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ABSTRACT 

This research aims to identify the variables having the greatest influence on the 

performance of a warehouse with a picker-to-parts storage system in a scenario of high 

seasonal demand and products with short- and long-life cycles simultaneously. Systems 

dynamics and statistical screening were used to address this situation from a systemic 

point of view. The main results show that the picking percentage and the receipt 

percentage on pallets are the dominating parameters driving the warehouse's total 

operating cost. Contrarily, the cross-docking percentage and, the shipment percentage on 

pallets do not significantly affect the total operating cost. Using the data of a Colombian 

warehouse as a case study, the best values of the different parameters lead to a total 

operating cost reduction of 38% compared to the case base scenario; if the effect of the 

season is eliminated, it decreases to 41%, but if the flow of the season doubles, it 

decreases by 21%. The reductions in the total operating cost are generated by the 

reduction of the penalties in each process under the best values of each parameter. By 

contrast, the receipt percentage on pallets, picking percentage, cross-docking percentage 

and, shipment percentage, do not affect the fill rate of receipt and shipment within the 

uncertainty ranges analyzed.  

Keywords: Warehouse Operation, Warehouse Performance, Seasonal 

Products, System Dynamics, Statistical Screening 
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1. Introduction 

Currently, globalization, the advancement of the world economy, technological 

development, and the complexity of consumer orders have caused an increase in the 

demand for transportation and storage services (Karim, 2020). The demand is 

increasingly changing, with a greater variety of products, smaller orders, and increasingly 

shorter response times (Binos, Bruno, & Adamopoulos, 2021; Marchet, Melacini, & 

Perotti, 2015). Warehouses are under constant pressure to increase productivity and 

precision while reducing costs and improving customer service (Karim, 2020). 

In a supply chain (SC), one of the most important nodes is the warehouse ( Popovi, 

2021; Staudt, Alpan, Di Mascolo, & Rodriguez, 2015). Taking into account that its total 

operating cost is between 22-24% of total logistics costs (Baker & Canessa, 2009; 

Havenga et al., 2014). Moreover, 10% of warehouses handle only products on full pallets, 

while 66% of warehouses handle a mix of pallets, cases, and broken cases (Binos et al., 

2021). For instance, in Colombia, on average the logistics cost as a percentage of the sale 

represents 13.5%, with the costs associated with warehousing being 46.5% of this value 

(Ministerio de Transporte, 2018). 

Although the literature reports that most of the manual warehousing in Western 

Europe are picker-to-parts systems (van Gils, Ramaekers, Caris, & de Koster, 2018), and 

they are still the dominant order fulfillment solution worldwide (Yang et al., 2021), 

researchers have focused on analyzing warehouses with parts-to-picker and automatic 

systems (de Koster et al., 2007; Yang et al., 2021). In Colombia, for example, to date, 

there is only one fully automated warehouse.  

Even though the future of warehouses is automation, not all warehouses can be 

automated in a viable way. The high cost of automation, the size of some of them, and 

the irregular and bulky shapes of the products are among the main barriers to the 

automation of warehousing operations  (Binos et al., 2021; Yang et al., 2021). In a picker-

to-parts storage system, the order picker must walk or drive through the aisles of the 

warehouse to collect the items (Berg & Zijm, 1999), the use of labor is intensive, 

especially in order picking operations (de Koster et al., 2007; Wang et al., 2019), and it 

is the most expensive resource of this type of warehouse (Aminoff et al., 2002; Amorim-

lopes et al., 2020). 

Considering the main processes of a warehouse (receipt, storage, order picking, 

and shipping) (Shah & Khanzode, 2017), the academic literature has mainly focused on 

the storage and order picking processes (van Gils et al., 2018). According to Gu et al. 

(2007), these are the processes that have the greatest impact on general operational 

performance, order picking being the main process in most warehouses (Davarzani & 

Norrman, 2015; de Koster et al., 2007), and accounting for more than 50% of the total 

operating cost (Chen, Cheng, Chen, & Chan, 2015; Staudt, Alpan, Di Mascolo, & 

Rodriguez, 2015). On the other hand, research on the receipt and shipping processes is 

rather scarce (Davarzani & Norrman, 2015). 

In general, the vast majority of scientific articles that analyze warehouse 

performance address isolated, well-defined problems that can be tackled using analytical 

tools (Rouwenhorst, B., B. Reuter, V. Stockrahm, G.J. van Houtum, R.J. Mantel, 2000). 

For instance, the assignment of SKUs (Stock Keeping Unit) to various warehouse 

departments, the scheduling of inventory movements between departments, the 

assignment of SKUs to different zones (zoning), and assigning storage locations (SLAP) 
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within a department/zone (Gu et al., 2007). Moreover, several authors that have studied 

individual planning problems that affect warehouse performance, conclude that these 

planning problems are interdependent and mutually affect each other (Shah & Khanzode, 

2017; van Gils et al., 2018). According to (Davarzani & Norrman, 2015), most research 

on warehouse planning problems neglects the dynamism it faces, therefore, optimizing 

each problem separately can generate a non-optimal solution for overall performance 

from the global warehouse point of view (van Gils et al., 2018). 

In practice, these solutions are difficult to implement because the models are 

solved with enormous assumptions or limitations (Shah & Khanzode, 2017). Most of the 

published works are in deterministic conditions, although the business environment 

contains many uncertainties and risks (Davarzani & Norrman, 2015). This requires a 

solution that promotes the improvement of the general performance of the warehouse 

(Shah & Khanzode, 2017), considering, simultaneously, multiple planning problems to 

face the new challenges of the market (van Gils et al., 2018). This new approach and real-

life aspects will make warehouse research more valuable in practice (van Gils et al., 

2018). 

Likewise, external variables that affect warehouse performance must be analyzed. 

For instance, (Gu et al., 2007) state that, the flow of material through the warehouse 

changes dynamically due to the seasonality of demand and the life cycles of the products. 

According to (de Koster et al., 2007), marketing channels, customer demand patterns, 

inventory replenishment patterns, and the state of the economy also affect warehouse 

performance. 

In particular, the life cycle of products plays an important role in the management 

of today's supply chains, where multiple products must be distributed, each with a 

different life cycle. The simultaneous flow of different types of products causes important 

challenges in the warehouse, since they use similar resources, and may negatively impact 

their costs (Guthrie et al., 2017). Furthermore, the seasonality of demand is a very 

common external factor that affects warehouse performance but is difficult to manage 

efficiently (Tayal & Sharma, 2014). Seasonality causes fluctuations throughout the year 

that trigger the hiring of temporary workers (Nikaido et al., 2006), the scheduling of 

overtime (Takey & Mesquita, 2006), or the rental of more space (Tayal & Sharma, 2014) 

and increasingly efficient warehouse processes (Cagliano et al., 2011). 

Most of the studies have been aimed at improving the performance of the 

warehouse under an analytical approach. That is, they decompose the warehouse into 

processes or parts of processes and then study them in detail and under ideal conditions, 

overlooking a whole-system vision. However, this approach is valid, in principle, for 

systems with simple relationships, but it is not enough when it comes to complete 

systems, such as warehouses (Cagliano et al., 2011; Staudt et al., 2015). Furthermore, 

warehouses present an increasing complexity due to the possible non-linear relationships 

between their variables that affect their performance (Cagliano et al., 2011; Li, 2016). 

Therefore, all these previous arguments require that researchers focus their efforts on 

generating knowledge about the impact of variables on the dynamic behavior of the 

warehouse, under a systemic approach that allows to better evaluate their performance. It 

is here, where SD appears as a useful tool. As s very flexible modeling and simulation 

technique, SD allows the analysis of complex systems (Forrester, 1961), and the design 

of policies (Greasley, 2005), as well as the understanding of the behavior of output 

variables and the influence that input parameters have on system performance.  
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Therefore, the main objective of this thesis is to develop a methodology that 

considers the warehouse as a system and that determines the degree of impact of a set of 

selected input variables on its general performance. The warehouse under study will have 

a picker-to-parts order picking system, under the effect of products with seasonal demand 

and long-life (line) and short-life (season) cycles. The proposed methodology leverages 

SD and statistical screening (SS) as the main tools for the analysis. Moreover, real data 

from a food company will be used as a case study. 

 

2. Literature review 

2.1. Warehouse processes and typology 

Consistent with Khan, Dweiri, & Chaabane (2016), a warehouse is a node of the SC where 

raw materials, products in process, or finished goods are stored. Its main processes can 

be decomposed into reception, storage, order picking, and shipping ( J.P. van den Berg, 

1999; van Gils et al., 2018). In all processes, decisions are made that affect the general 

performance of the warehouse, such as the allocation of resources (Reyes et al., 2019). 

