacciones superficie-atmósfera, especialmente en regiones extensas y de gran importancia socio-económica y ambiental como la macrocuenca Magdalena-Cauca.

De igual modo, es de importancia para este estudio entender la dinámica de los procesos hidrológicos en la cuenca bajo la influencia de fenómenos de variabilidad climática asociados con la ocurrencia de El Niño Oscilación del Sur (ENOS). En Colombia, los eventos El Niño se encuentran relacionados con anomalías hidro-climáticas negativas dadas por la disminución de la precipitación, los caudales medios y extremos, la reducción de la humedad del suelo y de la actividad vegetal (Poveda & Jaramillo, 2000; Poveda et al., 2001). Esto tiene implicaciones importantes en actividades económicas como la agricultura, la ganadería y la generación de energía, como consecuencia de la reducción de la oferta hídrica (Poveda, 2004; Poveda et al., 2010). La evaluación de la capacidad del modelo WRF-Hydro para representar las variaciones hidrológicas en diferentes eventos El Niño permite entonces analizar la potencialidad de esta herramienta para apoyar la gestión del recurso hídrico en la cuenca de estudio durante periodo críticos que condicionan la disponibilidad del recurso.

El principal objetivo de este estudio es evaluar la capacidad del modelo hidrológico WRF-Hydro, acoplado unidireccionalmente con el modelo WRF, para

- representar los caudales mínimos en la macrocuenca Magdalena-Cauca, durante la temporada seca de los eventos El Niño en el periodo 1998–2012. Inicialmente, se analiza la distribución espacial y temporal de la precipitación y la temperatura simuladas por el modelo atmosférico WRF y utilizados como principales forzamientos meteorológicos. Para este análisis, también se emplea el reanáli-
- sis meteorológico global ERA-Interim, desarrollado por el European Centre for Medium-Range Weather Forecasts (ECMWF). ERA-Interim utiliza un sistema de asimilación de datos a partir de la combinación de datos de observaciones con datos simulados por el modelo global de pronóstico meteorológico Integrated Forecast System (IFS) (Dee et al., 2011). Dado esto, se evalúa de forma
- comparativa la capacidad de reproducir las observaciones y representar adecuadamente los patrones dinámicos de las variables meteorológicas que tienen lugar en la cuenca por parte de ERA-Interim, como reanálisis a escala global, y por parte del modelo WRF y sus potencialidades de reducción de escala dinámica. Posteriormente, se implementa el modelo WRF-Hydro para cinco eventos El
- Niño y se comparan los caudales obtenidos con las observaciones disponibles de las estaciones en superficie provenientes del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). A partir de esto, se selecciona un evento El Niño para llevar a cabo el análisis de sensibilidad que busca calibrar el modelo hidrológico para mejorar su desempeño en la cuenca Magdalena-Cauca.
- Finalmente, el mejor desempeño obtenido para WRF-Hydro es validado en los eventos El Niño restantes y se analizan las mejoras obtenidas en la representación de los caudales mínimos.

El documento se encuentra estructurado como se específica a continuación. ²⁴⁵ En la Sección 2 se describen el área de estudio, el modelo hidrológico WRF- Hydro y su configuración para la cuenca de estudio, la configuración del modelo WRF utilizada por Posada-Marín et al. (2018) para generar los forzamientos meteorológicos, los conjuntos de datos de referencia y el análisis de sensibilidad desarrollado. Los resultados y discusiones son presentados en la Sección 3, en

250 la Sección 4 se encuentran las principales conclusiones obtenidas a partir del análisis de resultados y en la Sección 5 se plantean recomendaciones generales para la implementación del modelo WRF-Hydro.

2. Datos y Métodos

2.1. Área de estudio

La región de estudio, representada en el dominio del modelo, es la Macrocuenca Magdalena-Cauca (McMC), la cual se encuentra ubicada en el noroeste de Suramérica y cubre un área importante de los Andes Colombianos (Fig. 1). Esta cuenca representa el principal sistema fluvial de Colombia, con un área de drenaje de 257.438 km² y la longitud del río más grande del país de 1.612

km (Restrepo et al., 2005, 2006b). La región de la macrocuenca ocupa 24% del territorio nacional, donde vive aproximadamente el 80% de la población co-lombiana (IDEAM, 2001). Además, es una cuenca hidrográfica estratégica para el desarrollo socio-económico, cultural y natural de Colombia (Angarita et al., 2018; Restrepo et al., 2005). Allí se genera alrededor del 95% de la producción termogléstrica y el 70% de la generación hidrogléstrica que abesteca el país.

termo
eléctrica y el 70 % de la generación hidroeléctrica que abastece el país (IDEAM, 2001).

La McMC nace en la laguna del Magdalena, en el macizo colombiano, a una altura de 3.685 m y desemboca sus aguas en el mar Caribe (Restrepo et al., 2006b). A lo largo de su curso, el río drena las tres cordilleras de los Andes colombianos, con alturas que varían entre 0 y 5.617 m.s.n.m (CORMAGDALE-NA, 2017). El territorio de la cuenca presenta características complejas con una alta variabilidad espacial asociada con placas tectónicas activas, movimientos en masa, pendientes pronunciadas, procesos erosivos y cuencas tributarias con alto

Figura 1: Dominio de los modelos WRF/WRF-Hydro. Localización de la Macrocuenca Magdalena-Cauca (parte alta, media y baja), los principales ríos, la red de estaciones de precipitación y de caudal (estación Calamar).

- 275 relieve (Restrepo et al., 2006b). Según sus características geológicas, geomorfológicas y estructurales, este sistema orográfico complejo está conformado por tres grandes unidades que son los valles inter-andinos de los ríos Magdalena y Cauca (alrededor del 15% de la McMC) y la depresión Momposina que conforma la cuenca baja del río Magdalena. Alrededor del 55% del relieve de la cuenca per-
- tenece a unidades geomorfológicas de alta (>3.000 m), media (3.000-2.000 m) y baja (2.000-1.000 m) montaña, con pendientes mayores a 20° (Restrepo et al., 2005). Aproximadamente el 55 % de la región de estudio presenta pendientes superficiales bajas (0°-15°), mientras que pendientes moderadas (16°-35°) y altas (>35°) son el 26 % y el 19 % del área, respectivamente (Restrepo & Syvitski, 2006).

La heterogeneidad de las condiciones fisiográficas, biogeográficas y socioeco-

nómicas de la cuenca definen una alta diversidad de ecosistemas y zonas de vida, con diferentes coberturas vegetales y tipos de suelos, dentro de los cuales se in-

- cluyen los bosques tropicales, bosques de niebla, páramos, glaciares, bosques secos y desiertos (IDEAM, 2001; Poveda et al., 2011). Sin embargo, la biodiversidad de la macrocuenca se encuentra amenazada por las transformaciones aceleradas hacia agroecosistemas, la expansión del área urbana y los procesos de deforestación que afectan la oferta de bienes y servicios ambientales que provee
- este territorio (Rodríguez & Armenteras, 2005). A esto se suman, los impactos acumulativos de la generación hidroeléctrica actual y ante posibles escenarios de expansión en la cuenca. Estos impactos se encuentran asociados con la alteración del régimen de flujo y de los patrones de variabilidad hidrológica que regulan los procesos hidrológicos locales y regionales (Angarita et al., 2013), las
- reducciones significativas de las cargas de sedimentos, las pérdidas de conectividad longitudinal de los hábitats que afectan principalmente la biodiversidad de peces migratorios (Jiménez-Segura et al., 2014) y la alteración de la conectividad hidrológica entre el río y los sistemas de humedales y entre las secciones aguas arriba y aguas abajo, lo cual modifica la dinámica de inundación estacional en áreas extensas, principalmente hacia la parte baja de la cuenca (Angarita et al., 2018).
- La ubicación geográfica de la cuenca en la región tropical, la presencia de la cordillera de los Andes y el desplazamiento de la Zona de Convergencia Intertropical (ZCIT) influyen en las características hidro-climáticas de la región (Poveda et al., 2005; Kettner et al., 2010). La McMC posee una gran variedad de pisos térmicos en los diferentes rangos altitudinales (desde tropical a páramo), donde la temperatura se reduce de 2–3°C por cada 100 metros de altura. Desde el nivel del mar hasta alturas mayores a 5.000 m.s.n.m, la temperatura
- varía desde 30°C a 0°C, teniendo en cuenta todas las altitudes intermedias con temperaturas características de tierras cálidas, templadas y frías (CORMAG-DALENA, 2002). La temperatura promedio anual en la cuenca alta y media del Magdalena es 28°C y la humedad relativa de 70-75%, mientras que la cuenca

baja alcanza una temperatura promedio anual entre 28-30°C, con una humedad relativa desde 75% a 85% (Restrepo et al., 2005).

En gran parte de la cuenca, la distribución anual de la precipitación presenta un ciclo bimodal, con dos temporadas húmedas (Marzo-Mayo y Octubre-Noviembre) y dos temporadas secas (Diciembre-Marzo y Junio-Septiembre), determinadas por la oscilación de la ZCIT sobre el territorio (Poveda, 2004; Poveda et al., 2005, 2011; Restrepo et al., 2005, 2006a; Mesa & Peñaranda, 2015). La precipitación promedio para toda la cuenca es alrededor de 2.050 mm año⁻¹ (Restrepo et al., 2006b), pero las características orográficas de la McMC tienen un efecto significativo sobre las variaciones locales de los patrones de precipitación, desde 500 mm año⁻¹ en las montañas orientales hasta más de 5.000 mm

año⁻¹ al occidente de la cuenca.

En términos de la distribución espacial de la precipitación (Fig. 2, izquierda), la parte alta, media y baja de la cuenca del Magdalena, al oriente, presenta una precipitación promedio alrededor de 1.535, 2.185, and 1.630 mm ano^{-1} , 335 respectivamente, mientras que para la parte alta, media y baja de la cuenca del Cauca, al occidente, es de 1.870, 2.708, and 3.477 mm $a\tilde{n}o^{-1}$, correspondientemente. Según esto, las áreas más secas se encuentran en el alto Magdalena, el alto Cauca y la llanura del Caribe y las precipitaciones más grandes tienen lugar en el medio Magdalena y bajo Cauca (Restrepo & Syvitski, 2006). Además, la 340 macrocueca tiene una de las escorrentías superficiales más altas de Suramérica, con un promedio anual de 953 mm año $^{-1}$ y variaciones espaciales (Fig. 2, derecha) desde 100 mm año⁻¹ (parte alta de la cuenca) hasta 3.000 mm año⁻¹ (cordilleras central y oriental de los Andes). La escorrentía promedio en la parte alta, media y baja de la cuenca presenta valores alrededor de 900, 1.260, y 700 345

Las corrientes principales que conforman el sistema hídrico de la cuenca son los ríos Magdalena, Cauca, Sogamoso, San Jorge y Cesar (Restrepo et al., 2005;

mm año⁻¹, respectivamente (Restrepo et al., 2005; Restrepo & Syvitski, 2006).

Figura 2: Distribución espacial de la precipitación promedio anual y la escorrentía media anual en la Macrocuenca Magdalena-Cauca.

Fuente: Modificado de IDEAM - CORMAGDALENA (2001). Estudio Ambiental de la Cuenca Magdalena-Cauca y elementos para su ordenamiento territorial.

- IDEAM, 2001; Restrepo et al., 2006b). Los afluentes del río Magdalena forman 109 subcuencas de orden inferior que drenan a 42 afluentes de segundo orden, de los cuales 28 tienen áreas mayores a 1,000 km² (Kettner et al., 2010). En la estación Calamar (Fig. 1), ubicada aguas abajo antes del delta del Magdalena en el Caribe, el caudal promedio anual para la cuenca alcanza los 7.100 m³ s⁻¹,
- son caudales mínimos de 4.068 m³ s⁻¹ en Marzo y caudales máximos mayores a

10.000 m³ s⁻¹ en Noviembre (Restrepo et al., 2005; Restrepo & Syvitski, 2006; IDEAM, 2001). La distribución espacial y temporal de los caudales se encuentra influenciada por las fases del fenómeno ENOS. Durante los eventos El Niño, el caudal promedio en la estación Calamar es alrededor de 5.512 m³ s⁻¹, con valores mínimos de 2.000 m³ s⁻¹, mientras que en los eventos La Niña, los registros de caudal promedio alcanzan magnitudes de 8.747 m³ s⁻¹, con caudales pico

excediendo los 12.000 m³ s⁻¹ (Restrepo & Kjerfve, 2004).

Una característica importante es que en la macrocuenca Magdalena-Cauca se encuentran diferentes almacenamientos superficiales que cumple funciones 365 esenciales en la regulación hídrica y la dinámica hidrológica de la cuenca, como son los lagos, embalses y, especialmente, uno de los sistemas de humedales más grandes de Suramérica, la depresión Momposina (Angarita et al., 2018). Es en esta área donde grandes cantidades de sedimentos, alrededor de 60 $\mathrm{Mm^3}$ año⁻¹, transportados por el río Cauca (34%) y el río Magdalena (66%) son acumulados 370 (IDEAM, 2001). La tasa de producción o rendimiento de sedimentos calculada para el área de la cuenca en la estación Calamar es 560 T km $^{-2}$ año $^{-1}$, una de las más altas en Suramérica (Restrepo & Kjerfve, 2000). En términos del promedio multianual del transporte de sedimentos, esta estación presenta un valor de 94.376,2 KT año⁻¹ (IDEAM, 2018). Es en esta región de humedales de la 375 depresión Momposina donde los excesos de agua y sedimentos de la cuenca son

alojados, cumpliendo un importante papel regulador durante eventos extremos que condicionan los caudales de la cuenca (IDEAM, 2018).

380 2.2. Descripción del modelo WRF-Hydro

360

385

El modelo WRF-Hydro fue desarrollado por el National Center for Atmospheric Research (NCAR) como la extensión hidrológica de WRF, el modelo atmosférico de predicción numérica más utilizado con fines investigativos y de pronóstico operacional (Powers et al., 2017). WRF-Hydro representa una arquitectura de acoplamiento que permite vincular procesos hidrometeorológicos en múltiples escalas. Esto es posible gracias a la integración de modelos atmosféricos y datos meteorológicos de entrada, modelos unidimensionales de superficie terrestre para estimar los flujos y estados superficiales en la columna vertical y módulos de enrutamiento para representar el movimiento horizontal del agua (Gochis et al., 2015).

390

La discretización espacial del dominio de estudio se realiza a través de cuadrículas regulares dependiendo de la resolución definida, lo cual permite capturar la variabilidad espacial de los procesos hidrometeorológicos de interés. En el modelo WRF, las interacciones superficie-atmósfera se representan a través de 395 los modelos unidimensionales de superficie terrestre Noah y Noah–MP. Estas parametrizaciones de superficie calculan los flujos verticales de energía (calor latente y calor sensible), radiación neta, los estados térmicos y de humedad del suelo y procesos hidrológicos como la interceptación y evaporación del agua en el dosel, la infiltración y evaporación directa del suelo, el movimiento vertical 400 del agua en el suelo, la transpiración de la vegetación, la escorrentía superficial y la percolación (Li et al., 2017). En estos modelos, la conceptualización de la escorrentía superficial se define como el exceso de la capacidad de infiltración y la percolación como el drenaje a través del fondo de la columna de suelo, la

cual tiene una profundidad de dos metros y está conformada por cuatro capas 405 de suelo de diferente espesor (Mitchell, 2005; Niu et al., 2011).

En comparación con los modelos de superficie terrestre, WRF-Hydro posibilita una representación mejorada de los procesos hidrológicos terrestres y de los estados y flujos de energía, a través de la inclusión de múltiples opciones 410 físicas para la redistribución lateral del flujo superficial, subsuperficial, el flujo en canales, lagos, embalses y un modelo conceptual de tanque para considerar el flujo base (Fig. 3). Los flujos laterales pueden calcularse en una resolución horizontal mayor (generalmente de 30-100 m) que la que se define en los modelos de

superficie Noah o Noah-MP (1 a 4 km). Para esto se emplean unos esquemas de 415 desagregación/agregación en los módulos de enrutamiento de flujo superficial y

Figura 3: Componentes y diagrama de flujo del modelo WRF-Hydro. Fuente: Modificado de Gochis et al., 2018.

subsuperficial a partir del método ponderado por pasos de tiempo que considera las diferentes resoluciones espaciales utilizadas (Gochis et al., 2015).

- Después de ejecutado el modelo de superficie terrestre, se implementan en WRF-Hydro dos ciclos espaciales independientes. Primero, el esquema de desagregación tiene lugar para dividir en la resolución fina las variables de estado hidrológico que comprenden el contenido máximo de humedad del suelo y la conductividad lateral saturada para cada tipo de suelo, el exceso de infiltración
- y el contenido de humedad del suelo para cada capa. Este esquema emplea un múltiplo entero de desagregación a partir de la relación entre la resolución espacial del modelo de superficie terrestre y la resolución espacial fina en la que se realizará el enrutamiento de flujo lateral. Con el fin de preservar la estructura de la variabilidad espacial del contenido de humedad del suelo en cada paso
- de tiempo, se asignan factores de ponderación simples y lineales que permiten determinar la fracción del valor total de la cuadrícula del modelo de superficie

terrestre que será dividida en cada celda de la subcuadrícula fina (Gochis et al., 2015).

Posterior a la desagregación, se ejecutan los módulos de enrutamiento en la resolución fina y los valores obtenidos son agregados nuevamente a la resolución del modelo de superficie terrestre. Este procedimiento de agregación considera una media lineal simple entre los componentes de la cuadrícula fina de las variables que estiman el nivel del agua en superficie y el contenido de humedad del suelo. Estos valores actualizados sirven como punto de partida en la siguiente iteración del modelo de superficie terrestre (Gochis et al., 2015).

En WRF-Hydro, el exceso de la capacidad de infiltración puede permanecer en las celdas que conforman el dominio del modelo como "agua retenida" que está disponible para su redistribución lateral. Inicialmente, se calcula el flujo 445 lateral subsuperficial que permite la exfiltración de las columnas del suelo totalmente saturadas para adicionarse al exceso de infiltración estimado con el modelo Noah o Noah-MP. El método utilizado para calcular este flujo lateral de humedad saturada es propuesto por Wigmosta et al. (1994); Wigmosta & Lettenmaier (1999). Posterior a esto, se calcula el flujo superficial cuando la 450 profundidad del agua retenida en una celda excede una profundidad de retención establecida en los parámetros del modelo. Antes de alcanzar la profundidad de retención, el agua retenida no se mueve y está disponible para infiltrarse o evaporarse directamente. Para representar este flujo se utiliza la formulación de ondas difusivas totalmente inestable, espacialmente explícita de Julien et al. 455 (1995), modificada por Ogden (1997), la cual calcula la propagación de estas ondas superficiales a través de este flujo lateral (ver Gochis et al. (2015)).

El modelo conceptual de flujo base considera la percolación en la capa profunda de la columna de suelo como recarga a un almacenamiento de agua subterránea conceptual. Para esto, se define un tanque de almacenamiento para cada subcuenca de interés y se utiliza una función exponencial de almacenamientodescarga para estimar la descarga del depósito o tanque en función de una profundidad conceptual del agua subterránea. Este flujo base se redistribuye en

- todos los segmentos que conforman los canales y permite evaluar la contribución del flujo base a los caudales simulados. El flujo en canales se estima en cada celda que conforma la red de drenaje de la cuenca, la cual se encuentra predefinida con una geometría trapezoidal a partir de parámetros establecidos en función del orden de corriente de Strahler. El flujo de entrada a los canales proviene
- del flujo superficial y el flujo base estimado previamente. El enrutamiento en canales utiliza una formulación de onda difusiva explícita, unidimensional y de escala temporal variable, que es una simplificación de las ecuaciones generales de St.Venant para el flujo de ondas de aguas poco profundas (ver Gochis et al. (2015)). Dado que en este estudio no se implementan los módulos de enrutamiento en lagos y embalses, no se describen en esta sección.

Los datos de forzamiento meteorológico que requiere WRF-Hydro como variables de entrada incluyen radiación entrante de onda corta y larga, humedad relativa, temperatura superficial, presión superficial, velocidad del viento y precipitación. Cuando WRF-Hydro se encuentra acoplado a WRF, los datos de forzamiento son proporcionados por el modelo atmosférico según la frecuencia que se encuentra definida en la escala temporal del modelo de superficie terrestre que utiliza WRF. En modo autónomo o no acoplado, los datos de forzamiento meteorológico deben ser especificados teniendo en cuenta el formato y la resolución espacial y temporal definida en la configuración del modelo (Gochis et al., 2015).

Actualmente, WRF-Hydro es el sistema de modelación que se encuentra configurado en el Modelo Hidrológico Nacional (*NWM*) implementado por la NOAA (*National Oceanic and Atmospheric Administration*) para la gestión del recurso hídrico en Estados Unidos. En este modelo, WRF-Hydro representa el

490

recurso nídrico en Estados Unidos. En este modelo, WRF-Hydro representa el sistema de análisis y pronóstico en tiempo real de los procesos hidrológicos en este territorio. En la Tabla 1 se presentan los rangos de valores de los parámetros considerados en este estudio y que son utilizados como referencia para la configuración y calibración establecida en el *NWM*.

Tabla 1: Rango de valores para los principales parámetros de calibración de WRF-Hydro utilizados en el NWM (*National Water Model*).

	Parámetro	Unidades	Valor mínimo	Valor máximo
REFKDT	Capacidad de infiltración / escorrentía su-	$\mathrm{m}^3\mathrm{m}^{-3}$	0.10	4.00
	perficial			
RETDEPRTFAC	Parámetro de escalamiento de la profundi-	mm	0.10	10.0
	dad de retención superficial			
REFDK	Valor de referencia para la conductividad	$\rm m~s^{-1}$	0.20	10.0
	hidráulica saturada			
SLOPE	Parámetros de escalamiento de la percola-	Adimensional	0.00	1.00
	ción			
MannN	Factor de escala coeficiente de Manning pa-	$\rm s~m^{-1/3}$	0.1	10.0
	ra la rugosidad del canal			
Z_{max}	Máximo almacenamiento del modelo con-	mm	10.0	250.0
	ceptual de flujo base			
α	Exponente del modelo conceptual de flujo	Adimensional	1.00	8.0
	base			

2.3. Configuración del modelo WRF

El modelo WRF-Hydro implementado en este estudio considera un acoplamiento unidireccional con el modelo atmosférico WRF. En este caso, WRF-Hydro es retroalimentado por las variables de forzamiento meteorológico obte-⁵⁰⁰ nidas en las simulaciones del modelo WRF realizadas por Posada-Marín et al. (2018) para representar los patrones locales de circulación atmosférica en los valles inter-andinos de Colombia. La configuración del modelo WRF considera dominios anidados bidireccionalmente: un dominio externo, con una resolución horizontal de 30 km (D01) cubriendo el norte de Suramérica, parte de Centroa-⁵⁰⁵ mérica y los alrededores de los océanos Atlántico (mar Caribe) y Pacífico; un dominio interno, con 10 km (D02) de resolución horizontal cubriendo el noroeste de Suramérica, y un dominio pequeño, con una resolución horizontal de 3.3 km (D03), que cubre un área correspondiente a la "Región de embalses de Antioquia".

510

495

El periodo de simulación de WRF corresponde con la temporada seca (DEF) de cinco eventos El Niño durante 1998–2012, con tres meses usados como *spin-up*. Los años El Niño seleccionados por Posada-Marín et al. (2018) fueron 1997–1998, 2002–2003, 2004–2005, 2006–2007, 2009–2010, según lo reportado por los

indices MEI (*Multivariate ENSO Index*) y ONI (*Oceanic Niño Index*). Las condiciones iniciales y de frontera fueron dadas por los datos de ERA-Interim, cada 6 horas y con una resolución de 0.75° x 0.75°. La estructura vertical de los dominios tiene 35 niveles sigma, con el límite superior a 50 hPa. Las categorías de uso del suelo se basaron en la clasificación de coberturas terrestres de MODIS
y los datos de topografía superficial de la base de datos del Servicio Geológico de los Estados Unidos (USGS). Las parametrizaciones físicas utilizadas en el modelo WRF se presentan en la Tabla 2.

Tabla 2: Configuración del modelo WRF utilizada por Posada-Marín et al. (2018)

Parametrizaciones físicas	Opción seleccionada	Referencia	
Esquema de microfísica	WRF single moment 6-class (WSM6)	Hong and Lim (2006).	
	Kain–Fritsch (KF)	Kain (2004)	
Convección de cúmulos	Betts–Miller–Janjic (BMJ)	Betts and Miller (1993)	
	Grell 3D (G3D)	Grell (1993); Grell and Devenyi $\left(2002\right)$	
Capa límite planetaria	Mellor-Yamada-Janjic (MYJ)	Janjic (2002)	
Modelo de superficie terrestre	Noah-MP LSM	Niu et al. (2011)	
Radiación de onda larga	The NCAP Community Atmosphere Model (CAM)	Collins et al. (2004)	
Radiación de onda corta	The NCAR Community Atmosphere Model (CAM)		

En comparación con la precipitación del reanálisis ERA–Interim, Posada-Marín et al. (2018) encontraron que las simulaciones numéricas con el modelo ⁵²⁵ WRF, usando las diferentes parametrizaciones de cúmulos, mejoran la representación de los patrones espaciales y temporales de la precipitación sobre los Andes tropicales durante eventos El Niño. En particular, el esquema Kain–Fritsch (WRF-KF) presenta el mejor desempeño y disminuye el sesgo en la representación de las características de la precipitación sobre terrenos complejos.

530

De acuerdo con esto, se utilizan las variables simuladas por el modelo WRF bajo la parametrización de convección de cúmulos Kain-Fritsch como forzamientos meteorológicos del modelo WRF-Hydro. La implementación de WRF llevada a cabo por Posada-Marín et al. (2018) considera la representación del compo-

nente atmósferico sobre el dominio de estudio, la cual no incluye el acoplamiento con el modelo WRF-Hydro dado que no tiene el enfoque de cuenca hidrográfica. En este estudio se evalúa el componente hidrológico retroalimentado por estas simulaciones atmosféricas, esto con la intención de evaluar el desempeño del modelo hidrológico bajo las condiciones dadas por el acoplamiento unidireccional
con el modelo atmosférico.

2.4. Datos y observaciones de referencia

La evaluación de los campos de precipitación y temperatura del modelo WRF considera su comparación con distintas bases de datos de referencia y con las estaciones hidrometeorológicas disponibles en toda la cuenca. Las observaciones utilizadas como referencia para la precipitación son los datos de reanálisis de ERA-Interim obtenidos desde ECMWF ERA-Interim product (Dee et al., 2011), the Tropical Rainfall Measuring Mission (TRMM3B43; Liu et al., 2012), the Global Precipitation Climatology Center precipitation analysis version 7 (GPCC V7; Schneider et al., 2008) y Climate Research Unit (CRU TS3.21;

- Jones & Harris, 2013). Adicional a estas fuentes de información, para la temperatura superficial se utilizan los datos de Global Historical Climatology Network
 Climate Anomaly Monitoring System (GHCN_CAMS; Fan & Van den Dool, 2008) y University of Delaware Air Temperature (UD; Willmott & Matsuura, 2001). Dadas las diferencias en los registros, la resolución de las bases de datos
 es modificada para que tengan la misma resolución espacial del dominio (D02)
 - de WRF y permitir así la comparación directa entre las observaciones.

Los registros disponibles de las estaciones meteorológicas que hacen parte del Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia (IDEAM) fueron obtenidos y se seleccionaron 650 estaciones con información de precipitación diaria (ver ubicación en Fig. 1) y 126 estaciones con información de temperatura diaria dentro de la cuenca de estudio. Además, se utilizan los registros de caudales diarios disponibles para la estación Calamar del IDEAM. Toda la información, tanto de las estaciones en superficie como de las bases de datos fue obtenida para cada uno de los eventos El Niño durante el periodo 1998–2012 y es usada como referencia de comparación con los modelos.

2.4.1. Caudales estación Calamar, Macrocuenca Magdalena-Cauca

La estación Calamar fue seleccionada como referencia para la evaluación del desempeño del modelo WRF-Hydro. Esta estación cuenta con registros históricos a partir del año 1940 y, a pesar de estar localizada antes de la desembocadura del delta del Magdalena en el Caribe, no recibe influencia de la marea (CORMAGDALENA, 2012). La dinámica hidrológica y de sedimentos registrada en esta estación se encuentra regulada por el extenso sistema de ciénagas y humedales que hace parte de la región del Bajo Magdalena. Particularmente, la Depresión Momposina representa un delta interior que cumple el papel de amortiguador hídrico. Durante las temporadas de lluvias, esta área expande sus

zonas de inundación para almacenar el exceso de agua, la cual es liberada gradualmente durante la época seca permitiendo el continuo flujo de agua en los ríos (IDEAM, 2001).

580

Con el propósito de realizar un análisis exploratorio de la información disponible, se consideraron los registros diarios de caudales en la estación Calamar correspondientes con el periodo de 1998-2012. La serie de datos presenta continuidad de registros (Fig. 4, derecha), con un 0.05 % de datos faltantes. Para este periodo, se estima un valor de caudal promedio, máximo y mínimo de 7.791,6 m³ s⁻¹, 14.909 m³ s⁻¹ y 2.359 m³ s⁻¹, respectivamente. A partir de los promedios mensuales multianuales presentados en la Figura 4 (izquierda), se identifican temporadas de caudales bajos durante los meses entre enero y abril, caudales medios entre mayo y septiembre y caudales altos entre octubre y diciembre. La

Figura 4 (derecha) presenta la serie de tiempo para el periodo de interés, donde puede observarse la variabilidad diaria de los registros de caudales.

Figura 4: Caudales en la estación Calamar durante el periodo 1998–2012. En la figura de la izquierda se representa el promedio mensual multianual y en la figura de la derecha la serie de tiempo para este periodo.

La figura de masa simple (Fig. 5, izquierda), obtenida a partir de la serie acumulada de datos, muestra un ajuste lineal, con un coeficiente de determinación de 0.99. En el gráfico de cajas y bigotes (Fig. 5, derecha) se observa que no se presentan datos atípicos en la serie. En general, la distribución de los datos se da de forma simétrica alrededor de la mediana (7.629 m³ s⁻¹), entre valores de caudal de 5.650 m³ s⁻¹ (percentil del 25 %) y 10.053 m³ s⁻¹ (percentil del 75 %).

595

Figura 5: Análisis exploratorio de la serie de datos de caudal en la estación Calamar durante el periodo 1998–2012. En la figura de la izquierda se representa el gráfico de masa simple y en la figura de la derecha el diagrama de cajas y bigotes.

En términos estadísticos, la aplicación de las pruebas de normalidad Shapiro-

- Wilk (p-value = 2.2×10^{-16}) y Smirnov-Kolmogorov (p-value = 3.828×10^{-07}) indican que los datos no se ajustan a una distribución normal, considerando un nivel de significancia del 5%. Dado esto, para evaluar condiciones de homogeneidad y consistencia en los registros de datos, se comparan dos subconjuntos de la serie y se implementan pruebas estadísticas no paramétricas. Según la prueba
- Siegel-Tukey (p-value = 0.125), no se presentan cambios significativos en el valor de la dispersión de los subconjuntos de datos y de acuerdo con la prueba U de Mann-Whitney, el valor p (2.2×10^{-16}) es menor que el nivel de significancia considerado lo que representa que hay una diferencia estadísticamente significativa en la medida de tendencia central (Castro & Escobar, 2010). Adicionalmente, la
- prueba Mann-Kendall (p-value = 2.2×10^{-16}) sugiere una tendencia ascendente en la serie de tiempo de caudales.

En este periodo de interés se selecciona la temporada seca (DEF) de los cinco eventos El Niño para los años 1997–1998, 2002–2003, 2004–2005, 2006–2007,

- ⁶¹⁵ 2009–2010. Las series de tiempo de caudales para cada evento El Niño son presentadas en la Figura 6. Puede observarse en los eventos la tendencia decreciente de acuerdo con el comportamiento típico de los caudales durante estos meses. La mayor magnitud de 11.500 m³ s⁻¹ se registra para el evento del año 2004-2005 (Fig. 6c) y la menor magnitud de 2.380 m³ s⁻¹ obtenida en el año 1997-1998
 ⁶²⁰ (Fig. 6a). El caudal promedio (Fig. 6f) estimado para todos los eventos es de
- 5.380 m³ s⁻¹.

Figura 6: Caudales diarios en la estación Calamar durante los cinco eventos El Niño seleccionados.

De forma comparativa, los diagramas de cajas y bigotes de cada evento se encuentran consignados en la Figura 7. En esta figura es posible identificar que el evento del año 1997-1998 presenta la menor variabilidad en los registros y es el único evento donde se encuentran datos atípicos. Según el índice ONI, este periodo se clasifica como un evento El Niño muy fuerte, lo cual se aprecia en las menores magnitudes de caudales registrados. Por otro lado, la mayor dispersión de los datos se presenta para los eventos 2004-2005 y 2006-2007, en los cuales se resaltan mayores magnitudes de caudales correspondientes con eventos El Niño débiles. Los eventos de los años 2002-2003 y 2009-2010 presentan distribuciones asimétricas positivas con magnitudes comparables asociados con eventos El Niño

moderados.

Figura 7: Diagrama de cajas y bigotes para los caudales diarios de la estación Calamar durante los cinco eventos El Niño seleccionados.

2.5. Configuración del modelo WRF-Hydro

WRF-Hydro es configurado para estar acoplado unidireccionalmente con el modelo WRF (Fig. 8). Dado esto, se tiene como referencia la configuración de WRF que ha sido descrita en la sección 2.3. Además, el modelo unidimensional de superficie terrestre Noah-MP es seleccionado en este estudio para representar las interacciones superficie-atmósfera en la columna vertical. El dominio interno (D02) definido en WRF, con una resolución horizontal de 10 km y que cubre el noroeste de Suramérica fue elegido para las simulaciones de WRF-Hydro (Fig. 1). En este caso, se utilizan dos estructuras de cuadrícula, de modo que Noah-MP opera a una resolución espacial de 10 km (definida en D02) y los enrutamientos terrestres y en los canales en una cuadrícula anidada de 500 m, resolución más fina que permite considerar las características de la topografía

Los campos estáticos y las variables iniciales que requiere Noah-MP (topografía, textura del suelo, fracción de vegetación, albedo superficial, temperatura y humedad del suelo) son generados con el sistema de pre-procesamiento de

WRF (WPS), el cual utiliza la clasificación de las coberturas terrestres y de topografía superficial de la base de datos del Servicio Geológico de los Estados Unidos (USGS) y la clasificación del suelo de la base de datos de STATSGO. Noah-MP emplea cuatro capas del suelo (10, 30, 60, y 100 cm de espesor) para la infiltración y redistribución unidimensional de la humedad en el suelo. Los forzamientos meteorológicos, con una resolución temporal de 3 horas, son obtenidos a partir de las simulaciones del modelo WRF y son utilizados aquí para

evaluar el acoplamiento unidireccional de los modelos.