The receipt process consists of assigning docks to vehicles and scheduling and executing 

unloading activities (Gu et al., 2007). The product is unloaded at the reception docks, 

quantities are verified and random quality controls are carried out (J.P. van den Berg, 

1999). Storage is defined as the movement of materials from the unloading area to the 

place defined for it (Johnson & McGinnis, 2011; L.-R.Yang & Jieh-Haur Chen, 2012). 

This involves marking the storage unit (for example pallets) and on occasions 

repackaging (e.g. full pallets or cases) (de Koster et al., 2007; J.P. van den Berg, 1999). 

Order picking consists of obtaining the correct quantity from the correct references for a 

given set of sales orders (de Koster et al., 2007). Finally, shipping involves scheduling 

and assignment of trucks to docks (Gu et al., 2007) and, the orders packing after picking 

and the loading of trucks (Staudt et al., 2015). The flow of products through all the 

processes of the warehouse can occur on pallets, cases, or broken cases (de Koster et al., 

2007). Additionally, cross-docking is a shipping strategy that involves moving products 

from the receiving dock to the shipping dock with minimal dwell time between them. 

Cross-docking can lead to decreases in order cycle time, thus improving the flexibility 

and responsiveness of the warehouse (Apte & S. Viswanathan, 2010). 

According to their level of automation, order picking systems are classified into 

three types: picker-to-parts systems, parts-to-picker systems, and automatic systems (de 

Koster et al., 2007; J.P. van den Berg, 1999). In picker-to-parts systems, the order picker 

walks or drivers an order-pick truck through the aisles of the warehouse to collect the 

different items (de Koster et al., 2007; J.P. van den Berg, 1999). Parts-to-picker systems 

are made up of automated storage and retrieval systems (AS / RS), generally using 

equipment that retrieves one or more load units and brings them to a collection location 

(de Koster et al., 2007). At this location, the order picker takes the required quantity and 

then the remaining load is stored again (de Koster et al., 2007). In automatic systems, 

order picking is carried out at high speed, with non-fragile articles, of uniform shapes and 

small or medium size (J.P. van den Berg, 1999). Human resources are not used to carry 

out the processes (de Koster et al., 2007; J.P. van den Berg, 1999). 

Picker-to-parts systems have basic variants that include batch picking and discrete 

picking (order selection) (de Koster et al., 2007; J.P. van den Berg, 1999). Consistent with 

de Koster et al. (2007), in the case of batch picking, orders from multiple customers are 

picked up by an order preparer while sorting simultaneously (sort-while-pick) or carried 

out after the picking process has finished (pick-and-sort). In batch picking, zoning can be 
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done, which means that a storage area is divided into several parts, each with different 

order pickers. Zoning can be progressive or synchronized. In progressive zoning, an order 

picker begins picking and when his part is finished, he delivers it to the next picker who 

continues the selection. This process is repeated until the different orders are finished in 

the selection wave. In synchronized zoning, multiple order pickers begin the separation 

process simultaneously, but each in a different zone. Partial orders are merged after 

selection. In picker-to-parts systems, the use of labor is intensive, especially in order 

picking (de Koster et al., 2007; Wang et al., 2019), being the most expensive resource in 

this type of warehouse (Aminoff et al., 2002; Amorim-lopes et al., 2020). 

2.3. Warehouse performance evaluation 

To improve warehouse performance, the scientific community has studied the problems 

facing warehouses. Below is a summary of a selected subset of works that describe the 

contributions from an analytical approach. According to that considers that the whole is 

the sum of its parts and that a general explanation is made up of a set of individual 

explanations (Garbolino et al., 2019). 

 A seminal literature review on warehouse planning problems (Gu et al., 2007) 

showed that research on these systems is unbalanced. For example, SLAP (assignment 

storage locations) represented 32% of the total literature surveyed, while zoning less than 

6%. Moreover, these authors also found an imbalance in the treatment of problems that 

arise in order picking, routing representing 38%, while batching 12%, and sorting just 3% 

of the total literature surveyed.  

Similarly, Davarzani & Norrman (2015), conclude that most of the works consider 

travel time as the main indicator to optimize when evaluating the order picking process. 

The authors identified that the most widely used research method is mathematical 

modeling but without the use of data from real cases (51.9% out of the papers they 

surveyed used synthetic data). Finally, they state that static information is the main mode 

of entry for the problems addressed, while the uncertainty of the business environment is 

generally neglected. 

A more recent literature review on warehouse planning problems (van Gils et al., 

2018), states that the number of articles considering multiple problems of the order 

picking planning process has increased considerably in the last decade (2008-2017). 

However, the publications continue to focus on SLAP, batching and routing. According 

to the authors, the literature has focused heavily on reducing order picking time. They 

also conclude that there is a need to integrate more planning problems and include real-

life features. In a recent literature review on SLAP  (Reyes et al., 2019), the authors 

highlight that this is one of the problems that has received the most attention from the 

scientific community.  

However, although several decision support models have been proposed in the 

literature to improve warehouse performance, considerable difficulties continue to be 

found in the application of these models  (Gu et al., 2007). In practice, it is difficult to 

implement such algorithms due to the hard assumptions often made (Moeller, 2011), since 

they are solved with enormous assumptions or limitations (Shah & Khanzode, 2017). 

Most of the published investigations are found in deterministic conditions, although the 

business environment contains many uncertainties and risks (Davarzani & Norrman, 

2015). For instance research on order picking systems is subject to a large number of 
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assumptions to simplify the order picking operations (Davarzani & Norrman, 2015; de 

Koster et al., 2007; van Gils et al., 2018). 

Similarly, Gu et al. (2007), state that there is little evidence of collaboration 

between the academic research community and industry, and many of the research results 

are not sufficiently communicated to the industry to have a significant impact on the 

practice of warehouse operations. Furthermore, according to Carter (2008), the gap 

between research and practice is generated because the knowledge produced is not 

relevant to managerial needs or is not adequately transferred (Davarzani & Norrman, 

2015). Finally, according to Shah & Khanzode (2017), most academics focus on 

quantitative research methods and mathematical models without any real case example 

therefore more simulation-based studies or real case studies are required. 

A major drawback in the vast majority of scientific papers is that they address 

well-defined isolated problems and are typically analytical (Rouwenhorst, B., B. Reuter, 

V. Stockrahm, G.J. van Houtum, R.J. Mantel, 2000), although there is some research on 

dynamic planning of warehouse operations (Gu et al., 2007). According to Davarzani & 

Norrman (2015), most publications about warehouse planning problems neglect the 

dynamism it faces, therefore, optimizing each problem separately and in a static 

environment, although several authors have found that all warehouse operational 

problems are interrelated and mutually affect each other (Shah & Khanzode, 2017), 

proposing an analysis under a systemic approach. In this context, simulation appears as a 

valuable tool to evaluate and analyze warehouse performance. In the next section, we 

focus on SD applied to warehouse modelling and analysis. For the traditional discrete 

event simulation approach, the interested reader is referred to (Agalianos et al., 2020; 

Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, 2015). 

Consistent with Garbolino et al. (2019), the systemic approach states that 

phenomena and problems are considered systems. Furthermore, that every system has 

properties that cannot be reduced to the sum of the properties of its components. 

According to Durand (2006), the systemic approach is characterized by four main 

concepts: interaction, comprehensiveness, organization, and complexity (Garbolino et al., 

2019). Interaction is related to causality in a system, where the elements that compose it 

interact with each other. They perform actions on other elements and in turn are subjected 

to actions of other elements. Completeness means that not everything can be reduced to 

the sum of its parts. There are specific properties that depend on a subset of the system or 

the entire system. Organization refers to both the structure and the functioning of the 

system and suggests, implicitly, a goal. According to Donnadieu and Karsky (2002), the 

complexity of systems generally suggests that it is difficult to predict the dynamics or 

evolution of a system (Garbolino et al., 2019). These four main approaches reflect the 

difficulties of studying, understanding, and acting on complex systems. However, one 

method to evaluate, diagnose, and understand these types of systems is systemic modeling 

(Garbolino et al., 2019). 

2.4. Warehouse performance evaluation: Simulation 

Several works have addressed warehouse planning problems under a systemic approach, 

using simulation as an analysis method and taking into account that the warehouse is a 

complex system. Indeed, Cagliano et al. (2011) and Li (2016), the warehouses present an 

increasing complexity due to the possible non-linear relationships between their 

variables, which can affect their performance. Furthermore, the use of an analytical 
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approach, in principle, is not enough when it comes to complex systems, such as 

warehouses (Cagliano et al., 2011; Razik et al., 2016; Staudt et al., 2015). 

 According to  Wai & Chooi-Leng (2011), the application of SD is being 

considered one of the best methods to increase competitiveness. It is a suitable 

methodology for studying complex feedback systems and provides a means of 

understanding the causes of their behavior. Unlike other simulation methodologies, SD 

highlights the structural aspects of the system that explain the observed behavior (Bala et 

al., 2017; Sterman, 2000). This simulation approach has four steps for its implementation: 

(1) identification of the problem and analysis of the behavior of the key variables, (2) 

creation of a qualitative or causal diagram, (3) creation of a quantitative model with stocks 

and flows, and (4) evaluation and analysis of the model (Aracil, 1995). The variables 

within the model are classified into stocks, flows, and auxiliary variables (Sterman, 2000). 

Flows indicate the rate of variation of variables as a function of time and stocks are the 

result of the difference between inputs and outputs (Sterman, 2000). 

 Under SD, several works have been developed on improving the performance of 

warehouses. For example, Cagliano et al. (2011), propose an analysis of different supply 

and personnel allocation policies that affect the dynamics of the general operational 

performance of the warehouse. In particular, the study suggests that the flexible use of 

human resources, the outsourcing of some warehouse operations, such as the counting of 

items in the receipt process, and the sourcing of reliable, but more expensive suppliers, 

generate total cost savings of the warehouse, reduced inventory and shorter delivery 

times. Yuan X. & Zhang Q. (2016) developed a system that integrates the warehouse and 

the distribution process. Through an information exchange mechanism, reduced lead time 

through active coordination and prediction of the warehouse target inventory, they 

reduced the average total cost and the possibility of supply shortages, ensuring the quality 

and speed of delivery, improving buyers' shopping experience. Sadowski, 

Wojciechowski, & Engelseth (2021) investigate the flexibility of the warehouse in a 

supply network. The simulation revealed that external changes to the warehouse affect its 

daily activities and the reorganization of processes. This occurs because the warehouse 

processes, together, do not necessarily react in the same way to a disturbance of the 

environment. Chan & Tang (2007), investigate the connections of order demands, 

expiration dates, and production schedules, to minimize storage time. Zhang & Yi (2013), 

establish a model of the express logistics distribution system to analyze the behavior of 

the warehouse by simulating inventory levels. They consider two measures to deal with 

the difficulties that the warehouse suffers when it is exposed to high levels of demand: 

incorporating new sorting devices and hiring temporary sorters. Rodrigues, Motlagh, & 

Rao (2011), developed a simulation model to optimize the space allocation of the different 

products inside the warehouse, to use space effectively, and improve the efficiency of 

inventory management. The maximum capacity of the warehouse was the modified input 

parameter for the different analyzes. Agumas & Jayaprakash (2019), implemented a 

simulation model to improve the optimal amount of replenishment of expired and out-of-

stock products within the warehouse, due to fluctuating market demand. The 

implementation of the defined strategies generates savings in the total cost of operation, 

decreases the loss of sale, the cost of the expired product, the maintenance cost, and the 

order cost. 

In general, the literature that addresses warehouses under a systemic approach has 

identified those variables that affect warehouse performance, but not the degree of impact 

that each one has on all processes simultaneously, which is, ultimately, the objective of 

this research. 
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2.5. Warehouse Performance Measurement 

Performance measurement can be defined as the process of quantifying the efficiency and 

effectiveness of an action or process (Neely et al., 2005). According to Kusrini et al. 

(2018), there are several methods to classify the metrics that measure the performance of 

a warehouse. These metrics, in general, have three components that cross the processes 

of a warehouse, time, space, and cost. Napolitano (2003), affirms that these three 

components are the three cornerstones by which an efficient and effective warehouse is 

measured. 

We reviewed a total of 17 documents to identify the different metrics for 

warehouse performance measurement.  We found that these metrics can be grouped into 

the following dimensions: time, quality, cost, productivity, efficiency, safety, customer 

satisfaction, environment, and flexibility. The dimensions with the greatest presence were 

quality (32%), time (18%), productivity (16%), cost (15%), and efficiency (15%). 

However, very few metrics were associated with the environment, customer satisfaction, 

flexibility, and security. In total, 67 performance indicators were reported and 11 of them 

represent 39% of the total number of times that they were included in at least one article 

(see Table 1). 

 

Table 1. Main indicators reported in the literature 

Dimensions Indicator name 
No. of 
articles 

Authors 

Quality 

 

On-time delivery 

 
9 

(Staudt et al., 2015); (Kuo et al., 1999); (Indrawati et al., 2018); (Sakun 
Boon-itt, 2018); (Mascolo et al., 2014); (Banomyong & Supatn, 2011); 
(Gotzamani, 2010); (Chae, 2009); (Buonamico et al., 2017) 
 

Time Order lead time 8 

(Staudt et al., 2015); (Indrawati et al., 2018); (Sakun Boon-itt, 2018); 
(Mascolo et al., 2014); (Banomyong & Supatn, 2011); (Gotzamani, 2010); 
(Chae, 2009); (Kusrini et al., 2018) 
 

Quality 

 

Picking accuracy 

 
8 

(Staudt et al., 2015); (Kuo et al., 1999); (Kusrini et al., 2018); (Sakun Boon-
itt, 2018); (Mascolo et al., 2014); (Banomyong & Supatn, 2011); 
(Buonamico et al., 2017); (Baker & Halim, 2007) 
 

Quality 

 

Physical inventory 
accuracy 

 

7 

(Staudt et al., 2015); (Indrawati et al., 2018); (Sakun Boon-itt, 2018); (Chae, 
2009); (Kusrini et al., 2018); (Buonamico et al., 2017); (Baker & Halim, 
2007) 
 

Quality 

 

Shipping accuracy 

 
7 

(Staudt et al., 2015); (Kusrini et al., 2018); (Sakun Boon-itt, 2018); (Mascolo 
et al., 2014); (Banomyong & Supatn, 2011); (Buonamico et al., 2017); 
(Baker & Halim, 2007) 
 

Productivity 

 

Picking productivity 

 
7 

(Staudt et al., 2015); (Kusrini et al., 2018); (Sakun Boon-itt, 2018); (Mascolo 
et al., 2014); (Ganesan et al., 2009); (Gu et al., 2007); (Evangelista et al., 
2012) 
 

Efficiency 

 

Warehouse 
utilization 

7 

(Staudt et al., 2015); (Kuo et al., 1999); (Sakun Boon-itt, 2018); (Mascolo 
et al., 2014); (Gu et al., 2007); (Evangelista et al., 2012); (de Koster et al., 
2007) 

Time 

 

Queuing time 

 
6 

(Staudt et al., 2015); (Kusrini et al., 2018); (Sakun Boon-itt, 2018); 
(Banomyong & Supatn, 2011); (Ganesan et al., 2009); (Chae, 2009) 

 

Cost 
 

Warehousing costs 

 
6 

(Staudt et al., 2015); (Indrawati et al., 2018); (Sakun Boon-itt, 2018); 
(Mascolo et al., 2014); (Kuo et al., 1999); (Shah & Khanzode, 2017) 
 

Cost 
 

Distribution cost 6 

(Staudt et al., 2015); (Kusrini et al., 2018); (Sakun Boon-itt, 2018); (Mascolo 
et al., 2014); (Banomyong & Supatn, 2011); (Ganesan et al., 2009);  

 

Productivity 

 

Receiving 
productivity 

 

6 
(Staudt et al., 2015); (Kuo et al., 1999); (Kusrini et al., 2018); (Mascolo et 
al., 2014); (Ganesan et al., 2009); (Evangelista et al., 2012) 
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However, according to Rouwenhorst, B., B. Reuter, V. Stockrahm, G.J. van 

Houtum, R.J. Mantel (2000), the trade-offs between costs and operational performance 

of warehouses will be the subject of future studies. Gu et al. (2007) state that space, labor, 

and equipment must be allocated among the different warehouse processes to achieve the 

system requirements in terms of capacity, service level, and minimum cost. In addition, 

according to Shah & Khanzode (2017), the cost and the level of customer service should 

be considered as performance metrics that focus on the operational level. van Gils et al. 