Figura 8: Configuración de WRF-Hydro en la Macrocuenca Magdalena-Cauca.

Los esquemas de desagregación/agregación de variables entre Noah-MP y los enrutamientos laterales de WRF-Hydro consideran un factor de agregación entre cuadrículas igual a 20, esto dada la ejecución de los componentes de enrutamiento en una resolución más fina que el modelo de superficie terrestre. Los archivos de enrutamiento son generados con la herramienta de pre-procesamiento de WRF-Hydro, un *toolbox* de Python implementado en ArcGIS (Gochis et al.,

- 2015) que tiene como datos de entrada un modelo de elevación digital (DEM) obtenido de SRTM (*Shuttle Radar Topography Mission*) con una resolución de 30 m y corregido hidrológicamente para la cuenca de estudio. Las cuadrículas de enrutamiento de alta resolución incluyen la topografía, la cuenca, la red de canales, las direcciones de flujo, el orden de cada corriente, el cual tiene 4 ór-
- denes para las corrientes de la cuenca de estudio, el punto de la corriente que corresponde con las estaciones de aforo y algunos parámetros distribuidos.

Los módulos que representan la física de los procesos seleccionados en WRF-Hydro para la cuenca Magdalena-Cauca corresponden con los enrutamientos subsuperficial, flujo terrestre superficial, flujo en canales y el modelo conceptual de flujo base. Las simulaciones de los caudales mínimos en la cuenca se realizan para los cinco eventos El Niño durante el periodo de 1998-2012. En cada año El Niño, el periodo de simulación es inicializado en septiembre 01 y finalizado en Marzo 01. Dado que el análisis se enfoca en la temporada seca que tiene lugar en los meses de diciembre, enero y febrero (DEF), los tres meses adicionales de septiembre, octubre y noviembre (SON) son utilizados como tiempo de calentamiento o *spin-up* del modelo, teniendo como referencia estudios que consideran que este periodo de calentamiento es suficiente para los procesos que involucran las interacciones superficie-atmósfera (Arnault et al., 2016, 2018; Kerandi et al.,

⁶⁸⁵ 2018; Senatore et al., 2015; Verri et al., 2017).

2.6. Análisis de sensibilidad de parámetros

En general, los modelos hidrológicos parametrizan muchos de los procesos físicos complejos que representan, lo que hace necesario su calibración para mejorar su aplicabilidad y desempeño en el contexto hidrológico particular que se esté analizando. Esto requiere la realización de numerosas simulaciones que permitan comprender cómo las perturbaciones del modelo afectan los procesos físicos para encontrar el valor óptimo de cada parámetro. En este caso, los parámetros requeridos por el modelo de superficie terrestre Noah-MP son agrupados en diferentes tablas dependiendo del tipo de cobertura terrestre, del tipo de

- suelo y algunos parámetros generales que no varían en el dominio (p. ej. los parámetros de escorrentía superficial o el coeficiente que modifica el drenaje profundo en la última capa del suelo). Además, WRF-Hydro utiliza unas tablas adicionales con parámetros relacionados con la geometría y la rugosidad de los canales (vinculados con el orden de la corriente de Strahler), los coeficientes del
- modelo conceptual de flujo base y parámetros de enrutamiento subsuperficial y superficial del agua (parámetros hidrológicos e hidraúlicos como la rugosidad superficial o la conductividad hidraúlica saturada asociados con las coberturas o tipos de suelos). En caso de ser considerados, también se encuentran tablas donde se definen la ubicación y tamaño de los lagos y los parámetros relacionados
- con las características de los embalses. Adicional a los parámetros tabulados, se emplean dos parámetros distribuidos espacialmente en el dominio que representan factores de escala para la rugosidad del flujo en superficie y la profundidad de retención superficial.
- El procedimiento de calibración toma como referencia los antecedentes reportados en la literatura, donde se recomienda una calibración manual a través de un enfoque progresivo o *stepwise approach* (p. ej. Yucel et al. (2015); Kerandi et al. (2018); Li et al. (2017); Senatore et al. (2015); Arnault et al. (2018)) basado en el análisis de sensibilidad de los principales parámetros que controlan
- el volumen total de agua y la distribución temporal de los caudales (forma de la hidrógrafa). Este enfoque permite minimizar los costos computacionales y el número de simulaciones requeridas, dado que la aplicación del modelo en el dominio de estudio, considerando la magnitud de la Macrocuenca Magdalena-Cauca, presenta altas demandas computacionales. Con esto se busca modificar
- r20 los parámetros, a partir de los rangos establecidos, para obtener un ajuste adecuado entre los caudales observados y simulados.

Para el análisis de sensibilidad se considera el evento de El Niño 2009-2010

como periodo de calibración y se validan los resultados con los eventos El Niño

- restantes. Como resultado de la revisión de literatura, se identifican los parámetros que se ajustan comúnmente en la calibración del modelo. Estos parámetros son el factor de infiltración/escorrentía superficial (REFKDT), la profundidad de retención superficial (RETDEPRT), el valor de referencia para la conductividad hidraúlica saturada (REFDK), el factor de escala para el drenaje de
- agua en las capas profundas del suelo (SLOPE), el coeficiente de rugosidad de Manning para los canales (MannN) y los parámetros involucrados en la función exponencial que representa la conceptualización del flujo base. En el enfoque progresivo, cada vez que se calibra un parámetro se conserva el mejor valor obtenido para la siguiente simulación.

735

740

745

Los parámetros REFKDT, REFDK y SLOPE se emplean en las parametrizaciones del modelo Noah-MP, los dos primeros para calcular el exceso de la capacidad de infiltración que determina la cantidad de agua que se infiltra, que queda retenida o que se redistribuye horizontamente, y el último como un factor de escala para modificar la percolación, dependiendo de las características del suelo y de la pendiente del terreno. Estos valores se encuentran tabulados y representan valores globales para todo el dominio del modelo. La profundidad de retención superficial (RETDEPRT) determina la redistribución lateral del agua en el enrutamiento de flujo superficial. Este parámetro se encuentra distribuido espacialmente en el dominio y es ingresado al modelo a través de las cuadrículas de enrutamiento en la resolución más fina. El coeficiente de rugosidad de Manning para los canales (MannN) está presente en los valores tabulados que

750

orden de la corriente.

El enrutamiento que representa el modelo de flujo base permite parametrizar conceptualmente (no físicamente) las contribuciones de este flujo a la corriente y es de relevancia en este estudio por su influencia en la representación de los caudales mínimos de la cuenca durante la temporada seca de los años El Niño.

requiere el módulo de enrutamiento de flujo en canales y se define para cada
Esta parametrización permite utilizar el drenaje agregado espacialmente desde el perfil de suelo como recarga a un almacenamiento o tanque de agua subterránea conceptual (Gochis et al., 2015). Para determinar el almacenamiento y descarga de agua en este depósito subterráneo, WRF-Hydro utiliza una función exponencial que considera la profundidad y la capacidad volumétrica conceptual del tanque (Ecuación 1).

$$Q_{base} = C^{\alpha \frac{Z_i}{Z_{max}}} \tag{1}$$

En esta función, C es el coeficiente del modelo y representa la capacidad volumétrica del depósito, α es el exponente del modelo, Z_i es la profundidad inicial del agua en el depósito y Z_{max} es el almacenamiento máximo en el depósito antes de que se presente la descarga. Estos parámetros empíricos se encuentran tabulados y se especifican para cada una de las cuencas de agua subterránea que se deseen considerar. En este estudio, se supone que la cuenca de agua subterránea tiene la misma máscara que la cuenca de agua superficial, lo que significa que toda la cuenca tiene un depósito de agua subterránea ("tanque") con una profundidad conceptual y un volumen conceptual asociado.

770

2.7. Criterios estadísticos de evaluación

La evaluación de la distribución espacial y temporal de los campos de precipitación y temperatura del modelo WRF y del reanálisis ERA-Interim se realiza a través de distintos criterios estadísticos que permiten determinar su desempeño en comparación con las observaciones de referencia. Los criterios utilizados son el sesgo (BIAS), la raíz del error cuadrático medio (RMSE), el porcentaje de la raíz del error cuadrático medio (RMSE%), el coeficiente de correlación (R) y la desviación estándar (SD). Adicional a estos, se emplean la eficiencia de Nash-Sutcliffe (NSE) y el sesgo porcentual (PBIAS), para evaluar las series de

caudales diarios simulados por el modelo WRF-Hydro. En cada ecuación O y M representan los valores observados y simulados, respectivamente. El índice i

identifica el tiempo o el espacio, dependiendo del caso, yndenota el tamaño de muestra.

$$BIAS = \sum_{i=1}^{n} (M_i - O_i) \tag{2}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (M_i - O_i)^2}$$
(3)

$$RMSE\% = \frac{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(M_{i}-O_{i})^{2}}}{\frac{1}{n}\sum_{i=1}^{n}O_{i}}$$
(4)

$$R = \left[\frac{\sum_{i=1}^{n} (O_i - \bar{O}) - \sum_{i=1}^{n} (M_i - \bar{M})}{\sqrt{\sum_{i=1}^{n} (O_i - \bar{O})^2 \sum_{i=1}^{n} (M_i - \bar{M})^2}}\right]$$
(5)

$$SD = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (M_i - \bar{M})^2}$$
 (6)

$$NSE = 1 - \left[\frac{\sum_{i=1}^{n} (M_i - O_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}\right]$$
(7)

$$PBIAS = \left[\frac{\sum_{i=1}^{n} (O_i - M_i) * (100)}{\sum_{i=1}^{n} (O_i)}\right]$$
(8)

Los estadísticos BIAS y PBIAS evalúan la tendencia de los datos simulados a ser más grandes o más pequeños que los datos observados. El valor óptimo es 0.0 y valores de menor magnitud indican precisión en el modelo. Los valores positivos y negativos representan sobreestimación y subestimación del modelo, respectivamente. Los criterios RMSE y RMSE % representan el error estimado a partir de la diferencia entre los valores simulados y observados. El valor de 0.0 indica un ajuste perfecto entre los conjuntos de datos y valores más grandes

corresponden con un menor ajuste. R es un índice que determinar el grado de relación lineal entre los datos simulados y observados, el cual varía entre -1.0 (relación lineal negativa) y 1.0 (relación lineal positiva). Para valores de R iguales a 0.0, no existe una relación lineal. SD permite determinar la dispersión de

- un conjunto de datos. Valores de baja magnitud indican que los datos tienden a estar agrupados alrededor de su valor promedio y valores de mayor magnitud representa que los datos se distribuyen en un rango de valores más amplio. El criterio estadístico NSE establece cuánto de la variabilidad de los datos observados es explicada por los datos simulados. El valor óptimo de desempeño del
- modelo es 1.0, valores aceptables se encuentran entre 0.0 y 1.0 y valores inferiores a 0.0 indican desempeños no aceptables, donde el valor promedio observado es un mejor predictor que el valor simulado (Moriasi et al., 2007)

Según Gupta et al. (2009), los estadísticos BIAS y PBIAS presentan sensibilidad al volumen de la hidrógrafa, R es sensible a las variaciones temporales de los caudales y los estadísticos NSE, RMSE y RMSE % son sensibles a ambos. Además, Moriasi et al. (2007) recomiendan estos estadísticos cuantitativos como métodos adecuados para la evaluación de modelos hidrológicos en términos de la precisión de los datos simulados en comparación con los valores observados.

810 3. Resultados y discusión

3.1. Análisis de precipitación y temperatura del modelo WRF

La evaluación de la capacidad de WRF-Hydro para representar adecuadamente los caudales de la cuenca Magdalena-Cauca incluye la validación preliminar de la precipitación y la temperatura usadas como principales forzamientos meteorológicos del modelo hidrológico acoplado unidireccionalmente con WRF. En consecuencia, este estudio extiende el análisis de precipitación de ERA-Interim y el modelo WRF realizado por Posada-Marín et al. (2018) para un dominio definido en la región andina colombiana y lo amplía para la cuenca Magdalena-Cauca durante la época seca de los cinco eventos EL Niño en el

periodo entre 1998-2012. Las características espaciales y temporales de la preci pitación de ERA-Interim y WRF son comparadas con diferentes bases de datos

de referencia con la finalidad de determinar su desempeño en el área de estudio.

En la Figura 9 se puede observar la distribución espacial promedio de la precipitación de ERA-Interim (panel superior) y WRF (panel inferior) en comparación con las estimaciones de CRU, GPCC y TRMM. En general, los patrones de precipitación de ERA-Interim tienen magnitudes superiores a los simulados por el modelo WRF. Para ambos, los valores de precipitación más altos se concentran en la región del Pacífico pero presentan diferencias en torno a la distribución

- sobre el área continental y el océano Pacífico (col 1). ERA-Interim concentra particularmente las mayores magnitudes sobre la costa y parte del continente mientras que WRF desplaza estos patrones al óceano. En comparación con las bases de datos de referencia, ERA-Interim produce una sobreestimación generalizada de la precipitación sobre el dominio analizado, encontrando los mayores
- sesgos sobre el área que corresponde a la vertiente oeste de la cordillera occidental de los Andes. En el caso de las estimaciones de WRF, el modelo produce menores magnitudes del sesgo que ERA-Interim y reduce notablemente el sesgo que se presenta en el Pacífico colombiano.
- Los altos valores de precipitación encontrados en la costa Pacífica de Colombia son característicos de la hidroclimatología de la región, en la cual ejerce una gran influencia sobre esta dinámica los efectos orográficos de la cordillera de los Andes y el chorro del Chocó (Poveda & Mesa, 2000; Yepes et al., 2019). A partir de los hallazgos encontrados por Posada-Marín et al. (2018), las diferencias entre
 ERA-Interim y WRF podrían estar asociados con la representación simplificada por parte de ERA-Interim de la topografía de los Andes, particularmente de los valles inter-andinos. Esta característica es una limitación importante a la hora de reproducir los patrones espaciales de la precipitación en esta región tropical.
- ⁸⁵⁰ De forma similar, se compara la temperatura de ERA-Interim y WRF con las bases de datos de referencia CRU, GHCN_CAMS y UD. La Figura 10 (col 1) muestra que ERA-Interim produce, en general, valores de temperatura mayores

Figura 9: Distribución espacial de la precipitación promedio de ERA-Interim y WRF (col 1) y los sesgos con CRU, GPCC y TRMM (cols 2 a 4) durante la temporada seca (DEF) de cinco años El Niño (1998–2012). La información presentada en esta Figura corresponde con el promedio multianual de los cinco eventos El Niño. Las Figuras para cada evento se encuentran en el material suplementario.

respecto a WRF y no logra capturar completamente la variabilidad espacial que presenta WRF en áreas asociadas con regiones de alta montaña que hacen parte del dominio de estudio. Los efectos topográficos en terrenos complejos afectan significativamente los sesgos de la temperatura de WRF. Estudios previos revelan que WRF presenta un error sistemático que produce una subestimación de la temperatura en regiones de alta montaña, característica que también se puede evidenciar en este análisis (Xu et al., 2009; Wyszogrodzki et al., 2013; Zhang et al., 2013; Heikkilä et al., 2011).

En comparación con la información de referencia, ERA-Interim y WRF presentan características comunes relacionadas con la predominancia de sesgos negativos que indican una tendencia a la subestimación de la temperatura. Particularmente, las mayores diferencias de temperatura se encuentran con la base de datos GHCN_CAMS. Sin embargo, es posible que la incertidumbre que tienen asociadas estas bases de datos pueda contribuir a sobredimensionar los sesgos que presentan WRF y ERA-Interim en la región de estudio.

Figura 10: Distribución espacial promedio de la temperatura de ERA-Interim y WRF y su comparación con CRU, GHCN_CAMS y UD durante los cinco eventos El Niño (1998-2012). La información presentada en esta Figura corresponde con el promedio multianual de los cinco eventos El Niño. Las Figuras para cada evento se encuentran en el material suplementario.

870

875

865

Por otro lado, las diferencias entre ERA-Interim y WRF con la precipitación observada en las estaciones meteorológicas del IDEAM distribuidas en la cuenca presentan características similares a las encontradas con los conjuntos de datos de referencia (Fig. 11). Durante la temporada seca de los cinco años El Niño, el sesgo positivo se mantiene para ERA-Interim, principalmente sobre el lado occidental de la parte alta y media de la cuenca. Esta sobreestimación tiende

Figura 11: Comparación de la precipitación de ERA-Interim (panel superior) y WRF (panel inferior) con las estaciones meteorológicas del IDEAM presentes en la cuenca Magdalena-Cauca. Distribución espacial para cada evento El Niño y el promedio multianual durante el periodo 1998–2012.

a disminuir hacia la parte oriental y la parte baja de la cuenca (Fig. 11, panel superior). El modelo WRF, en cambio, reduce las diferencias de la precipitación en la cuenca cuando se compara con las estaciones del IDEAM (Fig. 11, panel inferior). Se observa que para todos los eventos El Niño considerados, WRF produce diferencias negativas menores en la mayoría de las estaciones mientras que en otras se favorecen las diferencias positivas con valores cercanos a cero.