(2018) propose that future research should additionally focus on other performance 

measures, such as the fill rate, which is rarely used as a performance measure, despite the 

importance of the quality of customer service. Therefore, to achieve a balance between 

the reduction of total warehouse costs and customer service, as output variables to 

measure the general performance of the warehouse, the total operating cost and the fill 

rate in receipt and shipment were defined as performance measures in this thesis. 

In summary, as described above, the literature that seeks to improve warehouse 

performance has focused on two main processes, developing solutions, in general, for 

individual and well-defined warehouse planning problems. Most of the investigations 

have developed an analytical approach, using exact methods, heuristic, and metaheuristic 

methods. However, some authors have approached the analysis of warehouses under a 

systemic approach, using SD and identifying variables that affect warehouse 

performance, but not the degree of impact that each one has on all processes 

simultaneously. 

3. Materials and methods 

The proposed methodology aims to determine the degree of simultaneous impact that the 

selected input parameters have on the general performance of a warehouse with a Picker-

to-parts order picking system, under the effect of seasonal demand and products with 

long- and short-life cycles. The research was divided into two stages, in the first stage, an 

SD model was developed to represent the system and in the second an SS analysis was 

performed to determine which variables impact the performance of the warehouse the 

most.  

3.1. Modelling 

3.1.1. Real warehouse description 

In Figure 1, there is an aggregated representation of the product flow of the warehouse 

chosen for the development of this research. The product flow begins in the receipt 

process when a supplier arrives at the warehouse. The supplier can bring the product on 

pallets or in boxes according to the supply contract conditions. Generally, the product that 

arrives on pallets is delivered by an adjacent production plant. If the product arrives in 

boxes it comes from external suppliers. In the process of receipt, the product is unloaded 

at the reception docks, where quantities are verified and safety and quality controls are 

carried out. 
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Figure 1. Description of the real warehouse 

Once the product is on the receiving docks, the storage process is activated, which 

is nothing more than moving the different products to a defined area for its storage until 

it is used to fulfill a customer order. All storage is done on pallets and is divided into two 

stages. First, inventory from the receiving docks is moved to a location close to where the 

product will be stored, known as pre-storage. Then a team places each pallet in a reserve 

storage area (storage at height). From the reserve storage area, replenishment is made to 

an area called “storage for picking”. 

The order picking process is activated with the arrival of the orders. Orders are 

divided into full pallets and single boxes. Full pallets are selected from reserve storage 

and the cases from “storage for picking”. There is a resource assigned for each selected 

path. After the selection of the product, the sorting is carried out (pick-and-sort). The 

selected and classified product is located in the exit docks (load). Finally, the product that 

is at the departure docks is loaded into vehicles to be delivered to the different customers. 

The product can be loaded also on pallets or boxes. 

Receiving and shipping process activities such as truck-dock assignment, order-

truck assignment, and truck dispatch schedule are not taken into account in this research. 

The cross-docking strategy is not currently implemented in the warehouse. However, we 

analyze in our experiments the impact of such a strategy in the performance of the 

warehouse operations. Each process has an assigned resource that remains fixed 

throughout the entire simulation period. 

To develop the simulation model, the limits of the system and its key variables 

were defined taking into account the main processes of a warehouse: receiving, storing, 

order picking and shipping, (Rouwenhorst et al., 2000; Staudt et al., 2015; van Gils et al., 

2018) and its flow structure (de Koster et al., 2007). However, taking into account that 

the scope of the investigation only takes into account the typical processes of a 

warehouse, variables such as the location of the warehouse and possible delays in the 

arrival of vehicles that affect the occupation of the docks were excluded. 

Finally, to illustrate the real store in terms of SD, a causal-loop diagram is 

presented (Figure 2), which consists of a map showing the causal links between variables. 

The relationship between two variables can be positive or negative. If the sign at the head 

of the arrow is +, the relationship is positive, if the sign is -, the relationship is negative. 

When one the relationship is positive, if one variable increases, the other also increases. 

It can also mean that if one variable decreases, the other will decrease as well. However, 

if the relationship is negative, the two variables change inversely. The signs on each arrow 

only indicate the direction of the effect but not its magnitude. Now when the relationship 

between the variables creates a closed-loop, a feedback loop is created, which can be a 
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reinforcing loop (R) or a balancing loop (B). Reinforced loops are a source of growth, 

while balance loops are a source of balance in the system (Sterman, 2000). 

3.1.2. SD equations 

In this section, we convert the causal loop diagram into a flow and stock diagram, which 

represents the causal relationships in terms of stocks, flows, and auxiliary variables 

(Aracil, 1995). Stocks (levels) and flows (rates) are the basic components of SD 

modeling. Stocks are the result of the difference between inputs and outputs, they 

represent the current state of the system. The flows indicate the rate of variation of the 

variables as a function of time (Sterman, 2000). Table 2-6 summarizes the main variables 

by process, type of variable, unit of measure, and equation used. The stock-type variables 

found in Tables 2,3,4,5 and 6 have measurement units Pal/∆t, where ∆t corresponds to 

the simulation step (1 hour). This is because, conceptually, the available amount of each 

level variable in a time delta (∆t) has units of measure Pal/h. 

Table 2 summarizes the main variables of the receipt process. As the capacity to 

receive the inventory that arrives from the plant and the different suppliers is divided into 

two parts, receipt in cases and receipt in pallets, resources are assigned for each type of 

unloading. In this case, the productivity of receipt in cases is 4.6 times lower than the 

productivity of receipt in pallets. The receiving rate-pallets is the result of the minimum 

value between “inventory waiting to be received on pallets”, “receiving productivity-

Pallets” and “receipt area available capacity”. Similarly, the "receiving productivity-

cases" is calculated. However, the priority on the receipt is for inventory arriving on 

pallets. The inventory received and available is represented by the variable “Inventory 

available in receipt docks”. The flow of the different products in the warehouse was 

configured in a vector where the first position corresponds to line products and the second 

position to seasonal products {line; season}. 

Once inventory is available at the receiving docks, the warehousing process 

begins. The product has two exit routes, pre-storage, and cross-docking; priority is for 

cross-docking. The pre-storage rate is the minimum value between the difference of the 

inventory available at the receiving docks and the cross-docking rate and the available 

pre-storage productivity. The pre-stored product is transferred to the reserve storage area 

taking into account the pre-stored available inventory, the available reserve storage 

capacity, and the productivity of the resource assigned to this activity (“Storage 

productivity”). To attend to the orders in boxes, the restocking activity is carried out from 

the reserve storage area to the storage area for picking (“Inventory for picking”). The 

replenishment rate is the minimum value between the available reserve inventory, the 

“replenishment productivity” and the inventory available for picking. Table 3 summarizes 

those explained above.
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Figure 2. Causal diagram of the real warehouse 
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Table 2. Main variables and equations of the receipt process 

Process Variable Unit 
Initial 

operating 
condition 

Equations 
Type of 
variable 

 
The arrival rate of 

suppliers on pallets/cases 
Pal/h 

External data 

(Excel) 
VECTOR ('Receive line product'; 'Receive 

seasonal product') 
Flow 

Receiving 

Percentage of product is 
received on pallets 

% 100 100% Constant 

Receiving area capacity  Pal 480 480 <<pal>> Constant 
 

Receiving productivity-  
Cases 

 
Pal/h 

 

39 
Number of people assigned to unload cases 
* Productivity per person-unload in cases 

 

Auxiliary 

Receiving productivity-
Pallets 

Pal/h 180 
Number of people assigned to unload 

pallets * Productivity per person-unload on 
pallets 

Auxiliary 

Inventory waiting to be 
received on pallets 

Pal {0;0} 
=Arrival rate of suppliers on pallets - 

Receiving rate-pallets 
Stock 

Inventory waiting to be 
received on cases 

Pal {0;0}  
=Arrival rate of suppliers on cases - 

Receiving rate-cases 
Stock 

Receiving rate-pallets Pal/h {0;0} 
MIN(Inventory waiting to be received on 
pallets/∆t; Receiving productivity-Pallets; 

Receipt area available capacity/∆t) 
Flow 

Receiving rate-cases Pal/h {0;0} 

MIN(Inventory waiting to be received on 
cases/∆t; Receiving productivity-cases; 

Receipt area available capacity/∆t -Receiving 
rate-pallets) 

Flow 

Inventory available in 
receipt docks 

Pal {0;0} 
=Receiving rate-pallets + Receiving rate - 

cases - Pre-storage rate – Cross-docking rate 
Stock 

 

 

Table 3. Main variables and equations of the storage process 

Process Variable Unit 
Initial 

operating 
condition 

Equations 
Type of 
variable 

Storage 

Pre-storage capacity Pal 330 330 <<pal>> Constant 
Reserve storage capacity Pal 66.150 66.150 <<pal>> Constant 
Inventory for picking -

capacity 
Pal 1.350 1.350 <<pal>> Constant 

Initial reserve inventory Pal {34360;0} 
= Reserve storage rate - Replenishment 

rate - Order picking-pallets rate  
Stock 

Pre-storage productivity Pal/h 180 
Number of people assigned for pre-storage 

* Productivity per person-pre-storage 
Auxiliary 

Reserve storage 
productivity 

Pal/h 135 
Number of people assigned for reserve 

storage * Productivity per person-reserve 

storage 

Auxiliary 

Replenishment 
productivity 

Pal/h 45 
Number of people assigned for 

replenishment * Productivity per person- 

replenishment 

Auxiliary 

Pre-storage rate Pal/h {0;0} 
= Min(Product available in receipt docks -  
Cross-docking rate; Available pre-storage 

capacity; Pre-storage productivity) 
Flow 

Inventory in pre-storage 
area 

Pal {0;0} = Pre-storage rate – Reserve storage rate Stock 

Inventory for picking Pal {0;0} 
= Replenishment rate - Order picking-

cases rate 
Stock 

Reserve storage rate Pal/h {0;0} 
= Min(Inventory in pre-storage area; 
Available reserve storage capacity; 

reserve storage productivity) 
Flow 

Replenishment rate Pal/h {0;0} 
= Min(Inventory in reserve storage; 

Available Inventory for picking -capacity; 

Replenishment productivity) 

Flow 

 

Table 4 shows the equations to model the order picking process. At this time, the 

inventory is stored and available to fulfil customer orders. Customer orders are processed 

from the reserve storage area (pallets) and from the storage area for picking (cases). The 

proportion is defined by the picking percentage. The pallet order picking rate is the result 
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of the minimum value between the proportion of pallet orders pending to be processed, 

the reserve inventory, the pallet order picking productivity and the available capacity in 

the selected product area. Similarly, the case order picking rate results from the minimum 

value between the proportion of case orders pending to be processed, the inventory for 

picking, the case order picking productivity, and the available capacity in the selected 

product area. The order picking rate in pallets has priority over the order picking rate in 

cases when placing the product in the selected product area. Another strategy to process 

orders on pallets is cross-docking, for this is taking into account the inventory available 

in the receiving docks, the pre-storage productivity, and the availability of space in the 

loading docks. Cross-docking takes precedence over the pallet order picking rate. 

 

Table 4. Main variables and equations of the order picking process 

Process Variable Unit 
Initial 

operating 
condition 

Equations 
Type of 
variable 

 

 

 

 

Order 
Picking 

Arrival of orders Pal/h 
External data 

(Excel) 
VECTOR ('Arrival Line Orders'; 'Arrival 

Season Orders') 
Flow 

Picking percentage % 10 10% Constant 
Cross-docking percentage % 0 0% Constant 

Selected product area 
capacity 

Pal 750 750 <<pal>> Constant 

Order picking productivity-
pallets 

Pal/h 120 
Number of people assigned for order 

picking-pallet * Productivity per person-

order picking-pallets 
Auxiliary 

Order picking productivity-
cases 

Pal/h 42 
Number of people assigned for order 

picking-cases * Productivity per person-

order picking-cases 
Auxiliary 

Order picking-pallets rate Pal/h {0;0} 

=Min(Inventory in reserve storage/∆t; 
Order waiting to be order picking-

pallet/∆t; Available capacity selected 
product area/∆t; Order picking 

productivity-pallets) 

Flow 

Order picking-cases rate Pal/h {0;0} 

=Min(Inventory for picking/∆t; Order 
waiting to be order picking-cases/∆t; 
Available capacity selected product 

area/∆t - Order picking-pallets rate/∆t; 
Order picking productivity-cases) 

Flow 

Order waiting–Cross-
docking 

Pal {0;0} 
= (Arrival of orders * Cross-docking 

percentage) - Cross docking rate 
Stock 

Cross docking rate Pal/h {0;0} 
Min(Order waiting–Cross-docking/∆t; 

Product available in receipt docks/∆t; Pre-
storage productivity) 

Flow 

Order waiting to be order 
picking-pallet 

Pal {0;0} 
= (Arrival of orders – Cross-docking rate) * 
Picking percentage - Order picking-pallets 

rate 

Stock 

Order waiting to be order 
picking-cases 

Pal {0;0} 
= (Arrival of orders – Cross-docking rate) * 

(1-Picking percentage) - Order picking-
cases rate 

Stock 

Unsorted inventory at 

loading dock 
Pal {0;0} 

= Order picking-pallets rate + Order 
picking-cases rate - Sorting rate 

Stock 

 

After finishing the order selection, the inventory is sorted. The sorting rate is the 

result of the minimum value between the selected orders, the available capacity in the 

loading bays, and the sorting productivity (see Table 5). 
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Table 5. Main variables and equations of the sorting process 

Process Variable Unit 
Initial 

operating 
condition 

Equations 
Type of 
variable 

 

Sorting 

     

Sorting productivity Pal/h 180 
Number of people assigned to sorting * 

Productivity per person sorting 
Auxiliary 

Sorting zone-capacity Pal 750 750 <<pal>> Constant 

Sorting rate Pal/h {0;0} 
MIN (Unsorted inventory at loading 

dock/∆t; Sorting productivity; Available 
loading dock capacity/∆t) 

Flow 

Percentage of shipment on 
full pallets 

% 1 1% Constant 

Sortied inventory at 
loading dock 

Pal {0;0} 
= Sorting rate - Loading rate-pallets - 

Loading rate-cases 
Stock 

 

Finally, once the product is available and classified at the loading docks, it is 

loaded into the vehicles for later delivery to customers. The proportion of loading on 

pallets is defined by “Shipment percentage on full pallets”. 

 

Table 6. Main variables and equations of the shipping process 

Process Variable Unit 
Initial 

operating 
condition 

Equations 
Type of 
variable 

 

Shipping 

Shipment percentage on 
pallets 

% 1% 1% Constant 

 

Loading productivity-
pallets 

Pal/h 120 
Number of people assigned to load on 

pallets* Productivity per person-load on 

pallets 

 

Auxiliary 

Loading productivity-cases Pal/h 150 
Number of people assigned to load on 

cases* Productivity per person-load on 
cases 

Auxiliary 

Loading rate-pallets Pal/h {0;0} 
MIN ((Sortied inventory at loading 

dock/∆t * Percentage of shipment on full 
pallets); Loading productivity-pallets) 

Flow 

Loading rate-cases Pal/h {0;0} 
MIN ((Sortied inventory at loading 

dock/∆t *(1- Percentage of shipment on 
full pallets)); Loading productivity-cases) 

Flow 

Product loaded Pal {0;0} 
= Loading rate-pallets + Loading rate-

cases 
Flow 

3.1.3.  Performance measures  

To measure the fill rate of receipt, fill rate of shipment, and total operating cost, the 

following equations were used: 

Fill rate receipt = 
𝑃𝑎𝑙𝑙𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

𝑃𝑎𝑙𝑙𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 (𝑅𝑒𝑎𝑙)
∗ 100                                         (1) 

Fill rate shipment = 
𝑃𝑎𝑙𝑙𝑒𝑡𝑠 𝑠ℎ𝑖𝑝𝑝𝑒𝑑 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

𝑃𝑎𝑙𝑙𝑒𝑡𝑠 𝑠ℎ𝑖𝑝𝑝𝑒𝑑 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 (𝑅𝑒𝑎𝑙)
∗ 100                                        (2) 

Total operating cost = 𝑅𝑒𝑐𝑒𝑖𝑝𝑡 𝑐𝑜𝑠𝑡 +  𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 +  𝑂𝑟𝑑𝑒𝑟 𝑝𝑖𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 +  𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑠𝑡             (3) 

To calculate the total cost of each process, receipt, storage, order picking, and 

shipping, the number of pallets that pass through each one is multiplied by the unit cost 

of processing. Each process has a different cost according to the number of people 

assigned, the salary earned, and productivity. However, if this total cost calculated in each 

simulation step is less than the minimum cost per hour in a particular process, this is 

replaced by the minimum. 
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The cost of replenishment was not considered in the calculation of the total 

operating cost, since the replenishment is not the responsibility of the actual warehouse 

and does not affect its costs. Each component of the total operating cost is calculated on 

the basis of labor and does not include infrastructure costs (operation under roof), since 

they are relatively independent of the infrastructure and do not generate distortions in the 

behavior of the output variables of the model. Now, the only exception would be with the 

percentage of cross-dicking, since the increase in the value of this parameter should 

compress the infrastructure of the warehouse, but since the warehouse is already built and 

its structure is not modifiable, it has no impact on the full operating cost. Therefore, the 

conclusions of this research are not valid for strategic planning, but for tactical planning. 