Otra forma de representar la distribución de los sesgos con las estaciones de precipitación del IDEAM se muestra en la Figura 12. En los diagramas de cajas y bigotes para cada uno de los años El Niño y en promedio, puede observarse que los sesgos de ERA-Interim se distribuyen alrededor de valores positivos que sobreestiman la precipitación observada en la cuenca. WRF reduce estos sesgos, los cuales tienen una menor dispersión y tienden a distribuirse alrededor de valores cercanos a cero . En especial, el evento El Niño del año 2004–2005 se destaca por la mayor dispersión de los sesgos para ambas estimaciones de precipitación.

890

Figura 12: Diagramas de cajas y bigotes de los sesgos de precipitación entre ERA-Interim (izquierda) y WRF (derecha) con las estaciones hidrometeorológicas del IDEAM para los cinco años El Niño considerados y su promedio. En cada diagrama la línea central es la mediana y los bordes inferior y superior de la caja son los percentiles 25 y 75, respectivamente. Los bigotes se extienden de acuerdo con los valores mínimos y máximos en cada distribución de datos de precipitación. La línea roja representa un valor de sesgo igual a cero, usado como referencia para el análisis.

La Figura 13 presenta las diferencias de temperatura entre ERA-Interim y WRF con las estaciones del IDEAM para la temporada seca (DEF) de los cinco eventos El Niño seleccionados. En ambas distribuciones espaciales se observa la dominancia de valores negativos para el sesgo, característica que se muestra claramente en la Figura 14. En el caso de ERA-Interim, algunas estaciones presentan diferencias positivas, especialmente en la parte media de la cuenca. A pesar de esto, la tendencia a la subestimación de la temperatura, especialmente el error sistemático de WRF, en cada uno de los años El Niño, puede generalizarse también para las estaciones meteorológicas de referencia.

Figura 13: Distribución espacial del sesgo de la temperatura promedio entre ERA-Interim y WRF con las estaciones del IDEAM durante los cinco años El Niño en el periodo 1998–2012.

Los diagramas de Taylor normalizados (Fig. 15) permiten representar la variabilidad espacial de la precipitación sobre la cuenca para los diferentes conjuntos de datos analizados, considerando como valores de referencia las observaciones en superficie de las estaciones meteorológicas del IDEAM. Para la temporada seca (DEF) de los cinco eventos El Niño, ERA-Interim produce una correlación espacial baja con magnitudes positivas. Esta correlación espacial es ligeramente mejor que WRF, a excepción de los años El Niño 2004-2005 (Fig. 15c) y 2009-2010 (Fig. 15e) donde la correlación es comparable entre ambas estimaciones.

En comparación con WRF, ERA-Interim presenta una mayor diferencia entre su desviación estándar (SD) y la desviación estándar de las observaciones de las estaciones de referencia (SDo). Esta diferencia es más grande para el año 2004-

Figura 14: Diagramas de cajas y bigotes de los sesgos de temperatura entre ERA-Interim (izquierda) y WRF (derecha) con las estaciones hidrometeorológicas del IDEAM para los cinco años El Niño considerados y su promedio. En cada diagrama la línea central es la mediana y los bordes inferior y superior de la caja son los percentiles 25 y 75, respectivamente. Los bigotes se extienden de acuerdo con los valores mínimos y máximos en cada distribución de datos de temperatura. La línea roja representa un valor de sesgo igual a cero, usado como referencia para el análisis.

2005 (Fig. 15c) y es menor para el año 2002-2003 (Fig. 15b) donde ERA-Interim tiene un mejor desempeño que WRF.

915

A pesar de los resultados obtenidos para la correlación espacial, en promedio (Fig. 15f), los estadísticos del modelo WRF (R ~ 0.3, SD/SDo ~ 1.5, RMSE ~ 3.1 mm) muestran una mejoría marginal en la distribución espacial de la precipitación en la cuenca Magdalena-Cauca en comparación con ERA-Interim

 $(R \sim 0.4, SD/SDo \sim 1.8, RMSE \sim 4.7 mm)$. Puede destacarse que la mejor correlación espacial se obtiene para El Niño del año 2009-2010 y, en general, WRF reduce el error de las estimaciones y mejora las diferencias encontradas a partir de la desviación estándar normalizada. De igual forma, puede observarse que las bases de datos de referencia CRU, GPCC y TRMM, representadas tam-

 $_{\tt 925}$ $\,$ bién en este diagrama, describen las observaciones de las estaciones del IDEAM $\,$

mejor que ERA-Interim y WRF, esto se evidencia en las correlaciones y las desviaciones estándar normalizadas obtenidas. En promedio y durante los cinco eventos El Niño, las tres bases de datos presentan desempeños similares (R \sim 0.5, SD/SDo \sim 0.7, RMSE \sim 1.7 mm) a pesar de no observarse un fuerte ajuste espacial con las observaciones de referencia.

930

935

Figura 15: Diagramas de Taylor normalizados comparando la distribución espacial de la precipitación de ERA-Interim, WRF, CRU, GPCC y TRMM con las observaciones de las estaciones de referencia.

En la Figura 16 se observan los diagramas de Taylor normalizados para la distribución espacial de la temperatura en la cuenca durante los cinco eventos El Niño. Los diagramas muestran un desempeño similar en cada uno de los años seleccionados. En promedio (Fig. 16f), WRF produce una correlación espacial positiva (R ~ 0.9), superior a las estimaciones de referencia de CRU, GHCN_CAMS y UD (R ~ 0.8), una desviación estándar (SD) similar a la observada (SDo) a través de las estaciones del IDEAM (SD/SDo ~ 1.1) y un error (RMSE ~ 3.7 mm) comparable con los errores de las bases de datos de referen-

cia. Todas estas estadísticas son mejores para WRF que para ERA-Interim, el cual presenta el menor desempeño en la distribución espacial de la temperatura (R ~ 0.6, SD/SDo ~ 0.5, RMSE ~ 4.7 mm). Asimismo, las bases de datos presentan estadísticos similares (R ~ 0.8, SD/SDo ~ 0.8, RMSE ~ 3.7 mm) que generan un buen ajuste espacial con las observaciones de las estaciones en superficie, pero el modelo es un mejor descriptor de su variabilidad espacial.

Figura 16: Diagramas de Taylor normalizados comparando la distribución espacial promedio de la temperatura de ERA-Interim, WRF, CRU, GHCN_CAMS y UD con las observaciones de las estaciones de referencia durante los eventos El Niño en el periodo 1998-2012.

Posterior al análisis de la distribución espacial de la precipitación y la temperatura en la cuenca Magdalena-Cauca, se considera la distribución temporal de las estimaciones de ERA-Interim y WRF en comparación con las observaciones de las estaciones del IDEAM presentes en la cuenca. La Figura 17 muestra la evolución diaria de la precipitación de ERA-Interim, WRF y las estaciones du-

950

rante la temporada seca (DEF) de los cinco años El Niño. Los promedios diarios de precipitación son estimados para cada año en el área que corresponde a la cuenca de interés. El promedio de los eventos El Niño presentado en la Figura

⁹⁵⁵ 17f permite observar que las simulaciones de WRF representan adecuadamente la variabilidad diaria de la precipitación en la cuenca, mejorando la correlación temporal (R ~ 0.7), con una desviación estándar similar a las observaciones (SD/SDo ~ 1.3) y reduciendo el error (RMSE ~ 1.5 mm - 56.3%) comparado con ERA-Interim (R ~ 0.2, SD/SDo ~ 0.6, RMSE ~ 3.6 mm - 133.7%).

960

En cada uno de los años El Niño analizados, se puede ver que las simulaciones de WRF logran capturar adecuadamente la variabilidad temporal que presentan las observaciones, principalmente las fluctuaciones observadas que ERA-Interim no logra representar. Además, ERA-Interim produce magnitudes de precipitación superiores que sobreestiman los valores de las estaciones del IDEAM. Los 965 mejores estadísticos del modelo WRF se obtienen para El Niño del año 2002-2003 (Fig. 17b), donde se encuentra la mayor correlación temporal ($R \sim 0.8$), el menor error (RMSE $\sim 2.3 \text{ mm} - 84.1 \%$) y una desviación estándar similar a la desviación estándar de las observaciones (SD/SDo ~ 1.1). Particularmente, en el año 2004-2005 (Fig. 17c), ERA-Interim representa la precipitación ligeramente 970 mejor que WRF, en términos de que reduce el error (RMSE $\sim 4.3 \text{ mm} - 120.3 \%$) y disminuye la diferencia de la desviación estándar entre sus estimaciones y la de las observaciones (SD/SDo ~ 0.8), a pesar de esto la correlación sigue siendo mejor en WRF (R ~ 0.6) que en ERA-Interim (R ~ 0.3). Para este año puede observarse que WRF captura las variaciones temporales pero presenta picos que 975

Como se mencionó, el error más notable de WRF se encuentra relacionado con la sobreestimación de algunos picos de precipitación (Fig. 17c) que disminuyen su desempeño en comparación con las observaciones. Sin embargo, esta característica no representa un error sistemático del modelo ya que algunos eventos, como los que se presentan en los años 1997–1998 (Fig. 17a) y 2002–2003

superan las observaciones, sobreestimando algunos eventos de lluvia.

(Fig. 17b), son capturados adecuadamente por el modelo. En este sentido, algunos estudios ponen en evidencia que uno de los principales retos de la modelación atmosférica está relacionado con la capacidad de los modelos para representar consistentemente los eventos extremos (Gao et al., 2012; El-Samra et al., 2018; Leung et al., 2006; Mahoney et al., 2013).

985

Figura 17: Evolución diaria de la precipitación promedio de ERA-Interim, WRF y las estaciones del IDEAM en la cuenca del Magdalena-Cauca durante el trimestre DEF.

La distribución temporal de la temperatura promedio durante la temporada seca de los cinco años El Niño (Fig. 18) muestra las tendencias encontradas en la cuenca, una subestimación en el caso de las simulaciones de WRF, y una sobreestimación para ERA-Interim. En términos estadísticos (Fig. 18f), WRF presenta una mejor correlación temporal ($R \sim 0.9$) que ERA-Interim ($R \sim 0.7$), una desviación estándar cercana a la desviación estándar de las observaciones (SD/SDo ~ 0.9) y un error mayor (RMSE $\sim 1.4^{\circ}$ C) respecto a ERA-Interim

 $(\text{RMSE} \sim 1.0^{\circ}\text{C})$. Estas características pueden extenderse para los diferentes años El Niño analizados, donde a pesar de la subestimación, WRF logra capturar los patrones de variabilidad temporal de la temperatura observada en la cuenca, generando un mayor error que ERA-Interim pero mejores ajustes desde el punto de vista de la correlación temporal y la desviación estándar normalizada. A pesar de que se presenta una alta correlación, puede observarse entonces el error sistemático de WRF para producir magnitudes de temperatura menores (alrededor de 2°C de diferencia), especialmente en terrenos complejos.

Figura 18: Evolución diaria de la temperatura promedio de ERA-Interim, WRF y las estaciones del IDEAM en la cuenca del Magdalena-Cauca durante el trimestre DEF.

Con el objetivo de ahondar en el análisis de la distribución temporal de la precipitación y la temperatura durante el periodo de interés, la cuenca Magdalena-Cauca es dividida en su parte alta, media y baja de acuerdo con las corrientes principales que corresponden al río Cauca hacia el occidente y el río Magdalena hacia el oriente de la cuenca (Fig. 19). Como se mencionó previamente, considerando el área total de la cuenca, las simulaciones de WRF (R ~ 0.7, SD/SDo ~ 1.3, RMSE ~ 1.5 mm - 56.2%) producen una mejor representación de la variabilidad temporal de la precipitación en comparación con ERA-Interim (R ~ 0.2, SD/SDo ~ 0.6, RMSE ~ 3.6 mm - 133.7%) (ver Fig. 19a). En el alto Cauca y el alto Magdalena (Fig. 19d y 19e), ERA-Interim y WRF presentan desempeños comparables, a pesar de que estadísticamente WRF produce una mejor correlación temporal, ERA-Interim obtiene mejores estimativos, reduciendo el el

Figura 19: Comparación de la precipitación promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca de los eventos El Niño durante el periodo 1998–2012. La información presentada en esta Figura corresponde con el promedio multianual de los cinco eventos El Niño. Las Figuras para cada evento se encuentran en el material suplementario. Cada panel representa los estimativos de la precipitación considerando la acumulación del área.

error y con una desviación estándar similar a la observada. Hacia la parte media de la cuenca (Fig. 19b y 19c), considerando el efecto agregado del área, WRF mejora considerablemente la representación temporal de la precipitación y produce diferencias estadísticas significativas con relación a ERA-Interim, donde este último sobreestima notablemente la precipitación.

1020

Adicionalmente, la mejor representación temporal de WRF se presenta para la cuenca del Cauca, para la cual se obtiene una alta correlación (R ~ 0.7), un menor error (RMSE ~ 1.8 mm - 55.8%) y una desviación estándar similar a la desviación estándar de las observaciones (SD/SDo ~ 1.1). El peor desempeño estadístico de WRF se encuentra en el alto Magdalena donde el modelo produce algunos valores de mayor magnitud que se alejan de la variabilidad propia de las observaciones.

Figura 20: Criterios estadísticos R, RMSE, SD/SDo obtenidos para ERA-Interim y WRF en comparación con las estaciones del IDEAM en las diferentes áreas de la cuenca Magdalena-Cauca para la distribución promedio de la precipitación en la temporada seca de los eventos El Niño durante el periodo 1998–2012. UC, UM, C, M, MC corresponden con alto Cauca, alto Magdalena, Cauca, Magdalena y Magdalena-Cauca respectivamente.

- En la Figura 20, se observa la evolución de los criterios estadísticos que evalúan la precipitación a medida que se incrementa el área de la cuenca. En el caso de ERA-Interim, el desempeño de las estimaciones se reduce a medida que se considera un área mayor ya que disminuye la correlación temporal, la desviación estándar normalizada y aumenta el error. Según esto, el mejor desempeño de ERA-Interim se presenta en el alto Cauca y el peor para la cuenca completa Magdalena-Cauca. WRF, en cambio, aumenta la correlación, disminuye el error y conserva valores óptimos de desviación estándar normalizada cuando las estimaciones abarcan una mayor área. En comparación con ERA-Interim, WRF mantiene valores superiores de correlación y desviación estándar y un menor
- error para todas las áreas de la cuenca consideradas. Los mejores desempeños se dan en la cuenca del Cauca y la cuenca Magdalena-Cauca y el peor en el alto

Magdalena como se mencionó anteriormente.

Figura 21: Comparación de la temperatura promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca de los eventos El Niño durante el periodo 1998–2012. La información presentada en esta Figura corresponde con el promedio multianual de los cinco eventos El Niño. Las Figuras para cada evento se encuentran en el material suplementario. Cada panel representa los estimativos de la temperatura considerando la acumulación del área.

1045

1050

La variabilidad temporal de la temperatura promedio en las diferentes áreas de la cuenca consideradas se observa en la Figura 21. La Figura 21a muestra el análisis realizado previamente, donde se determina una distribución temporal con una propensión a la sobreestimación en ERA-Interim y una subestimación en las simulaciones de WRF. Estas características pueden generalizarse para las cuencas del Cauca y el Magdalena, donde son notables las diferencias entre las estimaciones. En el alto Cauca (Fig. 21d), WRF mejora la correlación temporal de la temperatura (R ~ 0.7) pero el error y la desviación estándar normaliza-

da son similares a los obtenidos para ERA-Interim (SD/SDo ~ 0.6, RMSE ~ 3.1° C). En la parte alta de la cuenca del Magdalena (Fig. 21e), ERA-Interim produce una temperatura ligeramente menor a la observada en las estaciones

- del IDEAM, pero, a pesar de que reduce el error de las estimaciones, es mejor el ajuste estadístico de WRF para la correlación y la desviación estándar normalizada. En esta área se presenta la diferencia más grande entre WRF y las observaciones que es alrededor de 6.0°C. Además, a medida que hay un incremento de área se encuentra que WRF es considerablemente mejor para describir
- la variabilidad temporal de las estaciones, aún cuando las magnitudes de la temperatura son menores a las observadas (error sistemático), como es el caso de las áreas que corresponden a la cuenca del Cauca y la cuenca del Magdalena (Fig. 21b y 21c). Estas variaciones con el área pueden observarse también en la Figura 22 a través de las métricas estadísticas de evaluación. A pesar de que
 la subestimación de la temperatura de WRF es generalizada en todas las sub-
- cuencas, varía la magnitud de estas diferencias y por lo tanto, el desempeño estadístico del modelo.
- El análisis de la distribución espacial y temporal de la precipitación y la temperatura de ERA-Interim y el modelo WRF durante la temporada seca (DEF) de los cinco años El Niño permite determinar que, en general, WRF produce una representación realista de las características de la precipitación y la temperatura para la cuenca Magdalena-Cauca. En la mayoría de los casos, WRF mejora las estimaciones en comparación con ERA-Interim, capturando adecuadamente la variabilidad de las observaciones. De igual forma, a partir del análisis agregado por subcuencas, se observa una mejora significativa en el desempeño de las simulaciones de WRF a medida que se incrementa el área de la cuenca, donde la diferencia con ERA-Interim se hace más notable.
- En términos generales, los resultados encontrados por Posada-Marín et al. (2018) para el desempeño de WRF y ERA-Interim en una región particular de los Andes, pueden extenderse para la cuenca Magdalena-Cauca, una de las más

Figura 22: Criterios estadísticos R, RMSE, SD/SDo obtenidos para ERA-Interim y WRF en comparación con las estaciones del IDEAM en las diferentes áreas de la cuenca Magdalena-Cauca para la distribución promedio de la temperatura en la temporada seca de los eventos El Niño durante el periodo 1998–2012. UC, UM, C, M, MC corresponden con alto Cauca, alto Magdalena, Cauca, Magdalena y Magdalena-Cauca respectivamente.

grandes e importantes de Colombia. En este caso, ERA-Interim también produce una sobreestimación de la precipitación y la temperatura, probablemente ligada a sus limitaciones para representar la dinámica atmósferica local de una región tropical compleja, influenciada por los efectos de la topografía que delimita la cordillera de los Andes y la presencia de dos valles inter-andinos profundos. Asimismo, se resalta la capacidad de WRF para representar los efectos orográficos sobre la variabilidad espacial y temporal de la hidroclimatología de la región.