Continuing with the calculation of the total operating cost, when the pallets that 

are waiting to be processed in one hour and a particular process exceed a defined threshold 

(decision rules) the model generates a penalty cost. It is an alert that indicates that the 

process is out of control at that time and therefore those conditions are penalized. Table 

7 shows the decision rules defined for each process, which were validated according to 

the operating conditions of the case study warehouse. In practice, these penalties would 

correspond to overtime or hiring temporary workers to keep a given process under 

control. 

Table 7. Decision rules in each warehouse process to define cost penalty 

3.1.4. Simulation reporting 

The proposed SD simulation model has been implemented using Powersim Studio 10, 

Euler integration with a one-hour step and a time horizon of one year, using a bank 

calendar. 

3.1.5. Model verification and validation 

Initially, each equation within the model was reviewed to verify dimensional consistency 

without the inclusion of arbitrary scale factors that have no meaning in the real world. 

This verification was made with the alerts that the Powersim software generated when 

the dimensions of one or more elements of each equation were not consistent. As the 

model was being built, the software displayed these alerts visually. 

In addition, extreme conditions and conservation of physical laws were evaluated 

in the receipt and shipment process. In the first scenario, the total number of pallets to 

receive was zero and it was expected that the total available inventory would quickly fall 

to zero and would not be negative. In the second scenario, the total number of pallets to 

Process Decision rules 

Receiving 

If the difference between the total of products to be received in any one hour is greater than the capacity of 
the pre-receipt area, a cost penalty is generated. The difference between these two variables is multiplied by 

the unit processing cost and a wage increase factor 

Storage 

If the inventory in the pre-storage area is greater than the total storage productivity, a cost penalty is 
generated. The difference between these two variables is multiplied by for the unit cost of the process and a 

wage increase factor 

Order 

Picking 

If the total number of pallets waiting to be processed (order picking + cross-docking) is greater than the 
maximum delay allowed, a cost penalty is generated. The difference between these two variables is 

multiplied by for the unit cost of the process and a wage increase factor 

Sorting 
If the difference between the total of products to sorting in any one hour is greater than the 48% of the 
capacity of the sorting area, a cost penalty is generated. The difference between these two variables is 

multiplied by the unit processing cost and a wage increase factor 

Shipping 

If the total number of pallets waiting to be loaded is greater than twice the productivity of this process, a cost 
penalty is generated. The difference between these two variables is multiplied by for the unit cost of the 

process and a wage increase factor 
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be sent to customers was zero. In this case, the total available inventory would grow 

rapidly until it reaches the total storage capacity. In turn, the received pallets, at that 

moment, would reach zero since there is no storage capacity available for their respective 

reception. In both cases the results were consistent. 

In addition, for the validation of the SD model, the procedure by Senge (1980) 

and Sterman (2000) was implemented using Theil inequalities to determine if the model 

can reproduce the observed data. This test decomposes the mean square error (MSE) in 

terms of the bias (UM), unequal variance (US), and unequal covariance (UC) as proposed 

by (Sterman, 1984). 

The behavior validation was carried out using the inventory level of line and 

seasonal products. Table 8 shows the results of the Theil test and the statistical analysis 

between the real (R) and simulated (S) data. The results illustrate that the model 

accurately recreates the behavior of these two state variables. 

Table 8. Summary of statistics to evaluate the fit of the simulated vs real data 

Indicator Seasonal product Line product 

Simulated mean (XS) 4.006 42.212 

Real mean (XA) 4.012 41.951 

Simulated standard deviation (SS) 4.592 3.251 

Real standard deviation (SR) 4.476 3.230 

Correlation coefficient (R) 0,994 0,856 

R2 coefficient 0,988 0,732 

Mean absolute percent error (MAPE) 11,13% 3,52% 

Mean square error (MSE) 255.541 8.618 

UM-unequal bias 0,02% 2,19% 

US-unequal variance 5,28% 0,01% 

UC-unequal covariance 94,70% 97,79% 

Considering the results of Table 8, most of the MSE is concentrated in UC, while 

UM and US are relatively small. This indicates that the simulated and real values do not 

coincide, but the model can capture the average value and the dominant trends (Sterman, 

1984). However, as the UC value is large, it indicates that the model does not capture 

some type of noise or cyclical data. This type of error is not systematic and is not 

considered as a criterion to reject the validity of the model (Sterman, 1984). Figures 4 

and 5 show a comparison between the real and simulated inventory levels for the two 

products. 
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Figure 3. Real vs. simulated seasonal inventory level comparison 

 

 
Figure 4. Comparison of the real vs simulated line inventory level. 

3.2. Statistical screening 

Simulation models under the SD approach focus on the identification of feedback 

mechanisms within a system to provide explanations of its behavior. These mechanisms 

are used for policy design (Sterman, 2000). However, a preliminary step in the 

development of these policies is the identification of parameters and high leverage 

structures that influence the behavior of the system, that is, the ability of the input 

parameters of the model to impact its output variables, a method which is known as 

statistical screening (SS) (Taylor et al., 2010). 

SS allows a modeler to test multiple model input parameters simultaneously and 

analyze the impacts at each time step within the simulation process (Taylor et al., 2010). 

Calculates the correlation coefficients for each simulation step and each of the defined 

input parameters, delivering as a result, a time series of said coefficients within the 

simulation period (Taylor et al., 2010). 

To develop SS, the four parameters discussed above and the two output variables 

already mentioned were included in the analysis. Step by step is shown in Figure 5. The 

detail of the step-by-step can be found in (Taylor et al., 2010). 

 
Figure 5. Step by step statistical screening 

Step 1: Select 
parameters, 
parameter 

ranges, and 
performance 

variable

Step 2: Perform 
a statistical 
screening to 
calculate the 
correlation 
coefficients

Step 3: Select 
the analysis 
time period

Step 4: Identify 
the parameters 

with high 
absolute 

correlation 
coefficient 

values

Step 5: connect 
the high-
leverage 

parameters with 
the model 
structure

Step 6: 
Additional 
structure-
behavior 
analysis
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In the first step, the uncertainty ranges were empirically calculated by modifying 

from five to five points, in a range from 0 to 100, each input parameter, running the model, 

and calculating the total operating cost, and the receipt, and shipping fill rate. For the 

uncertainty range of picking percentage, cross-docking percentage, and percentage of 

shipment in full pallets, the minimum value of the total operating cost was taken as a basis 

and symmetric range was defined at this value. For the percentage of receipt on full 

pallets, a range between 60-100% was defined because it makes sense for the reality of 

the case-study warehouse process. Finally, the combination of these parameters and 

variables was analyzed in three scenarios: Current product mix (line and season), 

eliminating the effect of the season, and doubling the season effect. In the three scenarios, 

the total product flow was maintained, only the proportions were changed according to 

the analysis. Table 9 summarizes the uncertainty ranges for the four input parameters of 

the model that were used to analyze the total operating cost and the receipt and shipping 

fill rate. 

Table 9. Output variables, input parameters, and their uncertainty ranges. 

Input parameters 
Ranges of 

uncertainty 
Output variables 

Receipt percentage on pallets 
Uniform (60-

100%) Fill rate of receipt (%) 

 
Fill rate shipment (%) 

 
Total operating cost ($) 

Picking percentage Uniform (0-50%) 

Cross-docking percentage Uniform (0-40%) 

Shipment percentage on pallets Uniform (1-60%) 

In the second step, 50 runs were made to calculate the correlation coefficients for 

each parameter, for each simulation step, and each output variable. With this information, 

the values obtained were plotted to visualize the effect of each parameter on the output 

variables throughout the simulation horizon. For each run, a random value of the 

parameter analyzed at that moment was generated and the data was plotted for an initial 

visual analysis. A graph of the total operating cost of the warehouse was created with the 

200 simulations to identify the behavior of this output variable against the changes in 

each parameter. Then, graphs of the correlation coefficient of the total operating cost of 

the warehouse against each parameter separately were generated, to identify if any of 

them dominates the dynamics of the system. 