1090 3.2. Caudales mínimos durante eventos El Niño

La evaluación de los campos de precipitación y temperatura del modelo atmósferico WRF posibilita su implementación como forzamientos meteorológicos para el modelo hidrológico WRF-Hydro. Los caudales simulados por WRF-Hydro fueron comparados con los caudales diarios observados en la estación

Calamar, ubicada antes de la desembocadura del delta del Magdalena en el mar Caribe. Aquí se evalúa el efecto agregado de los caudales para toda la cuenca Magdalena-Cauca. Esta comparación se realizó para cada uno de los años El Niño considerados durante el periodo de 1998–2012 (Fig. 23). Inicialmente, como punto de partida para determinar el desempeño del modelo en la cuenca

- de estudio, se realizaron simulaciones con la configuración y los valores que se encuentran predefinidos por defecto en el modelo, usando forzamientos meteorológicos del modelo WRF de Posada-Marín et al. (2018) evaluados para toda la cuenca en la sección anterior. Bajo estas condiciones, durante la temporada seca (DEF), caracterizada por la ocurrencia de caudales mínimos, se observa que el
- modelo WRF-Hydro tiende a capturar correctamente la variabilidad temporal de los caudales en la mayoría de los casos, sin embargo, hay una subestimación generalizada del volumen simulado en comparación con las observaciones en la estación de referencia.
- Para El Niño del año 1997–1998 (Fig. 23a), puede observarse que la magnitud de los caudales simulados presenta una diferencia considerable con los observados. El descenso en el volumen evidenciado en las observaciones durante los primeros treinta días no logra ser capturado por el modelo, presentando una variación mínima del caudal simulado. A pesar de esto, el aumento que se registra alrededor del día 80, que corresponde a la finalización del mes de febrero, es congruente en el modelo y se da como respuesta a la variación de la lluvia observada y simulada por WRF como se puede ver en la sección anterior (ver Fig. 17a). En términos estadísticos, el peor desempeño del modelo se presenta
- para este evento. WRF-Hydro produce valores negativos para NSE (\sim -4.1), R 1120 (\sim -0.2) y PBIAS (\sim -72.7%), y el mayor error obtenido respecto a los otros años simulados (RMSE \sim 85%), lo que indica el limitado ajuste del modelo con las observaciones y su tendencia a la subestimación del caudal en la cuenca.

Los caudales simulados para El Niño del año 2002–2003 representan adecuadamente la variabilidad de las observaciones a pesar de presentar un menor volumen simulado (Fig. 23b). Se obtiene un mejor desempeño a través de las métricas estadísticas evaluadas para este año, destacando una alta correlación ($R \sim 0.8$) y una disminución del error (RMSE ~ 50.4%).

Figura 23: Caudales observados y simulados por WRF-Hydro en los cinco eventos El Niño durante la temporada seca (DEF) del periodo 1998–2012. Simulaciones realizadas con los parámetros predefinidos del modelo.

Particularmente, la simulación de WRF-Hydro para El Niño del año 2004–

- 2005 presenta las mayores variaciones temporales, con magnitudes de caudales comparables a los observados y periodos donde el volumen observado es excedido (Fig. 23d). Las magnitudes de caudales en exceso pueden ser explicadas por la variabilidad de la precipitación simulada por el modelo WRF. La Figura 17c evidencia que hay una correspondencia entre la lluvia simulada y observada pero las magnitudes del modelo WRF durante eventos extremos superan
- las observaciones y esto puede influenciar el comportamiento del caudal obtenido. Adicionalmente, se obtienen valores estadísticos positivos indicativos de un desempeño mejor del modelo (NSE ~ 0.3, R ~ 0.6, RMSE ~ 31.3 %) y un PBIAS (~ 1.2 %) asociado con la tendencia a la sobreestimación del caudal.

1140

1145

La Figura 23d muestra nuevamente que el modelo WRF-Hydro subestima los caudales observados para El Niño del año 2006–2007. Esto puede comprobarse con los estadísticos NSE (\sim -0.7), RMSE (\sim 50.8%) y PBIAS (\sim -38.2%) donde el ajuste del modelo no es óptimo en términos del volumen, sin embargo, la alta correlación (R \sim 0.8) destaca que la variabilidad de los caudales mínimos es representada adecuadamente por el modelo.

En el caso de El Niño del año 2009–2010 mostrado en la Figura 23e, se obtiene el mejor desempeño del modelo en comparación con los otros eventos El Niño simulados. La correlación obtenida (R ~ 0.94) destaca el ajuste del modelo con relación a la variabilidad de los caudales diarios, además se obtiene un menor RMSE (~ 37.9%) y PBIAS (~ -35.0%, una menor subestimación del volumen) y un NSE (~ 0.2) superado solamente por los caudales simulados para El Niño del año 2004–2005 pero asociado a un mejor ajuste desde el punto de vista de la ocurrencia de la recesión y la distribución temporal de los caudales.

Las simulaciones preliminares del modelo WRF-Hydro permiten establecer una limitada representación del volumen pero un correcto ajuste con relación a la variabilidad temporal de los caudales durante la temporada seca (DEF) de

- los eventos El Niño considerados. A partir de esto, se selecciona El Niño del año 2009–2010 para llevar a cabo el análisis de sensibilidad de los principales parámetros del modelo y calibrarlo para mejorar su desempeño en la cuenca Magdalena-Cauca. Esta selección obedece a que este año corresponde con el evento donde el modelo hidrológico obtuvo la mejor representación de los cau-
- dales, considerando los criterios estadísticos utilizados para su evaluación en la estación de referencia.

En el análisis de sensibilidad se exploran aquellos factores que pueden incidir en la correcta representación de los caudales por parte del modelo, especialmente en su efecto sobre el volumen simulado. Inicialmente, se evalúa el efecto que tiene la temperatura superficial simulada por el modelo WRF sobre los caudales de la cuenca, dado que es una variable de forzamiento meteorológico para WRF-Hydro. En la sección anterior, se encontró que WRF presenta un error sistemático que tiende a subestimar la temperatura superficial en comparación con las observaciones de referencia (ver Fig. 18), lo cual está relacionado con la

estimación que realiza el modelo de los flujos de agua y energía en superficie. Para evaluar el efecto de esta variable, se planteó un incremento de un grado Celsius en los campos de temperatura de entrada del modelo y los resultados de los caudales simulados con este cambio son presentados en la Figura 24. Es-

te incremento obedece a la diferencia aproximada que se encuentra cuando se comparan las simulaciones de WRF con las observaciones.

En la Figura 24 puede observarse que WRF-Hydro presenta una baja sensibilidad a los cambios en esta variable cuando se compara con las simulaciones preliminares realizadas. Los estadísticos obtenidos (NSE ~ 0.2, R ~ 0.9, RMSE ~ 39.0 %, PBIAS ~ -36.1 %) son similares a los presentados por el modelo con los campos de temperatura sin modificar y no se observa algún efecto favorable que posibilite el incremento del volumen simulado en la cuenca. Es de destacar que se conserva la adecuada representación de la variabilidad de los caudales encontrada previamente.

Figura 24: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009–2010. Análisis de sensibilidad para la temperatura superficial del modelo WRF. DEF representa los resultados obtenidos para la simulación preliminar con los valores por defecto y TS la variación en la temperatura superficial.

Dado que el cambio en los campos de temperatura superficial no determina una mejora para el desempeño del modelo, se evalúa si la precipitación, como principal forzamiento meteorológico, puede afectar la magnitud de los caudales simulados. En las Figuras 9 y 11 se observa que WRF presenta sesgos con valores negativos donde se subestima la precipitación en algunas áreas del dominio. En este caso, se establece un aumento de la precipitación de 0.1 mm en los campos de entrada del modelo, los cuales tienen una resolución de 3 horas. Este aumento es equivalente a 144.8 mm de precipitacion adicional durante el periodo de simulación. Los resultados obtenidos son presentados en la Figura 25.

Figura 25: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Análisis de sensibilidad para la precipitación del modelo WRF. DEF representa los resultados obtenidos para la simulación preliminar con los valores por defecto y P la variación en la precipitación.

Las modificaciones en los campos de precipitación generan variaciones en el volumen simulado, incrementando la magnitud de los caudales al inicio de la temporada seca del evento El Niño (Fig. 25). Además, se presenta un mejor ajuste en términos estadísticos, principalmente en el aumento del valor de NSE (~ 0.5), una alta correlación (R ~ 0.9) y la reducción del RMSE (~ 31.5%) y del PBIAS (~ -23.1%). No obstante, durante la recesión, donde el volumen de los caudales disminuye notablemente, se observa que WRF-Hydro continúa generando caudales mínimos menores a los observados. Asimismo, la adecuada representación de la variabilidad de los caudales se reduce al obtenerse fluctua-

ciones que sobreestiman y no son evidenciadas en las observaciones.

3.2.1. Análisis de sensibilidad parámetros generales

Las variaciones de la temperatura y la precipitación no producen un efecto significativo en la adecuada representación de los caudales simulados por el modelo WRF-Hydro para la cuenca Magdalena-Cauca. Es por este motivo que se considera adecuado mantener los campos de los forzamientos meteorológicos sin modificar para las simulaciones posteriores. Estas simulaciones se enfocan en desarrollar el análisis de sensibilidad de los principales parámetros que se des-

- criben en la Sección 2.2, con la finalidad de calibrar el modelo. La calibración manual establecida para WRF-Hydro se encuentra soportada en la revisión de la literatura de los casos de aplicación del modelo y por el sentido físico de cada parámetro y su posible ajuste a las características de la cuenca de estudio. Esta calibración adopta un enfoque progresivo o stepwise approach (p. ej. Yucel et al.
- (2015); Kerandi et al. (2018); Li et al. (2017); Senatore et al. (2015); Arnault et al. (2018)) en el cual primero se calibran los parámetros que controlan el volumen total del agua y luego los parámetros que modifican la distribución temporal de los caudales (forma de la hidrógrafa). En la Tabla 3 se presentan los valores de los parámetros considerados inicialmente en el análisis de sensibilidad, donde S1 corresponde con la simulación de partida, representada como
- WRF-Hydro DEF en cada Figura. Con S1 como referencia se establecen los valores que se modifican en cada una de las simulaciones posteriores.
- Dado que en las simulaciones iniciales WRF-Hydro logra capturar la variabilidad temporal de los caudales para El Niño del año 2009–2010, este análisis se concentra particularmente en aquellos parámetros que pueden afectar el volumen del caudal simulado. Sin embargo, con el propósito de mejorar el ajuste del modelo, se realiza una simulación (S2 en Tabla 3) donde se modifica un parámetro que controla la forma de la hidrógrafa asociado con las propiedades
- geométricas del canal. Este parámetro es el coeficiente de Manning para la rugosidad del canal (MannN), el cual se define para cada corriente en función del orden de Strahler (Horton, 1945; Strahler, 1957). Teniendo en cuenta que los

SIM ID	Parámetros								
	MannN	REFKDT	RETDEPRTFAC	С	α	Zmax	Zini		
S1	Orden de Strahler	1.0	1.0	1.0	7.0	100.0	10.0		
S2	$0.35~({\rm Factor}$ de escala)	*	*	*	*	*	*		
S3	*	0.0	*	*	*	*	*		
S4	*	0.1	*	*	*	*	*		
S5	*	0.5	*	*	*	*	*		
S6	*	5.0	*	*	*	*	*		
S7	*	*	0.0	*	*	*	*		
S8	*	*	5.0	*	*	*	*		
$\mathbf{S9}$	*	*	10.0	*	*	*	*		

Tabla 3: Parámetros del modelo WRF-Hydro considerados en el análisis de sensibilidad.

SIM ID es el número de la simulación y (*) representa que se mantienen iguales los valores de la simulación de partida y que son presentados en S1.

valores predefinidos en el modelo para este coeficiente se encuentran basados en datos reportados en la literatura, para modificar este parámetro Yucel et al. (2015) recomiendan definir un factor de escala que cambie el coeficiente de rugosidad de Manning al ser multiplicado por el valor establecido para cada orden de los canales, esto en lugar de realizarlo de forma individual.

Bajo la configuración establecida en el modelo, la cuenca Magdalena-Cauca
se define con ordenes de corriente de Strahler que alcanzan un valor máximo igual a cuatro. Dada la ausencia de información para cada orden de la corriente, los parámetros geométricos restantes (Tabla 4) que definen las propiedades de los canales conservan los valores por defecto y solamente MannN es modificado. En este caso, el factor de escala considerado para la cuenca es de 0.35 siguiendo
los valores de referencia reportados por Pereira et al. (2016); Sánchez-Lozano et al. (2015, 2017). Los coeficientes de Manning (MannN Cal) utilizados en la

simulación se muestran en la Tabla 4.

Tabla 4: Parámetros geométricos del canal, ancho de la base (Bw), profundidad inicial del agua (HLINK), pendiente del canal (Ch SSlp) y coeficientes de Manning (MannN) basados en el orden de la corriente. MannN Cal representa la variación del parámetro a partir del factor de escala igual a 0.35.

Orden de la corriente	$\mathbf{B}\mathbf{w}$	HLINK	$\mathrm{Ch}\;\mathrm{SSlp}$	MannN	$MannN\ Cal$
1	1.5	0.02	3.0	0.55	0.192
2	3.0	0.02	1.0	0.35	0.122
3	5.0	0.02	0.5	0.15	0.05
4	10.0	0.03	0.18	0.10	0.035
5	15.0	0.03	0.05	0.05	0.017
6	40.0	0.03	0.05	0.05	0.017
7	60.0	0.03	0.05	0.04	0.014
8	70.0	0.10	0.05	0.03	0.010
9	80.0	0.30	0.05	0.02	0.007
10	100.0	0.30	0.05,	0.01	0.0035

Figura 26: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación del coeficiente de Manning para la rugosidad del canal.

La Figura 26 presenta los resultados obtenidos para las variaciones del coeficiente de rugosidad de Manning en la red de canales. Como se observa en esta Figura, las condiciones definidas para este coeficiente generan variaciones temporales en las que se presenta un desplazamiento de la curva de recesión y se alcanzan los valores mínimos de caudal de forma más rápida en comparación con la simulación de partida. Con relación a las observaciones, se reduce el desempeño del modelo en términos estadísticos, disminuyendo el NSE (~ -0.07) y la correlación temporal (R ~ 0.88), y aumentado el error (RMSE $\sim 44.19\%$) y el

1265

sesgo porcentual (PBIAS $\sim -38.69\%$). Con esta simulación se toma la decisión de mantener los valores predefinidos en el modelo, ya que como se mencionó previamente representan de forma adecuada la variabilidad temporal de las observaciones.

En adelante, se hará énfasis en los parámetros que controlan el volumen de agua. La Figura 27 presenta los resultados obtenidos para la calibración del factor de infiltración REFKDT. En la literatura se reportan distintos rangos óptimos para la variación de este parámetro, con valores que se encuentran entre 0.1 y 10 (p. ej. Kerandi et al. (2018)). Con esta referencia, los valores asignados para las simulaciones se encuentran entre 0.0 y 5.0, con un valor por defecto igual a 1.0 (ver Tabla 3, S3-S6). Esta selección se realiza con el fin de explorar distintos valores y evaluar su sensibilidad teniendo en cuenta que entre más pequeño es el parámetro se reduce la capacidad de infiltración y se favorece la escorrentía superficial.

A partir de los resultados, se encuentra una baja sensibilidad a este parámetro para los caudales simulados en la cuenca, a excepción del valor extremo igual a 0.0. Los valores más pequeños generan variaciones mínimas en el volumen durante el inicio de la temporada seca del evento El Niño, pero este efecto es nulo durante la recesión. Aún cuando las características de la cuenca presentan una alta variabilidad en términos de la infiltración, para profundizar en el entendimiento de los efectos generados por los cambios en el parámetro se le asigna un valor de 0.0, situación que no representa las condiciones propias del área de estudio pero que sirve como referencia para el análisis de la influencia de este parámetro en el modelo. Bajo estas condiciones, de nuevo al inicio de la temporada seca el volumen se incrementa considerablemente, simulando condiciones poco realistas que aumentan las diferencias con las observaciones

y disminuyen el desempeño estadístico. Esto tiene sentido considerando que el factor de infiltración igual a 0.0 posibilita el incremento en la cantidad de agua que puede fluir en la red de canales como caudal. Dado que no se presentan mejoras en las métricas estadísticas evaluadas y en la comparación con la curva observada, el valor del parámetro REFKDT igual a 0.5 es seleccionado como un valor aceptable a pesar de que el caudal continúa siendo subestimado por WRF-Hydro.

Figura 27: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Análisis de sensibilidad del factor de infiltración REFKDT para valores del parámetro entre 0.0 y 5.0.

Los caudales observados y simulados en la estación Calamar a partir del análisis de sensibilidad del factor de escala de la profundidad de retención superficial

- RETDEPRTFAC se muestran en la Figura 28. Este parámetro puede condicionar el volumen simulado dado que determina la ocurrencia de la escorrentía superficial dependiendo de la pendiente del terreno. En estas simulaciones los valores seleccionados se encuentran entre 0.0 y 10.0, y el valor predefinido en el modelo corresponde a 1.0 (simulaciones S7 a S9 en Tabla 3). Asimismo, de
- forma exploratoria se realiza una simulación con un valor de 0.0 para este parámetro, que supone que no hay acumulación local que pueda ser retenida en las celdas que forman el dominio de estudio, así el agua se encuentra disponible para su distribución en superficie y en los canales. Teniendo en cuenta que el parámetro RETDEPRTFAC permite considerar valores distribuidos en el domi-
- nio, y siguiendo las recomendaciones que se plantean en la guía de usuario del modelo, se le asigna un valor de 10 a las celdas que representan los canales de la corriente, dado que con esto se favorece una mayor infiltración local semejante a las condiciones ribereñas del sistema real (Gochis et al., 2015). Los resultados obtenidos muestran que bajo las condiciones simuladas, este parámetro presenta
- limitada sensibilidad en la estimación de los caudales en la cuenca. Esto puede corroborarse a través de los criterios estadísticos obtenidos para el análisis de sensibilidad de este parámetro, los cuales no varían en cada simulación. Teniendo en cuenta estos aspectos, se considera que el valor predefinido en el modelo es adecuado para las simulaciones posteriores de WRF-Hydro.

1325

De forma similar, se evalúan dos parámetros adicionales que condicionan los flujos superficiales y subsuperficiales generando un posible efecto en el volumen del caudal simulado en la cuenca de estudio, según la revisión de literatura (Givati et al., 2016; Silver et al., 2017; Rummler et al., 2019; Somos-Valenzuela &

- Palmer, 2018). Estos parámetros son el valor de referencia para la conductividad hidraúlica saturada (REFDK) y un factor de escala para el drenaje de agua en las capas profundas del suelo (SLOPE). Los resultados obtenidos en las simulaciones no se presentan en el documento dado que estas no fueron realizadas para el periodo completo de estudio que comprende la temporada seca (DEF) del evento
- 1335 El Niño. Se decide suspender las simulaciones debido a la persistencia de la baja

Figura 28: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Análisis de sensibilidad del factor de retención superficial RET-DEPRTFAC para valores del parámetro entre 0.0 y 10.0.

sensibilidad para estos parámetros con relación al costo computacional que se genera en cada corrida. Según esto, el volumen simulado continúa presentando una tendencia a la subestimación en la representación de los caudales mínimos en la cuenca.

1340 3.2.2. Modelo conceptual de flujo base

Los procesos involucrados en el almacenamiento y distribución del agua subterránea, especialmente su contribución a la corriente como flujo base toman especial relevancia en este estudio dado el interés en la representación de los caudales mínimos durante la temporada seca de los eventos El Niño. Es en esta

temporada donde el flujo base produce los mayores aportes a los volúmenes de agua observados en la corriente durante la recesión. Conforme a esto, WRF-Hydro realiza una estimación conceptual del flujo base a partir de una función exponencial para el almacenamiento y descarga de un tanque subterráneo, considerando la profundidad y la capacidad volumétrica conceptual del agua en dicho tanque. El flujo base calculado sumado al flujo lateral obtenido en el enrutamiento terrestre hacen parte del flujo de entrada que llega a la red de canales.

1350

En esta sección, el análisis de sensibilidad se concentra en los parámetros que conforman el modelo conceptual de flujo base (ver Sección 2.6). Las variaciones que se presentan en cada simulación se muestran en la Tabla 5. La fila S1 de esta Tabla corresponde con la simulación realizada a partir de los valores que el modelo trae por defecto, a excepción del parámetro REFKDT que se define con un valor de 0.5 a partir del análisis de sensibilidad presentado en la sección anterior. En cada una de las gráficas S1, representada como WRF-Hydro DEF, se muestra con la finalidad de ser usada como referente de comparación en cada caso presentado.

Las variaciones en el coeficiente de la función exponencial del modelo de flujo base (C) se muestran en la Figura 29 y corresponden con las simulaciones S10 y S11 de la Tabla 5. En este caso, a partir del análisis de dicha función se decide aumentar el valor de este coeficiente, lo cual favorece el incremento del flujo base y por lo tanto del volumen de agua simulado. Estadísticamente, el modelo mejora en todas las métricas evaluadas. Se aumenta considerablemente el valor de NSE (~ 0.62) y de la correlación (R ~ 0.95) y se reduce el error (RMSE \sim 26.36%) y el sesgo porcentual (PBIAS ~ -22.96 %). Los resultados muestran una alta sensibilidad a este parámetro, observando que la respuesta del modelo a este cambio no es lineal, lo que quiere decir que aumentar el valor de C no implica un aumento de la magnitud de los caudales en cada instante de tiempo simulado.

67

SIM ID	Parámetros									
	MannN	REFKDT	RETDEPRTFAC	\mathbf{C}	α	Zmax	Zini			
S1	Orden de Strahler	0.5	1.0	1.0	7.0	100.0	10.0			
S10	*	*	*	2.5	*	*	*			
S11	*	*	*	5.0	*	*	*			
S12	*	*	*	5.0	1.0	*	*			
S13	*	*	*	5.0	10.0	*	*			
S14	*	*	*	5.0	*	10.0	*			
S15	*	*	*	5.0	*	250.0	*			
S16	*	*	*	5.0	6.0	80.0	*			
S17	*	*	*	5.0	6.0	90.0	*			
S18	*	*	*	10.0	6.0	70.0	*			
S19	*	*	*	15.0	6.0	70.0	*			
S20	*	*	*	10.0	6.0	10.0	*			
S21	*	*	*	10.0	8.0	40.0	*			
S22	*	*	*	5.0	8.0	50.0	*			
S23	*	*	*	5.0	8.0	70.0	*			
S24	*	*	*	15.0	8.0	50.0	*			
S25	*	*	*	15.0	8.0	70.0	*			
S26	*	0.1	*	15.0	8.0	50.0	*			

Tabla 5: Parámetros del modelo WRF-Hydro considerados en el análisis de sensibilidad. Variaciones en los parámetros del modelo conceptual de flujo base.

SIM ID es el número de la simulación y (*) representa que se mantienen iguales los valores que por defecto trae el modelo WRF-Hydro y son presentados en S1.

Figura 29: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación del coeficiente de la función exponencial (parámetro C) del modelo de flujo base.

- El valor de C que presentó un mejor desempeño en las simulaciones anteriores es utilizado para evaluar la sensibilidad del parámetro que representa el exponente (α) de la función de flujo base (simulaciones S12 y S13 de la Tabla 5). En este caso, se toman como referencia los valores máximos y mínimos que se utilizan en la calibración del *National Water Model* (Tabla 1) y los resultados se presentan en la Figura 30. Dado que el valor máximo de referencia ($\alpha = 8$) es similar al valor por defecto que se encuentra predefinido en el modelo ($\alpha = 7$), se decide asignarle un valor mayor ($\alpha = 10$) que permita evidenciar el posible efecto del parámetro. Los resultados muestran que la disminución del valor de α reduce el ajuste estadístico del modelo y durante la recesión se producen cauda-
- les mínimos menores a los encontrados en las simulaciones preliminares. Por el contrario, un aumento de este parámetro, sumado al efecto del parámetro C, favorece el incremento del volumen del caudal simulado y mejora estadísticamente
los criterios de evaluación del modelo.

Figura 30: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación del exponente (parámetro A (α)) de la función del modelo de flujo base.

Ahora, la sensibilidad se analiza para el almacenamiento máximo del tanque subterráneo, Zmax (simulaciones S14 y S15 de la Tabla 5). Una vez más se 1390 utiliza el mejor valor de C y los valores de referencia presentados en la Tabla 1. Estas simulaciones sirven para comprender la forma adecuada en que debe realizarse el ajuste del parámetro. Cuando el valor de Zmax se aumenta, el modelo produce caudales con magnitudes que no representan las condiciones reales del sistema hidrológico. Por otro lado, cuando se disminuye este parámetro el modelo no mejora su desempeño pero produce condiciones semejantes a las encontradas en las simulaciones anteriores.

Figura 31: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación del almacenamiento máximo del tanque subterráneo (parámetro Zmax) del modelo conceptual de flujo base.

Teniendo como referencia las simulaciones anteriores, se realizan combinaciones de diferentes valores de los parámetros del modelo de flujo base. Las Figuras 32 a 35 presentan las simulaciones S16 a S25 (Tabla 5) en las cuales, se modifican simultáneamente los valores de C, α , y Zmax. La mayor sensibilidad se presenta ante el aumento del valor de C, el coeficiente de la función exponencial, y la disminución de Zmax, el almacenamiento máximo del depósito, y en estos casos, α , el exponente de la función, parece tener una baja sensibilidad en las simulaciones. Como se mencionó, esta sensibilidad no es lineal y por lo tanto, no todos los aumentos de C o disminuciones de Zmax favorecen el incremento del volumen simulado. En la Figura 33, por ejemplo, bajo las combinaciones de parámetros utilizadas, se obtienen desempeños estadísticos que mejoran notablemente la representación del volumen simulado.

Adicionalmente, en la Figura 36 se prueba combinando las variaciones de los parámetros de flujo base y el factor de infiltración REFKDT (simulación S26 de la Tabla 5), esto con la finalidad de incrementar la sensibilidad del modelo a partir del efecto que puedan generar los parámetros sobre el volumen. A pesar de esto y en comparación con las simulaciones preliminares, puede notarse que se presentan variaciones iniciales en el volumen pero estas no se ven reflejadas en el periodo de recesión, característica recurrente en el análisis de sensibilidad realizado.

Figura 32: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación de los parámetros del modelo de flujo base.

Figura 33: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación de los parámetros del modelo de flujo base.

Figura 34: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación de los parámetros del modelo de flujo base.

Figura 35: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación de los parámetros del modelo de flujo base.

Figura 36: Caudales diarios observados y simulados en la cuenca Magdalena-Cauca para El Niño del año 2009-2010. Modificación de los parámetros del modelo de flujo base.

Figura 37: Criterios estadísticos obtenidos en las simulaciones de WRF-Hydro.

La evolución de los criterios estadísticos en cada simulación realizada se presenta en la Figura 37. El mejor desempeño, en términos estadísticos, obtenido a partir del análisis de sensibilidad fue para la simulación S11 de la Tabla 5. En esta simulación solamente se modificó el valor del parámetro C del modelo conceptual de flujo base, que en este análisis es el que genera una mayor sensibilidad del modelo para incrementar los volúmenes de agua simulados. Con estos resultados, se observa que hay un aumento considerable del valor de NSE (~ 0.62) y de la correlación (R ~ 0.95), y se reduce el error (RMSE ~ 26.36%) y el sesgo porcentual (PBIAS ~ -22.96%).

En general, la Figura 37 muestra que el modelo produce una alta correlación temporal (R) y valores positivos de NSE en la mayoría de los casos, para este último se alcanzan valores aceptables alrededor de 0.5. Predomina un valor negativo de PBIAS que indica la subestimación de los caudales por parte del modelo, con un orden de magnitud alrededor de 30 % y un RMSE(%) aproxi-

1435 mado de 40 %. A pesar de que no todas las simulaciones presentan desempeños estadísticos adecuados, se consideran importantes en este análisis para determinar la sensibilidad del modelo al aumento o no de los caudales simulados. Esto es importante también para comprender las magnitudes razonables que toma cada parámetro para su calibración en el área de estudio. Las condicio-

nes anteriores permiten inferir que la capacidad para mejorar el desempeño del modelo es reducida bajo las simulaciones planteadas y se requiere ahondar en algunos procesos físicos que no están representados en el modelo WRF-Hydro, por ejemplo, las interacciones del río con los sistemas de humedales, los cuales generan limitaciones en la dinámica de los caudales en la cuenca.

1445 3.3. Caudales mínimos durante otros eventos El Niño

1450

Las simulaciones realizadas para cada evento El Niño a partir de la mejor configuración de parámetros obtenida en la sección anterior, se presentan en la Figura 38. La subestimación de los caudales persiste en cada uno de los años El Niño, a excepción del año 2004–2005 donde se generan fluctuaciones que se alejan del comportamiento de los caudales observados, como se ha mencionado

- previamente. En general, el desempeño estadístico del modelo en cada año El Niño es mejorado en comparación con las simulaciones preliminares que sirvieron de punto de partida para evaluar el modelo.
- Sin embargo, debe profundizarse en la corrección de este sesgo del modelo, considerando aspectos relacionados con la evaluación de la representatividad espacial de los procesos hidrológicos, la dinámica regional asociada con la presencia de sistemas lénticos y estructuras de embalses y el papel regulador que ejerce el extenso complejo cenagoso en la variabilidad de los caudales en la cuenca, especialmente ante eventos El Niño que condicionan la oferta hídrica del sistema.

Figura 38: Caudales observados y simulados por WRF-Hydro en los cinco eventos El Niño durante la temporada seca (DEF) del periodo 1998–2012. WRF-Hydro DEF representa las simulaciones de partida y WRF-Hydro CAL las simulaciones obtenidas a partir de la mejor configuración de parámetros.

4. Conclusiones

1475

Las interacciones superficie-atmósfera juegan un papel importante para entender la dinámica de los procesos hidrometeorológicos que tienen lugar en el sistema terrestre. Dadas las potencialidades del acoplamiento de modelos atmósfericos e hidrológicos para la obtención de una mejor representación de estos procesos, toma especial relevancia la evaluación del desempeño de estas herramientas, principalmente en el contexto de regiones tropicales con características complejas como los Andes colombianos. Teniendo en cuenta esto, se resaltan a continuación los principales aspectos encontrados en este estudio.

Para el caso de estudio de la Macrocuenca Magdalena–Cauca, el análisis de los patrones espaciales y temporales de la precipitación y la temperatura de WRF evidencian que este modelo produce una aproximación realista en el sentido que permite representar adecuadamente las condiciones hidroclimáticas de la región para los periodos seleccionados. A pesar de encontrar una tendencia generalizada a la subestimación, particularmente para la temperatura superficial donde WRF produce un error sistemático ya reportado en la literatura, el

- modelo tiende a mejorar su desempeño y corregir los sesgos en comparación con
 ERA-Interim, un reanálisis meteorológico ampliamente utilizado en el campo de la modelación atmosférica. Estas consideraciones son importantes ante los retos que enfrentan los modelos para ser implementados bajo características complejas que tienen lugar en zonas tropicales.
- De acuerdo con esto, es posible extender los resultados encontrados por Posada-Marín et al. (2018) para el desempeño del modelo WRF en un área pequeña de los Andes tropicales hasta la Macrocuenca Magdalena–Cauca, el sistema hídrico más importante de Colombia y que abarca alrededor del 24% del territorio del país. Estos resultados favorecen la implementación del modelo
- WRF-Hydro acoplado unidireccionalmente con el modelo WRF y que busca una representación integrada de los procesos hidrológicos a partir de las retro-

alimentaciones atmosféricas.

El análisis de sensibilidad de los principales parámetros del modelo hidrológico evidencia que WRF-Hydro permite representar la variabilidad temporal de los caudales mínimos durante los eventos El Niño. Sin embargo, se presenta una subestimación de los volúmenes simulados, característica recurrente en cada uno de los años analizados del fenómeno de El Niño. Esta subestimación parece no estar relacionada con el acoplamiento unidireccional con el modelo WRF, ya que los forzamientos meteorológicos que retroalimentan a WRF-Hydro presen-

- tan un ajuste adecuado con las observaciones. A pesar de esto, debe ahondarse en la corrección de los sesgos encontrados en la precipitación y temperatura y cómo esto puede afectar el desempeño del modelo.
- De igual manera, se encontró poca variabilidad en el desempeño del modelo ante los distintos valores de algunos de los parámetros considerados. Dada la configuración del modelo y la gran cantidad de parámetros involucrados en las distintas conceptualizaciones físicas, el análisis de sensibilidad llevado a cabo puede estar sujeto a problemas de equifinalidad e interdependencia entre los parámetros. Esto dado que en el proceso de calibración varias combinaciones de parámetros pueden generar ajustes óptimos, lo que dificulta encontrar un conjunto único de parámetros que permita mejorar el desempeño del modelo. Además, se debe tener en cuenta que los parámetros que permiten obtener el mayor ajuste no siempre se encuentran relacionados con la mejor representación de los procesos físicos de la cuenca, característica que requiere un análisis riguroso.