In the third step, an uncertainty range was not defined within the one already 

established in step 1, because the behavior of the total operating cost was of exponential 

growth throughout the simulation period, but in the fourth step, the parameters that most 

influenced the total operating cost and the fill rate of receipt and shipment were identified, 

considering the values of greater proximity to -1 and 1. 

Then, in the fifth step, the model structures that are connected to the parameters 

with the greatest impact on the output variables were identified. In the case of total 

operating cost, the formula was disaggregated into its different components (see equation 

3) and the evolution of each of them was plotted throughout the simulation period, 

identifying which warehouse process was driving the increase in this variable and the 

associated structure. Finally, in a sixth step, these structures were analyzed to explain the 

behavior of the output variables. 

Followed by the SS analysis, policies were defined to reduce the total operating 

cost and maximize the fill rate of receipt and shipment in the three scenarios listed above. 

For the development of this analysis, the value of each parameter that minimized or 
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maximized the value of these two output variables was taken into account. Then, a 

simulation was run for each combination. 

4. Results and discussion 

Figure 6 presents the results of the runs to analyze the behavior of the total 

operating cost for each parameter. This figure shows that the total operating cost has an 

exponential growth throughout the simulation period and that the order picking process 

dominates the behavior of this output variable. The receipt percentage on pallets is the 

second most important parameter in the growth of the total operating cost. The cross-

docking percentage and the shipment percentage on pallets do not affect significantly the 

total operating cost of the warehouse. 

 

 

Figure 6. Total operating cost for the 200 simulations and per parameter. Each line 

corresponds to a run of the model. 

Likewise, Figure 7 presents the time series with the correlation coefficients 

between the total operating cost and the four aforementioned parameters. This figure 
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illustrates the type of association that exists between this output variable and each 

parameter.  

 

Figure 7. Series of correlation coefficients of the model input parameters vs Total 

operating cost. 

Figure 7 shows that the picking percentage has a positive and stable association 

with the total operating cost during the entire simulation period with an average 

correlation of 0.67 and a small deviation of 0.03. Besides, considering the behavior of the 

total operating cost in figures 6 and 7, the interest focuses on understanding the reason 

why the percentage of picking makes the total operating cost grows exponentially 

throughout the simulation period. An initial explanation is that the picking percentage is 

structurally connected with the efficient operation of a warehouse, and the greater the 

need to process pallets through this causal route increases the number of pallets waiting 

and affecting also the picking rate. This in turn affects the number of pallets waiting 

through a balancing loop (B11), generating penalties that exponentially increase the order 

picking process cost and at the same time the total operating cost. This penalty appears, 

when the difference between the number of pallets waiting and the picking rate is greater 

than the threshold defined for the generation of costly penalties. This identifies this causal 

path as the dominant structure for the total operating cost in the chosen time frame. These 

results are in line with Razik et al. (2016), that point out that one of the main success 

factors for improving the performance of a warehouse is the correct management of the 

picking process (policy). Similarly, Aminoff et al. (2002) conclude that the picking 

process is the one with the highest cost within the warehouse (24%) and that the general 

performance of this link is strongly related to this process, especially with the order 

structure and the efficiency of the productivity of the same.  

Conversely, the percentage of receipt on full pallets has a negative association 

with the total operating cost throughout the simulation period, with a mean of -0.57 and 

a deviation of 0.07. Moreover, as shown in Figure 7, during most of the seasonal period 

(July-November), the negative association strengthens by 9%, going to 0.62 with a similar 

deviation of 0.06. The higher the value of this parameter, the lower the total operating 

cost, being 100% the one that generates the minimum of this output variable (see Figure 

8). Connecting this parameter with the structure of the model, we can identify that, as its 

value increases, the greater the need to process pallets through this causal route (balancing 

loop B1), increasing the wait for full pallets to be received, which could generate penalties 
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that exponentially increase the cost of receipt and at the same time, the total operating 

cost. However, 94.5% of the time, the productivity of receipt on full pallets is greater than 

the product arrival flow and allows the level of pallets waiting not to exceed the penalty 

rule within this process. This behavior implies that no penalties have been generated in 

this process and therefore the total operating cost remains controlled (B1). On the other 

hand, the productivity of receipt in non-full pallets is lower than the receipt flow 86.1% 

of the time, generating penalties that do affect the receipt cost and the total operating cost. 

This result is in line with  Cagliano et al. (2011), that state the negative association 

between the percentage of receipt on pallets and the total operating cost. This percentage 

can be increased through the flexible use of resources, the subcontracting of item counts, 

and the supply of reliable suppliers, encouraging receipt on complete pallets and from 

certified suppliers. 

Similarly, the relationship between the cross-docking percentage and the total 

operating cost is negative in 58% of the simulation period, with a mean of 0.77 and a 

deviation of 0.17 (March-November). The negative association occurs because the higher 

the percentage of cross-docking, the lower the pre-storage rate, directly impacting the 

flow and level of the pre-storage area, which in turn affects the storage rate, thus reducing 

the inventory level and consequently the total cost of this process (lower product flow 

through this causal route, B4-B7). In addition, the higher the percentage of cross-docking, 

the less need for order picking, reducing the flow of this causal route and consequently 

the total operating cost (B8-B13). In both causal routes, the sorting rate is decreased, since 

the product arrives sorted at the loading docks (B14). Similar results are found in the 

research by Johnson & McGinnis (2011), where the authors highlight the positive effect 

on warehouse performance with the increase in the percentage of cross-docking, which 

implies a decrease in the total operating cost.  

However, in this same period, there is evidence of the absence of linear 

association (correlation coefficients with zero value). This scenario occurs when the total 

operating cost, in a particular hour, does not exceed the minimum operating cost of this 

process due to the lack of product flow. In this case, regardless of the value of each 

parameter, the value of the output variable will be the same, the minimum cost per hour 

of the process. 

In the last three simulated months, the association changes direction and 

becomes positive, with a mean of 0.72 and a deviation of 0.24 (see Figure 7). The positive 

association of the last three months is given by the same design of the model when 

separating the flow of the line and season product. In this case, as the waiting need for 

cross-docking contains seasonal products and the receipt of this type of product has 

already ended, it generates penalties that increase the total operating cost. For values of 

this parameter between 10-40%, the total operating cost does not change significantly, 

below 10% it increases significantly. 

Likewise, the analysis of the percentage of shipment on full pallets reveals that 

during 45% of the simulated period it has a negative association with the total operating 

cost, with a mean of -0.45 and a deviation of 0.09, but the remaining 55% does not present 

a linear association with this variable. The explanation is the same as that given in cross-

docking. Throughout the uncertainty range of this parameter, the total operating cost does 

not change significantly, it is almost constant. Connecting this parameter with the 

structure of the model of Figure 2, we identify that, the higher the percentage of shipment 

on full pallets, the higher the shipping rate on full pallet, which affects the number of 
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pallets available for loading through a balancing loop (B17). The shipping rate on full 

pallet directly affects the number of products sent to customers. However, as the shipping 

productivity on full pallets is similar to the shipping productivity on non-full pallets and 

each one of them is greater than the product flow pending loading, it does not significantly 

affect the total operating cost or the latter is not sensitive to changes. in the values of this 

parameter (without association). 

Finally, Figure 8 shows that the total operating cost decreases when the 

percentage of the product received on pallets with a value of 100%, picking percentage 

varies between 10-30%, the cross-docking percentage between 15-30%, and the 

percentage of shipment on full pallets between 20-45%. Additionally, shows the behavior 

of the receipt and delivery fill rate for changes in the uncertainty ranges of each input 

parameter analyzed. After the SS analysis, unlike the total operating cost, these two output 

variables did not show significant associations with the input parameters throughout the 

simulation period. However, the only parameter that affects these two output variables to 

some extent is the percentage of picking, between 45-50%, extreme values in the 

uncertainty range evaluated. 

 

Figure 8. The behavior of the output variables vs uncertainty range of each input 

parameter was analyzed. 

4.1. Sensitivity analysis 

In a final analysis, we evaluate the behavior of the system under extreme but probable 

scenarios. The former eliminates the short-life cycle product flow, whereas the latter one 

duplicates it.  Figures 9a and 9b show the behavior of the total operating cost for the 

warehouse and that of each parameter under these two scenarios, respectively. 

Comparing figures 9a and 9b show that, in general, the behavior of the total 

operating cost of the warehouse is the same, but with different effects within the period 
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that includes the season (May-November). In particular, between September and 

December, in the scenario where the flow of the season is doubled, the total operating 

cost increases. Similarly, when the effect of the season is eliminated, it is evident that the 

total operating cost decreases between September and December concerning the current 

operating conditions of the warehouse. 