Dado esto, se considera que la cuenca de estudio presenta características importantes que no logran ser representadas en el modelo, particularmente la influencia que tiene sobre la dinámica de los caudales el sistema de humedales que forma la depresión Momposina (Angarita et al., 2018). Estos humedales pueden almacenar grandes cantidades de agua que, de ser transferida a los ríos (p. ej. vía el suelo) podrían elevar los caudales mínimos durante las recesiones simuladas. La presencia de estos humedades y su interacción con los ríos no está

representada en las simulaciones de WRF-Hydro, lo cual puede contribuir a explicar la falta de agua en el modelo y debe ser motivo de un análisis detallado. A pesar de esto, se considera que esta herramienta de modelación tiene gran potencial para la representación de los procesos hidrometeorológicos, principalmente en torno al acoplamiento unidireccional y bidireccional con el modelo atmosférico WRF.

5. Recomendaciones

A partir del ejercicio de simulación hidrológica planteado en este estudio con el modelo WRF-Hydro, se profundizan en algunos aspectos que permitan mejorar la implementación futura del modelo en terrenos complejos como la McMC y así fortalecer el uso de esta herramienta con grandes potencialidades para los estudios de acoplamiento superficie-atmósfera.

Una característica importante de WRF-Hydro es la posibilidad de desarrollar simulaciones distribuidas que consideren la variabilidad espacial de los procesos hidrológicos, particularmente de los caudales simulados. En este estudio solamente fue considerada la evaluación del caudal en la estación Calamar, localizada antes del delta del Magdalena en el Caribe. En esta estación se representa el comportamiento general de los procesos hidrológicos que tienen lugar en toda la cuenca. Esta evaluación permitió desarrollar un análisis de sensibilidad con la

- finalidad de mejorar la representación del modelo para las características particulares del área de estudio. Este enfoque agregado para toda la cuenca permite obtener un panorama general de la capacidad del modelo para representar condiciones particulares asociadas con la incidencia de eventos El Niño y a partir de esto, hacer énfasis en los principales limitantes encontrados y cómo estos pue-
- den ser mejorados en simulaciones distribuidas. En este sentido, se tiene como trabajo posterior evaluar la representatividad espacial del modelo en diferentes

subcuencas, por ejemplo considerar las variaciones existentes entre la parte alta, media y baja de la cuenca. Esto permitirá identificar la capacidad del modelo para representar la alta variabilidad espacial en terrenos complejos como la McMC.

1555

En el análisis de sensibilidad desarrollado, la conceptualización del flujo base establecida en WRF-Hydro tuvo una gran relevancia en el desempeño del modelo. Aquí se realizó la suposición de considerar la unidad de agregación espacial subterránea igual a la cuenca hidrográfica superficial definida, lo que implica homogeneidad en la parametrización del flujo base para toda la cuenca. Teniendo en cuenta las características de variabilidad espacial de la McMC, que condicionan los procesos hidrológicos superficiales y subterráneos que allí tienen lugar, también se debe ahondar en futuros ejercicicos de modelación en la representatividad espacial de esta conceptualización. El modelo WRF-Hydro posibilita la discretización espacial de estos procesos, para lo cual se pueden considerar los flujos de aguas subterráneas regionales y los acuíferos establecidos en este sistema hídrico. Esto permitiría establecer distintos parámetros en el dominio de la cuenca y evaluar el desempeño espacial del modelo bajo estas condiciones.

- En este estudio no fueron implementados los módulos de enrutamiento en lagos y embalses. Sin embargo, dada la importancia que tiene la McMC para la generación hidroeléctrica del país, se debe considerar la regulación artificial aguas arrriba del sistema hídrico y sus efectos acumulativos a lo largo del río que puedan generar alteraciones hidrológicas en la distribución espacial y la variabilidad temporal de los caudales. Asimismo, comprender cómo estas estructuras puedan afectar la conectividad hidrológica con los sistemas de humedales en la cuenca. Se sugiere entonces, en futuras implementaciones del modelo, considerar la inclusión de este tipo de módulos de enrutamiento en las simulaciones, teniendo en cuenta la información requerida por el modelo para incluirlos y la
 evaluación de la adecuada representación de estos procesos hidrológicos en la
- cuenca. Esta actividad, en conjunto con la evaluación de la representatividad espacial de los caudales mencionada anteriormente, permitirá la comprensión

de la influencia que genera la presencia de embalses en los cambios de régimen de caudales y cómo estos efectos pueden alterar el comportamiento hidrológico general en la estación Calamar.

1585

En la representación del flujo en canales, considerar la dependencia de los parámetros al orden de Strahler puede generar posibles limitantes en el desempeño del modelo. Este orden ha sido ampliamente utilizado como sistema de clasificación de corrientes. Sin embargo, en la literatura se resaltan consideraciones importantes en torno a la sensibilidad que presenta esta clasificación a la forma en que se defina la red de drenaje. Además, no todos los canales clasificados en determinado orden se comportan de forma similar ni tienen asociados los mismos parámetros, esto dado que se consideran las conexiones entre los canales

- pero no la variabilidad geomorfológica dependiente de las características topográficas y fisiográficas de la cuenca. En este sentido, las versiones más recientes del modelo WRF-Hydro consideran diferentes opciones de enrutamiento en canales, entre estas se encuentra el enrutamiento basado en tramos que permite la representación vectorizada de los canales (a diferencia de la representación en cuadrícula implementada en esta versión) y posibilita la definición de las propiedades del canal en cada uno de los tramos establecidos. Se considera adecuado explorar de forma comparativa los distintos tipos enrutamientos en canales para
- La resolución espacial y temporal que se implemente en el modelo puede condicionar su desempeño. Resoluciones más gruesas requieren escalas temporales más precisas pero esto tiene implicaciones en el tiempo de ejecución del modelo. Por lo tanto, la selección de las distintas resoluciones espaciales y temporales requiere una correcta evaluación dependiente de las características del área de

establecer mejoras en la implementación del modelo en la McMC.

estudio, el objetivo que se tenga en la implementación del modelo, la resolución de la información requerida para su configuración y la capacidad computacional con la que se cuente. En la McMC se utilizó una resolución temporal de 3 horas para la ejecución del modelo de superficie terrestre y los distintos módulos hidrológicos. A pesar de los requerimientos de preprocesamiento, podría considerarse la comparación de los resultados obtenidos con diferentes escalas temporales y espaciales y a partir de estos, evaluar las variaciones en el desempeño del modelo.

La presencia de los sistemas de humedales de la depresión Momposina ubicada en la McMC genera dinámicas hidrológicas locales que no se encuentran representadas dentro de la conceptualización física de WRF-Hydro y que por lo 1620 tanto, pueden influenciar los sesgos encontrados en las simulaciones desarrolladas. Para ahondar en este sentido, es importante revisar en los mapas estáticos que utiliza el modelo cómo se representan espacialmente estos sistemas, dado que estará sujeto a la resolución del DEM que se utilice y cómo se definan la red de drenaje en esta área y estos cuerpos hídricos. A partir de las simulacio-1625 nes distribuidas será posible establecer, de forma comparativa con los registros disponibles en las estaciones en superficie, cómo es el desempeño del modelo en los caudales simulados en esta zona. Para esto se sugiere la posibilidad de realizar acoplamientos con módulos de enrutamiento superficial que permitan representar las interacciones río-humedal y la incidencia de esta dinámica en los 1630 caudales mínimos ante eventos El Niño.

Los forzamientos meteorológicos fueron considerados en el análisis de sensibilidad como factores que pueden incidir en los volúmenes de los caudales simulados. A pesar de no profundizarse con mayor detalle en el efecto de la precipitación simulada con WRF, se contempla la exploración de esta variable considerando reducir los sesgos encontrados en su comparación con las observaciones de referencia. Esto permitiría estimar el efecto que tiene la precipitación utilizada en el desempeño del modelo obtenido hasta ahora.

1640

Asimismo, en la literatura relacionada con casos de aplicación del modelo se han presentado distintos ejercicios comparativos que consideran diferentes fuentes de datos de entrada en el modelo, incluyendo interpolaciones de observaciones de estaciones en superficie, productos satelitales y como en este caso,

- variables simuladas por WRF. A partir de estos forzamientos meteorológicos se estiman las diferencias encontradas en los resultados del modelo. Con la idea entonces de fortalecer el desempeño de WRF-Hydro en la McMC, se considera adecuado utilizar otras bases de datos de forzamiento, principalmente de precipitación, que permitan analizar las incertidumbres inherentes a la información de entrada del modelo y si se generan mejoras representativas en los procesos
- hidrológicos de interés simulados en el área de estudio.

Finalmente, es importante resaltar que en este estudio se hace énfasis en la modelación superficie-atmósfera a partir del acoplamiento unidireccional entre
los modelos WRF/WRF-Hydro. Dado esto, se consideran los forzamientos meteorológicos obtenidos de las variables simuladas por WRF. Esto también con la intención de entender cómo es el funcionamiento y desempeño del modelo hidrológico y que esto permita posteriormente, teniendo en cuenta las recomendaciones aquí planteadas, continuar el camino hacia la implementación de un acoplamiento bidireccional, en el cual se representen las retroalimentaciones simultáneas entre los componentes superficiales y atmosféricos. Dicha labor

nes simultáneas entre los componentes superficiales y atmosféricos. Dicha labor posibilitaría analizar las potencialidades que buscan obtenerse con este tipo de acoplamientos.

1665 Agradecimientos

1670

Un especial agradecimiento a la Universidad de Antioquia que posibilitó el desarrollo de esta investigación a través del programa de Estudiante Instructor. Al profesor Juan Fernando Salazar, por todas las oportunidades brindadas y su apoyo y asesoría en este proceso de formación. A mis familiares y amigos por su apoyo incondicional.

Referencias

- Angarita, H., Delgado, J., Escobar-Arias, M. I., & Walschburger, T. (2013).
 Escenarios de alteración regional del regimen hidrológico en la cuenca Magdalena-Cauca por intensificación de la demanda para hidroenergía. In
- Memorias del Congreso Internacional AGUA, Universidad del Valle, Cali,
 Colombia (pp. 5303–5315). volume 5.
 - Angarita, H., Wickel, A. J., Sieber, J., Chavarro, J., Maldonado-Ocampo, J. A., Herrera-R, G. A., Delgado, J., & Purkey, D. (2018). Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia. *Hydrology and Earth System Sciences*, 22, 2839.
 - Arboleda, P. F., & Rodríguez, E. (2018). Determinando los efectos del cambio climático y del cambio en usos del suelo en la Macro Cuenca Magdalena Cauca utilizando el modelo de suelo-superficie e hidrológico MESH. Master's thesis Universidad Nacional de Colombia-Sede Bogotá.
- Arnault, J., Rummler, T., Baur, F., Lerch, S., Wagner, S., Fersch, B., Zhang, Z., Kerandi, N., Keil, C., & Kunstmann, H. (2018). Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: an ensemble analysis for Central Europe. Journal of Hydrometeorology, 19, 1007–1025.
 - Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen,
- S., & Kunstmann, H. (2016). Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for West Africa. Journal of Hydrometeorology, 17, 1489–1516.
- Bindlish, R., & Barros, A. P. (2000). Disaggregation of rainfall for one-way
 coupling of atmospheric and hydrological models in regions of complex terrain.
 Global and Planetary Change, 25, 111–132.
 - Butts, M., Drews, M., Larsen, M. A., Lerer, S., Rasmussen, S. H., Grooss, J., Overgaard, J., Refsgaard, J. C., Christensen, O. B., & Christensen, J. H.

(2014). Embedding complex hydrology in the regional climate system–

1700

1715

Dynamic coupling across different modelling domains. Advances in water resources, 74, 166–184.

- Castro, L. M., & Escobar, Y. C. (2010). Análisis de tendencia y homogeneidad de series climatológicas. Ingeniería de Recursos Naturales y del Ambiente, (pp. 15–25).
- 1705 Coe, M. T., Costa, M. H., & Soares-Filho, B. S. (2009). The influence of historical and potential future deforestation on the stream flow of the Amazon River–Land surface processes and atmospheric feedbacks. *Journal of hydrology*, 369, 165–174.
- CORMAGDALENA (2002). Documento final de síntesis de caracterización de
 la cuenca del río grande de la Magdalena. Plan de Ordenamiento y Manejo
 Integral de la Cuenca del Río Grande de la Magdalena -POMIM- Primera
 Fase, (p. 169).
 - CORMAGDALENA, F. S. A. S. (2017). Plan de manejo de la cuenca del río Magdalena-Cauca –Segunda Fase–. Technical Report Tech. Rep., CORMAG-DALENA Tech. Doc.
 - CORMAGDALENA, U. d. N. (2012). Informe Condiciones Canal de Acceso. Technical Report Tech. Rep., CORMAGDALENA Tech. Doc.
 - Craven, J., Angarita, H., Perez, G. C., & Vasquez, D. (2017). Development and testing of a river basin management simulation game for integrated ma-
- nagement of the Magdalena-Cauca river basin. Environmental Modelling & Software, 90, 78–88.
 - Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, d. P. et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation
- system. Quarterly Journal of the royal meteorological society, 137, 553–597.

- El-Samra, R., Bou-Zeid, E., & El-Fadel, M. (2018). To what extent does highresolution dynamical downscaling improve the representation of climatic extremes over an orographically complex terrain? *Theoretical and applied climatology*, 134, 265–282.
- 1730 Elgamal, A., Reggiani, P., & Jonoski, A. (2017). Impact analysis of satellite rainfall products on flow simulations in the Magdalena River Basin, Colombia. Journal of Hydrology: Regional Studies, 9, 85–103.
 - Fan, Y., & Van den Dool, H. (2008). A global monthly land surface air temperature analysis for 1948–present. Journal of Geophysical Research: Atmospheres, 113.

1735

- Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R., & Robock, A. (2007). Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. *Journal of Geophysical Research: Atmospheres*, 112.
- Gao, Y., Fu, J. S., Drake, J., Liu, Y., & Lamarque, J.-F. (2012). Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. *Environmental Research Letters*, 7, 044025.

Givati, A., Gochis, D., Rummler, T., & Kunstmann, H. (2016). Comparing one-

- way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the Mediterranean region. *Hydrology*, *3*, 19.
 - Gochis, D., Yu, W., & Yates, D. (2013). The WRF-Hydro model technical description and user's guide, version 1.0. Ncar technical document. *National Center for Atmospheric Research: Boulder, CO, USA*, (p. 120).
- 1750 Gochis, D., Yu, W., & Yates, D. (2015). The NCAR WRF-Hydro Technical Description and User's Guide. Technical Report version 3.0, Tech. Rep., NCAR Tech. Doc.

Goodall, J. L., Saint, K. D., Ercan, M. B., Briley, L. J., Murphy, S., You, H., DeLuca, C., & Rood, R. B. (2013). Coupling climate and hydrological models:

1755

1775

Interoperability through Web Services. Environmental Modelling & Software, 46, 250–259.

- Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. *Journal of hydrology*, 377, 80–91.
- 1760 Heikkilä, U., Sandvik, A., & Sorteberg, A. (2011). Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. *Climate* dynamics, 37, 1551–1564.
 - Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. *Geological society*

1765 of America bulletin, 56, 275–370.

- IDEAM (2018). Estudio Nacional del Agua. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), (p. 436).
- IDEAM, C. (2001). Estudio Ambiental de la Cuenca Magdalena-Cauca y elementos para su ordenamiento territorial. *Reporte técnico y base de datos de*
- Arcinfo, Bogotá, Colombia, Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), (p. 984).

Jiménez-Segura, L. F., Restrepo-Santamaría, D., López-Casas, S., Delgado, J., Valderrama, M., Álvarez, J., & Gómez, D. (2014). Ictiofauna y desarrollo del sector hidroeléctrico en la cuenca del río Magdalena-Cauca, Colombia. *Biota Colombiana*, 15.

Jones, P., & Harris, I. (2013). CRU TS3. 21: Climatic Research Unit (CRU) Time-Series (TS) version 3.21 of high resolution gridded data of month-bymonth variation in climate (Jan. 1901–Dec. 2012). NCAS British Atmospheric Data Centre, .

- Julien, P. Y., Saghafian, B., & Ogden, F. L. (1995). Raster-based hydrologic modeling of spatially-varied surface runoff. JAWRA Journal of the American Water Resources Association, 31, 523–536.
 - Kerandi, N., Arnault, J., Laux, P., Wagner, S., Kitheka, J., & Kunstmann, H. (2018). Joint atmospheric-terrestrial water balances for East Africa: a WRF-
- Hydro case study for the upper Tana River basin. Theoretical and Applied Climatology, 131, 1337–1355.
 - Kettner, A., Restrepo, J., & Syvitski, J. (2010). A spatial simulation experiment to replicate fluvial sediment fluxes within the Magdalena River Basin, Colombia. *The Journal of Geology*, 118, 363–379.
- 1790 Larsen, M. A. D., Refsgaard, J., Drews, M., Butts, M. B., Jensen, K., Christensen, J., Christensen, O. et al. (2014). Results from a full coupling of the hirham regional climate model and the mike she hydrological model for a danish catchment. *Hydrology and Earth System Sciences*, 18, 4733–4749.
- Leung, L. R., Kuo, Y.-H., & Tribbia, J. (2006). Research needs and directions of
 regional climate modeling using WRF and CCSM. Bulletin of the American Meteorological Society, 87, 1747–1752.
 - Li, L., Gochis, D. J., Sobolowski, S., & Mesquita, M. D. (2017). Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model. *Journal of Geophysical Research: Atmospheres*, 122, 4786–4807.