 

 

Figure 9. The total operating cost of the warehouse. Evaluation of the effect of eliminating 

the season or duplicating it. 

The behavior of each parameter is also affected by the greater flow of short life 

cycle product, but the percentage of picking and the percentage of receipt on full pallets 

are still the dominant parameters in the behavior of the system (see Figure 10).  
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Figure 10. The total operating cost of the warehouse and per process. Evaluation of the 

effect of eliminating the season or duplicating it. 

Figure 11, shows that the intensity of the association between the picking 

percentage and the total operating cost remains almost constant with or without the effect 

of the season, but it does show the effect of eliminating or doubling the flow of seasonal 

products in the other parameters. 

Figure 11a shows that the behavior of the percentage of the product received on 

full pallets without the effect of the season, makes it almost constant throughout the 

simulation period, but with the double effect of the season, the intensity of the association 

becomes stronger in the negative direction, favoring the decrease of the total operating 

cost during the period that includes the season. In this case, the productivity of receipt on 
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full pallets is greater than the product arrival flow 93.5% of the time, which allows the 

level of pallets waiting not to exceed the penalty rule within this process, reducing the 

penalties that increase its cost and therefore the total operating cost. 

 

 

Figure 11. Series of the correlation coefficients of the model input parameters and the 

Total operating cost. Scenario eliminating the season (a) or duplicating it (b). 

Figure 12 compares the base scenario, without the effect of the season and 

doubling its effect, for the two parameters with the greatest degree of impact on the total 

operating cost, picking percentage and receipt percentage on pallets. The increase in 

seasonal flow has a greater effect on the strength of the linear association between receipt 

percentage on pallets and total operating cost than on picking percentage and total 

operating cost. 
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Figure 12. Series of the correlation coefficients of the most effect parameters in the total 

operating cost. Base scenario, scenario eliminating the season (a) or duplicating it (b). 

Finally, regarding the fill rate of receipt and shipment under the two scenarios that 

were analyzed, again, the result showed insignificant relationships throughout the 

simulation period under the different changes in the uncertainty ranges. Similarly, the 

only parameter that affects these two output variables to any degree is the percentage of 

picking, between 45-50%.  Figure 13 and 14 shows the values that show this behavior. 

 

Figure 13. The behavior of the output variables vs uncertainty range of each input 

parameter was analyzed. Without the effect of the season. 
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Figure 14. The behavior of the output variables vs uncertainty range of each input 

parameter was analyzed. Duplicate effect of the season. 

4.2. Policy design 

Finally, after completing the analysis, we perform a run of the SD model to analyze the 

behavior of the system under good values of the operating parameters identified thanks 

to the SS analysis. Table 9 shows the values of the input parameters to the model with 

which the warehouse must operate under current conditions to reduce the total operating 

cost without affecting the receipt and shipping fill rate. This table also shows the values 

of these parameters under the without-season scenario and doubling-the-season scenario. 

The values chosen were those that minimized the total operating cost within the range of 

uncertainty as illustrated in Figures 8, 13, and 14. 

 

With the current line and season product mix, a run was made with these values 

and the total operating cost was decreased, from $ 4,607,735,413 to $ 2,846,822,572, 

representing a 38% decrease. Now, if the effect of the season is eliminated, the decrease 

in the total operating cost is 41% over the base scenario, but when its effect is doubled, it 

decreases by only 21%. In all the analyzed scenarios, the receipt and delivery fill rate 

were not affected. 

Table 10. Values of the input parameters to the model with which the warehouse 

must operate to reduce the total operating cost. 

 

 

Parameter 

Value of each parameter 

Current 
warehouse 

state 
Best value 

All flow is 

long life cycle 

product 

Short life 
cycle product 

flow is 
doubled 

Receipt percentage on pallets 100% 100% 100% 100% 

Picking percentage 10% 25% 25% 25% 

Cross-docking percentage 0% 20% 35% 20% 

Shipment percentage on pallets 1% 30% 30% 35% 

Total operating cost 4.607.735.413 2.846.822.572 2.718.555.158 3.648.753.161 

Receipt fill rate 100% 100% 100% 100% 

Shipment fill rate  100% 100% 100% 99,9% 
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4.3. Model limitations 

From the SS application point of view, the uncertainty ranges chosen to analyze the 

performance of the warehouse can bias the results (Taylor et al., 2010). In this case, they 

were defined empirically. Alternatively, analytical methods can be used to determine 

them, but without neglecting the validity in the daily operation of the warehouse. 

Other limitations of SS were identified by Ford & Flynn (2005). The authors 

observed that the correlation coefficients may not recognize a high influence parameter 

when the influence pattern is not linear in the uncertainty range. Furthermore, the value 

of each parameter analyzed is fixed throughout the simulation period, a very strong 

assumption that is not really in practice. 

Finally, the chosen input parameters, which are well known in real operations, 

cannot always be 100% controlled. The complexity of the orders in the case of the picking 

percentage or the restrictions of the production and/or transport plants in relation to the 

receipt percentage on pallets could affect the control that the warehouse has over these 

parameters. However, knowing the behavior and impact of the picking percentage, a 

parameter with the greatest influence on the total operating cost, helps to understand how 

the warehouse's performance would be if I have new clients with more complex 

operations. 

5. Conclusions and future research opportunities 

This document discusses the application of SD and SS in the identification and degree of 

impact of variables that affect the performance of a warehouse under the effect of seasonal 

demand and short- and long-life cycle products. SD is a valuable analysis tool not only 

for strategic evaluations but also for decision-making aimed at improving warehouse 

operational performance. It could also be concluded that, despite the limitations of SS, it 

is a method that allows a better understanding of the simulation model and the 

identification of potential leverage structures that dominate the behavior of the system. 

 

In particular, the results found in the baseline scenario show that the picking 

percentage is the input parameter with the greatest influence on the total operating cost, 

followed by the receipt percentage on pallets. By contrast, the cross-docking percentage 

and the shipment percentage on pallets are not part of the dominant causal path of the 

total operating cost.  

 

Within the sensitivity analysis that was carried out, eliminating the effect of the 

season or doubling it, show that the behavior of the total operating cost does not change 

significantly, but the percentage of picking and the percentage of receipt in full pallets 

are still the parameters that dominate the dynamics of this output variable. The correlation 

and behavior between the picking percentage and the total operating cost are almost 

constant between these two scenarios when compared against the baseline scenario.  This 

result indicates that the flow of short-life cycle products does not have a major effect on 

the relationship between these two variables. However, the receipt percentage on pallets 

is affected by this change within the seasonal period. Finally, for the fill rate of receipt 

and shipment, the result showed that they are not affected throughout the simulation 

period under the different changes in the uncertainty ranges. 

 

The analysis of the effect of these four variables leads to an ideal operating 

scenario, where the total operating cost can be reduced if the picking percentage varies 
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between 10-30%, the cross-docking percentage between 15-30%, the shipment 

percentage on pallets between 20-45% and the receipt percentage on pallets with a value 

of 100%. In particular, the total operating cost decreases 38% compared to the base 

scenario, if the picking percentage is 25%, the cross-docking percentage is 20%, the 

shipment percentage on pallets is 30%, and the receipt percentage on pallets with a value 

of 100%. However, despite the limitations of SS, it is a method that allows a better 

understanding of the simulation model and the efficient identification of potential 

leverage structures that dominate, in this case, the general performance of the warehouse.  

 

The main limitation of this research comes from the design of the simulation 

model, productivity in the different warehouse processes was modeled as an exogenous 

variable throughout the time horizon, which could affect the dynamics of warehouse 

performance. Under this choice, these productivities are not affected by the possible 

absenteeism of the personnel, the rotation of this resource and its impact on the efficiency 

of the processes due to the learning curve they need, as well as the complexity of the 

orders in terms of their structure (SKU number, quantities, weight, volume). In addition, 

the model does not present delays between order release, order picking, and vehicle 

availability, which could significantly affect the outbound flow, increasing total operating 

cost and, affecting the fill rate. On the other hand, the model does not pose the need for 

external storage if the capacity is used at 100%. In addition, analyze parameters that are 

100% controlled by the warehouse, such as order picking by order or by batches, the size 

of the batch to be separated, the dynamic assignment of personnel within the warehouse 

(multivalence) or simultaneously modify the parameters chosen to evaluate the 

performance of the warehouse, could potentiate the results found in this research. These 

would be options to motivate researchers to pursue new challenges that help improve the 

systemic understanding of warehouse performance. 
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