- Liu, Z., Ostrenga, D., Teng, W., & Kempler, S. (2012). Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bulletin of the American Meteorological Society, 93, 1317–1325.
- Mahoney, K., Alexander, M., Scott, J. D., & Barsugli, J. (2013). High-resolution
 downscaled simulations of warm-season extreme precipitation events in the
 Colorado Front Range under past and future climates. *Journal of Climate*, 26, 8671–8689.

Maxwell, R. M., Chow, F. K., & Kollet, S. J. (2007). The groundwater– land-surface–atmosphere connection: Soil moisture effects on the atmospheric

1810

1830

boundary layer in fully-coupled simulations. *Advances in Water Resources*, 30, 2447–2466.

- Maxwell, R. M., Lundquist, J. K., Mirocha, J. D., Smith, S. G., Woodward, C. S., & Tompson, A. F. (2011). Development of a coupled groundwater– atmosphere model. *Monthly Weather Review*, 139, 96–116.
- Mesa, Ó. J., & Peñaranda, V. M. (2015). Complejidad de la estructura espaciotemporal de la precipitación. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39, 304–320.
 - Mitchell, K. (2005). The community Noah land-surface model (LSM). User's Guide, 7.
- Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. *Transactions of the ASABE*, 50, 885– 900.
- Naabil, E., Lamptey, B., Arnault, J., Olufayo, A., & Kunstmann, H. (2017).
 Water resources management using the WRF-Hydro modelling system: Casestudy of the Tono dam in West Africa. *Journal of Hydrology: Regional Studies*, 12, 196–209.
 - Nakaegawa, T., & Vergara, W. (2010). First projection of climatological mean river discharges in the Magdalena River Basin, Colombia, in a changing climate during the 21st century. *Hydrological Research Letters*, 4, 50–54.
 - Ning, L., Zhan, C., Luo, Y., Wang, Y., & Liu, L. (2019). A review of fully coupled atmosphere-hydrology simulations. *Journal of Geographical Sciences*, 29, 465–479.
- Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E. et al. (2011). The community

Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. *Journal of Geophysical Research: Atmospheres*, 116.

Ogden, F. L. (1997). CASC2D reference manual. Department of Civil & Environmental Engineering, University of Connecticut, Storrs, .

- Overgaard, J., Rosbjerg, D., & Butts, M. (2006). Land-surface modelling in hydrological perspective? a review. *Biogeosciences*, 3, 229–241.
- Pereira, D. d. R., Martinez, M. A., da Silva, D. D., & Pruski, F. F. (2016).Hydrological simulation in a basin of typical tropical climate and soil using
- the SWAT Model Part II: Simulation of hydrological variables and soil use scenarios. *Journal of Hydrology: Regional Studies*, 5, 149–163.
 - Posada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2018). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for
- GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, (pp. 1–21).
 - Poveda, G. (2004). La hidroclimatología de colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. *Rev. Acad. Colomb. Cienc*, 28, 201–222.
 - Poveda, G., Alvarez, D. M., & Rueda, O. A. (2010). Hydro-climatic variabi-
- lity over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots. *Climate Dynamics*, 36, 2233–2249.
 - Poveda, G., Alvarez, D. M., & Rueda, O. A. (2011). Hydro-climatic variability over the andes of colombia associated with enso: a review of climatic processes
- and their impact on one of the earth's most important biodiversity hotspots. *Climate Dynamics*, 36, 2233–2249.

- Poveda, G., & Jaramillo, A. (2000). ENSO-related variability of river discharges and soil moisture in Colombia. *Biospheric Aspects of the Hydrologic Cycle*, 8, 3–6.
- Poveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in enso-related precipitation, river discharges, soil moisture, and vegetation index in colombia. *Water resources research*, 37, 2169–2178.
 - Poveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. *Geophysical research letters*, 27, 1675–1678.

- Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The diurnal cycle of precipitation in the tropical Andes of Colombia. *Monthly Weather Review*, 133, 228–240.
- Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill,
 D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E. et al. (2017).
 The Weather Research and Forecasting Model: Overview, System Efforts,
 and Future Directions. Bulletin of the American Meteorological Society, 98, 1717–1737.
- Ramirez, W., Rodriguez, E., Sanchez, J., Oliveros, J., Ardila, F., Cardona, C., & Bouaziz, L. (2015). Hydrologic Modeling of Principal Sub-Basins of the Magdalena-Cauca Large Basin Using Wflow Model. In 36th IAHR World Congress (pp. 1–10).
- Restrepo, J., & Kjerfve, B. (2000). Magdalena river: interannual variability
 (1975–1995) and revised water discharge and sediment load estimates. *Journal of hydrology*, 235, 137–149.
 - Restrepo, J., & Kjerfve, B. (2004). The Pacific and Caribbean rivers of Colombia: water discharge, sediment transport and dissolved loads. In *Environ*-

mental geochemistry in tropical and subtropical environments (pp. 169–187). Springer.

Restrepo, J. C., Miranda, J., & Restrepo, J. D. (2005). El río Magdalena: contexto global, suramericano y nacional. Los sedimentos del río Magdalena. Reflejo de la crisis ambiental, (pp. 55–66).

Restrepo, J. D., Kjerfve, B., Hermelin, M., & Restrepo, J. C. (2006a). Factors
controlling sediment yield in a major South American drainage basin: the
Magdalena River, Colombia. Journal of Hydrology, 316, 213–232.

Restrepo, J. D., & Syvitski, J. P. (2006). Assessing the effect of natural controls and land use change on sediment yield in a major Andean river: the Magdalena drainage basin, Colombia. *Ambio: a Journal of the Human Environment*, 35, 65–75.

- Restrepo, J. D., Zapata, P., Díaz, J. M., Garzón-Ferreira, J., & García, C. B. (2006b). Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. *Global and Planetary Change*, 50, 33–49.
- Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C. et al. (2019). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena-Cauca Macro Basin–Colombia. Water Resources Management, (pp. 1–21).
- 1910 Rodríguez, N., & Armenteras, D. (2005). Ecosistemas naturales de la cuenca del rio Magdalena. Los sedimentos del río Magdalena: reflejo de la crisis ambiental, (pp. 79–98).

Rodríguez, E., Werner, M., Sánchez, I., Ramírez, W., Zamora, D., Duque-Gardeazábal, Nicolás, & Arboleda Obando, P. (2016). El Proyecto

EartH2Observe y su caso de estudio en la Macrocuenca Magdalena–Cauca. Colombia.

1890

- Rogelis, M. C., & Micha, W. (2018). Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas. *Hydrology and Earth System Sciences*, 22, 853–870.
- Rummler, T., Arnault, J., Gochis, D., & Kunstmann, H. (2019). Role of lateral terrestrial water flow on the regional water cycle in a complex terrain region: investigation with a fully coupled model system. *Journal of Geophysical Research: Atmospheres*, 124, 507–529.
- Salazar, J. F., Villegas, J. C., Rendón, A. M., Rodríguez, E. et al. (2018). Scaling
 properties reveal regulation of river flows in the Amazon through a "forest reservoir". *Hydrology and Earth System Sciences*, 22, 1735–1748.
 - Sánchez, I. C., & Rodríguez, E. (2014). Evaluación del desempeño del esquema ISBA en la cuenca del río La Vieja-departamentos de Valle del Cauca, Risaralda y Quindío (Colombia). Master's thesis Universidad Nacional de Colombia-Sede Bogotá.

1930

- Sánchez-Lozano, J., Ardila, F., Oliveros, J., Ramirez, W., Cardona, C., Garay, C., Verschelling, E., Becker, A., & Zagonjoll, M. (2015). Hydraulic Modeling of Magdalena River using SOBEK. In *E-proceedings of the 36th IAHR world congress, The Hague, the Netherlands* (pp. 1–13).
- 1935 Sánchez-Lozano, J. L. et al. (2017). Modelación hidrológica e hidráulica acoplada de la cuenca media y baja del río Magdalena. Master's thesis Universidad Nacional de Colombia-Sede Bogotá.
 - Santanello Jr, J. A., Kumar, S. V., Peters-Lidard, C. D., Harrison, K., & Zhou, S. (2013). Impact of land model calibration on coupled land-atmosphere prediction. *Journal of Hydrometeorology*, 14, 1373–1400.
 - Schneider, U., Fuchs, T., Meyer-Christoffer, A., & Rudolf, B. (2008). Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach a. M., Germany, 112.

Senatore, A., Mendicino, G., Gochis, D. J., Yu, W., Yates, D. N., & Kunstmann,

H. (2015). Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. Journal of Advances in Modeling Earth Systems, 7, 1693–1715.

Seneviratne, S. I., Lüthi, D., Litschi, M., & Schär, C. (2006). Land-atmosphere coupling and climate change in Europe. *Nature*, 443, 205.

1950

- Seuffert, G., Gross, P., Simmer, C., & Wood, E. F. (2002). The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. *Journal of Hydrometeorology*, 3, 505–523.
- Shrestha, P., Sulis, M., Masbou, M., Kollet, S., & Simmer, C. (2014). A scaleconsistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow. *Monthly weather review*, 142, 3466–3483.
 - Silver, M., Karnieli, A., Ginat, H., Meiri, E., & Fredj, E. (2017). An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions. *Environmental modelling & software*, 91, 47–69.
 - Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2008). A description of the Advanced Research WRF version 3. NCAR Technical Report, .
 - Somos-Valenzuela, M., & Palmer, R. (2018). Use of WRF-Hydro over the Nort-
- heast of the US to Estimate Water Budget Tendencies in Small Watersheds.Water, 10, 1709.
 - Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38, 913–920.
- Verri, G., Pinardi, N., Gochis, D., Tribbia, J., Navarra, A., Coppini, G., & Vukicevic, T. (2017). A meteo-hydrological modelling system for the reconstruc-

tion of river runoff: the case of the Ofanto river catchment. Natural Hazards and Earth System Sciences, 17, 1741.

- Wagner, S., Fersch, B., Yuan, F., Yu, Z., & Kunstmann, H. (2016). Fully coupled atmospheric-hydrological modeling at regional and long-term scales: Develop-
- 1975
- ment, application, and analysis of WRF–HMS. *Water Resources Research*, 52, 3187–3211.
- Weng, W., Costa, L., Lüdeke, M. K., & Zemp, D. C. (2019). Aerial river management by smart cross-border reforestation. Land use policy, 84, 105–113.
- Wigmosta, M. S., & Lettenmaier, D. P. (1999). A comparison of simplified
 methods for routing topographically driven subsurface flow. Water Resources Research, 35, 255–264.
 - Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology-vegetation model for complex terrain. *Water resources research*, 30, 1665–1679.
- Willmott, C. J., & Matsuura, K. (2001). Terrestrial air temperature and precipitation: Monthly and annual time series (1950–1999) Version 1.02. Center for Climatic Research, University of Delaware, Newark, .
 - Wyszogrodzki, A. A., Liu, Y., Jacobs, N., Childs, P., Zhang, Y., Roux, G., & Warner, T. T. (2013). Analysis of the surface temperature and wind fore-
- cast errors of the NCAR-AirDat operational CONUS 4-km WRF forecasting system. Meteorology and Atmospheric Physics, 122, 125–143.
 - Xiang, T., Vivoni, E. R., Gochis, D. J., & Mascaro, G. (2017). On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRF-Hydro modeling system. *Journal of Geophysical Research: Atmosp*human 199, 0024, 0040.
- 1995 heres, 122, 9024–9049.
 - Xu, J., Rugg, S., Byerle, L., & Liu, Z. (2009). Weather forecasts by the WRF-ARW model with the GSI data assimilation system in the complex terrain areas of southwest Asia. Weather and Forecasting, 24, 987–1008.

Xue, Z., Gochis, D., Yu, W., Keim, B., Rohli, R., Zang, Z., Sampson, K., Dug-

- ²⁰⁰⁰ ger, A., Sathiaraj, D., & Ge, Q. (2018). Modeling Hydroclimatic Change in Southwest Louisiana Rivers. *Water*, 10, 596.
 - Yang, Y., Yuan, H., & Yu, W. (2018). Uncertainties of 3D soil hydraulic parameters in streamflow simulations using a distributed hydrological model system. *Journal of hydrology*, 567, 12–24.
- Yang, Z.-l. (2004). Modeling land surface processes in short-term weather and climate studies. In Observation, Theory And Modeling Of Atmospheric Variability: Selected Papers of Nanjing Institute of Meteorology Alumni in Commemoration of Professor Jijia Zhang (pp. 288–313). World Scientific.

Yepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). CHOCO-

2010 JEX: a research experiment focused on the CHOCO low-level jet over the far Eastern Pacific and Western Colombia. Bulletin of the American Meteorological Society, 100, 779–796.

Yucel, I., Onen, A., Yilmaz, K., & Gochis, D. (2015). Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model,

2015

data assimilation and satellite-based rainfall. *Journal of Hydrology*, 523, 49–66.

- Zabel, F., & Mauser, W. (2013). 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. *Hydrology and Earth* System Sciences, 17, 1705–1714.
- 2020 Zhang, H., Pu, Z., & Zhang, X. (2013). Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Weather and Forecasting, 28, 893–914.
 - Zhang, Z., Arnault, J., Wagner, S., Laux, P., & Kunstmann, H. (). Impact of lateral terrestrial water flow on land-atmosphere interactions in the Heihe river
- ²⁰²⁵ basin in China: Fully coupled modeling and precipitation recycling analysis. Journal of Geophysical Research: Atmospheres, .

Material suplementario de "Evaluación del modelo WRF/WRF-Hydro para representar caudales mínimos durante la temporada seca de años El Niño en la cuenca Magdalena-Cauca"

Laura Ortiz-Gaviria^{a,*}, Juan F. Salazar^a, José A. Posada-Marín^a

^aGIGA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia

1. Análisis de precipitación y temperatura del modelo WRF

1.1. Distribución espacial de la precipitación en cada año El Niño

Figura 1: Distribución espacial de la precipitación promedio de ERA-Interim y WRF (col 1) y los sesgos con CRU, GPCC y TRMM (cols 2 a 4) durante la temporada seca (DEF) del evento El Niño 1997–1998.

^{*}Laura Ortiz Gaviria

Email address: laura.ortizg@udea.edu.co (Laura Ortiz-Gaviria)

Figura 2: Distribución espacial de la precipitación promedio de ERA-Interim y WRF (col 1) y los sesgos con CRU, GPCC y TRMM (cols 2 a 4) durante la temporada seca (DEF) del evento El Niño 2002–2003.

Figura 3: Distribución espacial de la precipitación promedio de ERA-Interim y WRF (col 1) y los sesgos con CRU, GPCC y TRMM (cols 2 a 4) durante la temporada seca (DEF) del evento El Niño 2004–2005.

Figura 4: Distribución espacial de la precipitación promedio de ERA-Interim y WRF (col 1) y los sesgos con CRU, GPCC y TRMM (cols 2 a 4) durante la temporada seca (DEF) del evento El Niño 2006–2007.

Figura 5: Distribución espacial de la precipitación promedio de ERA-Interim y WRF (col 1) y los sesgos con CRU, GPCC y TRMM (cols 2 a 4) durante la temporada seca (DEF) del evento El Niño 2009–2010.

1.2. Distribución espacial de la temperatura en cada año El Niño

Figura 6: Distribución espacial promedio de la temperatura de ERA-Interim y WRF y su comparación con CRU, GHCN_CAMS y UD durante el evento El Niño 1997–1998.

Figura 7: Distribución espacial promedio de la temperatura de ERA-Interim y WRF y su comparación con CRU, GHCN_CAMS y UD durante el evento El Niño 2002–2003

Figura 8: Distribución espacial promedio de la temperatura de ERA-Interim y WRF y su comparación con CRU, GHCN_CAMS y UD durante el evento El Niño 2004–2005.

Figura 9: Distribución espacial promedio de la temperatura de ERA-Interim y WRF y su comparación con CRU, GHCN_CAMS y UD durante el evento El Niño 2006–2007.

Figura 10: Distribución espacial promedio de la temperatura de ERA-Interim y WRF y su comparación con CRU, GHCN_CAMS y UD durante el evento El Niño 2009–2010.

 $1.3. \quad Distribución \ temporal \ de \ la \ precipitación \ en \ cada \ subcuenca \ durante \ los$

años El Niño

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Figura 11: Comparación de la precipitación promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 1997–1998.

 $\overline{7}$

Figura 12: Comparación de la precipitación promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2002–2003.

Figura 13: Comparación de la precipitación promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2004–2005.

Figura 14: Comparación de la precipitación promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2006–2007.

Figura 15: Comparación de la precipitación promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2009–2010.

1.4. Distribución temporal de la temperatura en cada subcuenca durante los años El Niño

Figura 16: Comparación de la temperatura promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 1997–1998.

Figura 17: Comparación de la temperatura promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2002–2003.

Figura 18: Comparación de la temperatura promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2004–2005.

Figura 19: Comparación de la temperatura promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2006–2007.

Figura 20: Comparación de la temperatura promedio de ERA-Interim y WRF con las estaciones del IDEAM en diferentes áreas de la cuenca Magdalena-Cauca para la temporada seca del evento El Niño del año 2009–2010.